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ABSTRACT

We propose Formal-Lagrangian Policy Optimization (FLPO), an original frame-
work of safe reinforcement learning (RL) in code generation that combines safe
image inspection and policy optimization through a Lagrangian multiplier mech-
anism. The major bottleneck to RL-based code synthesis, however, is to ensure
the constraints of hard safety, such as memory safety or type correctness, without
losing the flexibility of generative models. FLPO addresses this by adding to the
reward function a Lagrangian to dynamically penalise constraint violations, the
penalty weight of which is adapted using the dual ascent to decrease the impor-
tance of safety issues downwards. Moreover, we propose a differentiable formal
verification layer to approximate the verification results into a continuous value
gradient so that the policy network can also learn straight from formal feedback.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful paradigm for code generation, enabling
models to optimize policies through trial-and-error interactions with execution environments (Le
et al.| 2022). While these methods excel at maximizing task-specific rewards, such as passing

unit tests or minimizing runtime, they often neglect critical safety constraints inherent to program
correctness, including syntactic validity, type safety, and memory access bounds (Shojaee et al.,
2023)). Traditional approaches to RL treat such constraints as secondary goals to be accounted for
either by adding penalty terms to the reward function and/or by post-hoc filtering of generated out-
puts. This decoupling frequently leads to violations of safety properties, especially in edge cases
not covered by training data (Wang et al.| 2024)).

There has been some recent work on combining formal verification and machine learning to cer-
tify properties of safety. Techniques like differentiable verification (Hiickelheim et al.l[2018)) and
constraint-conditioned policy optimization (Yao et al.,|2023) offer promising directions but face
two key limitations. To start with, they try to use verification as an external oracle and the policy
cannot internalize safety constraints during training. Second, they lack mechanisms to dynami-
cally balance reward maximization against constraint satisfaction, often resulting in overly con-
servative policies or sporadic violations (Corsi et al.,|2020). Lagrangian methods, widely used in
constrained RL (Stooke et al.;, 2020), could theoretically address this trade-off but have not been
adapted to handle the discrete, structured action spaces of code generation.

We propose a hybrid framework to unify these approaches by 3 innovations. First, we reformulate
safety constraints as differentiable barrier functions, enabling gradient-based updates that keep the
policy within formally verified safe regions (Polyak||[1992). Second, we propose an Lagrangian
multiplier mechanism that automatically scales the weight of the safety violation in the training
process allowing the constraints to incur asymptotically without the need for manual tuning. Third,
we develop a neural verifier that approximates formal proofs as continuous gradients, allowing

the policy to learn from verification feedback even when exact constraints are non-differentiable
(Wang et al.| 2023)). This combination enables the policy to generate code that is both functionally
correct and provably safe, as certified by off-the-shelf verifiers like Dafny or CBMC (Drechsler,
2004).
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The main contribution of this work is a theoretically based approach to safe RL based code genera-
tion that:

1. Unifies formal verification and policy optimization by treating safety constraints as
first-class citizens in the RL objective, avoiding the pitfalls of reward shaping or post-hoc
filtering.

2. Adaptively balances exploration and safety through a Lagrangian barrier mechanism
that tightens constraints as training progresses, guided by formal verification results.

3. Scales to complex code-generation tasks by approximating non-differentiable verifica-
tion outcomes with a trainable neural surrogate, enabling end-to-end training while pre-
serving safety guarantees.

Empirical results on Python and Solidity code generation benchmarks show that our method re-
duces safety violations by 72% compared to baseline RL approaches, with only a 4% drop in func-
tional correctness. The framework is also generalized to unseen constraints, which confirms the
power of combining formal methods with RL for real-world program synthesis.

The rest of this paper is organized as follows: Section 2 reviews related works in RL for code gen-
eration and safe RL. Section 3 formalize the Lagrangian constrained optimization problem and
contain differentiable verification. Section 4 describes our policy optimization algorithm. Experi-
mental results are presented in Section 5 and the discussion and future directions are presented in
Section 6.

2 RELATED WORK

The intersection of reinforcement learning (RL) with formal verification in order to produce safe
code has attracted some attention in recent years.

2.1 CONSTRAINED POLICY OPTIMIZATION IN RL

Constrained RL methods have been proposed to follow a principled approach to the challenges of
incorporating safety requirements in policy learning. Lagrangian-based approaches (Stooke et al.,
2020) formulate safety constraints as part of the optimization objective, where multipliers are ad-
justed to balance reward maximization against constraint satisfaction. Recent work has extended
these ideas to more complex settings through constraint-conditioned policies (Yao et al., [2023) that
can adapt to varying safety thresholds. But these approaches usually assume continuous and dif-
ferentiable constraint functions and it is difficult to apply them directly to code generation, where
constraints are possibly discrete and combinatorial.

2.2 FORMAL VERIFICATION FOR RL SYSTEMS

New disciplinary methods have been combined with RL more frequently in order to provide safety
guarantees. Techniques range from post-training verification (Corsi et al., [2020) to runtime mon-
itoring (Wang et al.,|2023). A key challenge has been making verification tractable for complex
neural policies, leading to approaches that use abstraction (Mason) 2018])) or compositional reason-
ing (Murugesan et al.,[2019). While these methods offer powerful safety guarantees, they often
view verification as a separate step from policy optimization and can therefore reduce or even cut
the action’s ability to guide the learning process.

2.3 HYBRID LEARNING AND VERIFICATION APPROACHES

The gap has recently been worked on in the direction of learning and verifying using differentiable
approximations. Methods like (Hiickelheim et al.,|2018) and (Yan et al.||2025) explore ways to
make formal verification more amenable to gradient-based optimization. These approaches have
shown promise but have mostly focused on either verifying or learning in isolation and not their
tight integration. The closest to our work is (Sanchez-Stern et al.| 2024)), which uses RL to guide
verification, though it does not address the code generation setting.
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The proposed groundwork for manufacturing Partnerships for technology (FLPO) differs from to-
day’s approaches in several key areas. Unlike constrained Rl methods that view safety as a soft
penalty Lagrangian optimization and barrier functions are used to enforce hard constraints in
FLPO.

3 PRELIMINARIES ON LAGRANGIAN CONSTRAINED POLICY OPTIMIZATION
AND FORMAL VERIFICATION

To build a foundation for our approach in the theoretical direction, we first define the main con-
cepts behind constrained policy optimization and formal verification for the case of code genera-
tion. These preliminaries will act as building blocks to the proposed framework as outlined in the
following sections.

3.1 CONSTRAINED MARKOV DECISION PROCESSES FOR CODE GENERATION

The code generation task can be modeled as a Constrained Markov Decision Process (CMDP)
(Altman, 2021), defined by the tuple (S, A, P, R, C,~), where S represents the state space of
partial programs and context, A denotes the action space of code tokens or statements, and P :

S x A xS — [0,1] specifies the transition dynamics. The reward function R : S x A — R
measures functional correctness through test cases or execution results, while C' : § x A — R™
defines m safety constraints (e.g., type correctness, memory safety). The discount factor v € [0, 1)
balances immediate versus future rewards.

The policy mg : S — A(A), parameterized by 6, aims to maximize the expected return Jg(mg) =
Er oy [S1—o Y R(5t, ar)] while satisfying constraints J& (7g) = Brory [S1—o 7' C (51, a1)] < d
fori = 1, ..., m, where d' are constraint thresholds and 7 denotes trajectories. This formulation ex-
tends standard RL to incorporate safety requirements as first-class objectives (Wachi et al., 2024).

3.2 LAGRANGIAN METHODS FOR CONSTRAINED OPTIMIZATION

The Lagrangian dual approach rewrites the constrained optimization problem as an unconstrained
min-max optimization problem:

inL(0,\) = J =) N(J¢ —d' 1
maxmin £(0, ) = Jr(m) ; (J(mg) — d') ()
where A € R are Lagrange multipliers that dynamically adjust the weight of constraint viola-
tions. The policy parameters 6 and multipliers A are updated alternately through gradient ascent
and descent respectively:

Op+1 = 0k + gV L(Ok, \r) (2)

N1 = max(0, A}, + ax(J&(mg,) — d)) (3)

This framework provides theoretical guarantees of convergence to a constrained local optimum
under appropriate conditions (Carmona & Laurierel [2021). However, standard implementations
suffer under specific types of constraints where discrete and combinatorial properties intrinsic to
program correctness are involved.

3.3 FORMAL VERIFICATION OF PROGRAM PROPERTIES

Formal verification methods mathematically prove that a program satisfies specified properties
¢ (e.g., absence of buffer overflows). Given a program p and property ¢, a verifier V returns
V(p,¢) € {T, L}, where T indicates verification success. Common techniques include:
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1. Model Checking: Exhaustively explores program states to verify temporal properties
(Varrol, [2004)

2. Abstract Interpretation: Computes over-approximations of program behavior using ab-
stract domains (Cousot & Cousotl 1992)

3. Theorem Proving: Constructs formal proofs using logical inference rules (Maric, [2015))

While powerful, such methods usually provide only binary results, and cannot be reliably differen-
tiated according to the structure of the program, making it difficult to combine them with gradient-
based learning.

3.4 DIFFERENTIABLE APPROXIMATIONS OF FORMAL VERIFICATION

Recent work has discussed making moreover verification results tractable to the propagation of
gradients through the so called probabilistic relaxation. For a property ¢ and program p with pa-
rameters 6, we can define a differentiable verification function V4 (pg) € [0, 1] that approximates
the likelihood of ¢ holding. Common approaches include:

1. Neural Surrogates: Trainable models that predict verification outcomes (Haddad et al.}
2022))

2. Fuzzy Logic Relaxations: Continuous interpretations of logical operators (Hasan &
Tahar, 2015)

3. Smooth Indicator Functions: Differentiable approximations of set membership (Craven,
1986)

These techniques allow gradient based updates to be ensured while staying in conjunction with
ground truth verification results, constituting the foundation for our differentiable verification layer
in Section 4.

4 LAGRANGIAN BARRIER POLICY OPTIMIZATION WITH DIFFERENTIABLE
FORMAL VERIFICATION FOR SAFE CODE GENERATION

The proposed FLPO framework makes a number of key innovations to fill the gap between theo-
rem proving in code generation and policy optimization.

4.1 INTEGRATION OF LAGRANGIAN MULTIPLIERS AND FORMAL VERIFICATION FOR HARD
CONSTRAINTS

We extend the standard form of the policy gradient objective with a Lagrangian term, which is dy-
namically changed according to the formal verification results. For a given state-action pair (s, a;)
the modified reward R’ gives both the reward from the task R and a penalty from safety:

m

R'(st,a¢) = R(ss,az) — Z Mo max(0, ¢ (s, ag) — k') 4)
i=1

Here, ¢ (s, a;) represents the violation degree of the ¢-th safety constraint as determined by for-
mal verification, x* is the safety threshold, and \; are time-dependent Lagrangian multipliers. The
multipliers are changed by performing dual ascent:

)‘i+1 =\, + ay - max(0, ¢* (sy, a;) — k') )

The verification function ¢’ can be implemented using various formal methods tools (e.g., CBMC
for memory safety, Z3 for logical constraints), providing mathematically rigorous safety assess-
ments.



Under review as a conference paper at ICLR 2026

4.2 DIFFERENTIABLE FORMAL VERIFICATION LAYER IMPLEMENTATION

The DVE accepts the abstract syntax tree (AST) representations of generated code as input and
predicts scores of constraint violation as:

@' (st,ar) = DVE;(f(s1,a)) (6)

where f(s¢, a;) draws structure features from the code. The DVE is pretrained using verification
results from ground truth tools in order to minimize:

Love = E [(¢'(s,a) — ¢'(s,a))? @)

During policy updates, we use the DVE’s gradients Vo' to approximate the true verification gra-
dients, enabling end-to-end training.

4.3 BARRIER-ENHANCED PoLICY UPDATES

To ensure safety while performing the exploration, we add a logarithmic barrier function to the
policy gradient:

T
Vo J(6) ZVglogm(at|st) ( (st,a) nZBZ (s¢,ar) )1 (8)
t=0
where Bi(z) = —log(k® — ) for x < k' and 400 otherwise, and 7 controls the barrier strength.

This way, improvements in the policy never lead to constraint violations that are more than their
thresholds.

4.4  JOINT OPTIMIZATION OF REWARDS AND FORMAL CONSTRAINTS

FLPO changes policies and multipliers alternately in a 2-phase optimization approach. The full
algorithm is as follows:

1. Policy Evaluation: For each generated code snippet, compute task rewards R and con-
straint violations ¢’ using the DVE.

2. Multiplier Update: Adjust A’ according to Equation 5 based on measured violations.

3. Policy Improvement: Update # using the gradient from Equation 8 with the augmented
reward R’.

4. DVE Refinement: Periodically retrain the DVE on new verification results to maintain
accuracy.

This alternating optimization guarantees that the policy is evolved to have better task performance
and to also be more compliant with safety.

4.5 EXPLORATION WITH FORMAL SAFETY GUARANTEES

Traditional RL exploration strategies like e-greedy can lead to unsafe actions in code generation.
FLPO overcomes this by limiting the action distribution in exploration:

Texplore (@]S) o< mg(als) - I |max qgi(s,a) < K 9)

where [ is an indicator function. The DVE delivers up-to-the-moment generally activity security
predictions to (1) antennae unsafe activities before they are taken.

The complete FLPO framework, illustrated in Figure 1, demonstrates how formal verification sig-
nals are integrated throughout the policy optimization pipeline.
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Figure 1: FLPO-Augmented Reward Function in RL-Based Code Generation

5 EXPERIMENTAL EVALUATION

In order to experimentally demonstrate the effectiveness of FLPO, we performed extensive experi-
ments comparing the performance of FLPO to state-of-the-art techniques on generating code with
formal safety constraint. There are three main points to evaluate which are (1) safety constraint
satisfaction, (2) functional correctness, and (3) training stability.

5.1 EXPERIMENTAL SETUP
Datasets and Tasks: We evaluated FLPO on two programming language benchmarks:

* Python Code Generation: Using the HumanEval dataset (Liu et al.,2023) augmented
with safety constraints for type correctness and memory safety

* Solidity Smart Contracts: A collection of Ethereum smart contracts (Tolmach et al.,
2021) with security properties including reentrancy protection and overflow prevention

Baselines: We compared FLPO against three representative approaches:

1. PPO with Reward Shaping (PPO-RS) (Schulman et al.|[2017): Augments rewards with
safety penalty terms

2. Constrained Policy Optimization (CPO) (Liu et al.}2022)): Uses trust region methods
for constraint satisfaction

3. Post-Hoc Verification (PHV) (Camburu et al., 2019): Applies formal verification after
standard RL training

Metrics: We measured:

» Safety Score: Percentage of generated programs satisfying all formal constraints
* Functional Correctness: Pass rate on unit tests
» Constraint Violation Rate: Frequency of safety violations during training
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Table 1: Performance Comparison on Code Generation Tasks

Python (%) Solidity (%)
Method Safety Correct. Safety Correct.
PPO-RS 68.2 824 54.7 78.9
CPO 85.6 75.3 72.4 71.2
PHV 92.1 79.8 88.3 76.5

FLPO (Ours) 96.4 80.1 94.2 79.3

* Verification Time: Computational overhead of safety checking
Implementation Details: FLPO was implemented with:

* Policy Network: Codex-style transformer (Chen et al.| 2021) with 350M parameters
* Differentiable Verifier: Graph Neural Network with 12 layers

* Training: 100K episodes with Adam optimizer (Ir=5e-5)

 Safety Thresholds: « = 0.1 for all constraints (10% tolerance)

5.2 MAIN RESULTS

Table|[T] presents the comparative results across all methods and datasets. FLPO demonstrates supe-
rior performance in balancing safety and functionality.

FLPO achieves 96.4% safety on Python tasks while maintaining 80.1% functional correctness, out-
performing all baselines. The improvement is particularly significant for Solidity contracts, where
FLPO attains 94.2% safety versus 88.3% for PHV, demonstrating the advantage of integrating veri-
fication during training rather than applying it post-hoc.

5.3 TRAINING DYNAMICS ANALYSIS

100 — FLPO 104 — FLPO
PPO-RS PPO-RS

— cPo — cpo

— PHV 81 — PHv

801

60 1
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Figure 2: Constraint Satisfaction and Reward During Training

Figure 2 shows the evolution of constraint satisfaction and reward during training. FLPO exhibits
stable improvement in both metrics, while baselines either sacrifice safety for reward (PPO-RS) or
converge slowly (CPO).

Key Observations:

1. FLPO reduces safety violations by 72% compared to PPO-RS during early training
2. The differentiable verifier achieves 98.7% agreement with ground-truth verification
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Table 2: Ablation Study on Python Task

Configuration Safety (%) Correctness (%)
Full FLPO 96.4 80.1
Without Differentiable Verifier 88.2 78.9
Without Lagrangian Updates 82.7 79.4
Without Barrier Function 91.5 76.8

Table 3: Generalization Results

Constraint Type Training Seen  Novel Constraint
Type Safety 96.1% 95.8%
Memory Access 95.3% 94.6%
Arithmetic Overflow 94.7% 93.1%

3. Verification time per episode remains under 50ms due to the neural surrogate

5.4 ABLATION STUDY

We conducted ablation experiments to isolate the contributions of FLPO’s key components:

The results show that each of the components really contributions to the overall performance. The
differentiable verifier provides the largest boost to safety (8.2% improvement), while the barrier
function is crucial for maintaining correctness during constrained optimization.

5.5 GENERALIZATION TO UNSEEN CONSTRAINTS

To test FLPO’s adaptability, we evaluated its performance on safety constraints not seen during
training:

FLPO maintains high safety scores (93.1-95.8%) on novel constraints, demonstrating that the
learned safety mechanisms generalize beyond the specific constraints encountered during train-
ing. This means that such a policy internalises wider principles for safe code generation and not
just memorising restriction specific patterns.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE FORMAL-LAGRANGIAN POLICY OPTIMIZATION FRAMEWORK

While FLPO demonstrates strong empirical performance, several theoretical and practical limi-
tations warrant discussion.Although our experiments show 98.7% agreement with ground-truth
verification, the remaining 1.3% discrepancy could lead to undetected violations in safety-critical
applications. Furthermore, the current implementation assumes constraints can be expressed as
differentiable functions of the program’s syntactic structure, which may not hold for complex se-
mantic properties requiring interprocedural analysis (Jeannet, 2013).

The Lagrangian multiplier mechanism, while theoretically sound, introduces additional hyperpa-
rameters (e.g., dual ascent rate «v),) that require careful tuning. Although FLPO exhibits robustness
of moderate choices in these parameters, extremes of setting of these parameters may result in ei-
ther overly conservative policies or insufficient enforcement of constraints.

6.2 POTENTIAL APPLICATION SCENARIOS BEYOND CODE GENERATION

The principles underlying FLPO can be readily extended to other domains where strict safety guar-
antees are required in generative tasks. In robotic control, the framework could enforce physical
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constraints (e.g., joint limits, collision avoidance) while optimizing task performance (Brunke

et al.| 2022). The differentiable verification layer may be modified to approximate physics simu-
lations which would allow safer policy exploration. Similarly, for chemical design tasks, FLPO
could generate molecular structures that simultaneously optimize desired properties while satisfy-
ing stability and synthesizability constraints (Bilodeau et al., 2022]).

Another promising direction involves applying FLPO to neural architecture search, where the
framework could enforce hardware constraints (e.g., latency, memory footprint) during the explo-
ration of novel network topologies (Liberis et al., 2021).

6.3 ETHICAL CONSIDERATIONS IN SAFE CODE GENERATION

The development of FLPO raises important ethical questions about the appropriate use of auto-
mated code generation systems.There exists a risk that users might overtrust the system’s safety
guarantees, particularly when the formal constraints fail to capture all relevant aspects of program
correctness (Liu & Adams, [1995)).

This dual-use potential necessitates careful consideration of access controls and deployment pro-
tocols (David & Kroening, |[2017). Future work should investigate mechanisms for checking not
only the syntactic safety but also the behavioral ethics behavior possible through combinations of
formal methods and normative ways of reasoning.

7 CONCLUSION
The Formal-Lagrangian Policy Optimization framework is a major step towards merging the flexi-
bility of reinforcement learning with the robustness of formal in code generation.

Empirical results demonstrate that this approach successfully navigates the trade-off between ex-
ploration and safety, reducing constraint violations by 72% compared to conventional RL methods.

From a theoretical point of view, FLPO extends the state of the art of constrained reinforcement
learning in which Lagrangian methods are adapted for discrete structured action spaces.

Practical implementations of FLPO demonstrate that the computational overhead of integrated ver-
ification remains manageable where the neural surrogate is highly accurate with significant reduc-
tion of latency compared to traditional formal methods.

Looking at the future, FLPO provides for several potentially productive research pathways. The
core principles in the framework could be extended to accommodate richer constraint languages or
more sophisticated assurance theories.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.
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