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Abstract

Understanding cellular responses to stimuli is
crucial for biological discovery and drug devel-
opment. Transcriptomics provides interpretable,
gene-level insights, while microscopy imaging
offers rich predictive features but is harder to in-
terpret. Weakly paired datasets, where samples
from different modalities are not from the same
biological replicate but share key metadata such
as cell line and perturbation, enable multimodal
learning but are scarce, limiting their utility for
training and multimodal inference. We propose a
framework to enhance transcriptomics by distill-
ing knowledge from microscopy images. Using
weakly paired data, our method aligns and binds
modalities, enriching gene expression representa-
tions with morphological information. To address
data scarcity, we introduce (1) Semi-Clipped, an
adaptation of CLIP for cross-modal distillation
using pretrained foundation models, achieving
state-of-the-art results, and (2) PEA (Perturbation
Embedding Augmentation), a novel augmenta-
tion technique that enhances transcriptomics data
while preserving inherent biological information.
These strategies improve the predictive power and
retain the interpretability of transcriptomics, en-
abling rich unimodal representations for complex
biological tasks.
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1. Introduction
Understanding how cells respond to various stimuli is fun-
damental to uncovering cellular functions and identifying
novel drug targets. However, current technologies are lim-
ited in capturing the full range of cellular activities under
diverse conditions, especially given the immense complex-
ity of biological systems (Conesa et al., 2016; Kharchenko,
2021). For instance, the interaction of over 20,000 hu-
man protein-coding genes with the estimated 1060 possible
chemical compounds (Reymond, 2015) far exceeds manual
analysis, necessitating computational methods. Advances
in deep learning for biology, such as predicting protein
structures (Jumper et al., 2021), modeling molecular bind-
ing (Corso et al., 2023; Evans et al., 2021), and uncovering
biological patterns through microscopy and gene expression
data (Kraus et al., 2024; Bendidi et al., 2024b; Bourriez et al.,
2024), offer powerful tools to address this challenge from
a unimodal perspective. However, separately modelling
data from various omics modalities, such as morphological
features, proteomics, and transcriptomics provides unique
yet partial insights into cellular behavior (Miao et al., 2021;
Carpenter et al., 2006; Lopez et al., 2018). By combining
these perspectives through multimodal fusion, researchers
can construct more comprehensive representations of biolog-
ical systems (Lu et al., 2021; Rosen et al., 2023), revealing
connections critical for accelerating drug discovery. How-
ever, collecting multimodal data paired at the sample level
remains infeasible currently due to massive experimental
costs and technical challenges.

Given the challenges of collecting fully paired data across
biological modalities, our focus is on weakly paired datasets,
where clusters of samples from two modalities share a com-
mon biological state. In this setting, two samples from
different modalities are considered ”paired” if they belong
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to the same biological state or metadata (Xi et al., 2024).
In our case, this means transcriptomics and microscopy
imaging samples that are not from the same biological repli-
cate but share the same cell line and were exposed to the
same perturbation. However, even weakly paired datasets
remain scarce due to the cost and complexity of aligning
states across modalities. Only a few such datasets exist,
limiting their utility for training or fine-tuning models and
making simultaneous inference on both modalities, for mul-
timodal fusion for example, impossible to scale with current
resources. To address these constraints, we aim to train
models using the limited weakly paired data from transcrip-
tomics and microscopy imaging, while enabling them to
operate on a single modality, transcriptomics, during infer-
ence. This approach leverages the complementary strengths
of the modalities: microscopy images are rich in visual
phenotypic features with strong predictive power but are
challenging to interpret, while transcriptomics data suffers
from weaker predictive power, but is more directly inter-
pretable at the gene level, making it easier to connect to
biological mechanisms (Kraus et al., 2024; Bendidi et al.,
2024b). The complementarity between these modalities
motivates the development of strategies to transfer the rich
phenotypic insights from microscopy into transcriptomics
representations.

To overcome pairing scarcity in training, we propose two
practical solutions: cross-modal knowledge distillation and
biologically inspired data augmentation. Knowledge distilla-
tion facilitates the transfer of information from one modality
to another to enhance its utility. For instance, the predic-
tive strength of morphological features in microscopy im-
ages can enrich transcriptomics representations, making
them more powerful for downstream tasks like drug dis-
covery (Kraus et al., 2024; Replogle et al., 2022; Ye et al.,
2018; Chandrasekaran et al., 2023; Bourriez et al., 2024;
Sanchez et al., 2025). However, most distillation techniques
rely on supervised objectives, which require precise labels
that are often unavailable for most biological modalities.
Alternatively, unsupervised alignment methods aim to un-
cover shared structures between modalities, though this is
challenging due to the distinct biological relationships each
captures (Appendix Figure 6). We instead propose to lever-
age alignment techniques for cross-modal distillation by
binding transcriptomics to frozen morphological representa-
tions. We further introduce a novel biologically inspired data
augmentation technique tailored for transcriptomics vectors,
which preserves biological information while introducing
meaningful variation to the dataset. This augmentation ap-
proach addresses the scarcity of paired data by improving
the richness and robustness of transcriptomics representa-
tions, enhancing their predictive power while retaining their
inherent interpretability. By combining these strategies, our
framework enriches gene expression representations, offer-

ing deeper insights into biological processes and expanding
their utility across diverse applications.

To summarize, we introduce in this work a recipe for trans-
ferring knowledge from morphological features to transcrip-
tomics representations in weakly paired datasets, composed
of the following contributions :

• We present Semi-Clipped, a straightforward adapta-
tion of CLIP (Radford et al., 2021) that leverages pre-
trained large unimodal foundation models with train-
able adapters. It achieves state-of-the-art performance
in cross-modal distillation under data-scarce conditions
for our biological modalities.

• We introduce PEA, Perturbation Embedding
Augmentation, a novel biologically inspired data
augmentation technique for representations of
transcriptomics, that introduce significant variation
in the training data while retaining meaningful
biological information of each sample. PEA improves
cross-modal distillation in our low data regime and
widely outperforms existing augmentation techniques
at uncovering novel biological relationships.

2. Related Works
Cross-Modal Knowledge Distillation. Knowledge dis-
tillation transfers knowledge from a teacher model to a
student by aligning output distributions, typically using
Kullback–Leibler (KL) divergence (Hinton et al., 2015).
Variants introduce gradient similarity (Zhu & Wang, 2021),
correlation (Huang et al., 2022), or structural losses (Park
et al., 2019). Cross-modal methods leverage strong modal-
ities to guide weaker ones, often relying on label informa-
tion (Gupta et al., 2016; Roheda et al., 2018; Xue et al., 2021;
Lee et al., 2023). For instance, C2KD (Huo et al., 2024)
uses an online filtering mechanism for soft label alignment,
while SHAKE (Li & Zhe, 2022) employs shadow adapters
for bidirectional distillation. XKD (Sarkar & Etemad) com-
bines self-supervised learning with cross-modal distillation
but requires large paired datasets. To our knowledge, no
distillation approach has effectively leveraged unsupervised
cross-modal alignment in the context of limited weakly
paired data.

Multimodal Learning. Multimodal learning encom-
passes approaches for aligning or merging data types for
robust inference. CLIP (Radford et al., 2021) aligns image
and text into a shared space, while CSA (han Li et al., 2024)
uses pretrained unimodal models for few-shot alignment.
Methods like SigClip (Zhai et al., 2023), VICReg (Bardes
et al., 2022), and DCCA (Lan et al., 2020) enhance align-
ment through self-supervised learning or correlation maxi-
mization but depend on significant shared information (Tsai
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et al., 2021). Multimodal distillation approaches (Yang
et al., 2024; Wu et al., 2023; Fang et al., 2021; Wang et al.,
2022) typically require paired data and focus on multimodal-
to-multimodal distillation and do not leverage multimodal
alignment for cross-modal distillation when only one modal-
ity is available at inference. Relevant to our setting, (Hager
et al., 2023) proposed a contrastive learning framework com-
bining images and tabular data, structurally similar to our
microscopy-transcriptomics setting, demonstrating the via-
bility of such combinations for predictive and interpretable
medical tasks.

Biologically Relevant Representations. Advances in mi-
croscopy imaging models have driven progress in high-
content screening (Kraus et al., 2024; Yao et al., 2024;
Kenyon-Dean et al., 2025; Wenkel et al., 2025), histopathol-
ogy (Saillard et al., 2024; Chen et al., 2024; Vorontsov et al.,
2024), and specialized architectures (Bourriez et al., 2024;
Pham & Plummer, 2024). In transcriptomics, foundation
models (Cui et al., 2024; Yang et al., 2022; Theodoris et al.,
2023; Wen et al., 2024) show promise but often underper-
form simpler models in biologically relevant tasks, with
scVI (Lopez et al., 2018) as an exception (Liu et al., 2023;
Bendidi et al., 2024b). Microscopy imaging complements
transcriptomics (Camunas-Soler, 2024), but while unimodal
datasets (Replogle et al., 2022; Chandrasekaran et al., 2023;
Fay et al., 2023) are growing, weakly paired multimodal
datasets remain scarce. Recent methods (Xi et al., 2024;
Watkinson et al., 2024; Sanchez-Fernandez et al., 2023; Xie
et al., 2023) address this kind of limitation for different
modalities by leveraging weak pairings through pretrained
models with trainable adapters (Fradkin et al., 2024).

Data Augmentations for Biology. Data augmentations
are crucial in addressing data scarcity for biology, as biolog-
ically meaningful augmentations can stabilize and improve
performance with limited biological datasets (Moutakanni
et al., 2024; Bendidi et al., 2023; 2024a). In computational
biology, image augmentations have typically focused on
basic transformations like rotations (Alfasly et al., 2024;
Lafarge & Koelzer, 2022) or differentiable techniques us-
ing adversarial learning for domain generalization (Ruppli
et al., 2022; Zhou et al., 2024). For transcriptomics, data
being in a representation format allows leveraging existing
representation-level augmentation methods (DeVries & Tay-
lor, 2017; Li et al., 2022), though their efficacy for biologi-
cal contexts remains uncertain. Recently, new biologically
inspired techniques have emerged specifically for augment-
ing transcriptomics and biological representations (Kircher
et al., 2022; Li et al., 2023; Nouri, 2025).

3. Proposed Approach
Problem Formulation. We consider two biological data
modalities: a teacher modality T and a student modality
S, each offering distinct perspectives on cellular behav-
ior. Let XT and XS represent the datasets from these
modalities. The samples x

(i)
T ∈ XT and x

(i)
S ∈ XS

correspond to the same biological perturbation and cell
type but are not strongly paired due to biological variabil-
ity. Each sample is annotated with weak labels p (per-
turbation) and l (cell type). Both datasets are organized
into biological batches BT = {bT,1, bT,2, . . . , bT,|BT |} and
BS = {bS,1, bS,2, . . . , bS,|BS |}. Each batch bT,k ∈ BT and
bS,m ∈ BS consists of a set of samples {x(j)

T,k}
NT,k

j=1 and

{x(j)
S,m}NS,m

j=1 , and each batch includes, in addition to per-
turbed samples, a number of control (unperturbed) samples,
denoted by {x(c)

T,k}
CT,k

c=1 and {x(c)
S,m}CS,m

c=1 for CM,k ≥ 2.

Proposed Distillation Method. Given the scarcity of
weakly paired data, we adopt pretrained and frozen uni-
modal encoders ET : XT → RdT and ES : XS → RdS ,
following (Fradkin et al., 2024). These encoders produce
embeddings z(i)T = ET (x

(i)
T ) and z

(i)
S = ES(x

(i)
S ) for the

teacher and student modalities, respectively. Our objective
is to learn a mapping function fS : RdS → RdT that aligns
student embeddings to the teacher embedding space, yield-
ing transformed embeddings h(i)

S = fS(z
(i)
S ) that integrate

properties from the teacher modality T . We aim to achieve
the dual objective of leveraging weak biological labels for
pairing while minimizing reliance on them as learning objec-
tives, since such labels underperform compared to unsuper-
vised objectives in microscopy imaging (Kraus et al., 2024),
and preventing mutual drift between modalities with limited
shared information. We propose Semi-Clipped, a straight-
forward adaptation of the CLIP loss (Radford et al., 2021)
for cross-modal knowledge distillation. This approach uses
the frozen unimodal encoders to generate embeddings zT
and zS . The teacher representation zT is fixed, while an
adapter function fS is trained on the student modality by
optimizing the CLIP loss between hS and zT to produce
aligned embeddings hS . By freezing the teacher embedding
space, this avoids dependence on massive amounts of paired
data for encoder training and ensures one-way knowledge
transfer from the teacher to the student, mitigating mutual
drift and feedback from the student to the teacher.

Batch Correction for Data Augmentation. In biolog-
ical datasets, batch effects, or variability caused by dif-
ferences in experimental conditions, introduce noise that
can obscure meaningful patterns. Traditional batch correc-
tion techniques (Bendidi et al., 2024b; Celik et al., 2024;
Ando et al., 2017) address this by centering embeddings on
control (unperturbed) samples within each batch, reducing
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noise while preserving the signal. Typically used as a post-
processing step, these corrections shift the embedding distri-
bution while retaining key information for downstream anal-
ysis. To tackle the scarcity of paired biological modalities,
we introduce PEA (Perturbation Embeddings Augmenta-
tion), a novel biologically inspired augmentation technique
that repurposes batch correction as a data augmentation ap-
plied directly to the student embeddings during training.
Specifically, a function A : (RdS , Xc

S) → RdS is randomly
selected from a set A of batch correction transformations
and applied to the student embeddings z

(i)
S . Augmented

embeddings z
(i)
S,A = A(z

(i)
S , X

(c)
S ) are then passed to the

student adapter fS for cross-modal knowledge distillation.
To ensure the teacher embeddings focus on relevant infor-
mation, a fixed batch correction B (Ando et al., 2017) is
applied to the teacher modality.

To augment transcriptomics data while preserving biological
relevance, we extend traditional batch correction techniques
into a stochastic augmentation framework. Specifically,
for each sample, we randomly select one batch correction
transformation A from a predefined set of normalization
techniques, ensuring controlled variability in perturbation
embeddings. Each selected transformation A : RdS → RdS

falls into one of these categories: (1) centering, which shifts
embeddings by subtracting batch-wise control means to re-
move batch-specific offsets; (2) scaling, which normalizes
variance across features to enhance comparability; and (3)
principal component-based transformations that reweight
variance along principal axes, emphasizing biologically rel-
evant information while reducing batch artifacts. To intro-
duce further stochasticity, we drop a random subset of the
steps of each correction method per sample rather than al-
ways applying them sequentially. Additionally, the number
of control samples used for correction is randomly sampled
per training sample, increasing diversity and robustness
to out-of-domain experimental shifts in the learned distri-
butions. Detailed implementation of our batch correction
techniques is provided in Appendix Section C.

This method introduces controlled and diverse distributional
shifts, helping fS learn robust, biologically meaningful rep-
resentations by ignoring batch-induced variability. During
inference, a batch correction is applied to the student embed-
dings zS to align them with the training distribution, further
improving robustness. Algorithm 1 details the process, en-
suring the adapter captures biologically relevant features
while increasing training diversity and preserving biological
information in low-data settings.

4. Experimental Setup
Data & Model Training. We use microscopy imaging
as the teacher modality and transcriptomics as the stu-
dent modality. The training dataset includes 130,000 ar-

Algorithm 1 Semi-Clipped with PEA implementation

for each batch (xS , xT ) ∈ (XS , XT ) do
Extract using frozen encoders zS = ES(xS) and zT =
ET (xT )
Sample batch correction function A ∼ A
Drop a random subset of steps in A → A′

Sample a random subset of control samples X(c)
S

Apply batch correction: zaS = A′(zS , X
(c)
S )

Compute transformed embeddings: hS = fS(z
a
S)

Apply TVN correction to teacher embeddings: zbS =
B(zT ) and compute CLIP loss :

L = −
B∑
i=1

log
exp(sim(h

(i)
S , z

(b,i)
T )/τ)

B∑
j=1

exp(sim(h
(i)
S , z

(b,j)
T )/τ)

Backpropagate loss L and update adapter fS
end for

rayed bulk transcriptomics samples (HUVEC-CMPD) and
20,000 microscopy images of human umbilical vein en-
dothelial cells (HUVEC), cells from cell painting, both cov-
ering 1,700 chemical perturbations at three concentrations.
Each transcriptomics sample can pair with multiple imaging
samples based on treatment and concentration, with one
pair randomly selected per epoch. These pairs are weakly
paired—i.e., they do not originate from the same biological
replicate but share the same cell line and perturbation meta-
data, ensuring comparable biological states across modali-
ties. For encoding microscopy images, we use the pretrained
Phenom-1 model (Kraus et al., 2024), a state-of-the-art pre-
trained model trained on 93 million microscopy images. For
transcriptomics, we compare three models: a simple scVI-
like MLP1 trained from scratch on the HUVEC-CMPD bulk
dataset, scVI (Lopez et al., 2018), a model known for strong
performance on small datasets, outperforming existing tran-
scriptomics pretrained models (Bendidi et al., 2024b), and
similarly trained from scratch on the HUVEC-CMPD bulk
dataset, and a pretrained scGPT (Cui et al., 2024) (a pre-
trained model trained on 33 million transcriptomics sam-
ples). A three-layer MLP adapter fS (input size dS , output
size dT ) with ReLU activations is trained for the student
modality, while both encoders remain frozen. Consistent
with (Kenyon-Dean et al., 2025), control samples are ex-
cluded from paired data for knowledge distillation and only
used for batch correction. The adapter is trained with a tem-
perature of 0.1, learning rate of 0.001, batch size of 1,024,
and over 150 epochs.

1scVI is an MLP-based VAE conditionned on a batch label.

4



A Cross Modal Knowledge Distillation & Data Augmentation Recipe for Improving Transcriptomic Representations

Evaluation Setting. The evaluation focuses on assessing
the quality of transcriptomic representations after knowl-
edge distillation, emphasizing biological relevance and inter-
pretability. We use a hierarchical benchmarking framework
for transcriptomic representations (Bendidi et al., 2024b)
(Appendix Section B) with two primary tasks: (1) Retrieval
of known biological relationships, this task evaluates the
ability of the learned representations to capture established
biological relationships by retrieving known interactions
between genes. Using cosine similarity of gene embed-
dings, predicted relationships are validated against annota-
tions from CORUM, HuMAP, StringDB, Reactome, and
SIGNOR databases. Success is measured by recall scores
averaged across these databases, reflecting how well the rep-
resentations align with known biology. (2) Transcriptomic
interpretability preservation, this task measures how well
the distilled embeddings retain information necessary for
reconstructing original gene expression profiles. It evaluates
two complementary metrics: the Structural Integrity score,
which quantifies how accurately the model preserves the
relationships between control and perturbation samples, and
the Spearman correlation, which assesses the rank-based
agreement between predicted and true gene expression pro-
files. The average of these metrics provides a comprehensive
measure of interpretability preservation.

Success is defined as improving retrieval scores while main-
taining interpretability metrics comparable to unimodal
transcriptomic representations. This dual focus ensures
that the student representations do not collapse or lose
transcriptomic-specific information by ignoring it and re-
lying solely on morphological features. Using these tasks,
we compare our Semi-Clipped approach, with and with-
out PEA, against standard multimodal alignment and cross-
modal knowledge distillation methods. For alignment, we
include CLIP (Radford et al., 2021), SigClip (Zhai et al.,
2023), VICReg (Bardes et al., 2022), and DCCA (Lan et al.,
2020). For distillation, we evaluate KD (Hinton et al., 2015),
SHAKE (Li & Zhe, 2022), and C2KD (Huo et al., 2024). All
methods use the same pretrained encoders with trainable
adapters. For distillation approaches, teacher and student
adapters are unimodally pretrained with perturbation la-
bels before fine-tuning via their respective methods. We
benchmark PEA by applying it to zS during training, and
compare it to existing biological and transcriptomics data
augmentation approaches : MWO (Kircher et al., 2022),
scVI denoising (Lopez et al., 2018), MDWGAN-GP (Li
et al., 2023), scGFT (Nouri, 2025), and their combination
with and without PEA. Hyperparameters are optimized via
grid search on a validation split, with results averaged across
multiple seeds.

Evaluation Datasets. We assess generalization on three
Out-Of-Distribution (OOD) datasets, each introducing dis-

Figure 1. Impact of training choices on Semi-Clipped performance
for known biological relationship recall on HUVEC-KO. Finetun-
ing or multimodal training from scratch underperforms due to lim-
ited weakly paired data, while using adapters on pretrained models
significantly improves results. The best performance is achieved
with Semi-Clipped : a single transcriptomic adapter aligned to
frozen image representations.

tinct distribution shifts. (1) Experimental variability:
The HUVEC-KO dataset contains arrayed bulk transcrip-
tomics data from 120,000 genetically perturbed sample,
with around 300 CRISPR gene Knock-Out (KO) in HU-
VEC cells, unlike the training set, which uses chemical
perturbations. This dataset does not share any experiment
with the training set, and evaluates generalization to un-
seen experiments and unseen genetic perturbations. (2)
Quantification method shift: The LINCS dataset (Sub-
ramanian et al., 2017) includes 443,000 arrayed bulk tran-
scriptomics samples across 31 cell types and 5,157 CRISPR
gene KO, using the L1000 assay, a transcript abundance
measurement method different from the sequencing-based
approach in training. (3) Single-cell adaptation: The SC-
RPE1 dataset (Replogle et al., 2022) consists of 247,914
single-cell transcriptomic samples from retinal pigmented
epithelium cells with 2,393 CRISPR knockouts, testing the
transition from bulk transcriptomics (training dataset) to
single-cell transcriptomics. Together, these three OOD eval-
uation settings introduce significant distribution shifts on
different aspects, testing the model’s robustness to new cell
types, experimental conditions, and gene expression quan-
tification methods.

5. Results
We aim to evaluate the impact of Semi-Clipped and PEA
both independently and in combination. Our primary ob-
jective is to improve biological relationship recall on OOD
datasets compared to the corresponding unimodal transcrip-
tomic baseline while preserving or enhancing interpretabil-
ity in transcriptomics.
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Figure 2. Performance comparison of the distillation and augmentation components of our approach compared to existing distillation
methods (a) and biological data augmentation techniques (b) across five training seeds. Higher is better for all metrics. Semi-Clipped and
PEA maintain interpretability and achieve the highest performance on all OOD datasets. (a) Z-scores of evaluation metrics (relationship
recall and Tx preservability) are shown, with cool colors for label-based methods and warm colors for label-free approaches, without data
augmentation. (b) Raw scores are shown for relationship recall and Tx preservability. Transcriptomics data augmentations, MWO (Kircher
et al., 2022), scVI denoising (Lopez et al., 2018), MDWGAN-GP (Li et al., 2023), scGFT (Nouri, 2025), are applied within Semi-Clipped
training. We compare training results where we simultaneously use all evaluated data augmentations, both with and without PEA, to
assess its additional impact in a practical setting on both evaluation tasks.

5.1. Semi-Clipped Enables Robust and Generalizable
Transcriptomic Representations

To analyze the effect of different training choices on Semi-
Clipped performance, we first examine its impact on known
biological relationship recall using the HUVEC-KO dataset.
Without data augmentations and using the CLIP loss,
we conduct two comparisons. Figure 1 (left) compares
training an scVI-like MLP from scratch for the distillation
task against using a pretrained scVI model. Additionally, it
evaluates the effect of introducing an image adapter instead
of relying solely on a transcriptomics adapter while keep-
ing image embeddings frozen. Figure 1 (right) compares
finetuning a pretrained scGPT model for distillation versus
freezing scGPT and training a transcriptomics adapter on
its own or with an image adapter. We find that leverag-
ing a pretrained encoder with adapters consistently outper-
forms both training from scratch and finetuning for both
scVI and scGPT. Furthermore, aligning transcriptomic rep-
resentations to frozen image embeddings, as proposed in
Semi-Clipped, yields superior performance compared to
also training a microscopy imaging adapter.

We evaluate Semi-Clipped’s ability to learn generalizable
and biologically meaningful representations of transcrip-
tomics compared to existing distillation methods, using an

scVI pretrained encoder for transcriptomics. For clar-
ity, we define label-free approaches as those that do not
use biological labels in the training objective, even if labels
are used for modality pairing. To ensure a fair comparison
of the core methods, no data augmentation is applied.
Figure 2 (a) presents the performance of Semi-Clipped
against various label-based and label-free distillation ap-
proaches on the Transcriptomic Interpretability Preservation
and Known Biological Relationship Recall tasks across all
three OOD datasets. Scores are standardized as z-scores
and averaged over 5 seeds, with higher values indicating
better performance. Distillation methods using label super-
vision (cool colors) generally show weaker relationship re-
call compared to unsupervised multimodal methods (warm
colors) and even underperform the unimodal baseline in
LINCS and SC-RPE1. In contrast, Semi-Clipped achieves
the highest relationship recall in HUVEC-KO and SC-RPE1
while also slightly surpassing the unimodal baseline in tran-
scriptomics interpretability in HUVEC-KO. This suggests
successful knowledge transfer from morphology to tran-
scriptomics without sacrificing interpretability. In LINCS,
Semi-Clipped performs competitively, outperforming all
label-supervised distillation methods and the unimodal base-
line in relationship recall while closely matching the best
unsupervised multimodal methods. On the transcriptomics
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Figure 3. Ablation study on the known relationship recall score of hyperparameters choices (Tx Adapter learning rate, CLIP loss
temperature, batch size, and training epochs) for training Semi-Clipped on the HUVEC-KO dataset, including the selected optimal
configuration (dotted vertical line). For each studied parameter, we set all other hyperparameters at their best performing value. While
performance varies with parameter changes, the method remains largely robust, showing minimal degradation and no collapse

preservation metric for LINCS and SC-RPE1, Semi-Clipped
retains strong interpretability, slightly trailing the unimodal
baseline but outperforming most distillation approaches.
This minor limitation likely reflects the challenge of main-
taining interpretability across unseen cell types. Overall,
Semi-Clipped effectively balances generalization and inter-
pretability across all OOD settings, consistently achieving
the most robust performance across all metrics and demon-
strating its strength as a distillation method.

To further assess Semi-Clipped’s robustness, we conduct a
detailed ablation study on individual hyperparameters when
trained independently on the HUVEC-KO dataset (Figure
3). We isolate the effect of each parameter by fixing all
others to their optimal values. The results reveal that while
performance fluctuates with changes in configuration, Semi-
Clipped remains resilient, exhibiting only minor degrada-
tion without any performance collapse. Optimal learning
is achieved with a balanced learning rate, a lower tempera-
ture for the CLIP loss term, and larger batch sizes, though
the method still performs competitively even with small
batches. Additionally, increasing the number of training
epochs yields substantial improvements. These findings
reinforce the method’s stability and reliability across a wide
range of training conditions.

5.2. PEA Enhances Distillation Across Methods and
Synergizes with Existing Augmentations

We further evaluate the effectiveness of our proposed PEA
data augmentation in enhancing distillation performance
across both evaluation tasks. Using Semi-Clipped as the
base model, we compare its performance over five training
seeds in three settings: (1) without any data augmentation,
(2) with multiple existing biologically inspired transcrip-
tomics augmentations from the literature, each used sepa-
rately, and (3) with PEA as the sole augmentation. This
initial evaluation isolates the specific contribution of PEA.
Additionally, to reflect real-world training conditions where
multiple augmentations are typically applied together, we

conduct a broader comparison. Specifically, we compare
Semi-Clipped trained with all existing biological augmenta-
tions except PEA against its performance when trained with
the full set of augmentations, including PEA. Figure 2 (b)
presents the results of this comparison. Across all three eval-
uation datasets, PEA achieves state-of-the-art performance
in Known Biological Relationship Recall, significantly out-
performing all existing approaches. It also preserves tran-
scriptomic interpretability, matching the no-augmentation
baseline in SC-RPE1 while surpassing it in HUVEC-KO
and LINCS. Notably, PEA alone improves performance over
not using augmentations by 17% in HUVEC-KO, 55% in
LINCS, and 20% in SC-RPE1. More strikingly, PEA out-
performs the combined effect of all other biological aug-
mentations used together, highlighting its strong biological
foundation and ability to introduce meaningful variation to
the distillation process. Furthermore, integrating PEA with
all other augmentations further enhances performance be-
yond using PEA alone, demonstrating its complementarity
to existing transcriptomics augmentation techniques. This
combined approach yields the highest overall improvements,
increasing performance over the no-augmentation baseline
by 25% in HUVEC-KO, 69% in LINCS, and 26% in SC-
RPE1. These results confirm that PEA not only provides
substantial individual benefits but also synergizes effectively
with existing augmentation strategies.

We assess whether PEA enhances performance across differ-
ent distillation approaches beyond Semi-Clipped and com-
pare its impact on various methods. Specifically, we apply
PEA to KD, SHAKE, VICReg, and Semi-Clipped and eval-
uate its effect on benchmark tasks. Each method is trained
over 15 different seeds, both with and without PEA, and we
use a Wilcoxon signed-rank test to determine the statisti-
cal significance of improvements. Table 1 summarizes the
results: PEA consistently enhances performance across all
three OOD datasets for every distillation approach, with par-
ticularly strong gains in LINCS and SC-RPE1. This confirms
that PEA is broadly beneficial across methods. Notably,
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Method HUVEC-KO LINCS SC-RPE1

Tx Preservation Known Relationships Tx Preservation Known Relationships Tx Preservation Known Relationships

Random baseline 33.92 ± 0.09 10.37 ± 0.11 47.09 ± 0.07 10.81 ± 0.04 25.34 ± 0.11 10.03 ± 0.02

Unimodal baseline 52.23 ± 0.34 16.51 ± 0.85 93.35 ± 0.07 12.21 ± 0.11 37.75 ± 0.28 25.29 ± 0.24

KD 52.90 ± 0.31 16.00 ± 1.36 92.69 ± 0.15 11.83 ± 0.27 37.43 ± 0.32 23.9 ± 0.18
KD + PEA ↑ 54.12 ± 0.63 ↑ 20.65 ± 1.78 ↑ 93.11 ± 0.29 ↑ 15.73 ± 0.59 ↑ 37.55 ± 0.38 ↑ 29.02 ± 0.36

SHAKE 51.93 ± 0.80 17.02 ± 1.02 91.64 ± 0.23 12.09 ± 0.49 36.95 ± 0.46 25.13 ± 0.19
SHAKE + PEA ↑ 52.93 ± 0.83 ↑ 19.98 ± 1.34 ↑ 92.43 ± 0.31 ↑ 16.84 ± 0.51 ↓ 36.15 ± 0.51 ↑ 30.81 ± 0.31

VICReg 51.87 ± 0.39 17.25 ± 1.14 91.19 ± 0.19 12.96 ± 0.45 36.75 ± 0.17 32.19 ± 0.26
VICReg + PEA ↑ 53.76 ± 0.66 ↑ 20.46 ± 0.83 ↑ 91.22 ± 0.25 ↑ 18.12 ± 0.19 ↓ 36.33 ± 0.22 ↑ 38.14 ± 0.29

Semi-Clipped 52.78 ± 0.27 19.71 ± 1.19 92.71 ± 0.23 12.68 ± 0.33 37.54 ± 0.19 32.65 ± 0.21
Semi-Clipped + PEA ↑ 53.87 ± 0.37 ↑ 23.05 ± 0.42 ↑ 93.15 ± 0.38 ↑ 19.63 ± 0.18 ↑ 37.56 ± 0.15 ↑ 39.84 ± 0.23

Table 1. Performance improvement of different distillation methods with and without PEA under all OOD settings. We average the scores
of 15 different seeds for each model, and the p-value of every result improvement is below 0.05 using the Wilcoxon signed-rank statistical
test. Improvements from using PEA are indicated with upward arrows. For each OOD setting, the best-performing model is shown in bold,
and the second-best is underlined. Using PEA as data augmentation for distillation approaches preserves the transcriptomics information
while widely improving the zero-shot retrieval of known biological relationships for all the three OOD datasets used for evaluation.

it also significantly improves Transcriptomic Interpretabil-
ity, likely due to its ability to preserve biological informa-
tion while introducing controlled variations, enhancing the
signal-to-noise ratio. All gains in Known Relationship Re-
call between PEA and non-PEA settings are statistically
significant (p-values < 0.05). Importantly, Semi-Clipped
remains the top-performing approach in Known Biological
Relationship Recall across all evaluation datasets when us-
ing PEA, while also achieving the second-best performance
in Transcriptomic Interpretability Preservation across all
datasets.

We analyze the contribution of each PEA component to
performance improvements by conducting an ablation study
on the HUVEC-KO dataset. We evaluate its impact on KD,
SHAKE, VICReg, and Semi-Clipped, progressively adding
PEA components to the base distillation methods without
augmentations. Each step in the ablation builds upon the pre-
vious one: (1) Fixed biological augmentation : applying a
predefined set of batch correction techniques. (2) Inference
on TVN-corrected embeddings : applying Typical Varia-
tion Normalization (TVN) (Ando et al., 2017) correction to
zS at inference before passing them to the adapter fS . (3)
Augmentation stochasticity : randomly dropping a subset
of batch correction steps to introduce variation. (4) Control
sampling : randomly sampling a varying amount of control
samples for correction, completing the full PEA approach.
Table 2 summarizes the results, averaged over 15 seeds and
reporting Known Biological Relationship Recall for each
distillation approach. Every component contributes incre-
mental improvements, with control sampling providing the
strongest boost, particularly for Semi-Clipped. Importantly,
all distillation methods show consistent performance gains
at each step, indicating that each PEA component plays a
critical role in enhancing distillation outcomes.

5.3. Semi-Clipped with PEA Enables Synergistic
Integration of Morphological and Transcriptomic
Insights

We analyze the biological insights provided by Semi-
Clipped trained with PEA, comparing the known biological
relationships it retrieves to those identified independently by
unimodal microscopy imaging and transcriptomics models
on the HUVEC-KO OOD dataset. Specifically, we evalu-
ate the quantity and overlap of relationships retrieved by
KD, SHAKE, VICReg, and Semi-Clipped, all trained with
PEA, to assess whether these models remain faithful to
transcriptomics-specific relationships or exhibit modality
drift. This is quantified by measuring the intersection be-
tween relationships retrieved by each distillation method
and those identified by the unimodal transcriptomics model.
Figure 4 presents Venn diagrams of these intersections.
Semi-Clipped shows strong alignment with transcriptomics-
retrieved relationships while also capturing additional bi-
ological insights typically associated with morphological
features. In contrast, while the other distillation approaches
retrieve many known relationships, they exhibit minimal
overlap with those identified by transcriptomics alone. No-
tably, KD and SHAKE, both label-based methods, demon-
strate particularly weak alignment with transcriptomics re-
lationships, likely due to the confounding effects of weak
biological labels used during training. These findings sug-
gest that Semi-Clipped effectively preserves transcriptomic
insights while significantly enriching them with complemen-
tary morphological information, achieving a better balance
between biological faithfulness and multimodal integration.

We next investigate whether distilling morphological fea-
tures into transcriptomics yields a purely additive effect
or if it generates emergent synergies between modalities.
To assess this, we analyze the set Distillation \ (Transcrip-
tomics ∪ Microscopy) in Figure 4, representing relationships
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PEA Configuration KD SHAKE VICReg Ours

Base Method 16.00 17.02 17.25 19.71
+ Fixed Bio-Aug 16.76 17.22 17.97 19.95
+ Inference on TVN 18.76 18.32 18.62 20.58
+ Aug. Stochasticity 19.37 18.84 19.43 21.79
+ Ctrl Sampling (PEA) 20.65 19.98 20.46 23.05

Table 2. Ablation study of different PEA components on HUVEC-
KO evaluation dataset, on retrieval of known relationships of dif-
ferent distillation methods, averaged over 15 seeds. We see that
combining all PEA components achieves significant improvements,
especially when using our Semi-Clipped approach.

uniquely retrieved by the distillation model but absent in
unimodal transcriptomics or microscopy imaging. For all
evaluated methods, we perform Gene-Set Enrichment Anal-
ysis (GSEA) (Subramanian et al., 2005) to identify enriched
biological pathways within this set compared to other dis-
tinct relationships retrieved by each distillation approach,
filtering for gene sets with p-values < 0.01. Surprisingly,
KD, SHAKE, and VICReg fail to significantly enrich any bi-
ological pathway, whereas Semi-Clipped uniquely enriches
pathways related to the cell cycle and post-translational
modifications (Appendix Table 3). This suggests that dis-
tilling morphological traits into transcriptomics using our
approach enhances the capture of cell cycle-related informa-
tion, which may be less detectable or noisier in either modal-
ity alone. This outcome likely arises from Semi-Clipped’s
ability to integrate rich phenotypic information from mi-
croscopy imaging, including morphological traits, spatial
organization, and cellular process indicators, with transcrip-
tomic markers such as mitochondrial RNA gene counts,
often associated with cell cycle activity. This fusion enables
a deeper biological synergy, allowing distillation to reveal
novel biological insights that neither modality could achieve
independently, while still permitting unimodal inference
rather than requiring multimodal fusion.

6. Discussion
In this work, we introduced Semi-Clipped, a self-supervised
framework for distilling morphological knowledge of biol-
ogy into transcriptomic representations using multimodal
alignment techniques. Additionally, we proposed PEA, a
biologically informed augmentation strategy that repurposes
batch correction to enhance representation learning. Our
results demonstrate that Semi-Clipped outperforms existing
distillation methods while preserving transcriptomic inter-
pretability. Furthermore, we show that label-free distillation
consistently surpasses label-based approaches, reinforcing
that biological labels often lack the granularity needed to
fully capture cellular complexity. A key contribution of
this work is the reinterpretation of batch correction as a
biologically meaningful data augmentation. Unlike conven-
tional transcriptomic data augmentations that may disrupt

Figure 4. Venn diagrams of retrieved biological relationships for
KD, SHAKE, VICReg, and Semi-Clipped (all trained with PEA)
on the HUVEC-KO OOD dataset. Semi-Clipped shows the high-
est overlap with transcriptomics while integrating morphological
insights, whereas KD and SHAKE exhibit the weakest alignment,
possibly due to reliance on weak biological labels. Detailled mea-
sures of the gains and losses of each method in each modality are
available in Figure 5.

critical expression signals, PEA introduces plausible vari-
ability while maintaining essential biological properties.
This approach significantly improves cross-modal distilla-
tion performance, increasing Known Biological Relation-
ship Recall in OOD tests while preserving interpretability.
Beyond aligning transcriptomic and morphological informa-
tion, Semi-Clipped reveals emergent biological synergies,
particularly in cell cycle regulation and post-translational
modifications. Despite these advantages, challenges remain.
Random pairing within treatment groups may dilute repre-
sentation quality when subtle intra-group differences exist,
highlighting the need for better matching strategies. Lim-
ited large-scale paired data also restricts broader applica-
bility. Nonetheless, Semi-Clipped is computationally effi-
cient: training on a scaled version of our dataset with 1.3
million weakly paired samples takes only 19 hours on a sin-
gle H100 GPU, thanks to the use of frozen backbones and
lightweight adapters. As multimodal datasets grow, scaling
these methods could further advance biological research and
cross-modal understanding.

Impact Statement
This paper presents work whose goal is to advance the
field of Machine Learning in its application to life sciences.
There are many potential societal consequences of our work,

9



A Cross Modal Knowledge Distillation & Data Augmentation Recipe for Improving Transcriptomic Representations

especially relating to the discovery of new biological rela-
tionships and potential drug treatments. Utmost care should
be taken to validate safety and efficacy of model predictions
in pre-clinical trials.
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A. Detailed Experimental Setup
A.1. Encoders

We use three main models for our experiments, in addition to the MLP trained from scratch. Phenom-1 (Kraus et al.,
2024) is a Vision Transformer-based model with 300 million parameters, trained using a Masked Autoencoder (MAE)
framework. It is pretrained on RPI-93M, a dataset of 93 million microscopy images, capturing diverse cellular phenotypes
across CRISPR, chemical, and soluble perturbations, making it highly effective for large-scale cellular morphology analysis.
scVI (Lopez et al., 2018) is a probabilistic generative model designed for single-cell RNA sequencing (scRNA-seq) data,
trained using a Variational Autoencoder (VAE) framework. It encodes high-dimensional gene expression data into a
biologically meaningful latent space, leveraging a zero-inflated negative binomial (ZINB) reconstruction objective to model
overdispersion and dropout effects in transcriptomic data. scGPT (Cui et al., 2024) is a transformer-based foundation model
pretrained on 33 million scRNA-seq samples using a masked language modeling objective. It captures complex gene–gene
and gene–cell interactions, with fine-tuning capabilities for tasks like cell type annotation, multi-omic integration, and
perturbation response prediction. These models provide robust, biologically relevant representations tailored for microscopy
and transcriptomics data.

A.2. Implementation details

The MLP adapters fS and fT used in this work are fully connected feedforward networks designed to align embeddings
from the transcriptomics (Tx) and microscopy imaging encoders into a shared latent space. For the transcriptomics adapter,
the architecture comprises an input layer of size 256, two hidden layers with dimensions 512 and 1024 respectively, and an
output layer of size 768. The image adapter follows a similar design, with an input size of 768, two hidden layers of size
1024, and an output layer of size 768. ReLU activations are applied to all hidden layers, while the output layer uses a linear
activation.

For VICReg, learning rates for the Tx and image adapters were 0.1 and 1× 10−8, respectively, and training spanned 10
epochs with a minimum learning rate of 10−10; the VICReg loss parameters (similarity, variance, and covariance weights)
were kept at their default settings. Similarly, SigClip used Tx and Img adapters learning rates of 0.1 and 10−8, respectively,
with training conducted for 10 epochs and a minimum learning rate of 10−10; the temperature and normalization parameters
were kept at their defaults. For DCCA, the Tx and Img adapters were trained with a learning rate of 10−6 and 10−8

respectively over 50 epochs, a minimum learning rate of 10−10, and loss parameters including an output dimension size
of 30, usage of all singular values, and an epsilon of 10−6. The SHAKE method utilized Tx and Img adapters learning
rates of 0.1 and 10−8, Tx and Img classifier learning rates of 10−4 and 10−7, respectively, and a temperature of 9, with loss
balancing hyperparameters α = 10 and β = 0.001; training was conducted over 10 epochs with a minimum learning rate
of 10−10. For KD, the Tx adapters and classifier learning rates were 0.1 and 10−4, respectively, with a temperature of 9
and α = 10, trained for 10 epochs with a minimum learning rate of 10−10. Lastly, C2KD employed Tx and Img adapters
learning rates of 0.1 and 10−6, Tx and Img classifier learning rates of 10−5 and 10−3, respectively, and a temperature of 2
with a Kendall Rank Correlation threshold of 0.3; training spanned 30 epochs with a minimum learning rate of 10−7. At
evaluation step, we perform TVN alignment for all output embeddings for the Known Relationship Recall benchmark, and
use raw embeddings for Transcriptomic Interpretability Preservation benchmark, as is used in (Bendidi et al., 2024b).

B. Evaluation tasks
B.1. Known Biological Relationship Recall

The Known Relationship Recall score is a benchmarking metric introduced in (Celik et al., 2024) and designed to evaluate the
extent to which a perturbative map captures established biological relationships. This score serves as a proxy for assessing
the biological relevance of the map and its ability to uncover meaningful interactions between genes. By comparing predicted
relationships within the map to curated annotations from biological databases, the Known Relationship Recall score provides
a quantitative measure of the map’s fidelity to known biology.

The computation of the Known Relationship Recall score follows these steps:

1. Pairwise Similarity Computation: For each pair of genes (gi, gj) in the map, we compute the cosine similarity between
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their aggregated embeddings xgi and xgj . The cosine similarity is defined as:

cos(xgi ,xgj ) =
⟨xgi ,xgj ⟩
∥xgi∥ ∥xgj∥

,

where ⟨xgi ,xgj ⟩ is the dot product of the embeddings, and ∥xgi∥ is the Euclidean norm of xgi .

2. Selection of Predicted Relationships: Relationships are classified as ”predicted” if their cosine similarity scores fall
into the top or bottom relationships according to a percentage threshold (usually 5%) of the distribution of all pairwise
similarities. High similarity scores indicate cooperative relationships, while low scores suggest functional opposition.

3. Validation Against Biological Databases: The predicted relationships are validated using established biological
annotations from databases such as CORUM, HuMAP, Reactome, SIGNOR, and StringDB. Only gene that appear in the
perturbation dataset are considered for pairs in the database.

4. Recall Calculation for Each Database: For each database, the recall is computed as the fraction of annotated relationships
that are successfully identified among the predicted relationships:

Recalldb =
#(True Positive Relationships)

#(Total Annotated Relationships in Map)

Here, true positive relationships are those annotated in the database that also fall within the predicted set. The final Known
Relationship Recall score is computed as the mean of the recall values across the five databases.

The Known Relationship Recall score provides a single aggregated metric that encapsulates the map’s ability to recapitulate
established biological relationships. A high score indicates strong alignment with existing annotations, demonstrating the
map’s utility in representing meaningful biological interactions.

B.2. Transcriptomic Interpretability Preservation

The Transcriptomic Interpretability Preservation, first introduced as linear interpretability evaluation in (Bendidi et al.,
2024b), is an evaluation framework designed to assess how well a model captures and preserves biologically meaningful
patterns in transcriptomic data. This task evaluates the quality of the model’s internal representations and their ability
to reconstruct gene expression profiles accurately while maintaining the structural relationships between control and
perturbation conditions. By focusing on both the accuracy of reconstructed gene expression profiles and the preservation
of batch-specific control-perturbation relationships, this metric provides a holistic view of the model’s capability to retain
original transcriptomic interpretability. The evaluation relies on two complementary metrics, which are averaged to compute
the final Transcriptomic Interpretability Preservation score:

Structural Integrity Score: This metric quantifies how well the model preserves the relationships between control and
perturbation conditions within each biological batch. The Structural Integrity score is computed as:

Structural Integrity = 1− Structural Distance
Structural Distancemax

,

where the Structural Distance measures the Frobenius norm of the difference between centered predicted and actual gene
expression matrices, and Structural Distancemax is the theoretical maximum distance, as derived in (Bendidi et al., 2024b).
A score close to 1 indicates strong preservation of the structural relationships.

Spearman Correlation of Reconstruction: This metric evaluates how accurately the model reconstructs original gene
expression profiles from its internal latent representations. The Spearman correlation is calculated between the predicted
and true gene expression profiles, providing a robust measure of rank-based agreement.

To provide a comprehensive evaluation, the Transcriptomic Interpretability Preservation metric is computed as the average
of the Structural Integrity score and the Spearman correlation of reconstruction. By evaluating both aspects, the metric
ensures that a model not only produces high-quality reconstructions but also retains the underlying biological structure
of the data. This is crucial for downstream applications such as identifying gene interactions or studying the effects of
perturbations in various conditions.
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C. Batch Correction Techniques
C.1. Centering

Centering involves adjusting the dataset such that each feature has a mean of zero. This is achieved by subtracting the mean
of each feature from the data. Given a feature matrix X ∈ Rn×m, where n is the number of samples and m is the number of
features, the centered matrix X̃ is computed as:

X̃ij = Xij −
1

n

n∑
k=1

Xkj , ∀i = 1, . . . , n, ∀j = 1, . . . ,m.

This step shifts the data so that each feature’s mean is zero. In batch-corrected biological datasets, centering is typically
applied to remove the influence of negative control embeddings, facilitating the focus on perturbation effects.

C.2. Center Scaling/Standardization

Center scaling/Standardization extends centering by adjusting each feature so that it has unit variance. This ensures
comparability across features. For a centered matrix X̃ , the scaled matrix X̂ is defined as:

X̂ij =
X̃ij

σj
, σj =

√√√√ 1

n

n∑
k=1

X̃2
kj ,

∀i = 1, . . . , n, ∀j = 1, . . . ,m,

where σj represents the standard deviation of the j-th feature. Center scaling is important for techniques like Principal
Component Analysis (PCA), which are influenced by the scale of the data.

C.3. Typical Variation Normalization (TVN)

Typical Variation Normalization (TVN) is a technique designed to enhance the representation of biological data by
minimizing batch effects and accentuating subtle phenotypic differences. TVN is particularly relevant in high-content
imaging screens and other scenarios with significant batch variability.

TVN begins by computing the principal components of control samples (negative control conditions) to identify the primary
directions of variation. PCA is performed on the centered control data X̃control to obtain principal components {v1, . . . ,vm},
with each component representing a variance direction in the data space. The normalization process involves the following
steps:

1. Centering and Scaling of Negative Controls: The negative control data Xcontrol is centered and scaled as:

X̂control =
Xcontrol − µcontrol

σcontrol
,

where µcontrol and σcontrol are the mean and standard deviation of the control embeddings.

2. Principal Component Analysis (PCA): PCA is conducted on X̂control to derive principal components. The matrix
W ∈ Rm×m consists of columns that are the component vectors vj .

3. TVN Transformation: The transformation matrix T is constructed to normalize variance along each principal component
axis:

T = W ·D−1/2 ·W⊤,

where D is a diagonal matrix of the eigenvalues associated with the principal components.

4. Application to All Embeddings: The transformation is applied to all embeddings Xall as:

XTVN = T ·Xall.

This step reduces unwanted variation while emphasizing important biological differences, enabling a focus on subtle or rare
phenotypic features without batch-related artifacts.

D. Additional Results
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Figure 5. Comparison of relationship gains and losses across cross-modal distillation methods shown in Figure 4. Our approach achieves
the highest overall relationship recall and best preserves transcriptomic information.

Figure 6. Literature-known biological relationships retrieved through the LINCS dataset by the transcriptomics and microscopy imaging
unimodal encoders, alongside our proposed Semi-Clipped approach, without data augmentations, and a null distribution through
randomization of the perturbation labels of the pretrained Semi-Clipped. Semi-Clipped remains consistent with transcriptomics while
distilling new relationships from microscopy imaging, displaying a distinct pattern from the null distribution.
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Figure 7. Literature-known biological relationships retrieved by the transcriptomics and microscopy imaging unimodal encoders, alongside
our proposed Semi-Clipped approach (first row), without data augmentations, across different retrieval thresholds (columns) on the
HUVEC-KO dataset. Semi-Clipped remains consistent with transcriptomics while distilling new relationships from microscopy imaging.
In second and third row, we compare Semi-Clipped to a null distribution achieved through randomization of the perturbation labels of the
pretrained Semi-Clipped. Our approach displays a distinct pattern from the null distribution, and aligns better to both modalities than
random.
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Enriched Pathways Source Set P-value
REACTOME CELL CYCLE CHECKPOINTS Semi-Clipped \ (Tx ∪ Img) 0.0323
KEGG ANTIGEN PROCESSING AND PRESENTATION (Semi-Clipped ∩ Img) \ Tx 0.0049
KEGG P53 SIGNALING PATHWAY (Semi-Clipped ∩ Img) \ Tx 0.0033
KEGG RIG I LIKE RECEPTOR SIGNALING PATHWAY (Semi-Clipped ∩ Img) \ Tx 0.0082
REACTOME ADAPTIVE IMMUNE SYSTEM (Semi-Clipped ∩ Img) \ Tx 0.0114
REACTOME ANTIGEN PRESENTATION FOLDING ASSEMBLY AND PEPTIDE LOADING OF CLASS I MHC (Semi-Clipped ∩ Img) \ Tx 0.0049
REACTOME ANTIGEN PROCESSING CROSS PRESENTATION (Semi-Clipped ∩ Img) \ Tx 0.0016
REACTOME ASPARAGINE N LINKED GLYCOSYLATION (Semi-Clipped ∩ Img) \ Tx 0.0049
REACTOME CALNEXIN CALRETICULIN CYCLE (Semi-Clipped ∩ Img) \ Tx 0.0049
REACTOME CELL CYCLE (Semi-Clipped ∩ Img) \ Tx 0.0480
REACTOME CLASS I MHC MEDIATED ANTIGEN PROCESSING PRESENTATION (Semi-Clipped ∩ Img) \ Tx 0.0049
REACTOME DDX58 IFIH1 MEDIATED INDUCTION OF INTERFERON ALPHA BETA (Semi-Clipped ∩ Img) \ Tx 0.0082
REACTOME DEUBIQUITINATION (Semi-Clipped ∩ Img) \ Tx 0.0130
REACTOME G1 S DNA DAMAGE CHECKPOINTS (Semi-Clipped ∩ Img) \ Tx 0.0033
REACTOME G ALPHA Q SIGNALLING EVENTS (Semi-Clipped ∩ Img) \ Tx 0.0065
REACTOME HEMOSTASIS (Semi-Clipped ∩ Img) \ Tx 0.0082
REACTOME INNATE IMMUNE SYSTEM (Semi-Clipped ∩ Img) \ Tx 0.0227
REACTOME NEGATIVE REGULATORS OF DDX58 IFIH1 SIGNALING (Semi-Clipped ∩ Img) \ Tx 0.0033
REACTOME N GLYCAN TRIMMING IN THE ER AND CALNEXIN CALRETICULIN CYCLE (Semi-Clipped ∩ Img) \ Tx 0.0049
REACTOME OVARIAN TUMOR DOMAIN PROTEASES (Semi-Clipped ∩ Img) \ Tx 0.0016
REACTOME PLATELET ACTIVATION SIGNALING AND AGGREGATION (Semi-Clipped ∩ Img) \ Tx 0.0065
REACTOME POST TRANSLATIONAL PROTEIN MODIFICATION (Semi-Clipped ∩ Img) \ Tx 0.0002
REACTOME REGULATION OF TP53 ACTIVITY (Semi-Clipped ∩ Img) \ Tx 0.0179
REACTOME REGULATION OF TP53 ACTIVITY THROUGH METHYLATION (Semi-Clipped ∩ Img) \ Tx 0.0016
REACTOME REGULATION OF TP53 ACTIVITY THROUGH PHOSPHORYLATION (Semi-Clipped ∩ Img) \ Tx 0.0179
REACTOME REGULATION OF TP53 EXPRESSION AND DEGRADATION (Semi-Clipped ∩ Img) \ Tx 0.0016
REACTOME RNA POLYMERASE II TRANSCRIPTION (Semi-Clipped ∩ Img) \ Tx 0.0480
REACTOME SIGNALING BY GPCR (Semi-Clipped ∩ Img) \ Tx 0.0082
REACTOME STABILIZATION OF P53 (Semi-Clipped ∩ Img) \ Tx 0.0016
REACTOME TRANSCRIPTIONAL REGULATION BY TP53 (Semi-Clipped ∩ Img) \ Tx 0.0195

Table 3. Gene Set Enrichment Analysis (GSEA) results on the HUVEC-KO dataset, highlighting enriched pathways identified uniquely
in the Semi-Clipped approach compared to the transcriptomics and microscopy imaging unimodal encoders. The first row represents
pathways uniquely enriched in Semi-Clipped after excluding the union of transcriptomics and morphological relationships, revealing
enrichment in cell cycle pathways. The subsequent rows list pathways enriched in the intersection of Semi-Clipped and microscopy
imaging, excluding transcriptomics relationships, which shows that in addition to Semi-Clipped unique enriched pathways, our approach
is also enriched by morphology specific pathways.
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