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Abstract

Bayesian networks (BNs) are a popular framework in education and other fields. In this
paper, we consider two-layer BNs, where the first layer consists of hidden binary variables
that are assumed to be independent of each other, and the second layer consists of observed
binary variables. The variables in the second layer depend on the variables in the first layer.
The dependence is characterized by conditional probability tables, which represent Noisy-
AND models. We refer to this class of models as BN2A models. We found that these
models are also popular in the psychometric community, where they can be found under
the name of Cognitive Diagnostic Models (CDMs), which are used to classify test takers
into some latent classes according to the similarity of their responses to test questions. This
paper shows the relation between some BN2A models and their corresponding CDMs. In
particular, we compare the performance of these models on large-scale tests conducted in
the Czech Republic in 2022. The BN2A model with general conditional probability tables
produced the best absolute fit. However, when we added monotonic constraints to the
General model, we obtained better predictive results.

Keywords: Bayesian networks, Parameter Learning, Hidden Variables, BN2A models,
Cognitive Diagnostic Modeling, Psychometrics.

1. Introduction

Bayesian networks (Pearl, 1988; Jensen and Nielsen, 2007; Koller and Friedman, 2009) are
a popular framework for modelling probabilistic relationships between random variables.
We are interested on a special class of Bayesian Networks (BNs) - two-layer BNs, where
the first layer consists of hidden variables, which are assumed to be mutually independent,
and the second layer consists of observed variables. All variables are assumed to be binary.
The variables in the second layer depend only on the variables in the first layer. The
dependence is characterised by conditional probability tables (CPTs). In this paper we are
interested in CPTs that are represented by Noisy-AND models, the corresponding BN will
be called BN2A. In Fig. 1 we give an example of a directed bipartite graph that can define
the structure of a BN2A model.

Noisy-AND models are examples from the family of canonical models of CPTs (Henrion,
1987; Dı́ez and Druzdzel, 2006). The study of these models is motivated by practical
applications. BN2A models are used in psychometrics for cognitive diagnostic modeling
of students. In this case, the hidden variables correspond to the student’s skills and the
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Figure 1: An example of a directed bipartite graph.

observed variables correspond to the student’s responses to test questions. A typical test
question requires all related skills to be present, unless a missing skill is compensated by
another knowledge or skill. This relationship is well represented by Noisy-AND models.

There is related work that mentions the connection between Bayesian networks and
psychometrics, one of the best references is the book: Bayesian Networks in Educational
Assessment (Almond et al., 2015), in particular, most of the examples presented in it con-
sider continuous latent variables. The book also discusses the noisy models (with binary
latent variables) and describes in detail the DINA (Simple Noisy-AND) model with two ob-
served variables and one hidden variable. In our work: a) we present this model in a general
form, and b) we present two other more complex models (the Noisy-AND, and the General
model) and show how the psychometric models R-RUM and G-DINA can be derived.

In this work we are interested in BN2A models, but there are other models that can also
be used in educational assessment (Almond et al., 2015). One example is the hierarchical
latent class (HLC) models, which are Bayesian networks whose structures are rooted trees
where the leaf nodes are observed while all other nodes are latent (hidden), the main
advantage of these models over those analyzed is that they can model local dependence.
Another two other interesting examples from the field of psychometric are logistic regression
(LR) models and item response theory (IRT) models, their main difference from our models
is that they consider continuous latent variables.

This manuscript is organized as follows. In Section 2 we formally introduce the BN2A
models. We present the General model, define the monotonicity constraint, and derive two
specific models: The Noisy-AND model and the Simple Noisy-AND model. In Section 3, we
describe the dataset used and the method we used to specify the corresponding Q-matrix.
The fit of our models is described in Section 4. Finally, we summarize our contribution in
Section 5.

2. BN2A models

In this manuscript, we use X to denote the vector (X1, . . . , XK) of K hidden variables, and
similarly Y to denote the vector (Y1, . . . , YL) of L observed dependent variables. BN2A
models are characterized by being represented by a bipartite graph, where the first layer of
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variables is hidden while the second layer corresponds to observed variables. The hidden
variables will be referred also as skills due to application to educational domain. The
observed dependent variables corresponds to exam questions. All variables are assumed to
be binary, taking states from {0, 1}.

The main component of the presented BN2A models are conditional probability tables
(CPTs) specified in the form of a Noisy-AND model. The three models of interest are
presented in the following: The General model, the Noisy-AND model, and the Simple
Noisy-AND model.

2.1. General model

To introduce the General model, we will start with an example. Consider an observed
variable Yj whose value depends on three hidden variables (X1, X2, and X3) represented
on Fig. 2. In the context of educational assessment, the observed variable represents a
test question, while the hidden variables represent skills required to answer this question
correctly.

Figure 2: BN2A model with three hidden variables and one observed variable.

The CPT of the General model (Table 1) involves the main effects and all possible
interactions between three skills measured by the question:

• qj,0 represents the probability of answering question Yj correctly when all of the re-
quired skills are present, and it is traditionally called leak probability.

• qj,k1 represents the main effect of one skill k1 on question Yj .

• qj,k1k2 represents the interaction effect of two skills k1 and k2 on question Yj .

• qj,k1k2k3 represents the interaction effect of all three skills on question Yj .

In this example, there are three main effects (qj,1, qj,2, and qj,3), three 2-way interaction
effects (qj,12, qj,13, and qj,23), and one 3-way interaction effect (qj,123). The range of q
effects is from 0 to 1 and they can be interpreted as penalization factors since they reduce
the probability of answering correctly.
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Then, according to Table 1, the probability to answer correctly the question Yj given
that only skills X1 and X2 are mastered is equal to qj,0 · qj,3 · qj,13 · qj,23 · qj,123 (the product
of leak probability of question Yj and all effects that consider the non-mastered skill X3).

x1 x2 x3 P (Yj = 1|x1, x2, x3)

1 1 1 qj,0
0 1 1 qj,0 · qj,1 · qj,12 · qj,13 · qj,123
1 0 1 qj,0 · qj,2 · qj,12 · qj,23 · qj,123
1 1 0 qj,0 · qj,3 · qj,13 · qj,23 · qj,123
0 0 1 qj,0 · qj,1 · qj,2 · qj,12 · qj,13 · qj,23 · qj,123
0 1 0 qj,0 · qj,1 · qj,3 · qj,12 · qj,13 · qj,23 · qj,123
1 0 0 qj,0 · qj,2 · qj,3 · qj,12 · qj,13 · qj,23 · qj,123
0 0 0 qj,0 · qj,1 · qj,2 · qj,3 · qj,12 · qj,13 · qj,23 · qj,123

Table 1: CPT for General model with three hidden variables.

To simplify the subsequent mathematical notation we introduce the following indicator
function:

χ(xS) =


1 if xi = 1 for all i ∈ S

0 otherwise.

Let Yj be an observed variable representing an exam question and pa(Yj) be the subset
of indexes of related hidden variables (skills) from X = (X1, . . . , XK). They are referred to
as the parents of Yj . We define the probability of answering correctly the question Yj given
pa(Yj) as:

P (Yj = 1|xpa(Yj)) = qj,0 ·
∏

S⊆pa(Yj)

(qj,S)
1−χ(xS) , (1)

where

• qj,0 represents the probability of answering question Yj correctly when all of the re-
quired skills are present, (leak probability), and

• qj,S represents the |S|-way interaction effect of skill subset S on question Yj .

Let Kj be the total of parents of Yj , then, there is
(Kj

0

)
= 1 leak effect, there are(Kj

1

)
= Kj main effects,

(Kj

2

)
two-way interaction effects, and so on. Then, the model

has
∑Kj

i=0

(Kj

i

)
= 2Kj parameters for the question Yj . If we compute the logarithm of

P (Yj = 1|xpa(Yj)) from (1) considering the indicator function χ(xS) instead of its comple-
ment 1− χ(xS), and group the summands by the cardinality of the interaction effects, we
get the expression

δj,0 +
∑

S⊆pa(Yj)
|S|=1

δj,S · χ(xS) +
∑

S⊆pa(Yj)
|S|=2

δj,S · χ(xS) + · · ·+ δj,1,2...Kj · χ(xpa(Yj
))
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This expression is known in psychometrics as the General Deterministic Input Noisy-
AND Model (G-DINA). It is a popular framework to classify subjects according to their
skill mastering (de la Torre, 2011; Ma and de la Torre, 2020; Gu and Xu, 2021).

The General model is not restrictive, students with fewer required skills for a question Y
can have a higher probability of answering the question correctly. To adress this issue, it is
possible to add monotonicity constraints to the model. In the context of BNs, the concept
of monotonicity constraint has been discussed in the literature for a long time (Wellman,
1990; Druzdzel and Henrion, 1993). More recent papers in this topic are (Restificar and
Dietterich, 2013), (Masegosa et al., 2016) and (Plajner and Vomlel, 2020).

Bayesian networks model the probabilistic influences between its variables. Considering
binary variables X and Y , a positive qualitative influence of a variable X on a variable Y
along an arcX → Y in the network means that the occurrence ofX increases the probability
of Y occurs, assuming that the values of the other parents of Y remain the same. It means
that

P (Y = 1|X = 1, z) ≥ P (Y = 1|X = 0, z)

for any combination of values z for the set of parents of Y other than X (Masegosa et al.,
2016). In the context of educational testing, a positive influence is commonly assumed since
mastering the skill X increases the probability of answering correctly the question Y . In
this manuscript we will refer to this positive influence as monotonic constraint. In Section 4
we compare the fit of the General model with and without monotonic constraints.

2.2. Noisy-AND model

From the General model, we can derive the Noisy-AND model if we omit the interaction
effects between the hidden variables, i.e., if we consider the influence of each hidden variable
on an observed variable Yj does not depend on the values of the other hidden variables. This
assumption offers the advantage of having a simpler model (a reduced number of parameters)
that is easier to interpret and, under certain conditions, can be identifiable (Pérez and
Vomlel, 2024).

Analogously to the General model, we can introduce the Noisy-AND model with the
structure presented on Fig. 2 (an observed variable Yj whose value depends on three hidden
variables (X1, X2, and X3). The CPT of the Noisy-AND model (Table 2) involves only the
leak probability and the main effects of the three skills measured by the question:

• qj,0 represents the probability of answering question Yj correctly when all of the re-
quired skills are present (leak probability), while

• qj,k1 represents the main effect of one skill k1 on answering question Yj .

In contrast with the General model, for the question Yj , the Noisy-AND model has only

Kj + 1 parameters,
(Kj

1

)
= Kj main effects and

(Kj

0

)
= 1 leak effect.

In general, for the Noisy-AND model, we define the probability of answering correctly
the question Yj given pa(Yj) as

P (Yj = 1|xpa(Yj)) = qj,0 ·
∏

i∈pa(Yj)

(qj,i)
1−χ(xi) (2)
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x1 x2 x3 P (Yj = 1|x1, x2, x3)

1 1 1 qj,0
0 1 1 qj,0 · qj,1
1 0 1 qj,0 · qj,2
1 1 0 qj,0 · qj,3
0 0 1 qj,0 · qj,1 · qj,2
0 1 0 qj,0 · qj,1 · qj,3
1 0 0 qj,0 · qj,2 · qj,3
0 0 0 qj,0 · qj,1 · qj,2 · qj,3

Table 2: CPT for Noisy-AND model with three hidden variables.

From (2), we can see that if the skill Xi is not mastered (xi = 0) then the value χ(xi)
is equal to 1, and as a result, the penalization factor qj,i is present when the probability of
answering question Yj correctly is computed.

If we compute the logarithm of P (Yj = 1|xpa(Yj)) on (2) considering the indicator func-
tion χ(xi) instead of its complement 1− χ(xi), we get the expression

δj,0 +
∑

i∈pa(Yj)

δj,i · χ(xi)

This expression is known as Reduced Reparameterized Unified Model (R-RUM) in psy-
chometrics, and has been popular in the last two decades (Hartz, 1996; Culpepper and
Chen, 2019).

2.3. Simple Noisy-AND model

There is an even simpler model that can be derived from the general model, we call it
Simple Noisy-AND, and considers only two parameters:

• gj represents the probability of answering question Yj correctly when the student
does not master all the skills required for question Yj , it is usually called guessing
parameter.

• sj represents the probability of answering question Yj incorrectly when the student
masters all the skills required for question Yj , it is usually called slipping parameter.

For the Simple Noisy-AND model, we define the probability of answering correctly the
question Yj given pa(Yj) as:

P (Yj = 1|xpa(Yj)) = (gj)
χ(xpa(Yj)

) · (1− sj)
1−χ(xpa(Yj)

)
(3)

From (3), we can see that if the student does not masters all the skills required by question
Yj , then the value χ(xpa(Yj)) is equal to 1, and as a result, the probability of answering
question Yj correctly is gj . In other words, it is possible to answer correctly by guessing.

By computing the logarithm of P (Yj = 1|xpa(Yj)) from (3), we get the expression

χ(xpa(Yj)) · log(gj) + (1− χ(xpa(Yj))) · log(1− sj)
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and by factoring χ(xpa(Yj)), we obtain

δj,0 + δj,1,2...Kj · χ(xpa(Yj)) ,

where δj,0 = log(1−sj) and δj0+δj,1,2...Kj = log(gj). This expression is known in psychomet-
rics as the Deterministic Input Noisy-AND Model (DINA). Regardless of its simplicity, it is
a popular framework and many researchers are still analyzing these models nowadays (Gu,
2023; Gu and Xu, 2021; Ma and de la Torre, 2020).

3. The CERMAT dataset

3.1. Questions and skills

The Ministry of Education, Youth and Sports of the Czech Republic has established an
experimental verification of knowledge and skills in secondary school mathematics. The
catalog of requirements for the mathematics exam includes nine main topics, and their
respective representation is determined by CERMAT (Center for the Determination of Ed-
ucational Results). The nine topics evaluated in the exam are: Numerical sets, Algebraic
expressions, Equations and inequalities, Functions, Sequences and series, Planimetry, Stere-
ometry, Analytic geometry, and Combinatorics, probability and statistics.

The exam is composed of 30 questions, 19 of them are open questions (where the student
must write his/her own procedure to give the correct answer) and 11 questions are closed
questions (in which the student will choose the correct answer from a set of plausible
options). In the exam, not all the questions have the same value, for this reason, we
binarize the grade obtained in each question before performing our analysis, so a value of
1 means the question was answered correctly and 0 means the answer was incorrect. The
datasets used in this study are publicly available in the statistical section of the CERMAT
website: vysledky.cermat.cz/statistika. There are two evaluation periods: Spring and Fall.

The dataset we used contains information from the Czech high school final exam from
the spring of 2022. This dataset is representative as the sample size is large (N = 12709)
and students come from all regions of the Czech Republic.

3.2. Q-Matrix specification

For any BN2A model (equivalently, CDM), it is necessary to specify the underlying graph
of the model, i.e., the relationship between questions and skills. This is done using an
incidence matrix, called a Q-matrix. The Q-matrix encodes the underlying graph of the
model. It is a l × k matrix where the rows represent questions and the columns represent
the measured skills. If a skill Xj is required by a question Yi, then the entry (i, j) of the
Q-matrix is equal to 1, otherwise the assigned value is 0.

In this study the Q-matrix was designed in two steps: First, we analyzed the question
wording of the Czech high school final exam (Spring 2022), and based on that we defined a
theoretical framework that includes six mathematical skills, they are listed in Table 3.

Second, the questions were coded by the first author of this paper and an external
education specialist. Agreement was measured using Cohen’s Kappa coefficient. On a first
attempt, 22 of the 30 questions showed substantial or complete agreement (Cohen’s Kappa
greater than 0.55). Differences were discussed and resolved in a subsequent meeting. We
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Skill Description

X1 Perform operations with arithmetic and algebraic expressions.
X2 Solve different types of equations (e.g., quadratic, system of linear equations)
X3 Recognize and evaluate different types of functions (e.g., logarithmic, trigonometric)
X4 Solve geometric problems in two and three dimensions.
X5 Solve problems of combinatorics and probability.
X6 Interpret word problems in algebraic language.

Table 3: Skills proposed for the Czech high school final exam (Spring 2022)

obtained the Q-matrix shown in Table 4. In particular, we can observe that the first skill
is required for all questions.

Skill Skill

Question X1 X2 X3 X4 X5 X6 Question X1 X2 X3 X4 X5 X6

Y1 1 0 0 0 0 0 Y16 1 0 0 0 0 0
Y2 1 0 0 0 0 0 Y17 1 0 0 0 0 0
Y3 1 0 0 0 0 1 Y18 1 1 0 0 0 1
Y4 1 0 0 0 0 1 Y19 1 1 0 0 0 1
Y5 1 0 0 1 0 1 Y20 1 0 0 0 0 1
Y6 1 0 0 1 0 1 Y21 1 0 0 0 0 1
Y7 1 0 0 1 0 1 Y22 1 1 0 0 0 0
Y8 1 0 0 0 0 0 Y23 1 0 1 1 0 0
Y9 1 1 0 0 0 0 Y24 1 0 0 1 0 1
Y10 1 1 0 0 0 0 Y25 1 0 0 1 0 1
Y11 1 0 1 1 0 0 Y26 1 0 0 1 0 0
Y12 1 1 1 0 0 0 Y27 1 0 1 0 0 0
Y13 1 1 1 0 0 0 Y28 1 0 0 0 1 1
Y14 1 0 0 0 1 1 Y29 1 0 0 0 0 0
Y15 1 0 0 0 1 1 Y30 1 0 0 1 0 0

Table 4: Q-matrix for the Czech high school final exam (Spring 2022)

4. Experiments

The R-package GDINA (Ma and de la Torre, 2020) was used to estimate the four mod-
els (General, Monotone General, Noisy-AND, and Simple Noisy-AND). In this package,
Marginal Maximum Likelihood method with Expectation-Maximization (MMLE/EM) al-
gorithm is used for item parameter estimation. The model fit was evaluated for each of
the proposed models, and then the skill classification results were compared across the four
models.
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4.1. Model Fit

The relative fit statistics of the BN2A models were compared. In Table 5 it can be seen that
the General model is the best model according to the presented criteria (AIC = -382 430;
BIC = -384 121; CAIC = -384 348) and similar results were obtained when considering the
General model with monotonicity constraints. The second best model is the Noisy-AND
model, while the least suitable is the Simple Noisy-AND model.

Model Simple Noisy-AND Noisy-AND Monotone General General

Parameters 123 161 227 227
Loglik -197 859 -192 190 -191 036 -190 988
AIC -395 964 -384 703 -382 526 -382 430
BIC -396 881 -385 903 -384 217 -384 121
CAIC -397 004 -386 064 -384 444 -384 348

Table 5: Relative Fit Statistics

Additionally, in Table 6, we present two known statistics for measuring the absolute fit
of each model, the root mean square error of approximation (RMSEA) and the standard-
ized root mean square residual (SRMSR) (Maydeu-Olivares and Joe, 2014). SRMSR is a
measurement that assesses the approximate fit of large models when the data are ordinal.
For a pair of items Yi and Yj , the residual correlation is the sample correlation minus the
expected correlation. For both RMSEA and SRMSR, a smaller value indicates a better
absolute model data fit. Simulation studies suggest that RMSEA < 0.03 indicates excellent
fit, 0.03 < RMSEA < 0.045 a good fit, and RMSEA > 0.045 poor fit, analogously, SRMSR
< 0.05 indicates good model fit (Shi et al., 2021).

In our experiment we can see that, with the exception of Simple Noisy-AND, in general
all models show an excellent fit with respect to RMSEA and a good fit with respect to
SRMSR.

Simple Noisy-AND Noisy-AND Monotone General General

RMSEA 0.0458 0.0306 0.0275 0.0275
SRMSR 0.0779 0.0497 0.0425 0.0424

Table 6: Comparing models using two Absolute Fit Statistics

4.2. Skill classification

Table 7 presents the prior probability that students master each of the six skills estimated
by each of the BN2A models. Considering that skills with low prior probability correspond
to skills that are expected to be difficult and skills with high prior probability correspond
to skills that are expected to be easy, the results can be interpreted to determine the skill
difficulty. In general, it can be observed that, with the exception of the simple model, the
prior probability of each skill is similar in the rest of the models. In particular, it can be
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seen that skill X5 (Solve problems of combinatorics and probability) has the lowest prior
probability, this is consistent with the fact that the related concepts in the CERMAT test
curriculum are taught at the end of secondary education because they are more complex.
On the other hand, skill X1 (Perform operations with arithmetic and algebraic expressions)
has the highest prior probability, and is consistent with the fact that the related concepts
are the basis of the CERMAT test curriculum.

Simple Noisy-AND Noisy-AND Monotone General General

p(X1 = 1) 0.7053 0.7040 0.6334 0.6350
p(X2 = 1) 0.6776 0.4380 0.4403 0.4249
p(X3 = 1) 0.6470 0.3985 0.3839 0.3816
p(X4 = 1) 0.7038 0.5113 0.5161 0.5015
p(X5 = 1) 0.3001 0.1886 0.1685 0.1566
p(X6 = 1) 0.7120 0.4403 0.5021 0.5121

Table 7: Prior probabilities of each skill estimated for each model

In psychometrics, BN2A models belong to a family called latent class models that classify
students into some latent classes according to their responses to test questions. With 6
underlying skills, the students are classified into 64 (i.e., 26) latent classes, also called: skill
profiles. The proportion of the first five most likely skill profiles for the four models are
presented in Table 8, in which value 1 indicates mastery of the skill and value 0 indicates
non-mastery of the skill. For instance, a skill profile of 100000 (the most representative
profile in three of the four models) indicates that the students master skill X1 and do not
master the rest of the skills.

In particular, it can be seen that the most representative profiles in the Noisy-AND,
Monotone General, and General models are the same (100000, 000000, 111111, 100100,
and 111101) and classify more than 50% of the sample. Another interesting observation
is that these profiles include both the profile of students who had not mastered any of the
skills and the profile of students who had mastered all six skills.

Simple Noisy-AND Noisy-AND Monotone General General

class prob class prob class prob class prob

1st 111101 0.2715 100000 0.1723 100000 0.1550 100000 0.1602
2nd 111111 0.1582 000000 0.1461 000000 0.1140 000000 0.1182
3rd 100101 0.0469 100100 0.1056 111111 0.0937 111111 0.0953
4th 111100 0.0389 111111 0.1026 100100 0.0926 100100 0.0872
5th 111001 0.0376 111101 0.0963 111101 0.0792 111101 0.0830

Table 8: The five most representative skill profiles for each model

It is interesting to note that after we learned the general model, 13 of the 30 questions
did not satisfy the monotonicity condition, but the fits of both models (with and without
the monotonicity constraint) are very similar.
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As an example, Figure 3 shows the probabilities of answering question 14 correctly
given the three required skills. For this question, the general model does not satisfy the
monotonicity condition, the probability of answering correctly with only the second skill
(P (010) = 0.913) is higher than the probability of answering correctly with the first and
second skills (P (110) = 0.795).

Figure 3: Comparison of the probabilities of correct answers to Question 14 for the general
and monotone models (the height of the columns corresponds to the values in the tables
presented below the bar plots).
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Model P(000) P(100) P(010) P(001) P(110) P(101) P(011) P(111)

General 0.134 0.216 0.913 0.139 0.795 0.240 0.656 0.954
Monotone 0.117 0.215 0.297 0.160 0.802 0.241 0.721 0.955

Note that both general models (monotone and not necessarily monotone) have the same
number of parameters (227, in our experiment), and the log-likelihood of the general model
without the monotonicity constraint cannot be worse than the log-likelihood of a model
with the same parameters but with the constraint. Therefore, the BIC of the general model
without the monotonicity constraint cannot be worse.

4.3. Prediction accuracy

In this paper, we also use an alternative evaluation method. We performed a 10-fold cross-
validation for the general model (with and without the monotonicity constraint). In each
iteration, we randomly selected 20 questions for each subject, took their values as evidence,
and then inferred the result of the remaining 10 questions. We compute the average per-
centage of correct predictions of the actual values from each testing dataset. The prediction
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accuracy is presented in Table 9 for each iteration. It can be seen that in 7 out of the
10 iterations of cross-validation, the results were better for the model that considers the
monotonicity constraints.

Iteration 1 2 3 4 5 6 7 8 9 10

General 0.658 0.665 0.682 0.663 0.663 0.662 0.666 0.668 0.669 0.664
Monotone 0.669 0.676 0.678 0.668 0.662 0.665 0.665 0.671 0.670 0.675

Table 9: Accuracy of prediction for the general model and the model with monotonicity
constraints for each iteration of the 10-fold cross validation.

5. Concluding Remarks

In this paper, we have presented four BN2A models: General model, Monotone General
model, Noisy-AND model, and Simple Noisy-AND model. They have been studied in
psychometrics under different names. We show how these models are useful for classifying
students according to their skills, but it is important to mention that they have also been
used in other different fields such as Medicine or Biology.

In our work, based on real data from a large-scale assessment, we fit the four models
mentioned and found that for this experiment, the model with the best fit was the General
model. It is important to note that this is not always the case; there have been studies
where models with fewer parameters fit better. When we estimated the parameters of the
General model, we noticed that almost all of the questions requiring three skills did not
satisfy the monotonicity constraints. Therefore, we decided to also estimate the general
model under these conditions. The fit of the general model with and without monotonicity
constraints to the training data was similar. Additionally, we performed a cross-validation
to compare the predictive power of both models. In 7 out of 10 iterations, we obtained
better predictions considering monotonicity constraints.

We plan to extend our analysis to other datasets of CERMAT test results for periods
other than 2022. Our proposal is to compare BN2A models with models allowing dependent
skills, and with respect to BN2A models, not only learn the model parameters but also their
structure (i.e., the Q-matrix) from the data, related research has already been submitted
for publication (Pérez and Vomlel, under review).
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