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ABSTRACT

We study the problem of learning universal features from multiple graphs through
self-supervision. Graph self-supervised learning has been shown to facilitate
representation learning, and produce competitive models compared to supervised
baselines. However, existing methods of self-supervision learn features from one
graph, and thus, produce models that are specialized to a particular graph. We
hypothesize that leveraging multiple graphs of a family can improve the quality of
learnt representations in the model by extracting features that are universal to the
family of graphs. However, learning universal features from disparate node/edge
features in different graphs is challenging. To address this challenge, we first
homogenise the disparate features with graph-specific modules that feed into a
universal representation learning module for generalisable feature learning. We
show that leveraging multiple graphs of the same family improves the quality of
representations and results in better performance on downstream node classification
task compared to self-supervision with one graph. In this paper, we present a
principled way to design foundation graph models that are capable of learning
from a set of graphs in a holistic manner. This approach bridges the gap between
self-supervised and supervised performance, while reducing the computational
time for self-supervision and parameters of the model.

1 INTRODUCTION

Graphs are rich and expressive mathematical abstractions and data structures that can represent
properties of nodes and links in interconnected systems such as social networks, molecules and
knowledge graphs. Several graph neural networks (GNNs) and graph transformers (GTs) that
leverage powerful data processing architectures have been proposed to learn challenging tasks for
a wide range of datasets (Fan et al., 2019; Baek et al., 2020; Rong et al., 2020; Muzio et al., 2021;
Wu et al., 2022). Recently, self-supervised learning (SSL), which was born out of natural language
processing and was later successfully applied to computer vision (Kolesnikov et al., 2019; He et al.,
2022), has been demonstrated to aid in graph representation learning. SSL has ushered in more
powerful GNN and GT models (Rong et al., 2020; Xiao et al., 2022; Jin et al., 2022; Liu et al., 2022).
The success of self supervised models for graph-structured data has been demonstrated in different
applications such as recommendation systems (Wu et al., 2021) and molecular property prediction
(Zhang et al., 2021).

Self-supervision exploits unlabelled data to learn representations that might be useful across many
downstream tasks (Balestriero et al., 2023). The state-of-the-art (SOTA) in graph self-supervision
constrains pre-training to only one dataset (e.g., CoraFull), with one (Liu et al., 2022) or many
(Jin et al., 2022) pre-training tasks at a time. As a result, representations learnt through SSL are likely
to be specialized to one particular dataset, and thus lack the ability to generalize well to other graphs
(e.g., DBLP) of the same family (here, citation networks). Thus, state-of-the-art graph SSL entails
individualized pre-training for every dataset of interest, and exhibits several drawbacks. First, each
model learns a distinct set of parameters, independent of other similar datasets. Such a model does
not leverage any shared parameters that could lead to learning universal features, nor does it exhibit
the ability to exploit data from other datasets during training. This hampers generalizability of the
resulting models, and as shown in this work, also the performance of SSL models on downstream
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node classification tasks. Second, owing to the different node and edge feature dimensions of different
datasets, models obtained with state-of-the-art SSL are not compatible with other datasets. As a result,
with the availability of new datasets, it is imperative to build a new model from scratch, and one cannot
leverage previously learnt representations to inform the training process and reduce the computational
load. In other words, state-of-the-art SSL models do not exhibit adaptability. Finally, training a
separate model for each dataset increases the computational cost of self-supervision. Furthermore,
multiple models require proportionally more storage, adding to the cost of SSL. On the other hand,
graphs belonging to the same family are known to exhibit universal patterns (Sharan et al., 2005;
Wang & Barabási, 2021), and consequently, it is important to develop a combined learning framework
to simultaneously learn from multiple graphs of a family, leading to a foundation graph model.

Learning universal representations across graphs poses an important challenge of disparate node and
edge features for different graphs. Specifically, node features of different graphs typically exhibit
different dimensionality, and do not render themselves to straightforward comparison across graphs.
Additionally, the features of different graphs can represent different quantities even if they are of the
same dimensionality, hindering unified processing of these features. As a result, it is imperative for a
universal SSL approach to be able to accommodate this diversity, and treat disparate node and edge
features in a unified manner. Along similar lines, there has been an increased interest in developing
models that can handle data of different modalities, and learn features from different sources of data,
such as videos and text, through modular structures and carefully crafted embeddings (Gao et al.,
2020; Akbari et al., 2021). These foundation multi-modal approaches transform multi-modal data
into a common representation space to learn better and robust features. Such an approach has met
with incredible success, with a host of different architectures and data processing pipelines developed
in the recent years (Lu et al., 2022a;b; Wang et al., 2022; Xu et al., 2023), and is paving the way
towards artificial general intelligence (Fei et al., 2022). Inspired by the success of these models, our
work aims to investigate if a universal learning approach can be adopted to learn representations from
multiple graphs with disparate features, and if the resulting models exhibit better performance in
downstream tasks.

Contributions: In this work, we propose a generic framework that is rooted in universal representa-
tion learning capable of learning universal features from multiple graphs. We use a state-of-the-art
graph transformer architecture to construct a universal model, and train it in an end-to-end manner
with six benchmark citation networks. We explicitly address the challenges with SSL outlined above,
and demonstrate the superiority of the resulting models over traditional approaches. Specifically, this
work makes the following contributions:

1. Present a universal representation learning framework through self-supervision with multiple
graphs (U-SSL). Our universal model consists of graph-specific parameters that accommodate the
disparity of node features of different graphs, and universal parameters that learn representations
generic to all graphs used during training. The model can be trained to learn both graph-specific
and universal parameters in an end-to-end manner.

2. Present a graph transformer-based U-SSL model, and perform extensive experiments with five
benchmark citation network datasets, demonstrating the superiority of the resulting models over
those obtained with SSL. We also demonstrate that training universal models is computationally
efficient compared to SSL.

3. Demonstrate scalability and adaptability of universal models with a large citation network dataset
(OGBN-arxiv).

We achieve 1 to 8 points improvement in accuracy on downstream node classification for graphs of
different sizes, 6% improvement in training time per epoch, while requiring only a fraction (0.40) of
the number of parameters compared to SSL. The proposed U-SSL framework is aligned with the core
features of foundation models, specifically, it learns across multiple graphs, exhibits properties such
as unification, adaptability, and generalizability, and can serve several downstream tasks, resulting in
foundation graph models.

2 RELATED WORK

Graph neural networks and graph transformers Graph neural networks have been extremely
successful in learning representations from graph-structured data, and solving challenging problems in
applications including neuroscience (Wein et al., 2021), medicine (Bongini et al., 2021), optimization
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(Schuetz et al., 2022) and many more. Most GNN architectures can be broadly categorized as
message passing networks, that operate in two stages, i.e., aggregation and combination, with
different architectures performing these steps in different ways. One of the earliest GNNs generalized
the convolution operation to graph-structured data, and proposed the Graph Convolutional Network
(GCN) (Kipf & Welling, 2016). This was followed by an explosion of GNN models, such as
GraphSAGE (Hamilton et al., 2017), Graph Attention Networks (GAT) (Veličković et al., 2018)
and Graph Isomorphism Networks (GIN) (Xu et al., 2019) that crafted different aggregation and
combination operations to capture different relationships in graphs. For instance, GAT uses an
attention mechanism for aggregation to assign different weights to different nodes in a neighborhood,
allowing the model to focus on the most relevant nodes for a given task, and obtain better performance
than GCN that uses convolution for aggregation.

Message passing networks (MPNs) suffer from fundamental limitations, e.g., over-smoothing (Oono
& Suzuki, 2020), over-squashing (Alon & Yahav, 2021) and expressive limits (Morris et al., 2019),
that are addressed with graph transformers (Rampášek et al., 2022). GTs make use of positional or
structural embeddings along with global attention mechanisms to learn both local and global features
and thus address the limitations of MPNs (Rampášek et al., 2022). Several GT architectures have
been proposed for homogeneous graphs (Yun et al., 2019; Kreuzer et al., 2021), heterogeneous graphs
(Hu et al., 2020) and hyper-graphs (Kim et al., 2021). GTs, however, relatively require more training
data and do not generalize well to unseen graphs Zhao et al. (2021); Chen et al. (2023b).

Graph representation learning with self-supervision SSL learns generic representations as
opposed to task-specific representations in supervised learning. There are several SSL methods on
graphs including Deep Graph Infomax Velickovic et al. (2019) and Auto-SSL Jin et al. (2022), as
well as reviews Jin et al. (2022); Xie et al. (2022); Liu et al. (2022) that summarize the state-of-the-art.
Graph SSL has been performed with contrastive as well as predictive learning tasks Xie et al. (2022).
While the former aim to learn representations by distinguishing positive and negative samples, the
latter seek to predict the values of masked or corrupted nodes or edges. For instance, Velickovic et al.
(2019) adopt contrastive learning and maximize mutual information between local patches of a graph
and the global graph representation to learn node representation. Rong et al. (2020) apply SSL to
molecular graphs to learns representations by predicting masked nodes and edges. There are several
SSL tasks such as node attribute masking, graph structure prediction, and graph context prediction,
which can be used to learn representations in a self-supervised manner.

The majority of graph self-supervision is performed with one graph and one SSL task. Jin et al. (2022)
proposed a mechanism to automate self-supervision with multiple tasks, by adaptively weighing the
losses of different tasks during training. Their framework, named Auto-SSL, extended SSL to include
multiple tasks during training. However, all SOTA graph SSL methods use only one graph/dataset to
learn representations prior to downstream task learning. We address this gap, and a framework to
learn universal representations across different graphs – of a certain family.

3 LEARNING UNIVERSAL FEATURES WITH GRAPH SELF-SUPERVISION

In this section, we describe the problem formulation and our hypothesis on improving graph represen-
tation learning, followed by the construction of different components of the universal self-supervision
(U-SSL) model.

3.1 PROBLEM FORMULATION AND HYPOTHESIS

We consider N graphs {Gi}Ni=1, with each graph represented as a tuple of nodes Vi and edges Ei,
Gi = (Vi, Ei) such that |Vi| = Ni and Ei ⊆ Vi × Vi. Let Ai ∈ {0, 1}Ni×Ni and Xi ∈ RNi×Di

represent the adjacency matrix and node feature matrix of Gi, respectively. Let LSSL,i denote the
pretext task loss for graph Gi. We then provide the definition of SSL, as studied in the current
literature as:

Definition 1. For graph Gi, the problem of self supervised learning is to learn an encoder
fi (Xi,Ai;Θi) by minimizing the loss LSSL,i such that the learnt representations can be used
to solve downstream learning tasks for Gi.
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We extend this definition to the problem of learning universal features with self-supervision (U-SSL)
as follows:
Definition 2. For graphs {Gi}, the problem of universal self-supervision is to learn an encoder
f ({Xi}, {Ai}; {Θi},Φ) by minimizing the loss

∑N
i=1 LSSL,i such that the learnt features can be

used to solve downstream tasks for {Gi}.

The U-SSL model can take as input, disparate features from different graphs, and learn universal
features that are common to all the datasets, thereby generalizing well to these datasets, and potentially
also to other similar datasets. We note that different graphs have different node feature sizes, i.e.,
in general, Di ̸= Dj for i ̸= j. This necessitates that there be parts of the encoder f dedicated to
different graphs, with graph-specific parameters Θi, in addition to the universal parameters Φ.

Let us denote the representations learnt for graph Gi with SSL as Hs
i , and those learnt with U-SSL as

Hu
i , i.e.,

Hs
i = fi (Xi,Ai;Θi) , (1)

Hu
i = f (Xi,Ai;Θi,Φ) . (2)

Our hypothesis is that U-SSL can learn representations that are better than those learnt with SSL, in
terms of solving a downstream task, e.g., node classification, for graphs {Gi}Ni=1. Let us denote the
downstream task head for graph Gi as hi(·;Ψi), and let M be a metric such that higher values of M
represent better performing models. Then, our hypothesis can be formally stated as:

H : M (hi (H
u
i ;Ψ

u
i )) > M (hi (H

s
i ;Ψ

s
i )) . (3)

Here, the superscripts in Ψi signify that the parameters learnt during fine-tuning of SSL and U-SSL
models will be different for the same downstream task head hi.

In formulating our hypothesis, we view a graph Gi as being an instance of some underlying real-life
phenomenon. For instance, CoraFull, DBLP, Citeseer, etc. are different instances of the same
underlying real-life phenomenon, i.e., citation among research articles. Learning representations
with SSL allows one to extract patterns from only one instance of the underlying phenomenon, while
U-SSL allows learning from multiple instances, and hence, observing the underlying phenomenon
through multiple lenses. As a result, U-SSL allows learning representations that are fundamental to
the underlying mechanism, and is not restricted to the patterns observed in one instance. This can
lead to learning more generic features, and hence better downstream performance with U-SSL.

3.2 GRAPH-SPECIFIC ENCODER

The core idea of U-SSL is to learn representations that are generalizable across multiple graphs.
This entails processing node features from different graphs in a unified pipeline. However, node
(and edge) features of different graphs are obtained with different algorithms, and are typically
disparate, i.e., (a) they do not have the same dimensionality, and (b) the entries of feature vectors can
bear different meanings for different graphs, even if they have the same dimensionality. It is thus
imperative to first homogenize the node (and edge) features of different graphs from their original
disparate spaces (of dimension Di) to a common space (of dimension D) for processing by the
rest of the model. We therefore need graph-specific encoders, represented as gi(·;Θi) for graph
Gi. The encoder gi can be any neural network module, e.g., GCN layers, linear layers, etc. that
transforms the feature vectors into RD, and can additionally involve pre-processing steps such as
node feature augmentation to enrich the feature vectors. In our proposed framework, we include
feature augmentation (FA) followed by feature transformation (FT ), that transform the node features
Xi ∈ RNi×Di to X̃i ∈ RNi×D̃i to Zi ∈ RNi×D:

X̃i = FA (Xi) , (4)

gi(Xi;Θi) = Zi = FT

(
X̃i;Θi

)
, (5)

= FT (FA (Xi) ;Θi) . (6)
In general, the functions gi, FA and FT also take the adjacency matrix Ai as input, which is
omitted here for brevity. The output of the graph-specific encoders Zi represents the graph-specific
homogenized features that exist in RD, ∀Gi and whose individual entries represent the same quantity
across all graphs. In an N -graph application, the U-SSL model will be constructed with N different
graph-specific encoders, as shown in Fig. 1.
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(a) Model architecture for universal self-supervision

(b) Pre-training (c) Fine-tuning

Figure 1: Universal Self-supervised Learning (U-SSL) across graphs. (a) Model architecture for
U-SSL with graph-specific (Θi) and universal (Φ) parameters. (b) U-SSL pre-training with two
graphs, G1 and G2 for two tasks with parameters Γ1 and Γ2. (c) Downstream task learning for
individual graphs. Hatched boxes represent frozen parameters (Θi,Φ), and shaded boxes represent
learnable parameters (Ψi).

3.3 UNIVERSAL REPRESENTATION LEARNING MODULE

The universal representation learning (URL) module aims to learn features that are generic to all N
graphs used during pre-training, and thus capture patterns that are fundamental to the underlying
process. It takes in the homogenized node features Zi from all graphs, and learns the graph-specific
universal features, denoted as Hu

i for graph Gi. The URL module, denoted as g(·,Φ) for all graphs
{Gi} can be any neural network module, e.g., GNN layers or GT blocks, and can be expressed as:

Hu
i = g(Zi;Φ),∀i ∈ [1, N ]. (7)

These features are graph-specific since they are obtained from the homogenized node features of a
particular graph, and at the same time universal, because they are learnt by minimizing the collective
loss accrued for all graphs. A U-SSL model for N graphs is thus constructed with N graph-specific
encoders and one universal representation module, as shown in Fig. 1(a). This modular nature of the
model architecture allows adding as many graph-specific encoders as desired, and simultaneously
processing disparate node features, thus facilitating end-to-end training of the model. In addition,
this modular nature renders adaptability to the model, wherein a new graph-specific encoder can
be introduced to the model without having to alter the rest of the model structure, and re-train, or
continue training with the new dataset.

3.4 PRE-TRAINING AND FINE-TUNING U-SSL MODELS

Pre-training models with SSL involves selecting one or more pre-training task (also referred to in
the literature as pretext tasks), typically depending on the type of downstream task, and appending
a model with heads to learn the different tasks. Pre-training of U-SSL models is also performed
in a similar vein, i.e., by using the U-SSL model with N graph-specific modules, one universal
representation module and one or more task-specific heads. Let Γ represent the task-specific head
parameters for a pretext task and LSSL,i represent the loss for ith graph. Then, the total loss for N
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graphs can be expressed as:

LUSSL =

N∑
i=1

LSSL,i (Xi,Ai;Θi,Φ,Γ) . (8)

The total loss LUSSL is used to simultaneously learn the parameters {Θi}, Φ and Γ in an end-to
end manner. The U-SSL loss can also be generalised to any number of tasks, which is presented
in Appendix 8.2. At the time of downstream task learning, new heads are appended to the model,
parameterized in Ψi, which are learnt separately for each graph by keeping the learnt parameters
{Θi}, and Φ unchanged. The pre-training and fine-tuning of U-SSL models are depicted in Fig. 1(b)
and 1(c), respectively.

3.5 GRAPH TRANSFORMER-BASED U-SSL MODEL

In this work, we construct a U-SSL model that learns universal representations with citation network
datasets. We use linear layers as graph-specific encoders, and a powerful graph transformer, i.e.,
neighbourhood aggregation graph transformer (NAGphormer) (Chen et al., 2023a) as the URL
module. NAGphormer is a powerful SOTA graph transformer that leverages position embedding and
local neighbourhood-based feature aggregation to tokenize nodes in a graph (Chen et al., 2023a). This
approach, referred to a Hop2Token allows encoding both local information and position information
in the tokens, which are then used by a tandem of transformer blocks to learn node classification
tasks. The NAGphormer has been shown to unanimously outperform SOTA GNNs and GTs for
node classification on small-scale and large-scale graphs (Chen et al., 2023a). We construct the URL
module of our U-SSL model with multiple transformer encoder layers, followed by an attention-based
readout layer employed in NAGphormer. However, unlike NAGphormer, we do not use a multi-layer
perceptron module after the attention-based readout, and consider the outputs of the readout as final
representations learnt by the model.

4 EXPERIMENTS

Experimental setup We consider the downstream task of node classification in citation network
datasets. We consider 6 benchmark graphs: CoraFull, Cora-ML, DBLP, Citeseer, PubMed
and OGBN-arxiv in our study. Our universal model is inspired from NAGphormer, so the URL
module (parameterized in Φ) is constructed with the transformer encoder used in NAGphormer. The
URL module has 4 encoder layers with embedding dimension of 256 and 8 attention heads in each
layer. The final encoder layer is followed by an attention-based readout, as used in NAGphormer. We
employ Laplacian position embedding of the nodes (of size 15) to additionally augment node features
with structural information (FA), and obtain the augmented node features of dimension D̃i = Di+15
for graph Gi. This is followed by a linear projection (FT ) from the augmented node feature dimension
D̃i to 256 for graph Gi, which constitute the learnable parameters Θi of the graph-specific encoders.
Although the proposed framework can work with multiple pretext tasks, we consider only one task in
this study. Thus, we construct the universal self-supervised model with 1 universal learning module
and 1 task-specific module.

The choice of the self-supervision task in our study is guided by the downstream task. Since we
are interested in learning features for node classification, we use the pair-wise attribute similarity
(PairSim) self-supervision task in our study. This task learns an encoder to differentiate between
similar and dissimilar nodes, posed as a two-class classification problem. We use one fully connected
layer to learn this task. We demonstrate the superiority of the features learnt with U-SSL by evaluating
and comparing the performance of models obtained with SSL, U-SSL and supervised learning on
node classification for all the graphs. We further train 10 instances of these models for the downstream
task to account uncertainty and report the mean and standard deviation of classification accuracy for
each experiment. The implementation details are provided in Appendix 8.4.

Results We present the advantages of U-SSL over SSL and supervised learning in terms of four
aspects: (i) efficacy, i.e., improvement in performance compared to SSL, which enables bridging the
gap between supervised and self-supervised performance, (ii) efficiency, i.e., reduction in training
time compared to SSL, (iii) scalability, i.e., delivering efficacy and efficiency for larger datasets, and
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Table 1: Node classification accuracy of supervised baseline, SSL and U-SSL models. Entries in
boldface represent best performance out of SSL and U-SSL. Underlined entries represent U-SSL
models that match supervised baseline performance.

Dataset Baseline SSL U-SSL
CoraFull 0.70± 0.007 0.59± 0.003 0.60± 0.003
Cora-ML 0.87± 0.004 0.80± 0.002 0.84± 0.001

DBLP 0.83± 0.008 0.79± 0.001 0.83± 0.001
Citeseer 0.94± 0.003 0.83± 0.001 0.86± 0.002
PubMed 0.87± 0.008 0.85± 0.002 0.87± 0.001

Table 2: Training time per epoch in seconds for self-supervision and downstream task learning.
Dataset self-supervision Node classification

SSL U-SSL Fine-tuning Supervised baseline
CoraFull 0.294

x 0.029 0.119
Cora-ML 0.046 0.004 0.020

DBLP 0.143 0.609 0.022 0.101
Citeseer 0.046

y 0.005 0.026
Pubmed 0.134 0.025 0.111

(iv) adaptability, i.e., the ability to leverage representations learnt through U-SSL on a set of datasets,
to learn downstream tasks on new datasets.

Efficacy: The node classification accuracy of supervised baseline, SSL and U-SSL models for
CoraFull, Cora-ML, DBLP, Citeseer and PubMed is listed in Table 1. The models obtained
with U-SSL outperform the corresponding SSL models, delivering between 1% and 4% improvement
in mean accuracy for these datasets. Specifically, U-SSL provides a performance gain of 1% for
CoraFull, 2% for PubMed, 3% for Citeseer, and 4% for CoraML and DBLP datasets. We note
that CoraFull has a large number of classes (70) as well as a large number of nodes (19, 793),
resulting in a more difficult classification task. Nevertheless, the U-SSL model still produces 1%
improvement in accuracy of classification for this dataset. Further, the U-SSL model matches the
supervised performance for DBLP and PubMed datasets, clearly demonstrating the advantage of
U-SSL over SSL. These results support our hypothesis, and demonstrate that there is more to graphs
than can be learnt with plain SSL, and learning universal representations across graphs with U-SSL
can bridge the gap between supervised and self-supervised performance. In addition, we note that the
total number of parameters for the five SSL models ({Θi}, Φ) is 14, 390, 650, which is 2.46 times
5, 831, 29 parameters for the U-SSL model trained with the five datasets.We also observe similar
results with co-purchase datasets (see Appendix 8.5). However, including graphs from multiple
families does not provide a consistent improvement in performance for all graphs (see Appendix 8.6).
This also supports our hypothesis that the underlying similarities between graphs of a family can lead
to improvement in performance.

Efficiency: We observe that the number of epochs for convergence of SSL and U-SSL models at
the time of pre-training are comparable for all datasets (see Appendix 8.7). We therefore report the
efficiency in terms of training time per epoch, which are reported in Table 2 for self-supervision and
downstream task learning for SSL, U-SSL and supervised models. The time per epoch for building
5 SSL models is 0.663 seconds, which is greater than the time per epoch for building one U-SSL
model, i.e., 0.609 seconds for all five datasets. Thus, U-SSL provides an efficient framework for
self-supervised graph representation learning across multiple datasets.

Scalability: We study the scalability of the U-SSL framework to graphs of larger size, specifically
OGBN-arxiv. We add this dataset to the previous five datasets, and train the model with 6 datasets.
The supervised baseline model achieves an accuracy of 0.61± 0.007, while the SSL model provides
an accuracy of 0.46± 0.003 for the OGBN-arxiv dataset. The U-SSL model achieves an accuracy
of 0.54± 0.002, delivering an improvement of 8% in classification accuracy compared to the SSL
model. This is a significant gain in performance for a dataset that is much larger than the graphs
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Table 3: Ablation results with respect to transformer embedding size. Entries in boldface represent
best performance.

Dataset Transformer embedding size
256 128 64

CoraFull 0.60± 0.003 0.56± 0.002 0.52± 0.002
Cora-ML 0.84± 0.001 0.77± 0.003 0.78± 0.002

DBLP 0.83± 0.001 0.81± 0.002 0.80± 0.001
Citeseer 0.86± 0.002 0.82± 0.002 0.77± 0.001
PubMed 0.87± 0.001 0.85± 0.001 0.84± 0.007

reported in Table 1. This demonstrates that learning universal representations scales well to graphs
of larger size.

Adaptability: Finally, we study the adaptability of the U-SSL framework to new datasets, by exam-
ining if the representations learnt from a set of datasets can be used to solve the downstream task
for a new dataset. Here, we start with the model obtained with U-SSL of the five previous datasets
that has 5 graph-specific modules {Θi}, i ∈ [1, 5]. We leverage the modular nature of the U-SSL
models, and introduce a new graph-specific module Θ6 dedicated to the new graph, keeping the
universal representation learning module Φ unchanged. We perform self-supervision with the new
dataset and learn only Θ6, in effect projecting the node features of the new dataset to the universal
representation space in a self-supervised manner. We perform this experiment with OGBN-arxiv as
the new dataset, and find that the adapted model achieves a classification accuracy of 0.538± 0.002.
We observe that this performance is comparable to that of the U-SSL model trained with six datasets
discussed the previous section, demonstrating the adaptability of U-SSL models. Thus, one can train
a U-SSL model with a set of benchmark datasets, and then simply learn a graph-specific module for a
new dataset to achieve comparable performance. This prevents repetitive self-supervised learning
with U-SSL for new graphs as they are made available, and is a remarkable feature of the framework
that enables re-use of the learnt representations, thereby reducing the computational cost of building
universal models.

Ablation The ablation study of the universal model with respect to the dimension of transformer
embedding is reported in Table 3. The performance of the model consistently decreases with smaller
embedding dimension for all datasets. The results of ablation with respect to the transformer depth
are reported in Table 4. Contrary to Table 3, we observe that the performance of the model does
not necessarily increase with greater depth of the URL module. In fact, for all datasets except
CoraFull, increasing the depth of the URL module from 4 to 6 results in poorer performing model.
This suggests that the expressive power, and hence performance of the models is more reliant on
having high-dimensional embeddings than a deep URL module.

Finally, we study the ablation of the U-SSL model with respect to the architecture of URL module.
We use three GCN, GraphSAGE and GAT layers to construct URL modules, and obtain three different
U-SSL models. We compare the performance of the U-SSL models with these architectures and
report the results in Table 5. The quantities in parentheses represent the improvement in performance
of U-SSL models with respect to SSL models. We observe that the GCN model does not provide
any improvement in accuracy for four out of five datasets, and provides an improvement of 3% for
PubMed. On the other hand, GraphSAGE provides improvements of 1% each for CoraML and
Citeseer datasets, while exhibiting 2% fall in performance for DBLP. The NAGphormer-based
U-SSL model provides consistent improvement in performance for all datasets, and also outperforms
the GNN-based models for majority of the datasets. Thus, the transformer-based U-SSL model
provides a better modeling approach to learn universal representations across graphs.

5 PERSPECTIVE

Limitations and future work The current work demonstrates the advantage of U-SSL by incorpo-
rating multiple graphs during self-supervision. However, only one pretext task, i.e., pairwise attribute
similarity and one downstream task, i.e., node classification have been studied. It has been shown
that including multiple pretext tasks can boost downstream performance Jin et al. (2022). We present
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Table 4: Ablation results with respect to transformer depth. Entries in boldface represent best
performance.

Dataset Transformer depth
2 4 6

CoraFull 0.61± 0.002 0.60± 0.003 0.77± 0.001
Cora-ML 0.83± 0.003 0.84± 0.001 0.82± 0.003

DBLP 0.83± 0.002 0.83± 0.001 0.80± 0.003
Citeseer 0.85± 0.003 0.86± 0.002 0.82± 0.002
PubMed 0.86± 0.001 0.87± 0.001 0.85± 0.001

Table 5: Ablation results with respect to architecture of universal representation learning module.
Entries in parentheses represent the improvement compared to SSL models. Entries in boldface
represent best performance.

Dataset URL architecture
NAGphormer GCN GraphSAGE GAT

CoraFull 0.60± 0.003(0.01) 0.60± 0.004(−0.006) 0.55± 0.004(−0.001) 0.45± 0.003(−0.161)
Cora-ML 0.84± 0.001(0.04) 0.86± 0.002(−0.005) 0.82± 0.004(0.01) 0.74± 0.002(−0.107)

DBLP 0.83± 0.001(0.04) 0.80± 0.002(−0.008) 0.81± 0.002(−0.02) 0.79± 0.002(−0.034)
Citeseer 0.86± 0.002(0.03) 0.85± 0.002(0.0001) 0.84± 0.002(0.01) 0.81± 0.003(−0.039)
PubMed 0.87± 0.001(0.02) 0.86± 0.002(0.03) 0.83± 0.002(−0.005) 0.84± 0.002(−0.006)

preliminary results of performing U-SSL with two pretext tasks and node classification downstream
task in Appendix 8.8, and plan to conduct a more exhaustive study with multiple pretext and down-
stream tasks, e.g., link prediction and graph classification in the future. The impact of different
types of position embeddings and transformer architectures can further be investigated to identify
specific embedding strategies that boost performance. The datasets considered here are homogeneous
graphs, and the proposed framework can further be extended to heterogeneous graphs to investigate
the generalizability of the approach. Finally, the current framework unifies representation learning
across graphs, but still needs multiple pretext task heads during pre-training. Future work can be
directed to address this, and unify learning across tasks via sequencing output predictions.

Broader impact Current research in representation learning is advancing the field towards artificial
general intelligence, with foundation models and multi-modal training being major developments in
this direction. These models learn representations from different types of data sources, e.g., images,
videos and text, that are generalizable across multiple datasets, and at times, across multiple tasks.
This work is aligned along these lines, and proposes a framework to build graph foundation models,
and learn universal features from multiple graphs.

6 CONCLUSION

This work studies the problem of learning universal features across graphs of a family through
self-supervision. We present a novel universal SSL framework that constructs foundation model
with multiple graph-specific encoders and one universal representation learning module. Specifically,
we employ graph-specific encoders to homogenize disparate features from multiple graphs, and the
universal module to learn generic representations from the homogenized features. We construct one
U-SSL model with a state-of-the-art graph transformer, and with extensive experiments, show that
the proposed framework provides an efficacious, efficient, scalable and adaptable approach to learn
universal representations from graphs.

7 REPRODUCIBILITY STATEMENT

The authors plan to make their GitHub repository public after the review process to ensure repro-
ducibility of the results.
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8 APPENDIX

8.1 RELATION TO CONTINUAL GRAPH LEARNING

Continuous learning and graph lifelong learning address the challenge of learning from graph-
structured data when the graph structure can evolve (e.g., grow) over time, and/or features of the
graph are initially unavailable, and become available over time Liu et al. (2023); Yuan et al. (2023).
These paradigms are also used when the task can change over time. However, we propose a framework
for self-supervised learning, wherein the graph structure, features and tasks are known ahead of time.
We advance the SOTA in SSL by allowing a model to learn simultaneously from multiple datasets -
at once, and do not investigate learning as a function of time. Although the ability of our framework
to include more graphs as they are made available over time, can be viewed as enabling lifelong
learning, the challenges and approaches to lifelong learning focus on one graph growing over time as
opposed to multiple graphs being incorporated into one model.
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8.2 GENERALISATION OF U-SSL LOSS TO MULTIPLE PRETEXT TASKS

The U-SSL loss described in Equation 8 allows pre-training with only one pretext task parameterised
in Γ. However, the U-SSL framework can be generalised to an arbitrary number M of pretext tasks
by modifying the loss function as follows:

LUSSL =

N∑
i=1

M∑
j=1

WjLSSL,i,j (Xi,Ai;Θi,Φ,Γj) . (9)

Here, Wj represents the weightage provided to the jth pretext task. Note that each task-specific
head Γj is shared by all the N graphs, and thus, the number of parameters increases only with the
number of tasks and is independent of the number of graphs. This feature of U-SSL further reduces
the parameter count of a pre-trained model for multiple graphs compared to SSL.

8.3 PAIRSIM FOR PRETRAINING

The implementation of our pretext task, i.e., pair-wise node attribute similarity is based on the
implementation of Jin et al. (2020) and Jin et al. (2022). First, sets of node pairs with the highest
similarity and dissimlarity are created as follows:

τsim = {(vi, vj)|sij ∈ top-K of {sik}Nk=1} \ sii}, (10)

τdissim = {(vi, vj)|sij ∈ bottom-K of {sik}Nk=1} \ sii}. (11)

Here, sij represents the similarity between node features of vi and vj . This is achieved in out
implementation by creating a K-neighbours graph from the node features. The loss function for
training can then be expressed as:

LPairSim =
∑

(vi,vj)∈τ

NLL(f(|hi − hj |), yij), (12)

with τ = τsim
⋃
τdissim and hi is the embedding of the ith node, f being the pre-training head and

yij being the target, such that yij = 1 for positive node pair, i.e., (vi, vj) ∈ τsim and yij = 0 for
negative node pair, i.e., (vi, vj) /∈ τdissim.

8.4 IMPLEMENTATION DETAILS

All experiments are performed on an NVIDIA DGX-A100 Workstation with four A100 GPUs, each
with 40 GB memory. Software is implemented using PyTorch Geometric software library. The
implementation of pair-wise attribute similarity is adapted from the implementation of Jin et al.
(2022). The official implementation of NAGphormer Chen et al. (2023a) is used to construct the URL
module of all models. The Adam optimizer is used to learn the parameters of all models. The base
learning rate is set to 1e−3 for pre-training and supervised learning, and 1e−2 for fine-tuning of SSL
and U-SSL models. A learning rate scheduler that reduces the learning rate when the loss does not
decrease for 50 epochs is employed. Self-supervision is performed for 2500 epochs, and fine-tuning
is performed for 1000 epochs for SSL and U-SSL models. Supervised baseline models are trained for
500 epochs.

8.5 UNIVERSAL SELF-SUPERVISION WITH CO-PURCHASE NETWORKS

We compare the performance of SSL, U-SSL and supervised baselines for the co-purchase family
of graphs with computers, photo datasets. The downstream node classification performance
for the three models are shown in Table 6. The results are consistent with those observed for the
citation datasets. We obtain 2% improvement for computers, and 1% improvement for photo.
This adds to the results discussed in Section 6, and shows that U-SSL can learn generalisable features
for diverse families of graphs.

8.6 IMPACT OF GRAPHS FROM MULTIPLE FAMILIES

In the previous results, we consider graphs belonging to one family (citation networks or co-purchase
networks) and show that U-SSL learns better features than SSL. We also investigate if including
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Table 6: Node classification accuracy of supervised baseline, SSL and U-SSL models for co-purchase
datasets. Entries in boldface represent best performance out of SSL and U-SSL.

Dataset Baseline SSL U-SSL
computers 0.90± 0.007 0.83± 0.001 0.86± 0.001

photo 0.94± 0.004 0.91± 0.001 0.92± 0.001

Table 7: Node classification accuracy of supervised baseline, SSL and U-SSL models for citation
and co-purchase datasets. Entries in boldface represent best performance out of SSL and U-SSL.
Underlined entries represent U-SSL models that match supervised baseline performance.

Dataset U-SSL (2 families) U-SSL (1 family)
CoraFull 0.60± 0.003 0.60± 0.003
Cora-ML 0.85± 0.002 0.84± 0.001
DBLP 0.81± 0.001 0.83± 0.001

Citeseer 0.85± 0.004 0.86± 0.002
PubMed 0.86± 0.002 0.87± 0.001

computers 0.85± 0.001 0.86± 0.001
photo 0.92± 0.001 0.92± 0.001

graphs from more than one family also results in better performance. To achieve this, we perform
combined training with all the 5 citation networks and 2 co-purchase networks, and summarise the
results in Table 7. We observe that out of the 7 datasets, the performance of U-SSL is better (in
comparison to SSL) for 1 dataset, worse for 4 datasets, and unchanged for 2 dataset. Based on these
results, we cannot claim that U-SSL can always learn better representations when trained across
multiple families of graphs. This result corroborates the reasoning behind our hypothesis, i.e., graphs
of the same family exhibit commonalities, and thus a combined learning framework can leverage the
underlying common patterns to improve the performance.

8.7 CONVERGENCE OF SSL AND U-SSL MODELS FOR CITATION NETWORKS

The training convergence of self-supervision for the citation networks is shown in Figure 2. We can
see that the convergence of all the models (SSL and U-SSL) are similar, which allows us to compare
their efficiency with the training time per epoch, as presented in Table 2.

Figure 2: Convergence of pre-training of SSL and U-SSL models. The training loss is logged for
every 50 epochs. All models converge with similar rates, allowing us to compare with time per epoch.
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Table 8: Node classification accuracy of supervised baseline, SSL and U-SSL models for citation
datasets, pretrained on one and two pretext tasks. Entries in boldface represent best performance.

Dataset U-SSL (1 task) U-SSL (2 tasks)
CoraFull 0.60 0.66
Cora-ML 0.84 0.81
DBLP 0.83 0.81

Citeseer 0.86 0.88
PubMed 0.87 0.86

8.8 UNIVERSAL SELF-SUPERVISION WITH TWO PRETEXT TASKS

In addition to using the pair-wise node attribute similarity, we also use the pair-wise node distance
as an additional pretext task to perform self-supervision. We consider the five citation datasets, and
construct the U-SSL model with five graph-specific modules, one universal representation learning
module and two task-specific heads for pre-training. We use the loss function described in Equation
9 to tune the parameters Θi, Φ and Γj, ∀ i ∈ [1, 5] and ∀ j ∈ [1, 2]. The node classification
accuracy of the models are shown in Table 8. We can see that pre-training with two tasks results
in 6% improvement in performance for CoraFull and 2% improvement for Citeseer. It is
noteworthy that while performing self-supervised learning with multiple tasks, weighing the loss for
each task is typically performed to achieve an improvement in performance. However, we have not
performed a search for the optimal weights (Wj in Equation 9), and have assigned equal weights
to both the tasks, i.e., W1 = W2 = 1. Even with this configuration, we obtain an improvement in
performance for two datasets. These results support the general effectiveness of our framework in
improving the performance of features learnt through self-supervised learning. Future studies will be
aimed at improving optimising the weights of different tasks to achieve consistent improvement in
performance.
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