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Abstract

In-silico prediction of protein mutant stability, measured by the difference in
Gibbs free energy change (∆∆G), is fundamental for protein engineering. Current
sequence-to-label methods typically employ the two-stage pipeline: (i) encod-
ing mutant sequences using neural networks (e.g., transformers), followed by (ii)
the ∆∆G regression from the latent representations. Although these methods
have demonstrated promising performance, their dependence on specialized neu-
ral network encoders significantly increases the complexity. Additionally, the
requirement to individually compute latent representations for each mutant site
negatively impacts computational efficiency and poses the risk of overfitting. This
work proposes the Venus-MAXWELL framework, which reformulates mutation
∆∆G prediction as a sequence-to-landscape task. In Venus-MAXWELL, mutations
of a protein and their corresponding ∆∆G values are organized into a landscape
matrix, allowing our framework to learn the ∆∆G landscape of a protein with
a single forward and backward pass during training. Besides, to facilitate fu-
ture works, we also curated a large-scale ∆∆G dataset with strict controls on
data leakage and redundancy to ensure robust evaluation. Venus-MAXWELL is
compatible with multiple protein language models and enables these models for
accurate and efficient ∆∆G prediction. For example, when integrated with the
ESM-IF, Venus-MAXWELL achieves higher accuracy than ThermoMPNN with
10× faster in inference speed (despite having 50× more parameters than Ther-
moMPNN). The training codes, model weights, and datasets are publicly available
at https://github.com/ai4protein/Venus-MAXWELL.

1 Introduction

Protein stability, determined by the change in Gibbs free energy (∆G) of protein sequences between
the native and unfolded states, plays a critical role in various applications, ranging from therapeutic
protein design to industrial enzyme engineering [1, 2, 3, 4, 5, 6]. In protein engineering, accurately
predicting mutation-induced stability changes (∆∆G) is critical, and current methods for assessing
stability across large mutant libraries remain prohibitively expensive and resource-intensive, creating
a pressing need for efficient computational solutions. Consequently, developing accurate and efficient
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computational tools for protein stability prediction is a longstanding focus of research, spanning
physics-based and statistical methods [7, 8, 9] to machine learning approaches [10, 11, 12, 13, 14].

Deep learning, exemplified by AlphaFold2 [15], has revolutionized protein-related tasks [16, 17,
18, 19, 20, 21] with protein language models (PLMs), emerging as powerful tools for capturing
co-evolutionary patterns from vast sequence and structural datasets [22, 23, 24, 25, 26]. These models
have shown powerful capabilities in wide-range downstream tasks, including stability prediction.
Recent methods, such as Stability Oracle [13] and ThermoMPNN [14], leverage PLMs to achieve
impressive performance in ∆∆G estimation. However, their reliance on complex architectures and
massive computational requirements leads to prohibitively high training/inference costs, fundamen-
tally limiting their scalability for large-scale protein engineering applications. These methods can be
broadly categorized as sequence-to-label approaches. Specifically, these methodologies involve a
two-stage process: first, a PLM or a similar encoder model transforms a mutant sequence into a latent
representation; subsequently, a regression head predicts the ∆∆G value from the representation.

The sequence-to-label paradigm, however, presents three main challenges: (i) Computational
Inefficiency: This design requires computing a distinct latent vector for each mutant site (as shown
in Figure 1 (A)), which is computationally expensive and heavily dependent on the encoder’s design;
(ii) Knowledge Misutilization: The regression head is often trained from scratch, failing to fully
harness the rich evolutionary patterns PLMs learn during pre-training, which are implicitly captured
in the model’s output likelihoods or logits. (iii) Architectural Rigidity: The reliance on a specific
regression head design limits versatility and complicates the integration of different PLM types.
These limitations highlight the need for a generalizable and efficient approach for stability prediction.
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Figure 1: Comparison of Venus-MAXWELL and sequence-to-label models. (A): The sequence-
to-label models compute a latent vector for each mutant site. (B): The Venus-MAXWELL outputs a
landscape in one forward pass.

In this work, we introduce Venus-MAXWELL (Matrix-wise landscape learning), an efficient sequence-
to-landscape framework that reframes ∆∆G prediction. Venus-MAXWELL is not merely a faster
model but a new fine-tuning paradigm that directly addresses the limitations of sequence-to-label
approaches.
First, Venus-MAXWELL maximizes the utilization of pre-trained PLM knowledge. Our key insight is
to formulate the framework as a differentiable, matrix-based version of the PLM’s native zero-shot
scoring function. Many PLMs, pre-trained on millions of sequences, can estimate the fitness like
∆∆G of mutant in a "zero-shot" manner by calculating the log-likelihood difference between mutant
and wild-type sequences[27, 28]. Venus-MAXWELL is designed to inherit this powerful capability.
Critically, its "initial performance" (before any fine-tuning) is mathematically equivalent to the
underlying PLM’s zero-shot prediction performance. Therefore, our fine-tuning process does not
learn from scratch but starts from a significantly advanced foundation, directly enhancing the rich
evolutionary information already captured by the PLM.

Second, Venus-MAXWELL introduces a novel matrix-based fine-tuning methodology. Instead of
adding a task-specific regression head, our method directly fine-tunes the PLM’s output logits in a
matrix-wise fashion (as depicted in Figure 1 (B)), elegantly adapting the PLM for ∆∆G estimation.
This paradigm is highly versatile, serving as a universal fine-tuning framework compatible with
diverse PLMs, including masked language models and inverse folding models.

Third, as a direct benefit of this architecture, Venus-MAXWELL is exceptionally computationally
efficient. To predict all single-site mutations for a protein of 200 amino acids (3800 mutants),
a sequence-to-label model must execute 3800 separate computations. In stark contrast, Venus-
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MAXWELL accomplishes all predictions in one computational pass using the wild-type sequence,
enabling high-throughput ∆∆G prediction at minimal cost. This capability is particularly important
for protein engineering workflows such as early-stage directed evolution, which often begin by
comprehensively screening single-site mutations to identify stabilizing candidates. While complex
multi-site mutant prediction is typically handled by specialized models (e.g., ECNET [29],ProteinNPT
[30] and PRIME[31]), these models could offer multi-site mutant predictions based on training on
single-site mutants. Venus-MAXWELL is thus positioned as a crucial tool to provide high-quality,
early-stage single-site predictions, which can then be used for experimental validation and as input
for downstream multi-mutant prediction models, thereby accelerating the entire directed evolution
pipeline.

Besides, we have observed that existing mutation ∆∆G datasets often exhibit significant redundancy
between training and test sets, as well as misalignment between mutant and wild-type sequences.
To address these issues, we constructed a high-quality dataset derived from public resources, which
underwent rigorous de-duplication and redundancy reduction based on sequence alignment. As a
result, we obtained strictly separated training and test sets, containing over 226K and 12K curated
mutation entries, respectively, ensuring a fair evaluation of generalization. The difference between
this dataset and those in previous studies [13] lies in an intensive manual verification process to
validate the sequence-mutation consistency.

Utilizing this meticulously constructed ∆∆G dataset for evaluation, we demonstrate that fine-tuning
with our Venus-MAXWELL framework significantly enhances the predictive capabilities of various
PLMs. For example, when using ESM-IF as the base model, the fine-tuned ESM-IF not only
outperforms the sequence-to-label paradigm (which uses ESM-IF to generate features per mutant for
regression) on the ∆∆G prediction task but also surpasses ThermoMPNN, a current state-of-the-art
model designed explicitly for ∆∆G prediction, while achieving over 10 times faster inference.

To summarize, our main contributions are as follows:

A matrix-based sequence-to-landscape framework: Venus-MAXWELL offers a new efficient and
broadly applicable approach for fine-tuning diverse PLMs on ∆∆G prediction task. This approach
uniquely maximizes the utilization of pre-trained evolutionary knowledge to enable superior stability
assessment with minimal computational overhead.

A qualified mutation ∆∆G dataset: We provide a cleaned protein mutation ∆∆G dataset. The
sequences within the training and test sets have been processed to remove duplicates and reduce
redundancy, ensuring that their sequence identity remains below 30%.

2 Related Work

Protein language models (PLMs). Similar to advances in natural language processing, PLMs have
evolved into two dominant architectural paradigms: masked language models and auto-regressive
models. Masked language models, such as ESM series [22, 24, 25, 32, 33], employ bidirectional
attention to predict masked residues, capturing rich contextual representations of protein sequences.
Auto-regressive models, like ProGen2 [34] and Tranception [35], predict amino acids sequentially,
excelling in generative tasks. These pre-trained models have demonstrated success across various
downstream applications, particularly in mutation effect prediction and protein design. Through
fine-tuning, PLMs can effectively leverage their encoded evolutionary information to enhance protein
fitness prediction, supporting directed evolution [29, 31, 36, 37]. Moreover, PLMs often exhibit
zero-shot capabilities [22, 24], but this ability is non-directional and not specifically tailored to
stability prediction. Our work offers an efficient way to convert this non-directional prediction into a
directional one by fine-tuning on ∆∆G mutation datasets.

Physics-based methods for ∆∆G prediction. Early efforts in protein stability prediction relied
on physics-based methods or statistical analysis [7, 8, 9]. Rosetta [7], a widely adopted framework,
employs Cartesian space sampling methods to predict stability changes based on high-resolution
structural data. Similarly, FoldX [8] estimates ∆∆G of mutants using an empirically derived
energy function calibrated against experimental mutagenesis data. Such methods are often highly
interpretable but are limited by computational complexity and input data precision, leading to lower
accuracy and speed compared to contemporary deep learning methods, as we present in this work.
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Deep learning-based methods for ∆∆G prediction. Prior to the development of pre-trained PLMs,
several deep learning models have been designed to reduce the bias in predicting stabilizing mutations
[10, 11, 12]. The application of PLM further advanced ∆∆G prediction. For example, Stability
Oracle [13] integrates a pretrained graph transformer model with a data augmentation approach based
on thermodynamic permutations to address the challenges of data bias and model generalization.
Leveraging the knowledge overlap between sequence recovery and stability optimization tasks,
ThermoMPNN [14] utilizes the embeddings from ProteinMPNN [38] for transfer learning, resulting
in a fast and robust ∆∆Gprediction. Despite their success, these models often require complex
architectures and extensive computational resources. Our approach, however, offers a more general
and efficient means of facilitating stability prediction with enhanced speed and accuracy, consequently
improving its applicability to a range of directed evolution contexts.

3 Method

3.1 Preliminary

Protein Language Model (PLM). The PLM, whether it is a GPT-style generative model or a BERT-
style de-noising model, can be viewed as a parameterized function fθ that maps a protein sequence
A = (a1, a2, . . . , an) to a probability distribution matrix P ∈ Rn×|A|:

P = fθ(A), (1)

where n is the sequence length and |A| is the size of the amino acid alphabet (typically 20 for standard
amino acids). The element in the i-th row and j-th column of P is the probability that the i-th amino
acid in the protein sequence is the j-th amino acid in the alphabet. Besides, PLMs can be extended
by incorporating protein structural condition S, modifying the Equation 1 to P = f ′

θ(A,S). For
simplicity, we omit the structural condition in the following, as it does not alter the framework.

PLM for mutation scoring. PLMs are typically trained on large-scale protein databases, primarily
composed of naturally occurring proteins, which exhibit higher stability due to evolutionary selection.
This enables PLMs to predict mutation effects using a “zero-shot” approach by comparing the
probabilities of wild-type and mutant amino acids [24]. For a mutation at position t from amino acid
at to bt, the predicted zero-shot score is:

Score(at → bt) = log fθ(A)t,bt − log fθ(A)t,at
, (2)

where a higher score indicates a positive mutant. However, the score is often undirected (it could
reflect activity, stability, or other properties). Notably, for inverse folding models, this specific
log-likelihood ratio has been mathematically derived to possess a free energy interpretation directly
related to ∆∆G [39]. This provides a strong theoretical foundation for its use. We therefore fine-tune
the PLM using ∆∆G data to enable it to explicitly predict mutation ∆∆G.

3.2 ∆∆G Landscape Construction

The ∆∆G landscape of a given protein is a real-valued matrix Y ∈ Rn×|A|, where Yi,j is the
∆∆G value resulting from mutating the amino acid at position i to the j-th amino acid. However, in
practice, it is usually infeasible to experimentally measure ∆∆G for all possible mutants, leading to
a sparse landscape. To track which entries have been experimentally measured, we define a binary
mask matrix M ∈ {0, 1}n×|A|, where Mi,j = 1 if Yi,j is available, and Mi,j = 0 otherwise.

3.3 Framework Architecture

The overview of Venus-MAXWELL is shown in Figure 2. Specifically, by reformulating zero-shot
mutation scoring (Equation 2) as matrix-driven scoring, Venus-MAXWELL enables PLMs to compute
the mutation landscape in a single forward pass. Crucially, the process is differentiable, allowing
PLMs to be fine-tuned on protein mutation ∆∆G landscapes through backpropagation.

For a protein sequence A = (a1, a2, . . . , an), Venus-MAXWELL computes the landscape as follows:

Sequence encoding. The sequence A is first tokenized into a one-hot encoding matrix X ∈
{0, 1}n×|A|. For each position i, the row Xi is a one-hot vector where the entry corresponding to the
wild-type amino acid ai is set to 1, and all other entries are set to 0.
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Figure 2: Overview of Venus-MAXWELL. Venus-MAXWELL utilizes matrix-driven scoring to enable
PLMs to learn the mutation landscape of a protein through a single forward-backward computation
process.

Probability prediction. The PLM computes a log-probability matrix Q ∈ Rn×|A|:

Q = log(P) = log fθ(A), (3)

where fθ is the parameterized PLM function, and the logarithm is applied element-wise. Each entry
Qi,j represents the log-probability of amino acid aj at position i.

Wild-type probability extraction. To isolate the log-probabilities associated with the wild-type
amino acids, we compute the Hadamard product (element-wise multiplication) between the log-
probability matrix Q and the one-hot encoding matrix X, yielding a matrix Qwt ∈ Rn×|A|:

Qwt = Q ◦X, (4)

where ◦ is the Hadamard product. Since Xi,j = 1 only for the wild-type amino acid ai at position i,
Qwt retains log-probabilities at wild-type positions and zeros elsewhere.

Wild-type vector construction. The matrix Qwt is then aggregated to produce a compact representa-
tion of the wild-type probabilities by summing Qwt over the amino acid dimension:

v = Qwt1|A|, (5)

where 1|A| ∈ R|A| is a unity vector and vi is the log-probability of the wild-type amino acid ai.

Wild-type matrix replication. To enable comparison between wild-type and mutant probabilities,
the wild-type log-probability vector v is replicated along the column dimension |A| times to form a
matrix Vrep

wt ∈ Rn×|A|. Specifically, we form Vrep
wt through multiplication of v with the unity vector

1T
|A| ∈ R1×|A|:

Vrep
wt = v · 1T

|A|. (6)

In this matrix, each row i contains the log-probability of the wild-type amino acid ai, repeated across
all columns j.

Mutation landscape computation. Finally, we subtract the replicated wild-type matrix Vrep
wt from

the log-probability matrix Q to obtain the mutation landscape matrix L ∈ Rn×|A|:

L = Q−Vrep
wt . (7)

Each entry Li,j represents the log-probability difference between the j-th amino acid and the wild-
type amino acid at position i. To formalize this computation, we define a function gθ as follows:

gθ(A) = L = Q−Vrep
wt (8)

= log fθ(A)− ((log fθ(A) ◦X) · 1|A|) · 1T
|A|. (9)
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It is clear that gθ is differentiable because the protein language model fθ is differentiable. Addi-
tionally, the mutation score is equal to the zero-shot scoring formula shown in Equation 2. We also
provide the algorithm and pseudo-code of Venus-MAXWELL for training and landscape prediction in
Appendix A.1 and Appendix A.2.

3.3.1 Training objective

The training objective ensures the predicted ∆∆G landscape closely aligns with the ground-truth
∆∆G landscape. Given a protein sequence X, the experimentally measured mutation stability
landscape Y ∈ Rn×|A|, and a binary mask M ∈ {0, 1}n×|A| indicating observed entries, the model
predicts a landscape L = gθ(A).

The training loss comprises two components: Ranking loss LRanking and mean squared error loss
LMSE. The first component encourages correct ranking of mutations by minimizing the negative
Pearson correlation between the predicted and measured ∆∆G values:

LRanking(Y,M,L) = 1−
∑

i,j Mi,j(Li,j − L̄)(Yi,j − Ȳ)√∑
i,j Mi,j(Li,j − L̄)2 ·

∑
i,j Mi,j(Yi,j − Ȳ)2

, (10)

where L̄ and Ȳ represent the mean predicted and ground-truth ∆∆G values over the masked positions.
The second component, a mean squared error (MSE) loss, aligns absolute values:

LMSE(Y,M,L) =
∑
i,j

Mi,j(Yi,j − L̃i,j)
2. (11)

Here, L̃ = MLP(L) = W2 σ(W1L+ b1) + b2 is the output of a two-layer multilayer perceptron
(MLP), where σ(·) denotes SELU activation function [40]. This transformation adjusts for the
scale mismatch between log-probability scores and experimental ∆∆G values. The parameters
W1,W2, b1, and b2 are learnable. Specifically, the learnable weights have dimensions W1 ∈ RV×D

and W2 ∈ RD×1, where V is the PLM’s vocabulary size and D is the hidden dimension.

The total loss is a weighted sum of both components:

L(θ) =
∑

(A,Y,M)∈D

LRanking(Y,M, gθ(A)) + λ · LMSE(Y,M, gθ(A)), (12)

where λ is a hyperparameter weighting factor that balances the two loss components. D is the training
dataset, comprising multiple protein sequences annotated with a sparse mutation landscape and a
corresponding binary mask. Each data point in D is a tuple (A,Y,M). The training objective is to
minimize the total loss: θ∗ = argminθ L(θ). Since gθ is differential, we can utilize backpropagation
and gradient descent to optimize the parameters θ, which are initialized from the pre-trained model
weights. The specific optimization details, hyperparameter selection, and implementation settings are
described in Section 5.1 and Appendix A.3.

4 Datasets Building

We collected a large protein mutation ∆∆G dataset, which includes 573 protein sequences and
239,408 mutations (average 418 mutations per protein) to evaluate the performance of Venus-
MAXWELL. All data have been manually verified to ensure consistency between mutant and wild-type
sequences, and duplicates were removed to maintain data integrity.

Test set. The test set is a compilation of mutation ∆∆G data that we are currently able to collect,
including P53 [17], Myoglobin [17], SSym [17], S669 [41], S8754 [42], M1261 [42], vb1432 [43],
Fireprotdb [44] and Thermomutdb [45]. Duplicates within the datasets are addressed by selecting
the ∆∆G measurement with the highest absolute value. This was intended to address the neutral
bias and move the ∆∆G predictions from a model away from 0. After removing duplicates, the test
set contains 12,443 mutations across 308 proteins, namely 308 sparse mutation ∆∆G landscape.
This dataset, named Test12K, is organized by protein to enable per-protein prediction and evaluation,
consistent with benchmarks like ProteinGym [27]. To ensure sufficient data for meaningful per-protein
analysis, only proteins with at least five mutations were included.
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Training Set. The training set is derived from a large-scale dataset containing 272K protein mutation
sequences, denoted as cDNA272K [46]. This dataset is a commonly used training dataset in the task
of protein stability prediction [13]. To prevent potential data leakage issues, we used the MMSeqs2
tool [47] to filter the training set, as illustrated in Figure 3 (A). Specifically, we removed all sequences
from the training set that share a sequence identity of 30% or higher with any sequence in the test
set. This threshold 30% is chosen to maintain a significant diversity of sequences, as it lies within
the “twilight zone”, a region where 95% of protein pairs have distinct structural folds [48]. The
resulting training set, Train226K, consists of 226K sequences with less than 30% sequence similarity
to any sequences in the test set. All datasets are stored in a protein-specific format to facilitate model
training and evaluation, and all sequences were folded using ColabFold 2.5 [49] to generate structural
input for PLMs if needed.

To further validate the separation between training and test sets, we performed pairwise global
sequence alignment using the Needleman-Wunsch algorithm [50]. As shown in Figure 3 (B), the
similarity distribution has a mean of 6.17%, with over 88% of test-training pairs exhibiting less than
10% similarity. This low overlap confirms that our deduplication effectively reduces data leakage
risks and enhances the model’s ability to generalize to unseen sequences.

5 Experiments and Results

5.1 Experiments Setup

The ability of Venus-MAXWELL to improve protein stability prediction (∆∆G ) was systematically
evaluated across a wide range of PLMs. We strategically selected representative PLMs from two
distinct categories: (1) structure-aware PLMs (ESM-IF and ProSST), which incorporate structural
information either explicitly or through hybrid architectures, with ESM-IF demonstrating superior
zero-shot performance in stability prediction tasks [22] and ProSST representing an emerging
paradigm that efficiently combines sequence and structural information [23]; and (2) sequence-only
PLMs (ESM-1b, ESM2, ESM-1v), which are widely adopted in protein engineering applications and
serve as pure sequence-based model representatives [24, 51, 52, 33, 53].

Hyper-parameter settings. For all Venus-MAXWELL enhanced models, we utilized the Adam
optimizer [54]. All key hyperparameters were selected through a rigorous 5-fold cross-validation
procedure on the training set (Train226K) to prevent test set leakage. Based on this analysis, we set
the initial learning rate to 5×10−5, the loss weighting factor λ to 0.1, and the MLP hidden dimension
D to V (the PLM’s vocabulary size). The optimal number of training epochs (approximately 7,
determined via early stopping with a patience of 5 epochs) was also identified during this cross-
validation process. The final models were then trained on the complete Train226K dataset for the
determined optimal number of epochs. A detailed description of the cross-validation methodology,

Training Set Test Set

cDNA272K

S669
Ssym

Myo

P53 S8754
M1261

vb1
432

Thermo
mutdb

Test12KTrain226K

Deduplication

(A) (B)

FP

Figure 3: Dataset details. (A): Dataset construction process of Train226K and Test12K. (B): Global
sequence alignment using Needleman-Wunsch confirmed the low sequence similarity between
Test12K and Train226K.
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hyperparameter search spaces, and full ablation results for each choice is provided in Appendix A.3.
All experiments were conducted on a PC with an NVIDIA RTX 4090 GPU.

Evaluation metrics. To rigorously assess model performance, we employed per-protein evaluation
followed by averaging across the dataset. For each protein, we calculated Pearson (ρp) and Spearman
(ρs) correlation coefficients between predicted and experimental ∆∆G values, capturing linear and
monotonic relationships, respectively. For classification of stabilizing vs. destabilizing mutations
(threshold at ∆∆G = 0), we computed AUC-ROC and F1 scores. This per-protein averaging
approach prevents bias toward proteins with more mutations, ensuring balanced assessment across
diverse protein structures [27, 28].

Baselines. We compared Venus-MAXWELL against: (1) ThermoMPNN, the current state-of-the-art
neural network model [55], used with its publicly available checkpoint2. Our training set is a subset
of the training set of ThermoMPNN, so there are no data leakage issues. (2) FoldX and Rosetta, two
representative physics-based computational methods; and (3) Embedding transfer baselines using
ProSST and ESM-IF, denoted as “ProSST + MLP” and “ESM-IF + MLP”. The hyperparameter
settings of baseline models are shown in Appendix A.4.

5.2 Model Performance

We evaluated Venus-MAXWELL’s performance on the Test12K dataset (Section 4), comprising 12,443
mutations across 308 diverse proteins. As shown in Figure 4 (A), Venus-MAXWELL enhances zero-
shot performance across multiple PLMs, achieving an average Spearman correlation improvement of
0.143 (Wilcoxon signed-rank test, p < 0.01). With ESM-IF, Venus-MAXWELL reaches a Spearman
correlation of 0.517, followed by ProSST at 0.479, highlighting the importance of structure-aware
representations in protein stability prediction tasks [27, 28]. This improvement stems from matrix-
driven scoring (Equation 8), which maps sequences to mutation landscapes in one forward pass.

(A) (B)

Figure 4: Performance comparison of Venus-MAXWELL. (A): Comparison of Spearman cor-
relation scores between zero-shot predictions and Venus-MAXWELL enhanced predictions across
different PLMs. The improvement from zero-shot to Venus-MAXWELL is statistically significant
(Wilcoxon signed-rank test, p < 0.01). (B): Comparison with existing prediction methods. Venus-
MAXWELL (ESM-IF) outperforms ThermoMPNN (Wilcoxon signed-rank test, p < 0.01). All
evaluations were performed on the Test12K, with per-protein correlations averaged across entire set.

When compared to existing methods (Figure 4 (B)), embedding transfer methods struggle under the
low similarity between Train226K and Test12K (Spearman: 0.302/0.234). The physics-based Rosetta
and FoldX method also demonstrates moderate performance. In contrast, the specialized architecture
of ThermoMPNN delivers strong results (Spearman: 0.508). Notably, Venus-MAXWELL with ESM-
IF surpasses ThermoMPNN (Spearman: 0.517, p < 0.01) while Venus-MAXWELL with ProSST
achieves comparable performance, without requiring architectural modifications to the base PLMs. To
further validate these findings on established public benchmarks, we also benchmarked performance

2https://github.com/Kuhlman-Lab/ThermoMPNN
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on specific, well-known subsets within Test12K (e.g., p53, s669, Myoglobin) against ThermoMPNN
and Stability Oracle. As detailed in Appendix A.5, Venus-MAXWELL consistently outperforms both
SOTA models on these individual datasets, confirming its robust and state-of-the-art performance.
These results demonstrate that Venus-MAXWELL ’s matrix-based landscape approach effectively
captures global stability patterns, outperforming both traditional regression methods and physics-
based approaches by leveraging evolution pattern knowledge from pre-trained PLMs. For more
details of comparison on additional metrics, please refer to Table A4 in Appendix A.5.

Furthermore, we investigated whether the inherent sparsity of the training landscapes adversely
affects generalization. We conducted an ablation study by progressively removing random portions
of the training data. The results show that Venus-MAXWELL’s performance is exceptionally robust,
maintaining a superior performance (Spearman: 0.501) even when 90% of the training mutants are
removed. This demonstrates that the model learns generalizable stability principles from the diverse
collection of proteins, rather than overfitting to sparse local landscapes. The full details of this sparsity
analysis are also presented in Appendix A.5.

To ensure that the superior performance of Venus-MAXWELL with ESM-IF and ProSST, both of
which utilize structural information, does not stem from structural data leakage, we analyzed structural
similarity between Train226K and Test12K using TM-align [56]. The average TM-score between
training and test set structures is approximately 0.3, indicating low structural similarity. Furthermore,
the weak correlation between prediction accuracy and structural similarity (see more details in Figure
A1 and Appendix A.6) confirms Venus-MAXWELL’s robust generalization ability across diverse
protein structures.

5.3 Prediction Speed Analysis

We evaluated Venus-MAXWELL’s inference efficiency in the context of directed evolution, where
rapid screening of single-site mutants is crucial. Testing on single-site saturation mutagenesis of 10
random proteins from Test12K (averaged over five sampling runs), Venus-MAXWELL demonstrates
remarkable speed improvements over baseline methods.

Table 1: Efficiency comparison of stability prediction methods.

Model Trainable parameters Prediction time (s) Mutants per second
Venus-MAXWELL (ESM-IF) 142 M 2.11 ± 0.04 20050 ± 714
Venus-MAXWELL (ProSST) 119 M 0.53 ± 0.02 85471 ± 3512
ESM-IF + MLP 132 K 4744.76 ± 335.9 9 ± 1
ProSST + MLP 296 K 807.77 ± 7.53 51 ± 1
ThermoMPNN 2.68 M 20.27 ± 1.81 2088 ± 7

Despite maintaining full model capacity (142 million parameters for Venus-MAXWELL (ESM-IF)
and 119 million parameters for Venus-MAXWELL (ProSST)),Venus-MAXWELL achieves exceptional
inference efficiency. As shown in Table 1, Venus-MAXWELL(ESM-IF) predicts 20,050 mutants
per second, while Venus-MAXWELL(ProSST) reaches 85,471 mutants per second, outperforming
ThermoMPNN (2,088 mutants/s) by over 10-fold and MLP-based baselines (9–51 mutants/s) by
orders of magnitude. The efficiency improvement remained robust across sequence lengths (100–1000
residues), as detailed in Table A7 and A8 in Appendix A.7, where we further analyze inference speed
variations with sequence length, underscoring Venus-MAXWELL’s capability for parallel prediction of
mutation landscapes. Notably, the training efficiency is similarly improved: Venus-MAXWELL (ESM-
IF) completes one training epoch on Train226K in 41 seconds, over 200 times faster than embedding
transfer methods, despite fine-tuning the entire PLM (see Figure A2 in Appendix A.8 for details).
These efficiency gains, combined with the predictive accuracy reported in Section 5.2, highlight
Venus-MAXWELL’s scalability for high-throughput directed evolution.

5.4 Ablation Study

To dissect the contribution of Venus-MAXWELL’s components, we conducted ablation studies using
ESM-IF as the base model, evaluating performance on Test12K (Table 2).Our analysis reveals:
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Table 2: Ablation studies of Venus-MAXWELL (ESM-IF) on Test12K datasets

Model ρ̄s ρ̄p F̄1 ¯AUC
Venus-MAXWELL (ESM-IF) 0.517 0.542 0.427 0.678
Venus-MAXWELL (ESM-IF) (No LMSE) 0.506 0.528 0.330 0.638
Venus-MAXWELL (ESM-IF) (No LRanking) 0.496 0.518 0.410 0.671
Venus-MAXWELL (ESM-IF) (ESMFold) 0.492 0.519 0.389 0.662
Venus-MAXWELL (ESM-IF without pretrain) 0.202 0.234 0.382 0.501
ESM-IF + MLP 0.302 0.331 0.383 0.627
Zero-shot 0.375 0.376 0.218 0.575
Zero-shot (ESMFold) 0.354 0.360 0.217 0.574
ThermoMPNN 0.508 0.529 0.371 0.646

Ablation on training objective. Removing the MSE module ("NoLMSE") maintained strong mutation
ranking (Spearman: 0.506) but decreased classification performance (F1: 0.330, AUC: 0.638).
Conversely, removing the ranking loss component ("No LRanking") better preserved classification
metrics (F1: 0.410, AUC: 0.671) while showing reduced correlation scores (Spearman: 0.496).
Notably, both variants remained competitive with ThermoMPNN, demonstrating the robustness of
our matrix-based approach even with partial architecture.

Ablation on structure quality. Using ESMFold-generated structures instead of ColabFold slightly
reduced performance [51]. As a result, if the structure is predicted using ESMFold instead of
ColabFold, both our model (Venus-MAXWELL (ESMFold)) and the zero-shot method experienced a
slight decrease in scoring accuracy. Specifically, the Spearman correlation dropped from 0.517 to
0.492 for our model and from 0.375 to 0.354 for the zero-shot method, respectively.

Ablation on pre-training impact. Random initialization of ESM-IF severely degraded performance
(Spearman: 0.202), demonstrating the crucial role of pre-trained weights in capturing evolutionary
patterns. All models with pre-trained weights outperformed both embedding transfer (Spearman:
0.302) and zero-shot baselines (0.375/0.354 for ESM-IF/ESMFold), confirming the effectiveness of
our matrix-based landscape approach.

6 Conclusion and Limitations

In this work, we introduced Venus-MAXWELL, a universal and efficient framework that enhances
protein stability prediction while preserving PLMs’ inherent capabilities. Through elegant ma-
trix transformations, our approach enables rapid modeling of the complete mutation landscape,
demonstrating superior performance in both ranking and classification metrics. Extensive evaluation
demonstrates a computational speedup of three orders of magnitude, establishing a scalable paradigm
for protein engineering and stability optimization.

While Venus-MAXWELL excels in stability prediction, its matrix-based approach holds some potential
for broader applications. For example, the current matrix-based implementation is inherently limited
to PLMs using single amino acids as vocabulary tokens, excluding structure-aware tokenization
schemes (e.g., SaProt [57]) or BPE tokenizer [58] (e.g., ProGPT [59]). Moreover, the framework
focuses on single-site saturation mutations now, and extending it to model combinatorial mutation
effects poses a key challenge. Future work could address these limitations by developing adaptive tok-
enization strategies, incorporating multi-site mutation modeling, and evaluating Venus-MAXWELL on
diverse protein function prediction tasks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] We state clearly the scope and contribution of both communities of protein
stability prediction and computer science in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] Section 7 discusses limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

[Yes] This paper has disclosed all the necessary information to reproduce the main experi-
mental results, including the dataset (See Section 4), model architecture (See Section 3.3),
and hyper-parameters (See Section 5.1).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] Our training code and datasets will be made publicly available.

Guidelines:
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] We provide pseudo-code and algorithm details of our framework in Sec-
tion 5.1, Appendix A.1 and Appendix A.2. Baseline methods are provided by their authors,
which requires no further supervision or learning procedures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

[Yes] In Section5.2, we employ Wilcoxon signed-rank test to assess the statistical signif-
icance of performance differences between methods.In Section5.3 and AppendixA.7, we
report error bars for inference speed across different models, which represent the standard
deviation computed over five randomly sampled test sets. Relevant details are provided in
the main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] Details for conducting experiments are provided at Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] The general ethical conduct has been carefully gone through to make sure
the listed concerns are avoided or not applicable in this research.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] We have cited all the papers for baseline methods and datasets..

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

19

paperswithcode.com/datasets


• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] LLM is only used only for text editing and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Algorithm

Algorithm 1 outlines the training procedure for Venus-MAXWELL. The process iterates through the
dataset, computing the predicted mutation landscape Li from the PLM’s log-probabilities for each
protein Ai. The model parameters θ are then updated using gradient descent based on a combined
loss function that incorporates both ranking (LRanking) and absolute value (LMSE) objectives.

Algorithm 1 Venus-MAXWELL for mutation ∆∆G landscape learning
Require: Dataset D = {(Ai,Y i,M i)}Ni=1, where Ai is the i-th wild-type protein sequence, Y i is

the i-th mutation ∆∆G landscape, and M i is the i-th binary mask matrix
Require: Protein language model fθ with parameters θ
Require: Alphabet size |A| of the protein language model
Require: Learning rate η; number of epochs T

1: θ0 = θ
2: for t = 1 to T do
3: for i = 1 to N do
4: Tokenize protein sequence into one-hot encoding matrix Xi

5: Compute log-probability matrix Qi = log fθ(Ai) (Equation 3)
6: Compute scoring matrix Li = log fθ(Ai)− ((log fθ(Ai) ◦Xi) · 1|A|) · 1T

|A| (Equation 8)
7: Compute loss L(θ) = Lranking(Y i,M i,Li) + λ · LMSE(Y i,M i,Li)
8: Update parameters: θt ← θt−1 − η∇θL (Equation 10 and 11)
9: end for

10: end for
11: θ′ = θT
12: return fθ′

Algorithm 2 details the prediction process using a PLM fine-tuned by Venus-MAXWELL. Given a
protein sequence A, the model performs a single forward pass to compute the log-probability matrix
and subsequently derives the mutation ∆∆G landscape L based on Equation 8.

Algorithm 2 Venus-MAXWELL for mutation ∆∆G landscape prediction
Require: Protein sequence A
Require: Protein language model fθ with fine-tuned parameters θ′

1: Tokenize protein sequence into one-hot encoding matrix X
2: Compute log-probability matrix Qi = log fθ(Ai) (Equation 3)
3: Compute scoring matrix L = log fθ(A)− ((log fθ(A) ◦X) · 1|A|) · 1T

|A| (Equation 8)
4: return Mutation ∆∆G landscape L

A.2 Pseudo Code

Algorithm 3 provides a Pytorch-like pseudocode implementation of the core training loop for Venus-
MAXWELL. It illustrates how input sequences are processed, logits are computed, and transformed
into the mutation landscape matrix, and how the ranking and MSE losses are calculated and combined
for backpropagation and parameter updates.

21



Algorithm 3 Pseudocode of Venus-MAXWELL training in a pytorch-like style.

# model : protein languge model

for (seq, landsacpe, matrix) in loader:
# Shape [seq_len]
input_ids = tokenizer(seq, return_tensors="pt")

# Shape [seq_len, alphabet_size]
one_hot = F.one_hot(input_ids, num_classes=alphabet_size)

# Shape [seq_len]
logits = model(input_ids)

# Shape [seq_len, alphabet_size]
logits = logits.log_softmax(dim=1)

# Shape [seq_len, alphabet_size] - [seq_len, 1] -> [seq_len, alphabet_size] (broadcast)
logits = logits - (logits * one_hot).sum(dim=-1, keep_dim=True)

# Shape [num_mutants, ]
predictions = logits[mask]
scores = landscape[mask]

rank_loss = 1 - Pearson(predictions, scores)
mse_loss = MSE(predictions, scores)
loss = rank_loss + 0.1 * mse_loss

loss.backward()
optimizer.step()

A.3 Hyperparameter Selection and Ablation Studies

To ensure a fair and robust selection of hyperparameters without test set leakage, we performed
5-fold cross-validation (CV) on the training dataset. The training set was split into five folds
{T1, T2, T3, T4, T5}. For each set of hyperparameters (e.g., a specific learning rate), we followed this
procedure:

• For i = 1 to 5:

– Set the validation fold: Dval = Ti.
– Set the internal training set: Dtrain_internal = Dtrain \ Ti.
– Train the model on Dtrain_internal for a fixed number of epochs (e.g., 10 epochs for the

initial LR search).
– Record the best Spearman correlation ρ achieved on the validation fold Dval.

• Calculate the average Spearman ρ across all 5 folds.

We define the "optimal performance" as this 5-fold mean per-protein Spearman correlation ρ̄s.
A higher average score indicates a better hyperparameter choice. After identifying the optimal
hyperparameters (e.g., learning rate 5× 10−5), we determined the average optimal training epochs
(approximately 7) from the CV folds. Finally, we trained a single model on the entire training dataset
for 7 epochs and reported its performance on the held-out test set (Test12K). The test set was used
exclusively for this final evaluation.

Ablation for Loss Weighting Factor λ

In our loss function (defined in Equation 12), λ balances the ranking loss (LRanking) and the MSE loss
(LMSE). We conducted a sensitivity analysis by training Venus-MAXWELL (ESM-IF) with different
values of λ.

As shown in Table A1, the model achieved the best performance on the test dataset when λ = 0.1.
This suggests the framework performs optimally when the ranking loss serves as the primary training
objective, while the MSE loss acts as a beneficial auxiliary objective to align the scale of the
predictions. Based on this analysis, we set λ = 0.1 for all other experiments.

Ablation for Learning Rate (lr)
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Table A1: Ablation study on the weighting factor λ. We report the average Spearman ρ̄s and Pearson
ρ̄p correlation coefficients of Venus-MAXWELL (ESM-IF) on the Test12K dataset.

Weighting Factor (λ) ρ̄s ρ̄p

0.0 0.506 0.528
0.1 0.517 0.542
0.2 0.514 0.540
0.4 0.504 0.538
0.8 0.494 0.523
1.0 0.486 0.519

Following the 5-fold CV methodology, we performed a grid search for the optimal learning rate
(lr). The results are shown in Table A2. We selected 5 × 10−5 as the optimal learning rate, as it
demonstrated the best average performance across the validation sets.

Table A2: Performance of Venus-MAXWELL (ESM-IF) with different learning rates during 5-fold
cross-validation. "Avg Spearman ρ" refers to the mean Spearman correlation across the 5 validation
folds. Best performance is in bold.

Learning Rate (lr) ρ̄s

5× 10−3 0.184
1× 10−3 0.278
5× 10−4 0.416
1× 10−4 0.499
5× 10−5 0.517
1× 10−5 0.501
5× 10−6 0.508
1× 10−6 0.492

Ablation for MLP Hidden Layer Dimension

The MLP (used in Equation 11) is a two-layer network where the learnable weights have dimensions
W1 ∈ RV×D and W2 ∈ RD×1. V is the PLM vocabulary size, and D is a tunable hidden dimension.
We investigated the model’s sensitivity to D, using ESM-IF (V = 35) as the base model.

As shown in Table A3, the results indicate that the model achieves its best performance when the
hidden dimension D is set to V (35). While performance is relatively stable for D up to 512, this
analysis validates our choice of D = V , showing that increasing the MLP’s complexity does not
yield further benefits.

Table A3: Performance of Venus-MAXWELL (ESM-IF) with varying MLP hidden layer dimensions
(D).

Hidden Dimension (D) ρ̄s

V (35) 0.517
64 0.506

128 0.516
256 0.515
512 0.505
1024 0.487

A.4 Evaluation Metrics and Embedding Transfer Baseline Models Configuration

For embedding transfer, features from frozen PLMs were fed into a three-layer MLP with SELU
activations and 0.1 dropout, trained with Adam optimizer (learning rate 1 × 10−3, batch size 32).
Following the similar training protocol as Venus-MAXWELL, the optimal number of training epochs
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was determined through five-fold cross-validation on the training set, with early stopping during
validation (patience of 5 epochs based on Pearson correlation).

A.5 Model Performance Details

Table A4: Model performance across different metrics

Model Type Model ρ̄s ρ̄p F̄1 ¯AUC

PLM zero-shot

ESM-IF (Zero-shot) 0.375 0.376 0.217 0.577
ProSST (Zero-shot) 0.369 0.370 0.372 0.560
ESM-1b (Zero-shot) 0.263 0.278 0.281 0.524
ESM-1v (Zero-shot) 0.251 0.256 0.295 0.527
ESM-2 (Zero-shot) 0.268 0.284 0.289 0.533

Baseline models
ThermoMPNN 0.508 0.529 0.371 0.647
Rosetta 0.368 0.239 0.346 0.503
FoldX 0.410 0.431 0.322 0.581

Embedding transfer ESM-IF + MLP 0.302 0.331 0.383 0.628
ProSST + MLP 0.234 0.263 0.360 0.608

Venus-MAXWELL (PLM)

Venus-MAXWELL (ESM-IF) 0.517 0.542 0.427 0.678
Venus-MAXWELL (ProSST) 0.479 0.502 0.405 0.604
Venus-MAXWELL (ESM-1b) 0.384 0.402 0.334 0.578
Venus-MAXWELL (ESM-1v) 0.358 0.371 0.324 0.555
Venus-MAXWELL (ESM-2) 0.427 0.450 0.366 0.545

Table A4 provides a detailed breakdown of the performance for all evaluated models across the four
primary metrics: Mean Spearman correlation (ρ̄s), Mean Pearson correlation (ρ̄p), Mean F1 score
(F̄1), and Mean Area Under the Curve ( ¯AUC). Models are categorized by type (PLM zero-shot,
baseline SOTA model, and physical-based method, embedding transfer, and Venus-MAXWELL) to
facilitate comparison within and across different approaches. The best performance for each metric
is highlighted in bold. This comprehensive table allows for a granular assessment of each model’s
strengths and weaknesses on the Test12K dataset.

In addition to this comprehensive performance comparison, we further validated our model on specific,
established public benchmarks. We clarify that Test12K is a curated meta-benchmark composed
of these benchmarks (e.g., p53, s669). To directly address concerns about evaluation solely on
our constructed dataset, Table A5 presents a detailed comparison against SOTA models on several
individual subsets.

The results show that Venus-MAXWELL consistently outperforms both ThermoMPNN and Stability
Oracle on these well-known datasets. We deliberately excluded the popular ProteinGym benchmark,
as its significant overlap with the training data of both our model and ThermoMPNN would lead to
data leakage and invalidate the conclusions.

Table A5: Model Performance on Public Benchmarks (Mean per-protein Spearman ρ̄s).

Benchmark Venus-MAXWELL (ESM-IF) ThermoMPNN Stability Oracle
p53 0.751 0.702 0.727
s669 0.565 0.545 0.503
Myoglobin 0.724 0.620 0.669
Ssym 0.602 0.516 0.567

Finally, to address concerns about the inherent sparsity of the training data and its potential to
adversely affect generalization, we conducted an ablation study on training set sparsity. We evaluated
Venus-MAXWELL (ESM-IF) after randomly removing p percent of the mutation entries from the
Train226K dataset. Performance (Mean per-protein Spearman ρ̄s) on the Test12K set remains stable
even with extreme data removal.
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As shown in Table A6, the framework demonstrates exceptional robustness. Performance remains
remarkably stable, with a Spearman’s correlation of 0.501 even when using only 10% (23K mutants)
of the training data. A significant performance drop only occurs at the extreme of removing 95%
of the data. This analysis confirms that our model learns generalizable stability principles from the
diverse collection of proteins, rather than overfitting to sparse local landscapes.

Table A6: Effect of training set sparcsity on model performance.

Data Removed (p) Training Mutants ρ̄s ρ̄p F̄1 ¯AUC

0% 226K 0.517 0.542 0.427 0.678
20% 181K 0.517 0.541 0.423 0.673
40% 136K 0.515 0.541 0.421 0.675
60% 90K 0.512 0.540 0.416 0.669
80% 45K 0.509 0.537 0.408 0.667
90% 23K 0.501 0.523 0.402 0.660
95% 11K 0.485 0.506 0.388 0.647

A.6 Generalization Ability Analysis Across Structual identity

In constructing the training and test sets, we ensured low sequence similarity via MMseqs2 dedu-
plication and Needleman-Wunsch validation (See Section 4). Since the top-performing Venus-
MAXWELL enhanced models, ESM-IF and ProSST, leverage protein structure information, we further
assessed the structural similarity between the sets to evaluate the models’ extrapolation capability to
structurally novel proteins. We employed TM-align [56] to compute TM-scores for each protein in
Test12K against all structures in Train226K, using the maximum score as the structural similarity
metric.

As illustrated in Figure A1 (A), the maximum TM-scores of the test proteins displayed a tightly
clustered distribution, with the overall probability density peaking around a mean value of approx-
imately 0.31. According to established conventions in structural biology, TM-scores below 0.5
indicate distinct folding topologies [60]. This confirms the structural diversity between Train226K
and Test12K, establishing a rigorous benchmark for extrapolation.

Further analysis of Venus-MAXWELL (ESM-IF) performance relative to structural similarity re-
vealed only a weak correlation (ρp = 0.208, as shown in Figure A1 (B)). This finding indicates
that the performance enhancement of structure-aware protein language models within the Venus-
MAXWELL framework is independent of structural similarity to training samples, demonstrating
strong generalization capabilities to unseen protein architectures.

(A) (B)

Figure A1: Model generalization of Venus-MAXWELL (ESM-IF) against structural dissimilarity.
(A): Distribution of maximum TM-scores for Test12K proteins relative to Train226K, overlaid with
average Pearson correlation per TM-score bin. (B):Relationship between maximum TM-score and
prediction performance, showing minimal dependence on structural similarity to training proteins.
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A.7 Prediction Speed Scaling with Sequence Length

Table A7: Prediction time (s) across sequence length ranges for single-site mutagenesis

Model 0-200 200-400 400-600 600+
Venus-MAXWELL (ProSST) 0.30±0.10 0.37±0.13 0.27±0.02 0.30±0.07
Venus-MAXWELL (ESM-IF) 1.33±0.10 1.65±0.10 1.78±0.13 2.19±0.16
ThermoMPNN 4.41±0.04 13.64±0.01 20.64±0.11 30.89±0.13
ProSST + MLP 162.19±0.87 539.72±0.67 844.52±3.68 1347.73±6.83
ESM-IF + MLP 421.44±1.63 2846.02±1.13 6255.54±13.25 13554.11±7.27

Table A8: Mutants per second across different sequence length ranges for single-site mutagenesis

Model 0-200 200-400 400-600 600+
Venus-MAXWELL (ProSST) 30451±8141 82336±27736 159005±8935 217882±43378
Venus-MAXWELL (ESM-IF) 6513±501 16887±973 23993±1705 29425±2155
ThermoMPNN 1957±17 2038±2 2058±11 2080±9
ProSST + MLP 53.22±0.29 51.51±0.06 50.29±0.22 47.67±0.24
ESM-IF + MLP 20.48±0.08 9.77±0.01 6.79±0.01 4.74±0.00

To assess the scalability of Venus-MAXWELL’s inference efficiency across diverse protein sizes,
we evaluated its prediction speed for single-site saturation mutagenesis on proteins with different
sequence length ranges from the Test12K dataset. For each sequence length range (0–200, 200–400,
400–600, and 600+ residues), we randomly selected five proteins, performed single-site saturation
mutagenesis, and measured inference speed across all models. This process was repeated five times
to compute the mean and standard deviation of prediction times and throughput.

As shown in Table A7, prediction times for all methods except Venus-MAXWELL (ProSST) increase
with sequence length. For instance, ThermoMPNN’s prediction time rises from 4.41 ± 0.04 s (0–200
residues) to 30.89 ± 0.13 s (600+ residues), and MLP-based baselines (ProSST-MLP and ESM-
IF-MLP) exhibit even steeper increases, reaching up to 13,554.11 ± 7.27 s for ESM-IF-MLP on
sequences exceeding 600 residues. This trend is driven by two factors: (1) longer sequences result in
a higher total number of single-site mutants, and (2) Transformer-based PLMs require significantly
more time to encode longer sequences due to their quadratic complexity with respect to sequence
length.

In contrast, Venus-MAXWELL (ProSST) maintains rather stable prediction times (0.27–0.37 s across
all ranges), likely due to its remarkable high throughput, which remains well above the demands
of current sequence lengths and mutation counts. Table A8 further validates this observation. The
throughput of embedding transfer methods decreases with sequence length—from 53.22 ± 0.29 to
47.67 ± 0.24 mutants/s for ProSST + MLP and from 20.48 ± 0.08 to 4.74 ± 0.00 mutants/s for ESM-IF
+ MLP—reflecting their need to re-encode each mutant sequence, making them highly sensitive to
sequence length. ThermoMPNN, leveraging ProteinMPNN’s structure to reduce encoding overhead,
achieves a relatively stable throughput of approximately 2,000 mutants/s (1,957–2,080 mutants/s),
but this appears to approach its practical upper limit.

Conversely, both Venus-MAXWELL (ProSST) and Venus-MAXWELL (ESM-IF) exhibit significant
throughput increases with sequence length, reaching orders-of-magnitude higher performance. This
scalability is likely attributable to Venus-MAXWELL’s optimized matrix processing architecture (see
Section 3), which efficiently handles the whole mutation landscapes.

A.8 Model Training Speed

This Figure A2 highlights the training efficiency of Venus-MAXWELL compared with other methods,
using ESM-IF and ProSST as base models. Embedding transfer methods, which require encoding
each mutant sequence during forward propagation, are significantly constrained in training speed. For
ESM-IF and ProSST, processing 100,000 mutant sequences takes over 2,000 seconds, with a single
training epoch exceeding one hour. ThermoMPNN substantially reduces training time by encoding
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Figure A2: Training time analysis. (A): Comparison between Venus-MAXWELL models and their
embedding transfer (MLP) counterparts for both ESM-IF and ProSST architectures. (B): Performance
of Maxwell implementations contrasted with ThermoMPNN

only the wild-type sequence, processing 100,000 mutations in under 300 seconds. While the training
efficiency of Venus-MAXWELLis further 20 times faster than ThermoMPNN, completing an epoch
on the entire Train226K dataset in approximately 40 seconds.
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