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ABSTRACT

Learning a set of diverse and high-quantity policies is a difficult problem in Re-
inforcement Learning since the diversity of policies is demanded to be achieved
without dampening their effectiveness. This problem becomes more challenging
when the rewards are non-Markovian, i.e., the rewards depend on the history of
states and actions, which are quite sparse and returned over a long period. The
sparse supervision signals and the non-Markovian properties of the rewards hinder
the learning of policy embeddings and thus the learning of diverse and high-quality
policies. In this paper, we propose to use a diversity matrix to quantify policy
diversity and theoretically prove that if the diversity matrix is positive definite,
then the diversity of policies can be achieved without sacrificing their effectiveness.
The policy diversity matrix stems from policy embeddings. To obtain high-quality
embeddings, we adopt a transformer to capture mutual dependencies between states
and actions and design pseudo tasks to overcome sparse rewards. Experimental
results show that our method can achieve a set of policies with more effective
diversity and better performance than multiple recently proposed baseline methods
in a variety of non-Markovian and Markovian environments.

1 INTRODUCTION

Reinforcement learning (RL) has achieved great success in learning an efficient policy for a given
task (Mnih et al., 2015; Schulman et al., 2017; 2015; Lillicrap et al., 2015; Fujimoto et al., 2018;
Haarnoja et al., 2018). To achieve better exploration and adaptation to complex environments, a
diverse set of high-quality policies are required in many real-world scenarios with non-Markovian
rewards. For example, an autonomous taxi traveling from the passenger zone to the destination should
learn diverse routes in the case that a regular path is blocked, and the taxi can get a positive reward
only when taking the passenger to the correct destination. We usually need to learn diverse policies
and ensure their diversity does not dampen their effectiveness. This problem becomes becomes more
challenging when the rewards are non-Markovian, in which each reward is returned over a long
period and depends on the history of states and actions (Camacho et al., 2017; Gaon & Brafman,
2020; Brafman et al., 2018).

Some prior works are developed to learn diverse policies. A series of existing Quality-Diversity
(QD) (Pugh et al., 2016) related evolutionary algorithms have achieved good performance in exploring
diverse behaviors and diverse policies (Cully & Demiris, 2017; Gangwani et al., 2020; Hong et al.,
2018; Masood & Doshi-Velez, 2019; Peng et al., 2020; Zhang et al., 2019; Conti et al., 2017). Even
though the policies achieve diverse behaviors, different policies will frequently switch between
existing behaviors during the policy update process, which degrades the performance of policies. The
MAP-Elites algorithms (Cully et al., 2015; Mouret & Clune, 2015) solve this problem by discretizing
the behavior description space into a grid of cells. Nonetheless, in this method, the gird of cells
needs to be pre-defined. To break this limitation, policy embedding-based methods are developed in
the literature. The P3S (Jung et al., 2019) algorithm embeds policy behaviors and searches an area
in the policy space guided by the best policy to obtain diverse solutions. The DvD (Parker-Holder
et al., 2020b) algorithm pre-defines the behavioral embeddings as a collection of actions and uses a
kernel function to transform the behavioral embeddings into a matrix for diversity policy learning.
However, when the reward is non-Markovian, it is challenging to learn the policy embeddings since
the non-Markovian rewards depend on the history of states and actions and provide quite sparse

1



Under review as a conference paper at ICLR 2023

supervision signals, and in the above methods, the absence of the history of states and actions can
result in ineffective policy embeddings.

Some theoretical conclusions are also developed to ensure that diverse policies are not obtained by
sacrificing their effectiveness. The DvD (Parker-Holder et al., 2020b) algorithm proves that under
tabular MDP, multiple distinct optimal solutions can be obtained by maximizing the proposed loss
function. The ridge rider algorithm (Parker-Holder et al., 2020a) proposes to use the eigenvectors of
the Hessian matrix to discover diverse local optima with theoretical guarantees. Nieves et al. (2021)
theoretically shows that maximizing the diversity metric based on the decision point process can
guarantee to enlarge the convex polytopes spanned by the policies of agents. However, these works
cannot be used in our settings, the theory in Nieves et al. (2021) is for two-player zero-sum games,
which is not the concern of this paper, and the theory in Parker-Holder et al. (2020a) assumes the
Hessian matrix can be accurately estimated, which is challenging when the rewards are sparse. The
embeddings and the proposed theory in Parker-Holder et al. (2020b) are only for the tabular Markov
Decision Process.

A natural question emerges: How to learn policy embeddings in environments with non-Markovian
rewards and ensure the learned diverse policies are effective?

In the paper, we propose a novel method called Diverse Policy Learning via Diversity Matrix (DDM),
which can efficiently find high-quality policies with diverse behaviors in non-Markovian reward
environments. Specifically, to learn high-quality embeddings, we use a Transformer Encoder (Vaswani
et al., 2017) to capture mutual dependencies between actions and states. Moreover, to overcome
the challenge of sparse rewards, we design pseudo tasks to train the Transformer Encoder, and the
obtained embeddings are further employed to construct a diversity matrix to measure the degree of
policy diversity. We also give the theoretical conditions such that the policy diversity will not reduce
their effectiveness.

Our contributions are summarized as follows: (1)We develop a Transformer-based policy representa-
tion model, which is capable of learning policy embeddings in non-Markovian reward environments.
To overcome the sparse rewards, we design pseudo tasks to train the policy representation model. (2)
We propose a diversity matrix to measure the degree of policy diversity and prove that if the diversity
matrix is positive definite, then the diversity of policies can be achieved without sacrificing their
effectiveness. (3) Our policy diversity learning scheme can be combined with any off-policy reinforce-
ment learning algorithm, and experimental results in a variety of environments show it outperforms
multiple recently proposed baselines in both non-Markovian and Markovian environments.

2 PRELIMINARIES

In this section, we present the necessary background relevant to the problem setting of this work.

Markov Decision Process (MDP) is a mathematical framework to describe an environment in
reinforcement learning. MDP is a tuple (S,A, P,R, ρ, γ), where S is the state space, A is the action
space. The state transition dynamic function is given by P : S × A → S, mapping from the
current state s ∈ S to the next state s′ ∈ S. The reward function is given by R : S × A → R,
mapping from state s ∈ S and action a ∈ A to R. γ ∈ [0, 1) denotes the discount factor. Policy π
is a mapping from S to A, and the objective of the policy is to maximize the expected cumulative
reward R(τ) =

∑T
t=1 γ

t−1rt. In deep reinforcement learning, policy π is typically a neural network,
encoded by parameter vectors θ, and the objective function of policy π is as follows:

J(π) = Eτ∼π[R(τ)]. (1)

Non-Markovian Reward Decision Processes (Bacchus et al., 1996; Gaon & Brafman, 2020)(NM-
RDPs) extend MDPs and assume each reward depends on the history of states and actions. Specifically,
the Non-Markovian Reward (NMR) function R is a mapping from the finite history of states and
actions to R, denoted as (S ×A)∗ → R.

Here we use Div({πm}Mm=1) to denote the diversity of M policies and its specific form will be
discussed in Section 3.3. In this paper, for each πm (m ∈ {1, ...,M}), we aim at maximizing

J̃(πm) = (1− β)J(πm) + βDiv({πm}Mm=1), (2)
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where J̃(πm) is an objective function of policy πm, and β ∈ (0, 1) controls the trade-off between
J(πm) and Div({πm}Mm=1). However, the effectiveness of policy πm in collecting rewards may
be dampened when maximizing the objective in Eq. (2). To overcome this challenge, we propose
Theorem 3.1 to justify that the objective in Eq. (2) can only be maximized when all policies {πm}Mm=1
are optimal.

3 METHODOLOGY

In this paper, we aim to learn the policies satisfying the following two requirements: diversity and
effectiveness. However, when rewards are non-Markovian, it is difficult to obtain effective policy
embeddings since the rewards depend on the history of states and actions and the supervision signals
are quite sparse. Moreover, it is also a challenge to ensure the diversity of effective policies. In the
following, we shall provide the method to overcome these two challenges.

3.1 OVERVIEW

Our proposed method, DDM (Diverse Policy Learning via Diversity Matrix), comprises two primary
submodules: the policy representation module and the policy diversity qualification module, which
are developed to answer the question in Introduction 1. The schematic illustration of our method is
shown in Fig. 1, and the pseudo code is given in Appendix A.1.

𝜉𝑖,𝑚 𝑖=1,𝑚=1

𝑁,𝑀

Policy 

Representation 

Module

(c) Policy Diversity

Quantification Module

Replay 

Buffer 𝐷

Trajectories

B
at

ch
o
f

tr
aj

ec
to

ri
es

fr
o
m

D

(a) Overview

Diversity

Matrix

Policy

Diversity

P
o
licy

 D
iv

ersity

Q
u

a
n

tifica
tio

n
 M

o
d

u
le

Pseudo Labels 

P
seu

d
o
 fu

n
ctio

n
 𝝓

(b) Policy Representation Module

Pseudo Classification Layer

Sample distribution

Cat((𝐻(𝑟𝑖,𝑚))𝑖=1
𝑁 )

Pseudo Labels

Y= 𝑦m 𝑚=1
𝑀

𝑦𝑚 m=1
M

Representation Loss 

Loss ℒ 𝝃𝒊,𝒎 , 𝒚𝒎

Transformer Encoder

batch of trajectories 𝜏𝑖,𝑚 𝑖=1,𝑚=1

𝑁,𝑀
from D

Policy Diversity

det(S) = 𝐷𝑖𝑣({ 𝑣𝑚 }𝑚=1
𝑀 )

Diversity Matrix

𝑆 ≜ 𝐹({ 𝑣𝑚 }𝑚=1
𝑀 )

Policy embeddings 

{ 𝑣𝑚 }𝑚=1
𝑀

Policy Diversity Objective 

Function ሚ𝐽 𝜋𝑚

Policy embeddings 

{ 𝑣𝑚 }𝑚=1
𝑀

Policy embeddings 

{ 𝑣𝑚 }𝑚=1
𝑀

Policy 

{ 𝜋𝑚 }𝑚=1
𝑀 Env

Figure 1: A schematic illustration of DDM: (a) The overall structure of DDM. DDM comprises
the policy representation module and the policy diversity quantification module. M learners execute
parallelly and store trajectories into replay buffer D. (b) The policy representation module samples a
batch of trajectories from replay buffer D and then obtains the sample distribution using Eq. (3). A
pseudo task is proposed, and the pseudo function ϕ is trained using sampled trajectories and their
pseudo labels Y by minimizing representation loss L (Eq. (7)). Outputs are policy embeddings
{vm}Mm=1. (c) The policy diversity quantification module utilizes policy embeddings to construct
a diversity matrix. The determinant of the diversity matrix is regarded as policy diversity, which is
further included in the policy diversity objective J̃(πm) (Eq. (8)). We prove this policy diversity
objective can only be maximized when all policies are optimized.

The representation module is shown in Fig. 1(b), which is utilized to obtain effective policy embed-
dings. Non-Markovian rewards are returned over a long period and thus are quite sparse. Besides,
they depend on the history of actions and states, not only the last ones. A Transformer encoder is
adopted to learn effective policy embeddings by capturing mutual dependencies between states and
actions. We design pseudo tasks to solve the lack of supervision signals for the Transformer encoder.
For the m-th (m ∈ {1, ...,M}) policy πm, the representation module inputs a state-action trajectory
collected by πm and outputs a policy embedding vector vm for πm.
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The policy diversity quantification module is shown in Fig. 1(c), which aims to construct a diverse
matrix using the policy embeddings. It is challenging to ensure that policy diversity can be achieved
without sacrificing their performance. We prove that our method based on diversity matrix can
overcome this challenge by: 1) utilizing the policy embeddings to construct positive definite diversity
matrix and 2) adding the determinant of the diversity matrix as a term to the objective function.

In our method, M parallel learners learn M distinct policies and share a common replay buffer D.
The M learners execute parallelly in different copies of the same environment and employ a common
base algorithm which can be any off-policy RL algorithm.

3.2 POLICY REPRESENTATION MODULE

The policy representation module is employed to generate effective and diverse embeddings for
different policies. However, in the non-Markovian scenarios, each reward depends not only on the
current state and action but also on the history of states and actions, and thus we use a Transformer
to capture this long-horizon dependencies. To train the policy representation module with sparse
supervision signals, we design a self-defined pseudo task and use the policy indexes as the pseudo
labels. Moreover, we use sparse rewards as the criterion to select training trajectories.

3.2.1 PSEUDO TASK

The non-Markovian rewards are quite sparse, which hinders the learning of policy embeddings
directly using states, actions, and rewards. Moreover, we require the learned embeddings to be
diverse and effective, i.e., the embeddings for different policies are distinguished while they have
good performance.

Let τi,m be the i-th trajectory of states and actions collected by policy πm. To obtain different
embeddings for different policies, we model the problem as a straightforward pseudo task and predict
the indexes of policies from the history trajectories, i.e., design a function ϕ : τ → Y , where
τ = {τi,m}N,M

i=1,m=1 denotes the set of state-action trajectories collected by policies {πm}Mm=1,
and Y = {ym}Mm=1 is the set of the policy indexes, namely the pseudo labels. As our goal is to
have more diverse embeddings when they have better performance, which facilitates us in obtaining
high quality policies by increasing their diversity. Hence, we need to design a mapping from
(τi,m, ri,m)N,M

i=1,m=1 to Y , where ri,m denotes the accumulated reward of τi,m. Here, instead of
directly concatenating ri,m with τi,m, we design a more effective way to incorporate ri,m. We regard
ri,m as the parameter of a categorical distribution and use this distribution to sample the trajectories
for policy πm. Mathematically,

im ∼ Cat
(
(H(ri,m))Ni=1

)
, (3)

where im is the trajectory index sampled by the categorical distribution for policy πm, and H(ri,m)
is a heaten equation given by

H(ri,m) := σ(ri,m)
1
T /

N∑
j=1

σ(rj,m)
1
T , (4)

where σ is the sigmoid function, N is the batch size, and T is a hyperparameter that is used to adjust
the “temperature” of the sampling distribution. With the heaten equation, trajectories with higher
cumulative rewards will be sampled to train the model at a higher frequency.

It is worthy noting that the function ϕ : τ → Y needs to capture mutual dependencies between states
and actions, and we will discuss its details in Section 3.2.2. Now we obtain the pseudo labels of
trajectories sampled from Eq. (3), which will be used to train the representation model by minimizing
the loss Eq. (7).

3.2.2 CAPTURE MUTUAL DEPENDENCIES BETWEEN ACTIONS AND STATES

The non-Markovian rewards depend on the history of states and actions rather than solely on the
last state and action. Thus, it is essential to understand and mine the complex characteristics in
the trajectories and extract the embeddings of policies. In this section, we use a Transformer to
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capture mutual dependencies between actions and states. Because the states and actions have different
feature dimensions and can not be directly input into the Transformer encoder, for a trajectory
τi,m = (s1i,m, a1i,m, ..., sTi,m, aTi,m) collected by policy πm, we let ωt

i,m = (sti,m, ati,m) for each time
step t ∈ {1, ..., T}. Then the Transformer encoder can take {ωt

i,m}T,N,M
t=1,i=1,m=1 as input and extract

the mutual dependencies between multiple time steps. We give a specific form of function ϕ(·)
mentioned in Section 3.2.1, which is a combination of Eq. (5) and Eq. (6). Subsequently, we let
ωi,m = (ωt

i,m)Tt=1 be a sequence, which can be processed with the Transformer encoder (i.e., a
Layernorm (LN), a multiheaded self-attention (MSA) layer, and a residual connections (Wang et al.,
2019; Baevski & Auli, 2018)), to obtain the policy embedding:

vi,m = MSA(LN(ωi,m + Epos)) + ωi,m, (5)

where vi,m ∈ RK is the i-th embedding for policy πm and Epos is the positional encoding. We
then randomly select M embeddings {vm}Mm=1 for M policies from {vi,m}N,M

i=1,m=1 and obtain the
diversity matrix by stacking the M selected embeddings. The determinant of the diversity matrix will
be included in the general loss (see Eq. (8) in Section3.3) for training the basic off-policy RL models.

To train the policy representation module with the pseudo labels, vi,m are processed with a pseudo
classification layer (SC). Our method can achieve a good result when SC is the combination of a
Layernorm (LN) and a fully connected (FC) layer, which is formulated by:

ξi,m = SC(vi,m), (6)

where ξi,m is a vector in which the j-th element (j ∈ {1, 2, ...,M}) represents the probability that
the policy embedding vi,m is assigned to the j-th policy. Then we train the policy representation
module and learn the policy embeddings by minimizing the loss function:

L = − 1

N

1

M

N∑
i=1

M∑
m=1

(ym
T log(ξi,m)), (7)

where ym is the pseudo label of τi,m obtained in Section 3.2.1.

3.3 POLICY DIVERSITY QUALIFICATION MODULE

Diverse policy embeddings can be learned by minimizing Eq. (7) in Section 3.2. But, we still cannot
guarantee that the diversity of learned policies is achieved without sacrificing their performance. In
this section, we first theoretically provide the conditions such that optimal policies can be obtained in
our diverse settings. Then, we present the method to ensure the conditions.
Definition 3.1. (Diversity Matrix) Consider M policies {πm}Mm=1, and their embeddings are denoted
as {vm}Mm=1, where vm ∈ RK . Let V ≜ [v1, ..., vM ], where [·] is the operator that stacks vectors
into a Matrix. We define Diversity Matrix of policies as S ≜ F (V ), where F (·) is a function that
transforms the M ×K matrix V to a K ×K positive-definite matrix.
Definition 3.2. (Policy Diversity) We define the diversity of policies as the determinant of their
diversity matrix, denoted as Div({vm}Mm=1) = det(S).

We explain these two definitions from a geometric perspective. Matrix V in Definition 3.1 is an
M ×K matrix. The embeddings of M policies will construct a polyhedron in the space, and the
polyhedron volume represents the embeddings dispersion, which is regarded as the diversity of M
policies. Suppose the number of policies M is equal to the dimension K of the policy embeddings
(M = K). In this case, the determinant of the square matrix V can directly represent the volume of a
parallelepiped spanned by policy embeddings. In general cases, M ̸= K, function F (·) is adopted to
transform the polyhedron spanned by M K-dimensional embeddings to a parallelepiped spanned by
a K-by-K positive-definite matrix in another space. Then the determinant of the square matrix also
represents the diversity of M policies.

Now consider the objective function J̃(πm) of policy πm, which is the summation of two terms: the
first term is the same objective function J(πm) as the base algorithm, and the second term is the
policy diversity Div({vm}Mm=1). Specifically, we train Div({vm}Mm=1) and the basic reinforcement
learning algorithm by maximizing:

J̃(πm) = (1− β)J(πm) + βDiv({vm}Mm=1) (8)

5



Under review as a conference paper at ICLR 2023

where and β ∈ (0, 1) controls the trade-off between J(πm) and Div({πm}Mm=1). Next, we will give
a theory to justify that our method can ensure both the diversity and quality of policies.

Theorem 3.1. Consider M policies for an environment characterized by finite NMRDP. Suppose
optimal policy πm achieves a cumulative reward of R and suboptimal policy π̃ achieves a cumulative
reward of R(π̃) with R(π̃) + ∆ < R for some ∆ > 0. If diversity matrix S is positive definite, and
Λ ≜

∏K
i=1 sii <

(1−β)
β ∆, then the objective in Eq. (8) can only be maximized when all policies are

optimal.

When ∆ is small, we can choose a small β to guarantee Λ < 1−β
β ∆. The proof of Theorem 3.1 is in

Appendix A.3.

A method to construct a diversity matrix. The theory holds if the diversity matrix is pos-
itive definite, and we give a method to construct a positive definite diversity matrix. In gen-
eral, we compute the covariance matrix of the policy embeddings and then regard the determi-
nant of the covariance matrix as the diversity of policies in Definition 3.2. Specifically, we
construct the covariance matrix S of (vm)Mm=1, where vm ≜ (vm,k)

K
k=1. The (i, k)-th ele-

ment of S is sik = 1
M−1

∑M
m=1(vmi − v̄i)(vmk − v̄k), where M is the number of policies, and

v̄i ≜ 1
M

∑M
j=1 vji. However, the covariance matrix is semi-positive definite, in this section, we use

the following method to make it positive definite. When det(S) = 0, we replace S with S̃, where
(i, i)-th element is s̃ii = sii+

∑
j ̸=i |sij |. According to Gershgorin circle theorem (GERSCHGORIN,

1931), the modified matrix S̃ is positive definite. The determinant of the covariance matrix is also
called the generalized variance (Wilks, 1932) in statistics, which is a one-dimensional measure of
multidimensional scatter.

Intuitive explanations of our method. The larger the determinant of S is, the more dispersed the
data points are. From a geometric perspective: the generalized variance of the samples is proportional
to the volume of the ellipsoid (Anderson, 1962; Johnson et al., 2014). Thus, the diversity of policies
det(S) captures the volume of policy embedding space. The detailed explanation is in Appendix A.4.

4 RELATED WORK

Learning diverse policies via Evolution Strategy. These methods are based on the ES (Salimans
et al., 2017) algorithm, which is a broad class of population-based black-box optimization algorithms
and directly searches in the parameter space of a neural network to find an effective policy. In the
DvD (Parker-Holder et al., 2020b) algorithm, behavioral embeddings are generated to characterize
the behaviors of each agent, and policy diversity is measured by the determinant of the embedding
matrix. The MAP-Elites (Mouret & Clune, 2015) algorithm strives to find different solutions by
discretizing behavior descriptor space into a grid of cells. The EDO-CS (Wang et al., 2021) uses
a clustering-based selection method to optimize evolutionary diversity. Policies are divided into
many clusters based on their behaviors in each iteration, and a high-quality policy is chosen for
reproduction from each cluster.

Learning diverse policies via Reinforcement Learning. Our method can be grouped into this
category. Some Reinforcement Learning (RL) based methods have been developed to explore diverse
behaviors (Eysenbach et al., 2018; Hartikainen et al., 2019). The GEP-PG algorithm (Colas et al.,
2018) uses Goal Exploration Processes (Forestier et al., 2017) to generate diverse policies and
combines them with the Deep RL algorithm DDPG (Lillicrap et al., 2015), which performs well
in continuous control tasks. The RSPO (Zhou et al., 2022) explores diverse policies by solving a
filtering-based objective, which restricts RL policies from converging to a solution that differs from a
set of local optimal policies. P3S-TD3 (Jung et al., 2019) method periodically determines the best
policy among all learners and assigns the best policy parameters to all learners so that the learner can
search for a better policy under the guidance of the best policy.

Policy representation learning. A generative method is proposed in Grover et al. (2018), which
imitates the policy and generates policy embeddings in the generative module, and maximizes
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the distances between embeddings in the discrimination module. Two meta learning methods are
proposed in Rusu et al. (2018); Ghosh & Bellemare (2020), and they both regard the latent generative
representation of learning model parameters as the policy representation, and the method in Ghosh &
Bellemare (2020) shows more stable performance.

Learning diverse policies and effective policy representations is difficult with non-Markovian rewards
since the rewards depend on the history of states and actions, and the supervision signals are quite
sparse. Moreover, diverse policies should be obtained without sacrificing their effectiveness. To the
best of our knowledge, our method is the first method that discusses policy diversity learning with
non-Markovian rewards.

5 EXPERIMENTS

To examine the performance of DDM, we conduct experiments in a variety of tasks from the OpenAI
Gym library (Brockman et al., 2016), including non-Markovian reward and Markovian reward
environments. We compare DDM against DvD (Parker-Holder et al., 2020b), QD-RL (Cideron et al.,
2020), and P3S (Jung et al., 2019). For a fair comparison, we combine DDM and baselines with the
same base algorithm (i.e., DQN, PPO, TD3) and use the same hyperparameters for each environment.
The policy set size M of these algorithms is always set to 5. Other experiments details can be found
in Appendix A.2. We report the mean and standard deviations across five identical seeds for all
algorithms and all tasks. The experiments are performed using the ray (Moritz et al., 2018) library
for multi-process parallel computation on a computer with 16-cores.

5.1 NON-MARKOVIAN REWARD ENVIROMENTS

In this experiment, we consider two environments, Point-v1 and FrozenLake-v1, with non-Markovian
rewards and multi-solutions to explicitly examine whether DDM can efficiently find high-quality
policies with diverse behaviors. In the Point-v1 environment, which is modified from the Point-v0
(Parker-Holder et al., 2020b) and has continuous state and action space, an agent only obtains a
non-Markovian reward at the end of each episode, the agent and the target (i.e., green cuboid) are
separated by three U-shape walls (Fig. 2(left)), and the current episode ends immediately if the agent
hits the wall or reaches the target. The reward is the negative distance between the agent and the
target at the end of the episode. The agent will get an additional reward of +100 if it reaches the
target and an additional reward of -100 if it hits the wall. Obviously, following the gradient of only
the expected cumulative rewards will guide the agent to walk forward directly and hit the wall.

We combine our method DDM and baselines with PPO (Schulman et al., 2017). The results are
shown in Fig. 2 (right). It can be observed that DvD-PPO achieves the second best performance but is
still 20% worse than our method. That is because DvD-PPO neglects the long-horizon dependencies
from the history of actions and states in non-Markovian rewards environments, leading to imperfect
policy embeddings. QD-PPO shows unstable performance and unsatisfied policy diversity, which is
due to its instability in handling sparse rewards. P3S-PPO finally gets trapped into a less-attractive
local optimal. This is because P3S-PPO searches policies only according to the previous best policy,
which can cause a rapid improvement of a particular policy but may also lead to search in small-range
policy space. It implies that the DDM-PPO can achieve better performance with much fewer training
iterations, which shows the advantage of DDM in non-Markovian reward environments.

To measure the policy diversity of different methods, we visualize 5 trajectories of policies in Fig.
3, which are learned after 500 training iterations in the Point-v1 environment. The lines represent
the trajectories, where the orange point and the green square represent the start position and target
position, respectively, and the black polylines represent the walls that separate the agent and the
target. Overall, all policies of our method reach the target successfully in the Point-v1 environment.
Moreover, our DDM method manages to bypass the three walls over the upper wall, beneath the
bottom wall, and through two gaps between walls, i.e., the gap between the middle wall and the upper
wall and the gap between the middle wall and the bottom wall, which demonstrates the excellence of
our method in learning diverse policies. Besides, trajectories of our method from the same side are
also different from each other. In comparison, the trajectories of P3S-PPO overlap over a long period,
and most policies get stuck in front of the walls, which demonstrates that P3S-PPO can not properly
handle non-Markovian rewards. For QD-PPO, only two policies can bypass the wall from the gap

7



Under review as a conference paper at ICLR 2023

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
- 1 0 0

0

1 0 0  D D M - P P O  
 D v D - P P O  
 Q D - P P O  
 P 3 S - P P O

Re
wa

rd

I t e r a t i o n

P o i n t - v 1

Figure 2: Left: the Point-v1 environment. Right: the performance of different algorithms

between the middle wall and the upper wall, and the others are stuck in front of the walls. One of
the policies hit the edge of the upper wall and stumble to the target. DvD-PPO shows similar results.
Only a small part of the policies in the policy set of DvD-PPO, QD-PPO, and P3S-PPO can reach
the target, and these policies can only move through two gaps. In comparison, most of the policies
of our method can reach the target from different paths, including gaps between walls and spaces
over or beneath the walls, demonstrating that our DDM is capable of achieving better performance in
learning diverse policies.
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Figure 3: Trajectory visualization of our proposed DDM and baselines after 500 training iterations in
the Point-v1 environment.

The FrozenLake-v1 environment is a grid world game, where some tiles are walkable, and some tiles
are holes that will make the agent fall into the water. If the agent reaches the goal tile, the returned
reward is 1, and if the goal tile is not reached within limited time steps or the agent falls into water,
the returned reward is 0. In this environment, the non-Markovian rewards are only obtained at the end
of the episodes and thus are extremely sparse. As the size of grids and the density of holes increases,
it becomes increasingly difficult for agents to reach the target.

Table 1: The number of times to reach the target in three FrozenLake-v1 environments.
Environment DDM-DQN P3S-DQN DvD-DQN QD-DQN

FrozenLake-v1 4× 4 (4holes) 2175 2034 1874 1582
FrozenLake-v1 5× 5 (10holes) 1895 1798 1603 1489
FrozenLake-v1 8× 8 (28holes) 1040 770 689 634

In three FrozenLake-v1 environments, we combine our method DDM and baselines with DQN
(Mnih et al., 2013) and compare their performance in 4 × 4, 5 × 5 and, 8 × 8 grids, respectively.
For each agent, we first conduct 4000 episodes in the experiment. Then, we show the average
number of times that each method reaches the target in three FrozenLake-v1 environments in Table 1.
DDM-DQN reaches the target more times than DvD-DQN, P3S-DQN, and QD-DQN in all three
environments, which shows the advantage of DDM in non-Markovian reward environments. The
trajectory visualization of the FrozenLake-v1 is in Appendix A.2.1.
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5.2 MARKOVIAN REWARD ENVIRONMENTS

To examine the performance of DDM in environments with Markovian reward, we conduct ex-
periments in standard MuJoCo environments. We combine our method DDM and baselines with
TD3 (Fujimoto et al., 2018). The accumulated rewards versus the number of training iterations are
shown in Fig. 4. In the three environments, the convergence speed of DDM-TD3 is faster than
DvD-TD3, QD-TD3, and P3S-TD3. We can observe that DDM-TD3 can always achieve the best final
performance. Although P3S-TD3 can sometimes learn faster at the early stage of optimization, e.g.,
in the Humanoid-v2 environment, its final performance is worse than the other methods. The results
show our method can achieve better performance than baselines in environments with Markovian
rewards. Moreover, the results also reflect that in the process of policy learning, policy diversity is
not achieved by sacrificing effectiveness.
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Figure 4: Performance of different algorithms in the three standard MuJoCo environments.

We change the original single-mode environments HalfCheetah and Ant into two two-mode environ-
ments by assigning rewards for both Forward and Backward tasks. These changed environments are
employed to examine the effectiveness of DDM in learning diverse and high-quality policies. All the
methods are trained in two-mode environments and tested in single-mode environments.

Table 2: Rewards obtained by different algorithms in two-mode environments.
Envrionment Mode DDM-TD3 P3S-TD3 DvD-TD3 QD-TD3

HalfCheetah Forward 5325 5014 -3591 4897
Backward 6716 -4452 6380 6045

Ant Forward 4740 4454 4437 4033
Backward 4734 -3273 4090 4108

From Table 2, we observe PS3-TD3 can learn to handle Forward tasks, but fails in Backward tasks of
both environments. DvD-TD3 can learn to handle both tasks of Ant environment and the Backward
task of HalfCheetah Environment. Only QD-TD3 and our method can handle both tasks in both
environments, but our method can obtain larger cumulative reward than QD-TD3, demonstrating its
good performance in learning high-quality and diverse policies. This demonstrate DDM can learn
high-quality and diverse policies in Markovian reward environments.

6 CONCLUSION

In this paper, we introduced DDM, a method for promoting policy diversity for control tasks with
non-Markovian rewards. DDM addresses the issue of achieving diverse policies without sacrificing
their effectiveness by including the determinant of diversity matrix to policy objective function.
Furthermore, DDM develops a Transformer-based policy representation model, which is capable of
learning policy embeddings in non-Markovian reward environments. We design a pseudo task in the
policy representation module to overcome the challenge of sparse rewards. We demonstrate across a
variety of tasks that DDM not only finds diverse, high-quality policies in non-Markovian rewards
environments but also manages to maintain strong performances in Markovian rewards environments.
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