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ABSTRACT

In large language models (LLM), in-context learning (ICL) refers to performing
new tasks by conditioning on small demonstrations provided in the input context,
without any parameter updates. Recent advances in visual domain, i.e. visual
in-context learning (VICL), demonstrate promising capabilities for solving down-
stream tasks by unified vision-language models (VLMs). However, the boundaries
of cross-task transfer in VICL remain largely unexplored, particularly for the het-
erogeneity across low-level vision tasks. This naturally raises the question: When
the visual prompt and the target images originate from different visual tasks, can
VLMs still enable VICL? In the paper, we propose a fully collaborative pipeline,
i.e. T2T-VICL, for VLMs to investigate the potential of cross-task VICL. Fun-
damentally, we design a mechanism to generate and select text prompts that best
implicitly describe the differences between two distinct low-level vision tasks, and
construct the first cross-task VICL dataset. Building upon this, we present a train-
ing strategy from a large VLM to a small vision-language model (sVLM), together
with a deployment framework from the sVLM back to the large VLM. Further-
more, we propose a novel inference framework that combines perceptual score-
based reasoning with standard evaluation metrics to perform cross-task VICL. Our
approach achieves stable results spanning multiple low-level cross-task pairs. Dur-
ing inference, T2T-VICL demonstrates promising performance without requiring
any image-based training or model fine-tuning. Our findings highlight the fea-
sibility of enabling cross-task VICL within VLMs, underscoring the utility as a
supplementary generalizable paradigm for low-cost vision-language reasoning.

1 INTRODUCTION

In-context learning (ICL) enables models to solve large reasoning tasks by leveraging a few in-
put—output demonstrations without parameter updates (Min et al., [2022; Dong et al., [2022). Recent
advances show that large language models (LLMs) exhibit remarkable ICL capabilities across a
wide range of natural language processing (NLP) tasks (Highmorel 2024; [Wang et al., |2023bj |Sia
et al.| [2024; L1 et al.L |2025)), achieving strong performance in similar linguistic contextual examples.
The capabilities of processing visual in-context learning (VICL) have been investigated in multiple
vision generalist models, e.g. MAE-VQGAN (Bar et al., 2022), Painter (Wang et al., 2023a), Prompt
Diffusion (Wang et al., 2023c), and X-Prompt (Sun et al.l |2024b), where the concept of in-context
learning extends from language to image. As the generative abilities of vision—language models
(VLMs) continue to advance, VICL has been shown to facilitate rapid adaptation to reasoning tasks
from small visual demonstrations (Zhou et al.,[2024b}; [Ma et al., [2024), with additional benefits for
multimodal integration and transferability.

Intuitively, many visual problems share underlying relationships rather than existing in isolation
(Zamir et al., [2018; [Pal & Balasubramanian, |2019; |Achille et al.l 2019). While fully supervised
approaches typically learn each task independently, this siloed paradigm is inefficient and demands
large amounts of labeled data (LeCun et al.l 2015 |Chum et al.l [2019). Task transfer learning ad-
dresses this challenge by exploiting knowledge from source tasks to accelerate and improve perfor-
mance on new targets (Bao et al., 2019). For example, the Taskonomy (Zamir et al., [2018) frame-
work demonstrates that by computationally modeling transfer dependencies across diverse tasks,
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and the possibility to derive a taxonomic map that captures both direct and higher-order relation-
ships has been proven. Such relational phenomena are hypothesized to exist in language domains
as well. Viewed through the lens of language, many image-processing—oriented low-level tasks own
the same prefix or suffix (Trigka & Dritsas), [2025}, [Shu et al.} 2024), e.g. “deraining”, “denoising”,
“dehazing”, “deblurring”, “demoiring” . Textual descriptions of visual differences across such tasks
reveal areas of overlap as well as points of divergence. In addition, textual descriptions of gener-
ation—oriented low-level tasks such as “colorization”, “light enhancement”, “harmonization”, and
“style transfer” (Bar et al., 2022} [Ke et al.} [2023)), primarily hinge on linguistic variations in color,
illumination, and contrast. This suggests that certain latent relationships may govern the transforma-
tions between them. Meantime, several studies (Brooks et al.} 2023}, [Potlapalli et all, 2023}, [Conde]
have demonstrated the regulatory role of language in guiding/driving visual expressions.

Building on the above observations, we naturally raise the key question: If the visual prompt and the
images to be learned come from two different tasks, can VLMs enable VICL across different tasks?

In this paper, we develop T2T-VICL, a collaborative pipeline based on multiple VLMs that enable
VICL across multiple low-level cross-task pairs. We construct a novel approach that integrates
implicit descriptive textural capture, gradient-based token attribution enhancement
let all, 2017; Nguyen et all, [2025)), a visual instruction-guided metric 2023), and image
quality assessment (IQA) metrics (Zhang et all, [2012), allowing VLMs to perform cross-task in-
context learning without the need for additional training and be evaluated. Our contributions can
be summarized in three aspects: (1) We propose the first comprehensive multi-VLM pipeline that
automatically generates implicit text prompts to distinguish two low-level vision tasks, which can be
used to explore the boundaries of cross-task VICL. This work also introduces the first text-image
dataset with cross-task implicit descriptions, establishing a benchmark expected to exert lasting
influence within the field. (2) We design a VLM —sVLM and sVLM—VLM framework that gets
knowledge from a large-scale model into a lightweight model and leverages the compact model
to get the text prompt. (3) By coupling score-based reasoning, we establish an automatic inference
framework that supports cross-task VICL in VLMs while eliminating the need for further trining.
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Figure 1: Ilustration of Cross-Task Visual In-Context Learning
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2 RELATED WORK

2.1 VISION GENERALIST MODEL

Vision generalist models seek to replace task-specific vision networks with general-purpose frame-
works capable of handling diverse visual tasks under a single paradigm. Early approaches adopted
a sequence-to-sequence formulation that casts visual tasks as sequence prediction problems in NLP.
Pix2Seq (Chen et al., 2022} pioneered the sequence-to-sequence view, later extended by Unified-
IO (Lu et al.| [2022)) to unify diverse inputs and outputs, while OFA (Wang et al.| [2022)) advanced
it toward multimodal instruction-based learning bridging vision and language. UViM (Zhang et al.,
2022) introduced guiding codes as a task-agnostic interface for vision tasks, and Uni-Perceivers (Zhu
et al., 2022)) extended this idea to multimodal settings. Subsequent works leverage stronger back-
bones such as transformers and diffusion models, exemplified by Florence-2 (Xiao et al., 2023)
for prompt-driven recognition and generation, and InstructCV (Gan et al. 2023), InstructDiffu-
sion (Geng et al., 2023) for conditional denoising under a unified generative framework.

Most notably, VLMs have emerged as unified frameworks that couple visual encoders with large
language models under instruction-driven settings. Emu (Sun et al.| 2024aj; [Wang et al.|, [2024)) se-
ries integrate diffusion models with LLM-predicted embeddings, functioning as a generalist model
capable of handling diverse vision tasks. Chameleon (Chameleon et al., |2024) team follows an
early-fusion strategy, integrating text and image tokens from the outset to support interleaved un-
derstanding and generation. In contrast, Transfusion (Transfusion et al.,|2024) combines next-token
prediction for language with diffusion for images, and Show-o (Show-o et al.,, 2024) extends this
hybrid approach with a one-transformer design that merges auto-regression and discrete diffusion.
Collectively, these efforts highlight the trend of VLMs shaping the evolution of vision generalist
models.

2.2 VISUAL IN-CONTEXT LEARNING

Visual in-context learning (VICL) refers to adapting vision models to downstream tasks through con-
textual examples rather than explicit fine-tuning, and it can be broadly divided into visual prompting
and prompt-driven conditioning. Implicit prompting methods, represented by MAE-VQGAN (Bar
et al.| [2022) and Painter (Wang et al., 2023a)), rely on masked prediction or image completion as
objectives, enabling models to generalize under diverse vision tasks. In contrast, explicit prompt-
driven approaches leverage explicit conditioning to adapt diverse vision problems. For instance,
Prompt Diffusion (Wang et al.| 2023c)) exploits diffusion-based generation under prompt guidance.
While PromptGIP (Liu et al.l [2023)) adopts QA-style prompt structures. Additional works such as
CoOp (Zhou et al.} [2022) and VPT (Jia et al., [2022) further extend VICL by introducing learnable
prompts for vision transformers. More recently, X-Prompt (Sun et al., 2024b) targets general image
generation, compressing contextual signals and unifying diverse vision tasks within an autoregres-
sive framework. Most existing VICL methods focus on performing the visual prompt and query
image in the same tasks, our T2T-VICL extends this paradigm to a cross-task setting, where the
visual prompt and query image are from different tasks, digging the potential knowledge adaptation
across diverse vision problems.

2.3 TASK TRANSFER

Task generalization refers to leveraging knowledge from previously solved tasks to facilitate learn-
ing on unseen ones. Early milestones such as Taskonomy (Zamir et al., [2018)) provided the first
large-scale analysis of transferability across 26 vision tasks, introducing the task affinity matrix as a
foundation for cross-task generalization. Following this line, TMT (Pal & Balasubramanian, [2019)
extended Taskonomy by applying matrix factorization to refine the estimation of inter-task trans-
ferability. Similarly, Task2Vec (Achille et al.| 2019) proposed embedding tasks into a vector space
using Fisher information, making task similarity measurable and interpretable. Beyond these foun-
dations, (Standley et al., 2020) systematically investigated which tasks should be learned together in
multitask settings, highlighting task affinity as a guiding principle . (Dwivedi & Roig| [2019)) intro-
duced cross-task consistency to enforce relational constraints. Given the growing visual generation
ability of VLMs, the progress in this field motivates our exploration of cross-task generalization in
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VLMs and unlocks the boundary of how VLMs can transfer from one vision task to the other vision
task.

2.4 LANGUAGE-DRIVEN IMAGE RESTORATION AND EDITING

Language-driven vision restoration has progressed from demonstrating the feasibility of instruction-
guided editing, where natural language serves as an efficient component to drive fine-grained manip-
ulation of low-level image features. InstructPix2Pix (Brooks et al.,2023)introduced an instruction-
following framework for image editing, enabling localized and semantically consistent modifica-
tions based on natural language prompts. InstructIR (Conde et al., |2024)) extended this idea to image
restoration, demonstrating that human instructions can guide degradation-aware recovery of high-
quality images. Similarly, PromptIR (Potlapalli et al.l|2023)) incorporated prompt learning to adapt
restoration networks dynamically under different degradation types.

Beyond, many studies have utilized richer semantic information to guide generation. SPIRE (Qi
et al.| 2024) leverages semantic and quantitative prompts to jointly control content preservation and
restoration strength, while PromptFix (Yu et al., 2024) builds a large-scale instruction-following
dataset and proposes high-frequency guidance sampling to preserve local details under natural lan-
guage control. Perceive-IR (Zhang et al.,2025) focuses on degradation perception, coupling prompt
learning with a quality perceiver to generalize across unseen degradations. FPro (Zhou et al.l[2024a)
proposes frequency-aware prompting to guide restoration in different spectral bands. These works
demonstrate that natural language has transitioned from a descriptive signal into a direct driver of
low-level vision tasks, highlighting its potential for finer-grained controllability and fidelity.

3 METHOD

3.1 T2T-VICL: OVERVIEW OF COLLABORATIVE VLM PIPELINE

To explore the boundaries of cross-Task VICL via VLMs, we propose T2T-VICL, which is a col-
laborative pipeline that leverages the complementary strengths of large and small language VLMs
to enhance vision—language reasoning. First, a large pre-trained VLM generates implicit textual
descriptions for two distinct tasks, while the linguistic reliability of these descriptions is quantita-
tively evaluated. To enable efficient deployment, we perform fine-tuning of a sVLM to transfer the
reasoning capabilities of the large model while reducing computational overhead. During inference,
the sSVLM produces text prompts to the final large VLM, thereby guiding the downstream reason-
ing process. Finally, candidate results are ranked by another VLM with a visual instruction-guided
metric and IQA metrics, and the optimal outcome is selected from the top-k candidates.

3.2 AUTOMATED IMPLICIT TASK RELATIONSHIP GENERATION

We begin by automatically generating rich textual descriptions that implicitly capture the differ-
ences between two low-level vision tasks. We consider 12 diverse low-level tasks spanning classic
degradation/removal problems (e.g. deraining, dehazing, denoising, deblurring, demoiring, shadow
removal, reflection removal) as well as generation/enhancement tasks (e.g. colorization, low-light
enhancement, harmonization, style transfer). For any arbitrary pair of tasks A and B, our goal is
to obtain an implicit text prompt that depicts the difference without explicitly naming either task.
To accomplish this, we leverage a state-of-the-art large vision—language model, Qwen2.5-VL-32B-
Instruct, which is fed by two image pairs and the ground truth. We design the text prompt F; to
provide structured comparisons of two tasks: (1) the target goal — what the task is trying to achieve
(e.g. “remove rain streaks from the scene” or “sharpen blurred details); (2) the input degradation
or attribute — the type of distortion/artifact or initial condition present in the input (rain, haze, blur,
noise, poor lighting, etc); and (3) the visual changes from input to output — the perceptible improve-
ments or modifications after applying the task. Crucially, the prompt instructs the VLM to compare
these aspects for task A versus task B without ever revealing the task names, ensuring the description
is purely implicit. For instance, the model might reveal that denoising and deblurring both remove
high-frequency imperfections (random noise vs. motion blur) but differ in the patterns they target.
This mechanism forces the VLM to articulate the subtle differences in a narrative manner.
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Figure 2: Overview of the proposed pipeline and its workflow

Subsequently, the above procedure is implemented for all the included low-level tasks to build a
high-quality benchmark dataset. For each pair of tasks A and B, we sampled a large number of
combinations from public datasets and queried the VLM with each sample to get a text output: (i)
an input image 7% and its label I'; from task A, and (ii) an input image 1% with the label I}, from
different task B. Thus we obtained the implicit textural relations:

PT:Ml(Ijqn7If47I%n7Ig’aPt)a (1)
The model is trained to generate the corresponding comparison text that the teacher (32B model) had
produced for that pairing. However, the VLM can sometimes produce repetitive or overly generic
statements, especially if many samples share similar traits. We therefore conducted a diversity filter-
ing method by using semantic sentence embeddings. We encoded each candidate description with
a SentenceTransformer (all-MiniLM-L6-v2) to obtain a dense vector representation. This allowed
us to quantitatively measure similarities among the descriptions. We then performed clustering in
embedding space to detect groups of near-duplicates or redundant phrasing. In this manner, we fil-
tered out repetitive outputs and retained only one representative with the most distinct descriptions.
Ultimately, we kept 2,000 diverse descriptions per task pair. To our knowledge, this is the first text-
and-image dataset that implicitly captures cross-task relationships, providing the foundation for our
next steps.

3.3 VLM-SsVLM KNOWLEDGE TRANSFER

3.3.1 LARGE-TO-SMALL TRANSFER FRAMEWORK

Knowledge transfer and teacher-student model construction. Having obtained the implicit task
comparisons from the large VLM, we next transfer this knowledge into a Qwen2.5-VL-3B-Instruct
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model as a student. By using the generated text prompts in section 3.2 as targets, we fine-tuned the
student model with three input images I'{*, I f4, and I7'. Differently, we omit the label of task B I g

here. By using an open-ended prompt Pt/ (e.g. “Compare the effects observed in these images”), we
force the 3B model to learn to infer the essence of task B’s effect solely from the characteristics of

input and output the implicit textural relations Prl.

Pl = M,(I}, 1Y, I, P)), ()

T

We format each training instance in the official Qwen-VL conversational style, which includes a
system instruction and the images embedded with markdown tags. The student is then trained to
produce the teacher’s full comparison text as the completion. The training objective is to minimize
the cross-entropy loss between the student’s generated text and the teacher’s reference description.
Through many epochs of exposure to different task pairs and images, the sVLM model gradually
learns the teacher’s “reasoning habit” — specifically, how to discuss goals, degradations, and visual
changes for two tasks — and becomes capable of producing these comparisons on its own. In effect,
the large model’s implicit knowledge of inter-task relationships is transferred into the small model
at the language level.

Model choice and training efficiency. We selected Qwen2.5-VL-3B as the student not only for
its manageable size, but also because it shares the same architecture and multimodal interfaces
as the teacher model. After training, the fine-tuned 3B model is indeed able to take two image
pairs from tasks A and B and directly output a coherent comparison of the tasks, much like the
32B model did. In other words, the student has learned to be a “narrative engine” that explains
cross-task relationships on demand. This approach is related in spirit to recent prompt-based tuning
methods in vision-language models (e.g. CoOp prompt tuning, visual instruction tuning), but with
a key difference: instead of learning a static prompt vector or fixed set of words for a model, we
train a full generative model to produce dynamic, content-dependent prompts. The student can
flexibly generate different comparative descriptions for different image pairs, rather than a single
fixed prompt. By using the large model’s outputs as textual supervision, we effectively compress its
high-level reasoning about tasks into a lightweight model.

3.3.2 SMALL-TO-LARGE DEPLOYMENT FRAMEWORK

Once the student model is trained, we deploy it as a front-end module to assist the large model during
inference and provide the text prompt, which is then consumed by the larger VLM for final reasoning
and output image generation. This hierarchical approach reduces reliance on heavy computation
during the initial stages of inference while preserving the representational capacity of large-scale
VLMs. This is essentially a reverse direction of knowledge flow: the Small—Large step uses the
7B model’s explanation to guide the final inference model Gemini-2.0-flash. The process employs
the trained Qwen-3B model to process the input of the visual prompt (I, I',), query image I3 and
text prompt P/, output a prompt representation P; as following:

Pt//:Ms(IivIlv-[qa-Pt/)v (3)

where Ps encodes salient task-relevant cues. By offloading this initial abstraction to My, we reduce
the computational overhead associated with feeding raw multimodal inputs directly into the large
model.

The generated prompt P is then provided as an input to a larger VLM M, which possesses stronger
representational power and reasoning ability. Specifically,

I3 = M(Ps, I, 11, 1, '), @

where 1% denotes the model prediction, and this step enables M, to focus on higher-level reason-

ing. The large VLM can focus on executing the described transformation on the query image, rather
than figuring out from scratch what the transformation should be. More importantly, this two-stage
deployment is highly interpretable: the intermediate text prompt P/’ clearly explains the intended
operation, providing transparency into the system’s decision-making. It also offers a point of control
— if needed, a human or another module could modify or validate the prompt before the final image
generation. This loop leverages the complementary strengths of each model size, the powerful rea-
soning and generation of large VLM and the efficiency and fast text generation of sVLM to achieve
cross-task visual in-context learning that is both effective and practical.



Under review as a conference paper at ICLR 2026

3.3.3 SCORE-BASED REASONING

To enhance decision-making, we introduce perceptual score-based screening based on VIE
score (Ku et al. 2023). Since conventional image-synthesis metrics are often task-agnostic and
opaque, they provide a single number without revealing why an image is judged good or bad. In
contrast, VIE score is a task-aware and explainable evaluator driven by a VLM. Given an instruction
I, a synthesized image O, and a set of conditions C*, the evaluator first produces a natural-language
rationale and then a scalar score s:

fvie(I,0,C*) = (rationale, s), s € [0,1]. 3)

To reflect the “weakest-link” nature of conditional generation, we decompose the score into Semantic
Consistency (SC) and Perceptual Quality (PQ). Each is formed by minimum aggregation over task-
specific sub-scores {a; } and {/3;} (0-10 scale, later normalized):

SC = min ay, PQ = min 3;.
[ J

The final overall rating uses a geometric mean:

1/2

0 = (SC-PQ) ©6)

In practice, we prompt the VLM with explicit rubrics for SC and PQ; notably, PQ is assessed from
the synthesized image alone (to avoid instruction confounds), while SC conditions are presented
alongside the image. This design yields interpretable rationales, task-aware scores, and robust cor-
relations with human judgments across diverse conditional image tasks.

3.3.4 EVALUATION METRICS

To quantitatively assess our framework, we employ a hybrid metric suite. To complement these,
we adopt VIE score for measuring the alignment between generated outputs and task-specific visual
improvements, enabling evaluation from a reasoning perspective rather than pixel fidelity alone. For
image quality, we report classical fidelity scores including PSNR and SSIM, which remain standard
for restoration tasks. PSNR captures pixel-level fidelity via mean-squared error, whereas SSIM re-
flects perceptual alignment by jointly evaluating luminance, contrast, and structural consistency. For
each query image, we performed inference 10 times and selected the result with the highest PSNR
as the final output while computing the corresponding VIE score and SSIM. Together, these metrics
provide a holistic evaluation that balances low-level fidelity, perceptual similarity, and reasoning
coherence.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Datasets. We build our study on a comprehensive collection of twelve representative low-level vi-
sion tasks, each paired with a widely adopted benchmark dataset. Specifically, we use GOPRO
(Nah, Hyun Kim, and Mu Lee 2017) for image deblurring, D-HAZY (Ancuti, Ancuti, and De
Vleeschouwer 2016) for dehazing, UHDM (Yu et al. 2022) for demoiréing, SIDD (Abdelhamed,
Lin, and Brown 2018) for denoising, RainCityscapes (Zamir et al. 2021) for deraining, iHarmony4
(Cong et al. 2020) for harmonization, DIV2K (Agustsson and Timofte 2017) with modifications
for inpainting and colorization, LoL (Wei et al. 2018) for low-light enhancement, SIR? (Wan et al.
2017) for reflection removal, ISTD (Wang, Li, and Yang 2018) for shadow removal, and Night2Day
(Zhu et al. 2017) for style transfer. These datasets collectively span degradations caused by mo-
tion, atmospheric conditions, sensor limitations, and lighting deficiencies, as well as creative tasks
involving style and appearance transformations.

Implementation details. We conducted our experiments using two NVIDIA A100-SXM4 GPUs
with 80 GB of memory each. We follow each dataset’s standard train—test split whenever available,
or adopt a 70/30 random division when no official split is provided. All images are resized to a
unified resolution (448x448 for training inputs, 224x224 for query inputs) to maintain compatibility
with the VLM framework.
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Main Cross-Task VICL Results Table (1] presents the quantitative comparisons across eight rep-
resentative tasks. Figure [3| illustrates representative examples of cross-task in-context learning,
demonstrating how the VLM model adapts flexibly to diverse tasks driven by conditioning implicit
text prompts. Several key observations can be drawn:

Robust overall performance. We present results on eight cross-task pairs to systematically evaluate
the generalization ability of our VICL framework. Our framework demonstrates robust performance
across a wide range of visual task pairs, with a particular strength in handling low-level cross-
task pairs where in-context transfer is traditionally difficult. Unlike prior approaches that are often
confined to semantically similar domains, our method adapts seamlessly across both prefix-aligned
tasks (e.g., deraining vs. denoising, deblurring vs. demoiring) and prefix-divergent tasks (e.g.,
shadow removal vs. deraining). This ability to generalize across heterogeneous task pairs indicates
that visual in-context learning is not constrained by task similarity. These findings highlight the
scalability and flexibility of our approach, showing that VICL can naturally bridge both perceptually
related and unrelated tasks under a single model.

Cross-task diversity.

The proposed VICL exhibits consistent gains on image processing tasks ( e.g. denoising, derain-
ing, deblurring, low-light enhancement) while preserving a single, decoder-free interface. Beyond
processing, the same prompting mechanism transfers to generation-oritented tasks (composition, ob-
ject insertion/removal, attribute/style manipulation), maintaining spatial layout and identity fidelity.
Cross-task transfer holds both within prefix-aligned pairs and across prefix-divergent pairs, without
task-specific retraining. Qualitative assessments show reduced artifacts, sharper structures, and sta-
ble color consistency, establishing that VICL extends reliably from semantic understanding to both
restoration and generative settings.

Generalization to semantically distant tasks. Beyond absolute numbers, an important property
is cross-task consistency. This consistency underlines the advantage of framing all tasks under a
unified in-context prompting mechanism. More importantly, when applied across a few tasks with
large semantic gaps (e.g. denoising vs. light enhancement), VICL maintains stable predictions,
whereas task-specific models deteriorate significantly. This highlights robustness as a key byproduct
of the unified in-context paradigm.

Table 1: Comparisons.
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5 CONCLUSION

In conclusion, we propose the first cross-task VICL pipeline, i.e T2T-VICL, that enables collab-
oration among multiple VLMs, together with an automatic reasoning mechanism. Our framework
systematically explores the largely uncharted boundaries of cross-task transfer in VICL. This collab-
orative paradigm fills a gap in understanding how heterogeneous VLMs can jointly reason and adapt
across tasks, and we anticipate that our findings will encourage further investigation into the mecha-
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nisms that underpin robust cross-task transfer and the broader generalization capacity of multimodal
models.
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