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ABSTRACT

The Koopman operator has gained increasing attention in time series forecast-
ing due to its ability to simplify the complex evolution of dynamic systems.
However, most existing Koopman-based methods suffer from significant com-
putational costs in constructing measurement functions and struggle to address
the challenge posed by the variation in data distribution. Additionally, these ap-
proaches tend to empirically decompose time series or distributions into combina-
tions of components, lacking interpretability. To tackle these issues, we propose a
novel approach, Koopman kernel network (KokerNet), for time series forecast-
ing. On one hand, we construct a measurement function space using the spectral
kernel method, which enables us to perform Koopman operator learning in a low-
dimensional feature space, efficiently reducing computational costs. On the other
hand, an index is designed to characterize the stationarity of data in both time
and frequency domains. This index can interpretably guide us to decompose the
time series into stationary and non-stationary components. The global and local
Koopman operators are then learned within the constructed measurement function
space to predict the future behavior of the stationary and non-stationary compo-
nents, respectively. Particularly, to address the challenge posed by the variation in
distribution, we incorporate a distribution module for the non-stationary compo-
nent, ensuring that the model can make aligned distribution predictions. Extensive
experiments across multiple benchmarks illustrate the superiority of our proposed
KokerNet, consistently outperforming the state-of-the-art models.

1 INTRODUCTION

Time series forecasting has long been a focus of attention in various real-world applications, such
as the forecasting of weather (Wu et al., 2023b), traffic (Jiang et al., 2023), and disease propagation
(Matsubara et al., 2014). Over the past decades, researchers have developed a range of time series
forecasting models, such as RNN-based models (Qin et al., 2017; Lai et al., 2018; Jia et al., 2023;
Schirmer et al., 2022), Transformer-based models (Li et al., 2019; Zhou et al., 2021; Wu et al., 2021;
Zhang & Yan, 2022; Zhou et al., 2022; Liu et al., 2021; Nie et al., 2022; Wen et al., 2023; Liu et al.,
2024), TCN-based models (Wu et al., 2023a), and MLP-based models (Zeng et al., 2023; Challu
et al., 2023; Yi et al., 2023; Oreshkin et al., 2020).

Recently, Koopman operator (Koopman, 1931) has gained increasing attention in the time series
forecasting task since it can simplify the intricate modeling process of dynamic system evolution, by
acting on measurement functions. From one perspective, some studies determine the measurement
functions through dynamic mode decomposition (DMD) and further learn the Koopman operator
to describe the evolution of the time series (Wang et al., 2023a;b). However, the use of singular
value decomposition (SVD) in DMD results in significant computational costs, particularly in high-
dimensional spaces. From another perspective, several methods employ the decomposition strategy
to divide the time series or data distribution into combinations of components and further learn spe-
cialized Koopman operators for different components (Zhang et al., 2024; Liu et al., 2023). These
approaches evade information loss from the single-component assumption. However, these decom-
positions often rely on empirical determinations of component composition and proportions, lacking
interpretability. In addition, these methods share a common limitation in that they do not consider
the problem of prediction accuracy caused by distribution changes.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address these issues, we propose a novel time series forecasting method, namely, Koopman
kernel network (KokerNet). Concretely, we first construct a measurement function space in the
form of a reproducing kernel Hilbert space (RKHS) spanned by cosine functions. This scheme
enables us to learn the Koopman operator in a low-dimensional feature space, significantly reducing
the computational cost. Next, an index Sv is designed by performing the Kolmogorov-Smirnov
(KS) test on both the data and spectrum aspects, which interpretably guides us in decomposing the
time series into stationary and non-stationary components. Based on the decomposition, the global
shared and local operators are learned within the constructed RKHS to predict the stationary and
non-stationary components, respectively. Moreover, to tackle the challenges posed by the time-
varying distribution, we incorporate a distribution constraint module into the forecasting process.
This inclusion ensures that the forecasts align with the actual distribution.

The main contributions of this paper are shown as follows:

• We model the evolution of the time series as temporal dependence using the spectral kernel
method, naturally resulting in a measurement function space spanned by a set of cosine
functions. Compared to the Koopman-based studies that determine the measurement func-
tion via DMD, KokerNet allows us to learn the Koopman operators in a low-dimensional
feature space, significantly reducing the computational cost. Moreover, in the constructed
space, the measurement functions are higher-order derivatives, and any derivative of a func-
tion is itself a composition of the function. This enables us to supervise any derivative of
the measurement function with complicated time series.

• Following the general framework (Liu et al., 2023), KokerNet decomposes the time series
into stationary and non-stationary components. The global and local Koopman operators
are then optimized to capture the dynamics of each component. Notably, rather than relying
on empirical decomposition, we design an index Sv based on the KS test to provide an
interpretable guide for the decomposition.

• To tackle the common limitation of the Koopman-based approaches posed by the time-
varying distribution, we incorporate a distribution constraint into the forecasting pro-
cess, ensuring that the prediction aligns with the temporal variation in distribution. Non-
stationary time series can be viewed as discrete signals where unobserved parts differ sig-
nificantly from the observations, motivating us to consider the distribution of non-stationary
components.

• We conduct extensive experiments. The results demonstrate that our approach is superior
to state-of-the-art models. In addition, we explore the influence of the designed index on
the decomposition of the time series.

2 PRELIMINARIES

2.1 NOTATION

Formally, we use Rn and Rm×n to denote n-dimensional Euclidean spaces and the space of m× n
real-valued matrix. Throughout the paper, the matrices, vectors, and scalars are denoted by bold
capital letters (e.g. X), bold lower-case letters (e.g. x) and lower-case letters (e.g. x), respectively.
XT = {x1,x2, . . . ,xT } denotes the time series or trajectory with T time points.

2.2 KOOPMAN THEORY

For a complicated dynamical system, its evolution can be formulated as st+1 = F (st), where
st denotes the system state on moment t, and F denotes the flow map of transferring the system
state on moment t to moment t + 1. However, it is a challenge to identify the complex evolution
with a flexible but parsimonious F . Koopman theory (Koopman, 1931) has been developed to
analyze complex dynamic systems. Its core idea is to characterize the complicated evolution via an
infinite-dimensional linear Koopman operator. By acting on the measurement function, this operator
advances the system as follows:

Kf(st) = f(F (st)) = f(st+1), (1)
where K is the Koopman operator, f : Rd → RD, D → ∞ is the measurement function. When
D → ∞, it incurs extensive computational costs, which hinders the practical use of this method.
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3 KOKERNET

In this section, we first present the construction of the measurement function space and the corre-
sponding finite-dimensional Koopman operator, which advances the time series by acting on the
constructed function space. Subsequently, we introduce a specially designed index to guide the time
series decomposition into its stationary and non-stationary components. Based on this decompo-
sition, the global shared and local Koopman operators are learned in the constructed measurement
function space to characterize the dynamics of stationary and non-stationary components, respec-
tively. Finally, we introduce a distribution constraint. The architecture of Koopman operator learning
and the distribution constraint is shown in appendix B.

3.1 MEASUREMENT FUNCTION SPACE CONSTRUCTION

In this paper, we model the complex evolution xt → xt+1 of the time series XT =
{x1,x2, . . . ,xT } as its temporal dependence using the kernel method, which has been proved to be
a promising approach to simplify the intricate correlation with an implicit feature mapping. Hence,
the temporal dependence is formulated as the following kernel function:

k(xt,xt+1) = ⟨f(xt), f(xt+1)⟩H, (2)

where f is the implicit feature mapping, which can be considered as the measurement function since
it has the potential of mapping the data into an infinite-dimensional feature space. H is the RKHS,
induced by the kernel k(·, ·).
Based on Bochner’s theorem and the following Theorem 3.1, we can approximate the kernel function
k(·, ·) by a low-dimensional feature mapping g : Rd → RM , such that:

g(xt) =
2√
M

[cos(w1xt + b1), cos(w2xt + b2), . . . , cos(wMxt + bM )]⊤,

k(xt,xt+1) ≈k̄(xt,xt+1) = ⟨g(xt), g(xt+1)⟩H̄,

(3)

where g ∈ H̄ is the approximation of f , H̄ is the constructed measurement function space, which is
an RKHS induced by k̄(·, ·). The detailed derivation is shown in appendix C.1.
Definition 3.1. We say that a matrix A is a ∆-spectral approximation of another matrix B, if
(1−∆)B ⪯ A ⪯ (1 + ∆)B.
Theorem 3.1. Sample w1,w2, · · · ,wM according to a spectral density function p(w) and set
Z = g(XT ). When the sampling number M ≥ 2δ(3

√
n+2∆)

3∆2 ln 8
√
n

ρ , with the probability of at least
1− ρ, ZZ⊤ is the ∆-spectral approximation of K = ⟨f(XT ), f(XT )⟩H.

Proof. The proof is relegated to the appendix C.2 of our paper due to space limitations.

Based on the Koopman theory (i.e., eq. (1)), for the measurement function g ∈ H̄, there exists an
finite-dimensional Koopman operator K̄ that:

K̄g(xt) = g(F (xt)) = g(xt+1). (4)

Furthermore, define

gω(x) =
1

T

∫ T

τ=0

g(xτ )e
−iωτdτ, (5)

for the finite trajectory {x1,x2, . . . ,xT } (i.e., the time series XT ) based on g ∈ H̄.
Theorem 3.2. For every eigenfrequency ω ∈ R of the Koopman operator K̄, Let g be the measure-
ment function on the finite trajectory {x1,x2, . . . ,xT }. Then,

(i) when T ≥
√

2
M

3ωmax
ϵ , gω can approximate any Koopman eigenfunction with ϵ accuracy, for

ϵ > 0.
(ii) limT→∞gω is an eigenfunction of the Koopman operator K.

Proof. The proof is relegated to appendix C.3 of our paper due to space limitations.
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According to Theorem 3.2, we can observe that gω is the eigenfunction of the Koopman operator
K̄, corresponding to the eigenfrequency ω, and when T → ∞, K̄ is the approximation of the
infinite-dimensional Koopman operator K. The defination in eq. (5) provides a pleasing scheme,
identifying the eigenfunction and eigenfrequency from the data directly, to capture the complex
dynamic patterns and simplify the evolution of the time series.

All in all, we construct a measurement function space H̄, which is spanned by a set of cosine
functions. The measurement function g ∈ H̄ enables us to describe the complicated evolution of the
time series via a finite-dimensional Koopman operator K̄ directly, such that:

K̄g(xt) = g(F (xt)) = g(xt+1). (6)

3.2 KOOPMAN OPERATOR LEARNING

Once the measurement function space H̄ is constructed, the Koopman operator is learned to describe
the evolution of the time series within H̄. The real-world time series typically contains both time-
invariant and time-variant patterns, corresponding to stationary and non-stationary components. It is
arbitrary to assume the entire time series is stationary or non-stationary without any prior knowledge,
as this easily leads to information loss or the introduction of unnecessary disturbances. Assuming
the time series is fully stationary would lose the non-stationary information, while assuming the time
series is fully non-stationary would introduce uncertainty in the stationary component, resulting in
suboptimal predictions. Hence, in this section, we first decompose the time series XT into stationary
and non-stationary components, i.e., XT = Xs + Xns, where Xs, Xns denote the stationary and
non-stationary components, respectively. Then, the global shared and local Koopman operators are
separately learned to capture the evolution of these two components.

Time Series Decomposition For the time series decomposition, we designed an index based on
the KS test to determine the proportions of each component from both time and frequency domains.
It is worth noting that the KS test measures the consistency of distributions between different periods
after removing global trends and seasonal effects. These operations would cause the residual of the
time series to tend to be stochastic fluctuation, which is the key attribution of the non-stationarity
of real-world time series. More precisely, in the time domain, we divide the time series XT into
J segments, i.e., XT = [x1,x2, . . . ,xJ ],xj ,xj+1 ∈ RC×T

J , j = 1, 2, . . . , J − 1 represent ad-
jacent time series segments, and their corresponding detrended and deseasonalized residuals are
xr
j ,x

r
j+1 ∈ RC×T

J . The statistical magnitude of KS test is then computed as follows:

p =
1

J − 1

J−1∑
j=1

pj , pj =
1

C

C∑
c=1

sup|Gj(xc)−Gj+1(xc)|, (7)

where C is the number of the variate, Gj(xc), Gj+1(xc) are the empirical cumulative distribution
function for the c-th variate of xr

j ,x
r
j+1, respectively.

For the frequency domain, the Wiener–Khinchin theorem shows that the autocorrelation function
and the power spectral density function are a pair of Fourier transforms, such that:

R(τ) =

∫ ∞

−∞
S(λ)ei2πλτdλ, S(λ) =

∫ ∞

−∞
R(τ)e−i2πλτdτ, (8)

where R(τ) =
∫∞
−∞ xtxt−τdt is the autocorrelation function, which measures the relationship

between a time series and its lagged versions. we can observe that the stationarity is manifested in
the uncertainty about the spectrum λ. Therefore, similar to the time domain, the statistical magnitude
of KS test in the frequency domain is computed by:

p̄ =
1

J − 1

J−1∑
j=1

p̄j , p̄j =
1

C̄

C̄∑
c̄=1

sup|Gj(λc̄)−Gj+1(λc̄)|, (9)

where Gj(λc̄), Gj+1(λc̄) are the empirical cumulative distribution function for the c̄-th variate of
λj ,λj+1, respectively, and λj is the spectrum, obtained by performing the Fourier transform for the
segments XT = [x1,x2, . . . ,xJ ].

We define the index Sv = pp̄. It captures the evolving patterns in both the time and frequency
domains via multiplication. The time series tends to be stationary when the values of p and p̄ are
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small, whereas higher values indicate non-stationary. Thus, the index Sv = pp̄ offers a credible
insight into the stationarity of the data and guides us to decompose the data into stationary and
non-stationary components. The detailed decomposition process can be found in appendix D.

Koopman Operator Learning After decomposing the time series into stationary and non-
stationary components, the global shared and local Koopman operators are respectively learned to
describe the evolution of these two components in the constructed measurement function space H̄.
For the stationary component, we design a global shared Koopman operator Ks to capture the con-
sistent variation patterns of the time series. This operator advances the evolution of the time series
in the measurement function space, such that:

KsZ
back
s = Zfore

s , Zback
s = g(Xback

s ), Zfore
s = g(X fore

s ), X fore
s = Φde(Z

fore
s ), (10)

where Xback
s is the stationary component of the current time series, and X fore

s is the stationary
component that is going to be predicted. g ∈ H̄ is the measurement function, acting as on encoder,
and Φde denotes the decoder.

For the non-stationary component, dynamic Koopman operator Kns are learned to capture the local
dynamics of the time series. Concretely, we divide the time-variant component Xns into Q segments,
assuming T is divisible by Q. The segmentation is defined as:

Xns =[x1,x2, . . . ,xQ], xi = [x(i−1) T
Q+1, . . . ,xi T

Q
] ∈ RC× T

Q , i = 1, 2, . . . , Q. (11)

Like the time-invariant part, the evolution and prediction can be formulated as follows:

zi−1 =g(xi−1), zi = Knszi−1, x̂i = Ψde(zi), i = 2, . . . , Q,

Kns = (Zback)⊤(Zfore), Zback = [z1, z2, . . . ,zQ−1], Zfore = [z2, z3, . . . .zQ],
(12)

where x̂i denotes the forecasting, corresponding the ground trues xi in eq. (11). g ∈ H also acts as
a encoder, and Ψde denotes the decoder.

3.3 DISTRIBUTION CONSTRAINT

A fundamental challenge with non-stationary time series is the time-varying distribution, which
refers to the distribution of the time series P (xt) varying across different time steps t. To tackle this
challenge, we introduce a constraint module to align the distribution of forecasts with the distribution
predicted based on the historical data. Similar to the process in section 3.2, we mine the distribution
dynamics in the stationary and non-stationary components respectively. We assume the time series
distribution to be Gaussian, as it is omnipresent and enables our method to be tractable.

For the stationary component, we assume that the distribution N (µs, δ
2
s ) of Xs is constant, where

µs ∈ RC×1 is the mean vector, and δ2s ∈ RC×1 is the variance vector. This assumption means that
the forecasting X fore

s in this component follows the same distribution over time.

For the non-stationary component, we set the distribution sequence of the segmentation in eq. (11)
to be {N 1

ns,N 2
ns, . . . ,N

Q
ns }, and xi ∼ N i

ns = N (µi
ns, δ

2,i
ns ). Describe the evolution of the distribution

by a Koopman operator Kdis, such that:

gdis[µ
i
ns, δ

2,i
ns ] = Kdisgdis[µ

i−1
ns , δ2,i−1

ns ], i = 2, 3, . . . , Q, (13)

where gdis ∈ H̄ is the encoder (i.e., the measurement function) for the distributions.
There is also a corresponding decoder Υde makes the predicted distribution [µ̂i

ns, δ̂
2,i
ns ] =

Υde(Kdisgdis[µ
i−1
ns , δ2,i−1

ns ]).

In particular, Sinkhorn loss (Cuturi, 2013) is utilized to quantify the disparity between the predicted
distribution and the ground truth, enabling distribution alignment. It is defined as follows:

Ldis = L(N gt,N fore) = min(L⊙ P − γE(P )), (14)

where N gt
ns and N fore

ns denote the ground truth and the forecasting of the data distribution. L denotes
the loss matrix. P denotes a transition matrix. ⊙ denotes the Hadamard product. γ is a regularization
parameter. E(P ) denotes the entropy of the transition matrix P .
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4 EXPERIMENT

In this section, we evaluate the performance of the proposed KokerNet on several commonly used
benchmarks and examine the influence of the stationarity of the time series on the decomposition
using the introduced index. We first introduce the implementation details, including comparison
methods, evaluation datasets, and experiment settings. Then, we systemically conduct experiments,
and the results consistently demonstrate the superiority of KokerNet.

4.1 DATASETS AND COMPARED METHODS

Datasets For the multivariate time series forecasting, we include six real-world time series
datasets: ETT (Electricity Transformer Temperature) (Zhou et al., 2021), which consists of 2 years
data from two separated counties in China and also include different subsets, {ETTh1, ETTh2} for
1-hour-level and {ETTm1, ETTm2} for 15-minutes-level; Exchang (Lai et al., 2018), collecting the
panel data of daily exchange rates from 8 countries from 1990 to 2016; ECL (Electricity Consum-
ing Load)1, which records the hourly electricity consumption of 321 clients from 2012 to 2014; ILI
(Influenza-like Illness)2 collects the ratio of influenza-like illness patients versus the total patients
in one week, which is reported weekly by Centers for Disease Control and Prevention of the United
States from 2002 and 2021; Traffic (PeMS) and Weather(Wetterstation) (Liu et al., 2023). For the
univariate time series forecasting, M4 dataset is applied (Makridakis et al., 2018) to evaluate the
performance of the proposed KokerNet. It is a collection of 100000 time series used for the fourth
edition of the Makridakis forecasting competition and contains time series with different frequencies
(hourly, daily, weekly, monthly, quarterly, and yearly).

Compared methods For the multivariate time series forecasting, we compare six state-of-the-
art forecasting approaches, including Autoformer (Wu et al., 2021), Non-stationary Transformer
(Liu et al., 2022), Crossformer (Zhang & Yan, 2022), iTransformer (Liu et al., 2024), KNF (Wang
et al., 2023b), and Koopa (Liu et al., 2023). For the univariate time series forecasting, we compare
three state-of-the-art approaches, including PatchTST (Nie et al., 2022), DLinear (Zeng et al.,
2023) and Koopa (Liu et al., 2023).

4.2 IMPLEMENTATION DETAILS

All the experiments are implemented using PyTorch (Paszke et al., 2019) and conducted on a work-
station with NVIDIA RTX 3090 GPU, AMD R7-5700X 3.40GHz 8-core CPU, and 32 GB memory.
Each method is trained by the ADAM (Kingma & Ba, 2015) algorithm. The loss function consists
of three components, the forecasting loss Lfore, the reconstruction loss Lrec, and the distribution loss
Ldis. For the forecasting and reconstruction losses Lfore, Lrec, mean square error (MSE) loss is se-
lected to optimize the model parameters, while the Sinkhorn loss (Cuturi, 2013) is applied in the
distribution loss Ldis.

In the experiment, we set the lookback length T = 2H , meaning the number of segments Q = 2.
The number of forecasting steps is set to h = 1, due to the non-stationary property of the time series.
The decoders are the multi-layer perceptions (MLP) with 2 hidden layers, using the tanh activation
function. Other hyper-parameters, such as the learning rate and the top percent α, in each dataset
are different. For multivariate time series forecasting, mean square error (MSE) and mean absolute
error (MAE) are used to assess the performance of different methods. For the univariate time series
forecasting, symmetric mean absolute percentage error (sMAPE) (Makridakis, 1993), mean absolute
percentage error (MAPE), and mean absolute scaled error (MASE) (Hyndman & Koehler, 2006) are
used.

4.3 RESULTS

Multivariate Forecasting Result For multivariate time series forecasting, we compare our pro-
posed model, KokerNet, with several state-of-the-art models on six commonly used benchmarks.
The results, presented in Table 1, demonstrate that KokerNet achieves remarkable performance

1https://archive.ics.uci.edu/ml/datasets/ ElectricityLoadDiagrams20112014
2https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 1: Multivariate time series forecasting results with different forecasting lengths H ∈
{24, 36, 48, 60} for ILI dataset and H ∈ {48, 96, 144, 192} for others under T = 2H . The best
results are highlighted in bold and the suboptimal results are highlighted in underline. Additional
results (ETTm1, ETTm2, ETTh1) are provided in appendix E.1. (All results of the compared meth-
ods are replications based on the publicly available code.)

Models KokerNet Ns Transformer Autoformer Koopa iTransformer KNF Crossformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h2

48 0.2299 0.3036 0.3096 0.3724 0.3072 0.3671 0.2434 0.3107 0.2374 0.3105 0.3850 0.3760 0.3557 0.4067
96 0.2929 0.3467 0.4121 0.4332 0.3686 0.4113 0.3046 0.3562 0.3083 0.3593 0.4330 0.4460 0.5568 0.5502
144 0.3277 0.3727 0.4697 0.4533 0.4036 0.4267 0.3404 0.3874 0.3441 0.3849 0.4410 0.4560 0.6442 0.5972
192 0.3575 0.3927 0.5521 0.4964 0.4183 0.4314 0.3543 0.3954 0.3678 0.4015 0.5280 0.5030 1.2161 0.8395

Tr
af

fic

48 0.4458 0.2928 0.6067 0.3351 0.6105 0.3851 0.4818 0.3309 0.4998 0.3491 0.6210 0.3820 1.3297 0.7859
96 0.4089 0.2816 0.6165 0.3463 0.6510 0.3978 0.5342 0.3595 0.4506 0.3239 0.6450 0.3760 1.3033 0.7858
144 0.4089 0.2863 0.6206 0.3468 0.6941 0.4198 0.5180 0.3526 0.4526 0.3310 0.6830 0.4020 1.3099 0.7908
192 0.4159 0.2914 0.6336 0.3497 0.6595 0.4143 0.5235 0.3555 0.4601 0.3383 0.6990 0.4050 1.3183 0.7921

W
ea

th
er 48 0.1398 0.1777 0.1413 0.1888 0.2946 0.3521 0.1253 0.1667 0.1367 0.1729 0.2010 0.2880 0.1359 0.1988

96 0.1664 0.2112 0.1907 0.2373 0.2943 0.3606 0.1592 0.2051 0.1694 0.2152 0.2950 0.3080 0.1664 0.2302
144 0.1830 0.2307 0.2244 0.2665 0.2941 0.3522 0.1842 0.2282 0.1880 0.2351 0.3940 0.4010 0.1911 0.2631
192 0.2031 0.2509 0.2350 0.2775 0.3171 0.3749 0.2081 0.2495 0.2033 0.2501 0.4620 0.4370 0.2105 0.2759

E
xc

ha
ng

e 48 0.0452 0.1469 0.0645 0.1780 0.1117 0.2458 0.0415 0.1518 0.0458 0.1502 0.1280 0.2710 0.1823 0.2993
96 0.0897 0.2118 0.1552 0.2705 0.1498 0.2793 0.0916 0.2118 0.0974 0.2225 0.2940 0.3940 0.3026 0.4018
144 0.1398 0.2697 0.1859 0.3103 0.2096 0.3339 0.1351 0.2607 0.1512 0.2788 0.5970 0.5780 0.4056 0.4809
192 0.1862 0.3090 0.2489 0.3642 0.2794 0.3843 0.1892 0.3136 0.2075 0.3303 0.6540 0.5950 0.5464 0.5889

IL
I

24 1.8710 0.8351 2.2136 0.9266 3.9796 1.3951 2.0618 0.8790 4.0837 1.4633 3.7220 1.4320 3.7474 1.3762
36 1.9181 0.8934 2.5677 0.9452 3.5755 1.2982 1.8611 0.8946 4.3227 1.4926 3.9410 1.4480 4.0997 1.3809
48 1.8849 0.9223 2.6007 1.0192 3.2697 1.2443 1.9033 0.9239 4.0271 1.4459 3.2870 1.3770 3.7599 1.2884
60 1.9347 0.9583 2.5717 1.0255 3.4445 1.2746 1.8502 0.8843 4.4316 1.5186 2.9740 1.3010 4.4182 1.4273

E
C

L

48 0.1570 0.2437 0.1535 0.2597 0.1893 0.3061 0.1280 0.2302 0.1512 0.2423 0.1750 0.2650 0.1484 0.2515
96 0.1365 0.2291 0.1785 0.2843 0.2042 0.3206 0.1389 0.2387 0.1375 0.2322 0.1980 0.2840 0.1335 0.2282
144 0.1453 0.2373 0.1889 0.2919 0.2021 0.3153 0.1518 0.2515 0.1576 0.2424 0.2040 0.2970 0.1557 0.2546
192 0.1520 0.2441 0.1967 0.3025 0.2133 0.3288 0.1566 0.2556 0.1545 0.2503 0.2450 0.3210 0.1557 0.2507

Table 2: Univariate time series forecasting results with different frequencies on M4 dataset. The
best results are highlighted in bold. (All the results of the compared methods are replications based
on the publicly available code.)

KokerNet PatchTST DLinear Koopa
sMAPE MAPE MASE sMAPE MAPE MASE sMAPE MAPE MASE sMAPE MAPE MASE

Yearly 13.454 16.571 3.033 16.668 23.302 3.729 15.413 18.467 3.696 14.707 19.417 3.275
Quarterly 10.213 11.779 1.192 12.606 15.118 1.628 10.546 12.288 1.242 10.775 12.823 1.287
Monthly 12.780 14.874 0.940 15.859 19.902 1.273 13.233 15.750 0.985 16.127 19.378 1.270
Weekly 11.157 10.309 3.396 11.551 11.234 4.465 11.168 12.003 5.936 10.221 9.542 3.135
Daily 3.035 4.387 3.251 3.576 5.590 3.894 3.384 5.165 3.685 3.395 4.886 3.682

Hourly 18.013 23.685 3.094 34.211 118.404 10.752 17.223 23.482 2.702 18.171 23.683 2.808
Others 4.858 6.410 3.248 6.685 15.336 4.503 5.089 7.173 3.765 5.109 6.777 3.570

Average 12.408 14.739 1.623 15.474 20.841 2.535 13.269 16.089 2.196 14.476 17.862 2.207

on most datasets. Specifically, KokerNet consistently outperforms the state-of-the-art transformer-
based non-stationary models (i.e., Ns Transformer), highlighting the Koopman-based model is more
adept at exploring the non-stationarity of the time series. Compared to Koopman-based counterparts
(Koopa and KNF), Kokernet achieves superior performance. This success derives from the dis-
tribution constraint, enabling the exploration of time-varying distributions in non-stationary time
series. Note that Koopa is comparable to our method in short-term time series forecasting. This
is because Koopa also deems that the time series consists of both time-invariant and time-variant
components and then designs the global shared and local Koopman operators, respectively. How-
ever, for long-term forecasting, KokerNet is superior to Koopa, which is attributed to the constructed
measurement function space and the distribution constraint. On one hand, the measurement func-
tions are higher-order derivatives, which enables us to supervise any derivative of the measurement
function with complicated time series. On the other hand, the distribution constraint ensures that the
prediction aligns with the temporal variation in distribution, enabling the exploration of long-term
non-stationary time series.

Univariate Forecasting Results For univariate time series forecasting, we compare our Koker-
Net with three state-of-the-art models on the M4 dataset. The results, displayed in Table 2, illustrate
the general superiority of our model. Take the sMAPE metric for example, we can observe that
KokerNet exhibits enhanced performance in scenarios where seasonality is less pronounced and
forecastability is heightened (e.g., our KokerNet achieves a 12.71% reduction in sMAPE for Yearly
data and a 10.31% reduction for Daily data). By contrast, KokerNet tends to perform mediocre in
scenarios where seasonality is more pronounced, and achieves 3.60% sMAPE reduction for Quar-
terly data, 3.42% reduction for Monthly data. For instance of perfect seasonality, the performance
of the proposed KokerNet is even worse than the baseline models (achieving 4.53% increase in
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Figure 1: The influence of the proportion of the stationary components on the results.

Table 3: The results with the single component. Here, Ks denotes only the global shared Koopman
operator included in our model, Kns denotes only local Koopman operator included in our model,
and Predef denotes the best result for different proportion of the stationary component under the
decomposition case. The best results are highlighted in bold.

Ks Kns Predef
48(24) 96(36) 144(48) 192(60) 48(24) 96(36) 144(48) 192(60) 48(24) 96(36) 144(48) 192(60)

ETTh2 MSE 0.2299 0.2929 0.3277 0.3655 0.3064 0.3665 0.3910 0.3914 0.2303 0.2960 0.3336 0.3579
MAE 0.3036 0.3467 0.3727 0.3986 0.3629 0.3999 0.4232 0.4256 0.3043 0.3499 0.3766 0.3929

ILI MSE 1.8983 1.9167 1.9811 1.9916 4.1361 3.8204 4.0049 4.2990 1.8710 1.9181 1.8849 1.9347
MAE 0.8611 0.8950 0.9559 0.9763 1.5025 1.4293 1.4970 1.5263 0.8351 0.8934 0.9223 0.9583

sMAPE). This phenomenon may be caused by the distribution constraint, which is less relevant for
more stationary data.

Besides, to evaluate the model efficiency, we take three aspects into account, including forecasting
performance (MSE), training time, and memory footprint. We compare the models on the ETTh1
dataset with the forecasting length H = 144. The results are reported in appendix E.4, showing that
our KokerNet has better forecasting performance with less training time and memory footprint.

4.4 TIME SERIES DECOMPOSITION

As previously discussed, the real-world time series typically contains both time-invariant and time-
variant patterns, corresponding to the stationary and non-stationary components. Therefore, we
decompose the time series into these two components to evade information loss and the introduction
of unnecessary disturbances from the single-component assumption. To interpretably determine the
proportions of each component, an index Sv is designed based on the KS test.

To validate the guiding role of Sv in time series decomposition, we first calculate the value of Sv on
four datasets (ETTh2, Traffic, Weather, and ILI), with results SETTh2

v = 0.0865, STraffic
v = 0.0767,

SWeather
v = 0.3709, and SILI

v = 0.2653, where the length of each segmentation equals H = 48.
Then, we set the candidate range of the proportions as [10%, 20%, . . . , 90%], and report MSE under
different proportions, where 10% represents that the stationary component account for 10%, while
the non-stationary component account for 90%. Results are shown in Figure 1. We can observe that
as the proportion of stationary components increases, the MSE tends to decrease, which is attributed
to the scarcity of non-stationary components. The smaller the value of Sv , the more pronounced
this phenomenon. For example, SETTh2

v = 0.0865, indicating that the proportion of non-stationary
components is minimal. In this scenario, increasing the proportion of non-stationary components
would introduce uncertainty to the stationary component, resulting in unreliable results. In contrast,
SWeather
v = 0.3709, meaning this dataset includes more non-stationary components. We can observe

that the result at the 80% is the most optimal, and it will decrease when increasing the proportion
of the stationary component. That is because increasing the proportion of the stationary component
would lead to the over-stationary for the non-stationary component, resulting in suboptimal perfor-
mance. Thus, we can suggest that the designed index Sv effectively measures the stationarity of the
time series and guides the decomposition.

Furthermore, we evaluate the effectiveness of Sv via considering three cases, including Ks, Kns,
and Predef. Ks denotes the entire time series is stationary, and only the global Koopman operator is
learned for the time series. Kns denotes the entire time series is non-stationary, and only the local
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Table 4: Ablation study for distribution constraint. The best results are highlighted in bold.
Yearly Quarterly Monthly Daily

sMAPE MAPE MASE sMAPE MAPE MASE sMAPE MAPE MASE sMAPE MAPE MASE
w/ Kdis 13.454 16.571 3.033 10.213 11.799 1.192 12.780 14.874 0.940 3.035 4.387 3.251
w/o Kdis 14.277 17.099 3.096 10.408 12.051 1.219 13.066 15.399 0.974 3.080 4.408 3.319

Promotion 5.76% 3.09% 2.03% 1.87% 2.09% 2.21% 2.19% 3.41% 3.49% 1.46% 0.68% 2.05%

Koopman operator is learned. Specifically, in the Predef case, we set the candidate range of the
proportions as [10%, 20%, . . . , 90%] and select the most optimal result, where 10% represents that
the stationary component account for 10%, while the non-stationary component account for 90%.
The results under different cases are reported in Table 3.

The results in Table 3 show that: 1) For the time series with few non-stationary components, it is
not necessary to perform the decomposition. For ETTh2, the best result is the Ks case since this
data contains more stationary components with SETTh2

v = 0.0865; 2) For the time series with more
non-stationary components (such as ILI with SILI

v = 0.2653), the decomposition will improve the
performance of the model, which is ascribed to specialized Koopman operators that are learned for
different components. In addition, we can observe that the performance of Predef is commonly close
to our KokerNet. It is because Predef select the best result of all the candidate proportions. But for
the time series with few non-stationary components, KokerNet performs better than Predef under the
guiding of index Sv . That result further demonstrates the reliability of the designed index Sv and
the importance of performing time series decomposition.

4.5 ABLATION STUDY

A fundamental challenge with deep forecasting models is that the non-stationary information ex-
tracted from historical data does not consistently align with predictions. Therefore, we introduce a
distribution constraint for the non-stationary component to align the forecasting with the evolution in
distribution. To demonstrate the effectiveness of the distribution constraint, we conduct an ablation
study on M4 under two cases, with (w/) and without (w/o) the distribution constraint. The results,
reported in Table 4, show that the case w/ Kdis consistently performs better on different frequencies.
Specifically, for scenarios with weak seasonality, such as with the frequency Yearly, the performance
improvement brought by the incorporation of distribution constraint is more pronounced. This fur-
ther highlights the effectiveness of the distribution constraint.

5 CONCLUSION

In this paper, we propose a novel method, KokerNet, for time series forecasting. In the method, a
measurement function space is first constructed based on the spectral kernel methods to learn the
Koopman operator, which describes the dynamics of the time series. Then, an index is designed to
guide the time series decomposition, and global and local operators are further learned based on the
decomposition within the constructed measurement space. Finally, our model incorporates a distri-
bution constraint module to ensure the prediction aligns with the temporal variation in distribution.
Theoretical analysis and extensive experiments demonstrate that the proposed approach delivers sig-
nificant performance improvements. We believe our approach can offer a new perspective on time
series forecasting.

Limitation and Future Work KokerNet tends to learn global and local Koopman operators for
the stationary and non-stationary components, which are obtained by the decomposition based on the
value of Sv . However, we can not calculate the stationarity of a real-world time series accurately. In
future work, we will focus on measuring the stationarity of the real-world time series more precisely.
In this paper, we model the complex evolution of the time series as its temporal dependence using
the kernel method, with the measurement function g ∈ H̄ serving as an encoder that maps the
time series into a low-dimensional feature space. Deep kernel, sharing the advantages of deep
learning and kernel method, can be considered as the encoder to capture the complicated temporal
dependence in the future. In addition, we assume that the distribution of the time series is Gaussian
to make our method tractable. In the future, the joint distribution can be considered to take both the
interactions between variables and the variation of the distribution via the Copula function.
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APPENDIX

A ALGORITHM

Algorithm 1 KokerNet for time series forecasting.
Input: XT with T time points.
Output: Ks,Kns,Kdis, gΘ(·),Θ = {ω1, · · · , ωM},Φde,Ψde.

1: Calculating Sv ← pp̄ based on Eq (7) and Eq (9).
2: Dividing XT into Xs and Xns based on Sv , and
3: repeat
4: For Xs = [Xback

s ,X fore
s ]:

5: Compute the distribution N (µs, δ
2
s )←Xback

s ;
6: Compute Zback

s ← g(Xback
s ), and forecast Zfore

s ← KsZ
back
s with Ks;

7: Decode Zfore
s with the decoder Φde, X̂ fore

s ← Φde(Z
fore
s );

8: Compute the distribution N (µ̂s, δ̂
2
s )← X̂ fore

s ;
9: Compute the loss Ls

fore;Ls
dis.

10:
11: For Xns = [x1, · · · ,xQ]:
12: Compute the distribution {N 1

ns,N 2
ns, . . . ,N

Q
ns } ←Xns = [x1, · · · ,xQ];

13: zi ← g(xi), i = 1, . . . , Q;
14: Zback ← [z1, . . . ,zQ−1], Zfore ← [z2, . . . ,zQ];
15: Kns ← (Zback)(Zfore)⊤;
16: ẑi ← Knszi−1

17: Decode x̂i ← Ψ(ẑi), i = 2, . . . , Q;
18: Compute the distribution N (µ̂i, δ̂

2
i )← x̂i, i = 2, . . . , Q;

19: Compute the loss Lns
fore; Lalig

dis ← L(N (µ̂i, δ̂
2
i ),N (µ̂i

ns, δ̂
2,i
ns )), i = 2, . . . , Q.

20:
21: While for the distribution do:
22: gdis[µ

i
ns, δ

2,i
ns ]← N (µi

ns, δ
2,i
ns ), i = 1, · · · , Q;

23: Similar to the process of Xns;
24: Decode [µ̂i

ns, δ̂
2,i
ns ]← Υde(Kdis[µ

i−1
ns , δ2,i−1

ns ]), i = 2, · · · , Q;
25: Compute the loss Lns

dis ← L(N (µi
ns, δ

2,i
ns ),N (µ̂i

ns, δ̂
2,i
ns )), i = 2, · · · , Q.

26:
27: Compute the total loss LKokerNet ← Ls

fore + Ls
dis + Lns

fore + Lns
dis + L

alig
dis + Lrec.

28: Update
29: until Convergence

B RELATED WORKS IN NON-STATIONARY TIME SERIES FORECASTING

Transformer-based deep models (Zhou et al., 2021; Wu et al., 2021; Zhang & Yan, 2022; Zhou
et al., 2022; Liu et al., 2021) have achieved great success in forecasting time series with seasonality
and trend. However, most of these models are difficult to deal with the non-stationary time series,
characterized by the intrinsic change of distribution over time. Recently, several approaches to non-
stationary time series forecasting have been developed (Passalis et al., 2019; Kim et al., 2021; Liu
et al., 2022). These approaches can be roughly categorized into two aspects. One is the stationar-
ization method, where the focus is on processing the non-stationary time series into stationary ones
before performing the forecasting task. Adaptive Norm (Ogasawara et al., 2010) applies z-score
normalization for each series fragment by global statistics of a sampled set. DAIN (Passalis et al.,
2019) employs a nonlinear neural network to adaptively stationarize time series according to the
observed training distribution. RevIN (Kim et al., 2021) introduces a two-stage instance normaliza-
tion, which transforms model input and output respectively to reduce the discrepancy of each series.
Non-stationary Transformer (Liu et al., 2022) utilizes series stationarization to attenuate time series
non-stationarity and de-stationary attention to re-incorporate non-stationary information of raw se-
ries. The other category is decomposition methods, which divides the non-stationary time series into
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time-invariant and time-variant parts (Wang et al., 2023; Liu et al., 2023). The time-invariant part
is used to characterize the shared global dynamics, while the time-variant part is used to describe
the localized dynamics. KNF (Wang et al., 2023) and Koopa (Liu et al., 2023) cope with the non-
stationary time series by introducing both the global and local Koopman operators to explore the
time-invariant and time-variant dynamics, respectively.

C THE ARCHITECTURE OF KOOPMAN OPERATOR LEARNING AND
DISTRIBUTION CONSTRAINT
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Figure 4: The architecture of Koopman operator learning and distribution constraint. We first de-
compose the time series XT into stationary and non-stationary components based on the designed
index Sv . For the stationary input Xs, a global Koopman operator Ks is learned with the stationary
distribution constraint. For the non-stationary input Xns, a local Koopman operator Kns is learned
with the non-stationary distribution constraint, which is explored by the historical distribution via
the distribution Koopman operator Kdis.

D THE PROOF OF THEORETICAL RESULTS

D.1 THE DERIVATION PROCEDURE OF g IN EQ. (3)

Lemma D.1. (Bochner’s Theorem) A continuous kernel k(x,x′) = k(x − x′) on Rd is positive
definite if and only if k(τ ), τ = x − x′ is the Fourier transform of a non-negative measure. Such
that:

k(τ ) =

∫
Rd

s(λ)eiλτdλ,

s(λ) =

∫
Rd

k(τ )e−iλτdτ .

(C.1)

Bochner’s Theorem ensures that its inverse Fourier Transform is a probability measure, which means
that s(w) can be considered as a probability density function.
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k(x− x′) =

∫
Rd

s(w)eiwτdw

=Ew∼S[e
iwτ ]

=Ew∼S[cosw(x− x′) + i sinw(x− x′)]

=Ew∼S[cosw(x− x′)]

=2Eφ∼[−π,π][cos (wx+ φ) cos (wx′ + φ)]

≈ 2

M

M∑
m=1

⟨g(x), g(x′)⟩,

(C.2)

where g(x) =
√

2
M [cos(w1x + b1), cos(w2x + b2), . . . , cos(wMx + bM )]⊤, M is the sampling

number.

D.2 THE PROOF OF THEOREM 1

Definition D.1. We say that a matrix A is a ∆-spectral approximation of another matrix B, if
(1−∆)B ⪯ A ⪯ (1 + ∆)B.

Lemma D.2. Let B be a fixed d1 × d2 matrix. Construct a d1 × d2 random matrix A that satifies

E[A] = B and ||A||2 ≤ s. (C.3)

Let V1 and V2 be semidefinite upper bounds for the expected squares:

E[AA∗] ⪯ V1 and E[A∗A] ⪯ V2. (C.4)

Define the quantities

v = max(||V1||2, ||V2||2) and r = (tr(V1) + tr(V2))/v. (C.5)

Form the matrix sampling estimator

Ān =
1

n

n∑
k=1

Ak, (C.6)

where each Ak is an independent copy of A. Then, for all t ≥
√

v
n + 2s

3n ,

Pr(||Ān)−B||2 ≥ t) ≤ 4rexp(
−nt2/2
v + 2st/3

). (C.7)

Theorem D.1. Sample w according to the spectral density function p(w) and set Z = g(XT ).
When the sampling number M ≥ 2δ(3

√
n+2∆)

3∆2 ln 8
√
n

ρ , with the probability of at least 1− ρ, ZZ⊤ is
the ∆-spectral approximation of K = ⟨f(XT ), f(XT )⟩H.

Proof. Since k(·, ·) is a positive definite (PD) kernel function, the corresponding kernel matrix K
is a PD matrix. So, the kernel matrix K has its inverse form K−1, and it can be conducted the
eigendecomposition as K = Q⊤ΛQ = Q⊤Σ2Q. Σ is a diagonal matrix and the elements are the
square root of the eigenvalues of the kernel matrix K.

Let K = Q⊤Σ2Q be an eigendecomposition of K, the ∆-spectral approximation can be written as:

(1−∆)K ⪯ ZZ⊤ ⪯ (1 + ∆)K. (C.8)

Simplifying eq. (C.8) and multiplying by Σ−1Q on the left and Q⊤Σ−1 on the right, we have

−∆Σ−1QQ⊤Σ2QQ⊤Σ−1 ⪯ Σ−1QZZ⊤Q⊤Σ−1 − Σ−1QKQ⊤Σ−1 ⪯ ∆Σ−1QQ⊤Σ2QQ⊤Σ−1,
(C.9)

and it suffices to show that:

||Σ−1QZZ⊤Q⊤Σ−1 − Σ−1QKQ⊤Σ−1||2 ≤ ∆, (C.10)
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holds with a probability of at least 1− ρ.

Let
Ym = Σ−1QZmZ⊤

mQ⊤Σ−1, (C.11)

we have

E[Ym] = Σ−1QZKΣ−1,
1

M

M∑
m=1

= Σ−1QZZ⊤Q⊤Σ−1. (C.12)

Next, we bound the norm of Ym and the stable rank E[Y 2
m]. Since Ym is always a rank one matrix

we have
||Ym||2 =||Σ−1QZmZ⊤

mQ⊤Σ−1||2
=tr(Σ−1QZmZ⊤

mQ⊤Σ−1)

=tr(Z⊤
mQ⊤Σ−1Σ−1QZm)

=Z⊤
mQ⊤Σ−2QZm

=Z⊤
mK−1Zm = δ,

(C.13)

and
Y 2
m =Σ−1QZmZ⊤

mQ⊤Σ−1Σ−1QZmZ⊤
mQ⊤Σ−1

=Σ−1QZmZ⊤
mK−1ZmZ⊤

mQ⊤Σ−1

=δΣ−1QZmZ⊤
mQ⊤Σ−1

=δYm.

(C.14)

We calculate E[Y 2
m] as:

E[Y 2
m] =E[δYm]

=δΣ−1QKQ⊤Σ−1

=δIn.

(C.15)

According to Lemma D.2, we have

Pr(|| 1
M

M∑
m=1

Ym − Σ−1QKQ⊤Σ−1||2 ≥ ∆) ≤ 8
√
nexp(

M∆2/2

δ
√
n+ 2δ∆/3

). (C.16)

Therefore, ZZ⊤ is the ∆-spectral approximation of K with the probability of at least 1 − ρ with
the sampling number M ≥ 2δ(3

√
n+2∆)

3∆2 ln 8
√
n

ρ .

D.3 THE PROOF OF THEOREM 2

For the Koopman operator Kt, an eigenfunction f ∈ L2(µ) corresponding to that eigenvalue satis-
fies:

Ktf = eiωtf. (C.17)

where ω is a real eigenfrequency.

Theorem D.2. For every eigenfrequency ω ∈ R of the Koopman operator K̄, Let g be the measure-
ment function on the finite trajectory {x1,x2, . . . ,xT } . Then,

(i) When T ≥
√

2
M

3ωmax
ϵ , gω can approximate any Koopman eigenfunction with ϵ accuracy, for

ϵ > 0.
(ii) limT→∞gω is an eigenfunction of the Koopman operator K.

Proof. We define

gω(x) =
1

T

∫ T

τ=0

g(F τ (x))e−iωτdτ, (C.18)
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based on g ∈ H̄. Let the Koopman operator Kt acts on gω(x), such that

Ktgω(x) =
1

T

∫ T

τ=0

Ktg(F τ (x))e−iωτdτ

=
1

T

∫ T

τ=0

g(F τ+t(x))e−iωτdτ

=
1

T

∫ T

τ=0

g(F τ (x))e−iω(τ−t)dτ

=eiωt 1

T

∫ T

τ=t

g(F τ (x))e−iωτdτ.

(C.19)

Therefore, we have

|Ktgω(x)− eiωtgω(x)| =|eiωt 1

T

∫ T

τ=t

g(F τ (x))e−iωτdτ − eiωt 1

T

∫ T

τ=0

g(F τ (x))e−iωτdτ |

=
1

T
|eiωt

∫ t

τ=0

g(F τ (x))e−iωτdτ |

≤
√

2

MT 2
|eiωt

∫ t

τ=0

e−iωτdτ |

=

√
2

MT 2
|eiωt(−iω(e−iωt − 1)|

=

√
2

MT 2
| − iω + iωeiωt|

≤
√

2

MT 2

[
|iω|+ |iω cosωt|+ |iω sinωt|

]
≤
√

2

MT 2
3ωmax ≤ ϵ.

(C.20)

So, when T ≥
√

2
M

3ωmax
ϵ , gω(x) can approximate any Koopman eigenfunction with ϵ accuracy, for

any ϵ > 0

(ii) When T →∞, gω(x) can be defined as:

gω(x) = lim
T→∞

1

T

∫ T

τ=0

g(F τ (x))e−iωτdτ. (C.21)

Let the Koopman operator Kt acts on gω(x), such that:

Ktgω(x) = lim
T→∞

1

T

∫ T

τ=0

Ktg(F τ (x))e−iωτdτ

= lim
T→∞

1

T

∫ T

τ=0

g(F τ+t(x))e−iωτdτ

= lim
T→∞

1

T

∫ T

τ=0

g(F τ (x))e−iω(τ−t)dτ

=eiωt lim
T→∞

1

T

∫ T

τ=t

g(F τ (x))e−iωτdτ

=eiωt
[

lim
T→∞

1

T

∫ T

τ=0

g(F τ (x))e−iω(τ−t)dτ − α
]

=eiωt lim
T→∞

1

T

∫ T

τ=0

g(F τ (x))e−iω(τ−t)dτ

=eiωtgω(x).

(C.22)

Therefore, when T →∞, gω is an eigenfunction of the Koopman operator Kt.
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E THE DETAILED PROCESS FOR TIME SERIES DECOMPOSITION

For the given time series, we first remove its global trends and seasonal effects. Such operations
would cause the residual of the time series to tend to be stochastic fluctuation, which is the main
attribution of the non-stationarity of real-world time series. Then, the detrended and deseason-
alized residuals are divided into J segments Xr

T = [xr
1,x

r
2, . . . ,x

r
J ] and the index Sv is cal-

culated based on the Kolmogorov–Smirnov test to determine the proportion of the stationary and
non-stationary components. After that, we perform the Fourier transform in the original segments
XT = [x1,x2, . . . ,xJ ] to calculate the frequency spectrum and sort all frequencies by the number
of occurrences. Finally, the top α percent of the frequency spectrum are considered as the compo-
nents of the stationary, while the remaining are considered as the components of the non-stationary.
The disentanglement in the given time series XT is mathematically formulated as follows:

Xs =FT−1(Sα,FT(XT )),

Xns =FT−1(S − Sα,FT(XT )),

XT =Xs +Xns

(D.1)

where Xs, Xns are time-invariant and time-variant components respectively. S is the set of fre-
quency spectrum. Sα is the set of global shared frequency spectrum. FT−1 denotes the inverse of
FT.

In our work, we do not focus on the specific design for the detrending and deseasonalizing. There-
fore, we conduct it by the commonly used Pytorch code with the additive model of the sea-
sonal decompose function. The additive model deems that the time series X consists of three
components, including trend (i.e., the global trends) Xtrend, seasonal Xtrend, and residual Xr.
X = Xtrend + Xtrend + Xr. The seasonal decompose function directly return the components,
trend, seasonal, and residual in the code. More precisely, the flow of the seasonal decompose func-
tion mainly includes four steps: (1) Determine the seasonal cycle (i.e., period) of the data. The
period denotes the length of the season; (2) Compute the trend components. The seasonal compo-
nent is the remaining cyclical pattern after removing the trend component; (3) Compute the trend
components; (4) compute the residual by Xr = X −Xtrend −Xtrend.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ADDITIONAL RESULTS ON MULTIVARIATE TIME SERIES FORECASTING

Due to the limited pages, we list additional multivariate time series forecasting results. The results on
ETTh1, ETTm1, and ETTm2 datasets are reported in Table 5. As shown in Table 5, our KokerNet
still achieves competitive performance compared with state-of-the-art deep forecasting models.

Table 5: Multivariate time series forecasting results with different forecasting lengths H ∈
{48, 96, 144, 192} under the lookback length T = 2H on ETTh1, ETTm1, and ETTm2 datasets.
The best results are highlighted in bold and the suboptimal results are highlighted in underline. (All
the results of the compared methods are replications based on the publicly available code.)

Models KokerNet Ns Transformer Autoformer Koopa iTransformer KNF Crossformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

48 0.3366 0.3779 0.5152 0.4784 0.4722 0.4595 0.3455 0.3843 0.3442 0.3800 0.8760 0.7090 0.3545 0.3989
96 0.4003 0.4177 0.5436 0.5064 0.5003 0.4746 0.3871 0.4058 0.3991 0.4150 0.9750 0.7440 0.4082 0.4258
144 0.4068 0.4205 0.5473 0.5064 0.4670 0.4666 0.4298 0.4289 0.4165 0.4244 0.8010 0.6620 0.5002 0.4955
192 0.4226 0.4352 0.6211 0.5287 0.5060 0.4802 0.4401 0.4357 0.4427 0.4503 0.9410 0.7440 0.5782 0.5645

E
T

T
m

1 48 0.2942 0.3452 0.4084 0.4003 0.8157 0.5999 0.2863 0.3361 0.3162 0.3565 1.0260 0.7920 0.3128 0.3654
96 0.2960 0.3452 0.4419 0.4429 0.5762 0.5124 0.3264 0.3648 0.3019 0.3483 0.9570 0.7820 0.3235 0.3670
144 0.3163 0.3612 0.5081 0.4459 0.7313 0.5649 0.3546 0.3798 0.3216 0.3637 0.9210 0.7600 0.3667 0.4019
192 0.3301 0.3719 0.5379 0.4661 0.6689 0.5421 0.3683 0.3875 0.3378 0.3760 0.8960 0.7310 0.3820 0.4213

E
T

T
m

2 48 0.1396 0.2315 0.1726 0.2603 0.1919 0.2941 0.1403 0.2326 0.1415 0.2361 0.6210 0.6230 0.1860 0.2938
96 0.1739 0.2576 0.2414 0.3092 0.2852 0.3530 0.1804 0.2614 0.1850 0.2736 1.5350 1.0120 0.3818 0.436
144 0.2111 0.2871 0.3705 0.3827 0.2749 0.3453 0.2155 0.2859 0.2190 0.2971 1.3370 0.8760 0.4135 0.4796
192 0.2301 0.3033 0.3237 0.3540 0.3039 0.3633 0.2401 0.3009 0.2393 0.3098 1.3550 0.9080 0.6551 0.6130
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F.2 THE INFLUENCE OF THE PROPORTION OF THE STATIONARY COMPONENTS AND
SEGMENTATION LENGTH

To explore the influence of the proportion of the stationary components on the results and the influ-
ence of segmentation length on the results, we also include additional experiments. In Figure 5, we
report the MSE results on Traffic, ETTh1, ETTm1, and ETTm2, which is not reported in the main
paper due to the limited pages. From Figure 5, we can observe that the MSE tends to decrease as
the proportion of stationary components increases.
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Figure 5: The influence of the proportion of the stationary components on the results.

In order to provide a more intuitive comparison of the influence of the stationary components, we
analyze the result on the M4 dataset again. Concretely, we first show the forecastability, Lyapunov
exponents, trend, and seasonality of the M4 dataset with different frequencies in Table 6. ↓ indicates
the smaller the value, the higher the non-stationarity, while ↑ indicates the higher the value, the
higher the non-stationarity. Then, we report the forecasting results on the M4 dataset (i.e., the
univariate time series forecasting results in the main text) in Table 7. From Table 6 and Table 7, we
can observe that our KokerNet exhibits enhanced performance in scenarios where seasonality is less
pronounced and forecastability is heightened. By contrast, our KokerNet tends to perform mediocre
in scenarios where seasonality is more pronounced. In particular, our KokerNet achieves a 12.71%
reduction in sMAPE for Yearly data and a 10.31% reduction for Daily data. This demonstrates
that our proposal can perform better on datasets and yield superior results on datasets with higher
non-stationarity.

Table 6: The forecastability, Lyapunov exponents, trend, and seasonality of the M4 dataset with
different frequencies. ↓ indicates the smaller the value, the higher the non-stationarity, while ↑
indicates the higher the value, the higher the non-stationarity. The results are cited from Wang et al.
(2023).

Forecastability (↓) LEs (↑) Trend (↓) Seasonality (↓)
Yearly 0.58 0.004 4.32 0.00%

Quarterly 0.47 0.003 1.06 84.51%
Monthly 0.44 0.011 0.48 66.34%
Weekly 0.43 0.013 0.13 0.00%
Daily 0.44 0.020 0.05 0.00%

Hourly 0.46 0.003 0.02 99.76%

In Figure 6, we report the MSE result with different forecasting length H = {48, 96, 144, 192} on
ECL. From Figure 6, we can observe that the time series tends to become more stationary as the
length of the time series increases, and the proportion of stationary components has a greater impact
on the results.

F.3 TIME SERIES DECOMPOSITION

As previously discussed, the real-world time series commonly contains both time-invariant and time-
variant patterns, corresponding to the stationary and non-stationary components. Therefore, we de-
compose the time series into these two components to evade information loss and the introduction
of unnecessary disturbances caused by the single-component assumption. To evaluate the effective-
ness of the time series decomposition step, we perform an experiment with three cases, including
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Table 7: Univariate time series forecasting results with different frequencies on M4 dataset. The
best results are highlighted in bold. (All the results of the compared methods are replications based
on the publicly available code.)

KokerNet PatchTST DLinear Koopa
sMAPE MAPE MASE sMAPE MAPE MASE sMAPE MAPE MASE sMAPE MAPE MASE

Yearly 13.454 16.571 3.033 16.668 23.302 3.729 15.413 18.467 3.696 14.707 19.417 3.275
Quarterly 10.213 11.779 1.192 12.606 15.118 1.628 10.546 12.288 1.242 10.775 12.823 1.287
Monthly 12.780 14.874 0.940 15.859 19.902 1.273 13.233 15.750 0.985 16.127 19.378 1.270
Weekly 11.157 10.309 3.396 11.551 11.234 4.465 11.168 12.003 5.936 10.221 9.542 3.135
Daily 3.035 4.387 3.251 3.576 5.590 3.894 3.384 5.165 3.685 3.395 4.886 3.682

Hourly 18.013 23.685 3.094 34.211 118.404 10.752 17.223 23.482 2.702 18.171 23.683 2.808
Others 4.858 6.410 3.248 6.685 15.336 4.503 5.089 7.173 3.765 5.109 6.777 3.570

Average 12.408 14.739 1.623 15.474 20.841 2.535 13.269 16.089 2.196 14.476 17.862 2.207
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Figure 6: The influence of the segmentation length on the results.

Ks, Kns, and Predef. Ks denotes the entire time series is stationary, and only the global Koopman op-
erator is learned for the time series. Kns denotes the entire time series is non-stationary, and only the
local Koopman operator is learned. Specifically, in the Predef case, we set the candidate range of the
proportions as [10%, 20%, . . . , 90%] and select the most optimal result, where 10% represents that
the stationary component account for 10%, while the non-stationary component account for 90%.

In the main text, we just report the results of two datasets. To verify the generalization effective-
ness of the time series decomposition step, We also include the additional results on the remaining
datasets of the main text. The results are shown in Table 8. We can observe that the results are
consistent with our conclusions in the main text (i.e., time series decomposition is important for the
non-stationary data).

Table 8: The results with the single component. Here, Ks denotes only the global shared Koopman
operator included in our model, Kns denotes only local Koopman operator included in our model,
and Predef denotes the best result for different proportion of the stationary component under the
decomposition case. The best results are highlighted in bold.

Dataset ETTh1 ETTm1 ETTm2 Traffic Weather Exchange ECL
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ks

48 0.3368 0.3793 0.2899 0.3393 0.1385 0.2304 0.4475 0.2984 0.1389 0.1772 0.0427 0.1425 0.1570 0.2437
96 0.3892 0.4118 0.2969 0.3461 0.1750 0.2591 0.4073 0.2827 0.1631 0.2091 0.0861 0.2071 0.1365 0.2291
144 0.4112 0.4242 0.3169 0.3627 0.2073 0.2869 0.4123 0.2892 0.1813 0.2292 0.1360 0.2656 0.1453 0.2373
192 0.4222 0.4357 0.3316 0.3726 0.2351 0.3073 0.4198 0.2947 0.2033 0.2516 0.2169 0.3369 0.152 0.2441

Kns

48 0.6882 0.5521 0.6813 0.5412 0.1938 0.2867 1.3573 0.7819 0.1971 0.2580 0.0701 0.1868 0.8449 0.7630
96 0.7035 0.5634 0.6021 0.5160 0.2210 0.3076 1.3794 0.7969 0.2338 0.2859 0.1633 0.2895 0.8326 0.7575
144 0.7106 0.5783 0.6468 0.5378 0.2539 0.3290 1.3981 0.8058 0.2623 0.3092 0.2712 0.3823 0.8395 0.7596
192 0.7239 0.5868 0.6052 0.5257 0.2859 0.3519 1.4088 0.8058 0.2862 0.3274 0.3666 0.4497 0.8479 0.7627

Predef

48 0.3363 0.3792 0.2916 0.3392 0.1383 0.2299 0.4458 0.2986 0.1398 0.1777 0.0452 0.1469 0.1564 0.2432
96 0.4003 0.4177 0.2958 0.3451 0.1739 0.2576 0.4065 0.2816 0.1657 0.2125 0.0862 0.2074 0.1363 0.2285
144 0.4064 0.4202 0.3163 0.3612 0.2109 0.2870 0.4089 0.2863 0.1819 0.2292 0.1389 0.2693 0.1446 0.2367
192 0.4225 0.4351 0.3301 0.3719 0.2300 0.3034 0.4159 0.2914 0.2020 0.2495 0.2034 0.3261 0.1511 0.2442

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

F.4 MODEL EFFICIENCY COMPARISON

Figure 7: Model efficiency comparison on ETTh1 with H = 144. Training time and memory
footprint are recorded with the same batch size (32) and official code configuration.
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