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Abstract001

Recent years have witnessed increasing interest002
in image-text contrastive modeling, exempli-003
fied by models like CLIP, which have been004
widely used for zero-shot classification and005
image-text retrieval. In this paper, we pro-006
pose TernaryCLIP, a lightweight computational007
framework that converts both the vision and008
text encoders of CLIP into ternary-weight for-009
mats. TernaryCLIP incorporates quantization-010
aware training and ternarization-aware distilla-011
tion modules from a full-precision CLIP, en-012
abling low-cost and high-efficiency comput-013
ing. Comprehensive experiments across 41 real-014
world datasets demonstrate that TernaryCLIP015
achieves up to a 16× storage reduction, 60%016
sparsity, and 2.3× inference acceleration while017
maintaining competitive accuracy on zero-shot018
image classification and image-text retrieval019
tasks. Our work highlights the feasibility of ex-020
treme quantization for large multimodal mod-021
els, supporting effective and efficient deploy-022
ment on resource-constrained devices.023

1 Introduction024

Large-scale multimodal models, like Contrastive025

Language-Image Pretraining (CLIP, Radford et al.,026

2021), have demonstrated exceptional performance027

in zero-shot classification, image-text retrieval, and028

cross-modal understanding. However, their impres-029

sive capabilities come at the cost of huge computa-030

tional and memory demands, making them imprac-031

tical for resource-constrained environments.032

Model quantization has emerged as a promis-033

ing solution for reducing compute costs by repre-034

senting model weights with lower precision (Jacob035

et al., 2018; Wu et al., 2016; Banner et al., 2019).036

Unlike traditional quantization approaches, such037

as 8-bit or 4-bit quantization, which achieve a cer-038

tain degree of memory reduction, recent advances039

in ternary quantization have demonstrated even040

greater potential (Zhu et al., 2017a; Li et al., 2016).041

By compressing the weights into three discrete val- 042

ues: {−∆, 0,+∆}, ternary quantization reduces 043

memory consumption and enables efficient bitwise 044

operations during inference (Wang et al., 2019; 045

Micikevicius et al., 2018). Previous works like 046

TernaryBERT (Zafrir et al., 2019) and TTQ (Zhu 047

et al., 2017a) have validated ternarization for uni- 048

modal tasks, but the extension to multimodal mod- 049

els like CLIP remains largely unexplored. 050

In this work, we propose TernaryCLIP (referred 051

to as TnCLIP in the following sections), a fully 052

ternarized version of CLIP that compresses both the 053

vision and text encoders. To preserve the critical 054

image-text alignment capabilities of CLIP, we em- 055

ploy Quantization-Aware Training (QAT) (Nagel 056

et al., 2020; Esser et al., 2020) and integrate Knowl- 057

edge Distillation (KD) (Hinton et al., 2014; Sanh 058

et al., 2019) from a full-precision teacher model. 059

QAT enables adaptation to ternary constraints dur- 060

ing training, mitigating the typical accuracy drop 061

observed in post-training quantization (Gong et al., 062

2019). Meanwhile, distillation aligns the repre- 063

sentations of the ternary student with those of the 064

teacher, minimizing the performance gap (Romero 065

et al., 2015). 066

We introduce the first ternary quantization of 067

both vision and text encoders of CLIP, achieving 068

substantial model compression while maintaining 069

alignment capabilities through a distillation frame- 070

work. Our approach achieves up to a 16× storage 071

reduction, 3× memory decrease, 60% sparsity and 072

2.3× inference acceleration, while preserving com- 073

petitive classification and retrieval performance. 074

Our results demonstrate that ultra-low-bit multi- 075

modal models are feasible, closing the gap be- 076

tween state-of-the-art performance and practical 077

deployment (Shen et al., 2020; Zhu et al., 2017b). 078

TnCLIP enables efficient multimodal learning with- 079

out sacrificing much accuracy, marking an impor- 080

tant step toward deploying vision-language models 081

on resource-constrained devices (Liu et al., 2023). 082
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To promote reproducibility and encourage fu-083

ture research, we are publicly releasing the entire084

TnCLIP codebase, including model checkpoints.085

This release includes training and inference scripts,086

evaluation pipelines, and all settings used in our087

experiments.088

2 Preliminaries089

CLIP (Radford et al., 2021) is a multimodal model090

that aligns images and text in a shared embedding091

space. Trained on large image-text datasets such092

as LAION-400M (Schuhmann et al., 2021), CLIP093

enables tasks such as zero-shot classification, re-094

trieval, and transfer learning. It consists of an im-095

age encoder fi such as ViT and a text encoder ft096

such as BERT. Minimizing cosine similarity be-097

tween image-text pairs while maximizing cosine098

similarity of negative samples. Let D = (Ii, Ti)
|D|
i=1099

denotes dataset used for training.100

CLIP is trained with an InfoNCE-based con-101

trastive loss (van den Oord et al., 2018), enabling102

it to learn meaningful image-text representations.103

The proposed TnCLIP leverages this contrastive104

loss, which is illustrated in Figure 1 and formu-105

lated as Ltask = (LI→T + LT→I)/2 with106 {
LI→T = CrossEntropy(logits, labels) ,

LT→I = CrossEntropy(logitsT, labels) .
107

Here, we employ logits = Ie(Te)
T · eτ to represent108

the scaled pairwise cosine similarities, where τ is109

a temperature parameter that controls the scaling110

of the logits, and Ie and Te separately are the joint111

multimodal embeddings of image and text in112

Ie = ℓ2-normalize(IfWi) ∈ Rn×de ,

Te = ℓ2-normalize(TfWt) ∈ Rn×de ,
113

where If = fi(I) and Tf = ft(T ) are the encoded114

features, Wi and Wt separately are the projection115

matrices for image and text features, and the ℓ2-116

normalization ensures that the embeddings are unit117

vectors in the joint embedding space. The labels118

are the indices of the positive pairs in the batch.119

There are several KD methods for CLIP, in-120

cluding CLIP-KD (Yang et al., 2023), ComKD-121

CLIP (Chen et al., 2024), and SiCLIP (Liu122

et al., 2024). Guided by Occam’s razor principle,123

TnCLIP employs three KD approaches from CLIP-124

KD: Contrastive Relational Distillation (CRD), In-125

teractive Contrastive Learning (ICL), and Feature126

Distillation (FD).127

The CRD loss is used to distill the contrastive 128

information from the teacher encoder to a student 129

encoder by aligning the image-to-text and text-to- 130

image distributions through KL-divergence 131

Lcrd = KL(pS ||pT ) + KL(qS ||qT ) , 132

where pS and pT separately are the image-to-text 133

distributions of student and teacher models, and the 134

KL divergence measures the difference between 135

the text-to-image distributions qS and qT . 136

The ICL loss is used to distill the cross-modal 137

interactive information through anchor-contrastive 138

relationships between student and teacher encoders 139

Licl =
1

2
(LI→I + LT→T) ,

LI→I = CrossEntropy(logitsI, labelsI) ,

LT→T = CrossEntropy(logitsT, labelsT) ,

140

where logitsI = ISe (I
T
e )

T · eτ indicates the scaled 141

pairwise cosine similarities between student im- 142

age embeddings and teacher image embeddings, 143

logitsT = TS
e (T

T
e )T · eτ is the scaled pairwise co- 144

sine similarities between the student and teacher 145

text embeddings, and labelsI and labelsT denote the 146

indices of the identical positions in the batch, as we 147

aim to interactively align each student embedding 148

with its corresponding teacher embedding. 149

The FD loss is used to distill direct embedding- 150

level information by minimizing the mean squared 151

error between student and teacher embeddings for 152

both visual and textual modalities 153

Lfd =
1

n

n∑
i=1

||ISe − ITe ||22 +
1

n

n∑
i=1

||TS
e − T T

e ||22 , 154

where || · ||22 denotes the mean squared error be- 155

tween the student and teacher embeddings. 156

3 Methodology 157

We propose TnCLIP, consisting of ternarization- 158

aware training and ternarization-aware distillation, 159

corresponding to subsection 3.1 and subsection 3.2 160

for ternarizing model with the reduced resource 161

prerequisite and minimal performance degradation 162

during deployment and inference. 163

164

3.1 Ternarization-Aware Training 165

This subsection presents the Ternarization-Aware 166

Training (TAT) module, which converts weights 167

from full-precision to ternary formats. We start the 168
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Figure 1: The workflow of the TnCLIP framework, which comprises (a) ternarization-aware training and (b)
ternarization-aware distillation.

TAT module with a ternary conversion from the169

full-precision weights W to ternary ones W̃170

W̃ = RoundClip
(

W

γ + ϵ
,−1, 1

)
,171

where RoundClip clips the rounded values to the172

range [a, b] according to RoundClip(x, a, b) =173

max(a,min(b, round(x))), and the scaling factor174

γ is computed as175

γ =
β

nm

∑
ij

|Wij | ,176

in which β is the hyperparameter to calibrate ternar-177

ization threshold, nm is the total number of ele-178

ments in the weight matrix, and ϵ is a small con-179

stant to prevent division by zero. This scaling factor180

adaptively adjusts the ternarization threshold based181

on the magnitude of the weights, preserving better182

representation of the original weight distribution.183

Ternary conversion enables forward propagation184

with full-precision weights, while gradient updates185

are applied to the original full-precision parame-186

ters. This process is formulated as the following187

optimization188

min
W

ℏ(y, g(ternarize(W),x;W̃)) , (1)189

where ℏ represents the loss function, x is the input190

data, y denotes the ground truth objective, g is the191

CLIP model function.192

In this work, we solve the optimization in Eq. (1)193

by backward propagation with gradient descent.194

Notice that the ternary conversion is inherently non-195

differentiable, which creates challenges for stan-196

dard optimizers. Hence, we employ the Straight-197

Through Estimator (STE) by Bengio (2013) to en-198

able gradient flow through the non-differentiable199

ternarization operation, i.e., ∂L/∂W̃← ∂L/∂W, 200

where the forward pass uses the ternary weights 201

W̃, but gradients flow directly to the full-precision 202

weights W during backpropagation. 203

The TAT approach allows the CLIP model to 204

learn parameters that are well-suited for ternary 205

representation while maintaining the optimization 206

stability provided by full-precision updates. Al- 207

gorithm 1 lists the pseudocode of CLIP equipped 208

with TAT. The TAT algorithm provides a robust 209

framework for adapting CLIP models to efficient 210

ternary representations while preserving model per- 211

formance. A key strength of this approach is the 212

adaptivity of the weights W, which can originate 213

from the initialization from scratch, the pre-trained 214

weights or the knowledge distilled weights. 215

3.2 Ternarization-Aware Distillation 216

TnCLIP framework integrates KD with TAT to 217

develop an efficient ternary CLIP model and en- 218

sure that the model learns to perform effectively 219

with ternary representations while benefiting from 220

the knowledge of the high-capacity teacher model. 221

The unified training objective combines both task- 222

specific contrastive learning and teacher-student 223

knowledge transfer, formulated as 224

Lternary = Ltask(W,x;W̃) + Ldistill(W,x;W̃), 225

where the second term indicates the overall KD 226

loss, as shown in Figure 1 and formulated as fol- 227

lows 228

Ldistill = λcrd · Lcrd + λicl · Licl + λdf · Ldf , 229

where λcrd, λicl, and λdf are hyperparame- 230

ters. During training, forward propagation em- 231

3



Algorithm 1 Ternarization-Aware Training

Input: Full-precision CLIP model with weights
W, dataset D, hyperparameter β

Output: Ternarized CLIP model with weights W̃
and scaling factor γ

1: Initial full-precision weights W
2: while not converged do
3: Sample a minibatch (I, T ) from D
4: // Ternarize weights
5: γ ← β

nm

∑
ij |Wij |

6: W̃← RoundClip( W
γ+ϵ ,−1, 1)

7: // Forward pass with ternarized weights
8: If , Tf ← Encoders(I, T ;W̃)

9: logits← Similarity(If , Tf ;W̃, t)
10: Loss← ContrastiveLoss(logits)
11: // Backward pass with STE
12: ∂Loss

∂W ← STE(∂Loss
∂W̃

)
13: // Update full-precision weights
14: W← Optimizer(W, ∂Loss

∂W )
15: end while
16: // Final ternarization
17: γ ← β

nm

∑
ij |Wij |

18: W̃← RoundClip( W
γ+ϵ ,−1, 1)

19: return W̃, γ

ploys ternary weights W̃ while maintaining full-232

precision weights W for gradient updates. The233

task loss Ltask preserves the model’s ability to align234

image-text pairs through contrastive learning, while235

the distillation loss Ldistill transfers complemen-236

tary knowledge from the teacher model through237

these three distillation mechanisms: contrastive re-238

lational distillation, interactive contrastive learning,239

and feature distillation.240

By simultaneously optimizing for both task and241

distillation objectives with ternarized weights, the242

student model learns parameter distributions that243

are well-suited for ternary quantization while main-244

taining competitive performance. During infer-245

ence, the model only operates with the ternary246

weights, significantly reducing computational and247

memory requirements without substantial perfor-248

mance degradation.249

3.3 Inference Efficiency250

TnCLIP uses 1.6875-bit ternary weights1, achiev-251

ing a reduction in storage and memory compared252

to 32-bit representations with the same architec-253

ture. This enables deployment on edge devices254

1Implemented by TQ1_0 in GGML library.

with limited memory. During inference, matrix 255

multiplication Wx is optimized with two binary 256

masks M+ and M− representing positive and neg- 257

ative weights 258

Wx = ∆ · ((M+ −M−)x) . 259

This replaces floating-point operations with bit- 260

wise logic, accelerating computation. Therefore, 261

FLOPs are significantly reduced, as dense ma- 262

trix multiplications are replaced by bitwise opera- 263

tions. Implementations like FATNN report nearly 264

2× speedups over 8-bit quantization (Chen et al., 265

2021). TnCLIP’s aggressive weight quantization 266

preserves performance with QAT and KD, mak- 267

ing it deployable in memory-constrained settings 268

without sacrificing accuracy. 269

4 Experiments 270

We have trained two TnCLIP variants and per- 271

formed extensive evaluations. The first model is 272

TnCLIP_Q-FFN indicating all feedforward blocks 273

are ternarized, and the second one is TnCLIP_Q- 274

ALL indicating all feedforward and multi-head at- 275

tention blocks are ternarized. In the following sec- 276

tions, TnCLIP refers to TnCLIP_Q-ALL if there is 277

no specific declaration. TnCLIP applies ternariza- 278

tion on 99% parameters, as shown in Table 1. 279

Ternarized Ternarized
MHA FFN Proportion

TnCLIP_Q-FNN × ✓ 71.62%
TnCLIP_Q-ALL ✓ ✓ 99.00%

Table 1: Comparison of ternarized components and
proportion for different model variants.

4.1 Datasets and Configurations 280

Training Datasets and Models. We use Concep- 281

tual 12M (Changpinyo et al., 2021) for vision-and- 282

language ternary distillation with 384 batch size 283

per GPU and 3,072 total batch size. In terms of 284

balancing performance and model size, we select 285

CLIP model with ViT-B/16 image encoder as our 286

student model and LAION’s CLIP model with ViT- 287

L/14 image encoder as the teacher model. The 288

more detailed configurations of CLIP models can 289

be checked on Appendex A. 290

Hyperparameter Tuning. The epoch is set to 291

32 during hyperparameter tuning and adjust differ- 292

ent groups to obtain better loss convergence. Then 293
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we select the best group of hyperparameters. Ba-294

sically, we train TnCLIP through an AdamW opti-295

mizer with 1e-3 initial learning rate, 10K warm-up296

steps, cosine annealing scheduler and 0.1 weight297

decay in 64 epochs. For distillation loss, we set298

λcrd = 1.0, λicl = 1.0, and λfd = 2000.0. Check299

Appendix B for further details on hyperparameters.300

Evaluation Tasks and Metrics. The evaluated301

datasets comprise 37 multi-classification datasets,302

1 multi-label classification dataset and 3 image-text303

retrieval datasets. The tasks are all zero-shot, in-304

cluding standard image classification with the met-305

ric of top-1 accuracy (Accuracy@1), multi-label306

image classification with the metric of mean av-307

erage precision (mAP), image-text retrieval with308

the metric of top-5 recall (Recall@5). Considering309

different CLIP models, CLIP ViT-L/14 LAION is310

the teacher model of CLIP-KD and TnCLIP vari-311

ants, while CLIP ViT-B/16 OpenAI and LAION312

are models for comparison, which are trained from313

scratch. We benchmark CLIP models (ViT-L/14314

and ViT-B/16) and TnCLIP variants (ViT-B/16) on315

ARM CPU (Apple M4 Pro) to evaluate TnCLIP’s316

sparsity, storage, memory and latency to simulate317

performance in resource-constrained environments.318

Inference Configurations. To eunsure robust319

and reproducible evaluation on model inference,320

we employ several configurations. Each benchmark321

is executed 1,000 times, with average values re-322

ported in Table 2 and comprehensive statistics pro-323

vided in Appendix E. For consistency across exper-324

iments, all model weights are stored in the GGUF325

format2 and model inference is performed under326

the GGML framework3. For TnCLIP, we employ327

TQ1_0 quantization data type to implement infer-328

ence, which efficiently packs and unpacks ternary329

parameters, optimizing both computational perfor-330

mance and model effectiveness. The benchmarks331

using alternative quantization data types such as332

TQ2_0 and TQ4_0 are listed in Appendix E.333

4.2 Zero-Shot Classification Performance334

Classification Data Types. We assess our TnCLIP335

and other models on 37 image classification336

datasets. There are three dataset types: natu-337

ral, specialized and structured. Natural datasets338

contain everyday objects and scenes that human339

commonly encounter, e.g., ImageNet series (Deng340

et al., 2009). Specialized datasets focus on domain-341

2https://github.com/ggml-org/ggml/blob/master/
docs/gguf.md

3https://github.com/ggml-org/ggml

Figure 2: Zero-shot image classification performance
(Accuracy@1) on three dataset types and six CLIP mod-
els. ViT-L/14 or ViT-B/16 indicates which image en-
coder is used for the structure of CLIP.

Figure 3: Zero-shot multi-label classification perfor-
mance (mean average precision) on PASCAL VOC
2007. ViT-L/14 or ViT-B/16 indicates which image
encoder is used for the structure of CLIP.

specific application requiring expert knowledge, 342

e.g. PatchCamelyon(PCam) covering histopatho- 343

logic scans of Iymph node sections (Veeling et al., 344

2018). Structured datasets focus on spatial rela- 345

tionships, counting, positioning and other struc- 346

tured reasoning tasks, e.g., CLEVR, a synthetic 347

visual question answering dataset (Johnson et al., 348

2017). The details of all datasets are provided in 349

Appendix D. 350

Evaluation of Accuracy@1. Figure 2 illustrates 351

TnCLIP variants can handle performance degrada- 352

tion due to quantization error and the performance 353

gap is less than 3% compared to CLIP-KD, consid- 354

ering all evaluated dataset categories. Compared 355

to the train-from-scratch models, TnCLIPs appear 356

around 8% performance reduction, while compared 357

to the teacher model the reduction is around 11% in 358

Figure 2 and Table 7. Furthermore, all knowledge 359

distilled models (CLIP-KD and TnCLIPs) demon- 360

strate promising performance improvement, around 361
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20% compared to 36% Accuracy@1 on ImageNet-362

1K by the CLIP model without distillation (Yang363

et al., 2024). For the zero-shot multi-label classifi-364

cation task, TnCLIP variants maintain mAP scores365

within 1% margin of other CLIP models in Fig-366

ure 3.367

Evaluation of Sparsity, Storage, memory368

and latency. In Table 2, we observe substan-369

tial improvements across all evaluation metrics370

for TnCLIP models. The extremely compressed371

variant TnCLIP (ViT-B/16) achieves 60.88% total372

sparsity, 35.3MB storage, 8MB runtime memory373

footprint and 106.75ms latency. For the 60.88%374

total model sparsity, TnCLIP provides the possi-375

bility for further optimization and compression376

in subsequent research that other full-precision377

models do not. Regarding storage requirements,378

TnCLIP achieves an order-of-magnitude reduction,379

shrinking the model size from 1630.9MB (ViT-380

L/14 Float32) and 571.6MB (ViT-B/16 Float32)381

to merely 35.3MB which represents 94%~98%382

decrease. Similarly, memory during inference383

is dramatically optimized with a reduction from384

24MB~60MB to 8MB, enabling deployment385

on memory-constrained devices. With respect386

to inference latency, TnCLIP delivers remark-387

able acceleration reducing processing time from388

241.40ms~886.15ms to 106.75ms, which achieves389

a 56%~87% improvement.390

Zero-shot classification experiments demon-391

strate that our proposed TnCLIP retains competi-392

tive effectiveness and achieves great efficiency in393

sparsity, storage, memory and latency.394

4.3 Zero-Shot Retrieval Performance395

Figure 4: Zero-shot image-to-text retrieval performance
(Recall@5) on three datasets and six CLIP models. ViT-
L/14 or ViT-B/16 indicates which image encoder is used
for the structure of CLIP.

Figure 5: Zero-shot text-to-image retrieval performance
(Recall@5) on three datasets and six CLIP models. ViT-
L/14 or ViT-B/16 indicates which image encoder is used
for the structure of CLIP.

Datasets. For the evaluation in the zero- 396

shot cross-modal retrieval scenario, we apply 397

three commonly used datasets: Flickr8k (Hodosh 398

et al., 2013), Flickr30k (Young et al., 2014) and 399

MS COCO (Microsoft Common Objects in Con- 400

text, Lin et al. (2014)) on two tasks: image-to-text 401

retrieval and text-to-image retrieval. We choose 402

Recall@5 as the metric to judge the retrieval per- 403

formance. 404

Evaluation. In Figure 4 and Figure 5, it is shown 405

that the performance reduction is less than 3% rel- 406

ative to the same model size, while around 5% 407

relative to the larger model size. TnCLIP achieves 408

competitive performance compared to CLIP mod- 409

els with larger architecture and higher precision. 410

In terms of model sparsity, storage, memory and 411

latency, TnCLIP performs much better than full- 412

precision models which is elaborated in the above 413

section 4.2. 414

4.4 Covergence and Costs 415

Covergence. As shown in Figure 6, we analyze the 416

loss curves and obtain three crucial findings, while 417

more detailed training information can be seen in 418

Appendix C. Firstly, ternary loss curves exhibit pe- 419

riodic higher fluctuations as the full-precision loss 420

curve does not. It is reasonable since unlike contin- 421

uous parameter space of the full-precision models, 422

quantized or ternarized parameter space is discrete 423

by roundclip(x,−1, 1) function which resulting 424

in slight weight updates but great performance dif- 425

ferences between two training steps. Secondly, 426

scaling up the quantized proportion introduces in- 427

creased quantization error and more computation 428

to mitigate it. Lastly, more training computation 429
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Model Precision Sparsity ↑ Storage(MB) ↓ Memory(MB) ↓ Latency(ms) ↓
CLIP Float32 0% 1630.9 60 886.15
ViT-L/14 Float16 0% 817.3(0.50×) 30(0.50×) 710.88(0.80×)
CLIP Float32 0% 571.6(0.35×) 24(0.40×) 241.40(0.27×)
ViT-B/16 Float16 0% 287.7(0.18×) 12(0.20×) 174.62(0.20×)
TnCLIP_Q-FFN

TQ1_0 44.57%(62.27%) 105.0(0.06×) 8(0.13×) 126.05(0.14×)
ViT-B/16
TnCLIP

TQ1_0 60.88%(61.56%) 35.3(0.02×) 8(0.13×) 106.75(0.12×)
ViT-B/16

Table 2: CLIP model sparsity, storage, memory and latency on different precisions. For the sparsity of ternary
models, x%(y%): x% represents total sparsity of all parameters and y% represents sparsity of all ternary parameters.

Figure 6: Training losses of three models on the number
of samples seen: 1) full-precision CLIP-KD, 2) TnCLIP
(Q-FFN) with FFN ternarized, 3) TnCLIP (Q-ALL) with
MHA+FFN ternarized.

can mitigate the quantization error (or performance430

barrier) contributed by the quantization operation431

to gain a promising performance compared to the432

full-precision model.433

Above all, inspired by the scaling law in large434

language models (Kaplan et al., 2020), we sum-435

marize the scaling law of 1.6875-bit quantization:436

increased compute can mitigate performance reduc-437

tion.438

Lq(C, q) = αCβ · f(q) + c,439

where Lq(C, q) is the quantized model loss. C is440

the training computational budget. α and β are441

the power law parameters. f(q) = (1 − q)γ is442

the quantization penalty function where q is the443

quantized proportion and γ is the parameter. c is444

the regulation.445

Computational Costs. Apart from TnCLIP, the446

models appearing in the evaluation experiments447

are sourced from OpenAI (Radford et al., 2021),448

LAION4, and CLIP-KD (Yang et al., 2024). Al-449

though the training data and computational re-450

4https://laion.ai/

sources used to train a CLIP with ViT-B/16 image 451

encoder by OpenAI are not released, these are an- 452

nounced by LAION and CLIP-KD. In this case, 453

we compare our model TnCLIP with models from 454

OpenAI, LAION and CLIP-KD about the computa- 455

tional usage and the performance. We collect GPU 456

usage information for different models in Table 3 457

and the prices are calculated from the prices to rent 458

on Vast.ai5. It is obvious that training TnCLIP is 459

not only significantly more cost-effective than dis- 460

tilling by CLIP-KD but also training from scratch 461

by OpenAI and LAION. 462

4.5 Discussions 463

Comprehensive experiments reveal several key in- 464

sights into ternary quantization for multimodal 465

models. First, we observe a scaling law for 1.6875- 466

bit quantization, where the performance degrada- 467

tion caused by quantization error can be effectively 468

mitigated by increasing computational resources 469

during training, specifically training iterations and 470

dataset size. This finding aligns with recent work 471

on QAT in large language models (Wang et al., 472

2023), indicating that the scaling law generalizes 473

across modality domains. 474

Second, TnCLIP effectively achieves the pri- 475

mary objectives of model ternarization: (1) Re- 476

duced training cost through knowledge distillation. 477

(2) Performance preservation with minimal degra- 478

dation via ternarization-aware training, (3) larger 479

sparsity, along with lower storage, memory and 480

latency through efficient ternary operations. 481

Lastly, the performance trade-offs observed in 482

some evaluation metrics are acceptable given the 483

resource efficiency gains, especially for resource- 484

constrained environments, e.g., edge devices. Ex- 485

periments demonstrate that the performance gap be- 486

tween full-precision (CLIP-KD) and ternary mod- 487

5https://vast.ai/pricing
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Model Dataset GPU Time ↓ Price ↓
ViT-L/14 LAION LAION-400M 400* A100 ∼127 hours ∼44,704$
ViT-L/14 OpenAI WIT-400M 256* V100 ∼288 hours ∼34,818$
ViT-B/16 LAION LAION-400M 176* A100 ∼61 hours ∼9,448$
ViT-B/16 CLIP-KD CC3M+CC12M 8* A800 ∼137 hours ∼998$
ViT-B/16 TnCLIP CC12M 8* 6000Ada ∼129 hours ∼575$

Table 3: Comparison of CLIP model training specifications, including vision transformer size, dataset, GPU
requirements, training time, and associated costs.

els (TnCLIP) under the same model architecture488

is minimal (⩽2.7% on average in Table 7), while489

resource consumption decreases by approximately490

one order of magnitude in Table 2.491

5 Related Work492

Model Quantization and Ternarization. Quan-493

tization has been a key strategy to compress neu-494

ral networks for efficient deployment. Traditional495

methods like integer quantization (INT8 and INT4)496

effectively reduce memory usage and computa-497

tion costs with minimal accuracy loss (Jacob et al.,498

2018; Wu et al., 2016). Recent research extends to499

ternary quantization, where weights are represented500

as {−1, 0,+1}, achieving even greater efficiency501

while preserving accuracy (Zhu et al., 2017a; Zafrir502

et al., 2019). Techniques such as TTQ (Zhu et al.,503

2017a) and FATNN (Chen et al., 2021) introduce504

learned scaling factors to optimize ternary models.505

Our work extends ternary quantization to multi-506

modal learning, fully quantizing both the visual507

and textual encoders of CLIP.508

Transformer Quantization. Transformer quanti-509

zation for vision and language processing has been510

explored in works such as Q8BERT and Ternary-511

BERT, demonstrating low-bit precision with mini-512

mal performance degradation (Zafrir et al., 2019;513

Zhang et al., 2020). In the vision domain, quantiz-514

ing ViTs presents challenges due to sensitivity in at-515

tention distributions, which methods such as Q-ViT516

address with quantization-aware adjustments (Li517

et al., 2022). Building on these ideas, our TnCLIP518

is the first to apply ternary quantization to CLIP’s519

dual-modality architecture.520

Multimodal Model Compression. Compres-521

sion for multimodal architectures remains underex-522

plored compared to unimodal models like BERT523

or ResNet. Recent efforts such as TinyCLIP (Wu524

et al., 2023) employ distillation to reduce model525

size, focusing on parameter reduction rather than526

quantization. Although 8-bit quantization has527

demonstrated memory and latency benefits for 528

CLIP (Jacob et al., 2018; Zafrir et al., 2019), our 529

TnCLIP achieves 1.6875-bit weight compression 530

across both image and text encoders, setting a new 531

benchmark for efficient multimodal learning. 532

Knowledge Distillation for Low-Bit. KD has been 533

effective in boosting performance in compressed 534

models. Techniques like TinyBERT (Wu et al., 535

2023) and DistilBERT (Sanh et al., 2019) demon- 536

strate that distillation from high-precision teachers 537

can bridge accuracy gaps in quantized students. 538

Our TnCLIP leverages KD not only for knowledge 539

transfer but also for mitigating representational loss 540

from ternary quantization, ensuring robust cross- 541

modal retrieval. 542

Multimodal Model Efficiency. As multimodal 543

models continue to scale up, computational ef- 544

ficiency for edge deployments becomes crucial. 545

Although pruning, distillation, and low-bit quan- 546

tization have been explored for unimodal mod- 547

els (Hinton et al., 2014; Han et al., 2016; Esser 548

et al., 2020), ternary quantization remains under- 549

represented. Our TnCLIP pioneers the full ternar- 550

ization of a vision-language transformer, offering 551

substantial memory and compute reductions with- 552

out sacrificing cross-modal alignment, paving the 553

way for efficient multimodal learning in resource- 554

constrained environments. 555

6 Conclusions and Prospects 556

We presented TnCLIP, which compresses both 557

the vision and text encoders of CLIP into ternary 558

formats. By integrating QAT and KD, TnCLIP 559

achieves up to 16× storage reduction, 60% spar- 560

sity, and 2.3× inference acceleration while main- 561

taining competitive classification and retrieval accu- 562

racy. Experimental results demonstrate its effective- 563

ness, supporting efficient deployment on resource- 564

constrained devices such as mobile phones and 565

AR/VR applications. 566
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7 Limitations567

Although TnCLIP is efficient due to ternary568

quantization, it has several limitations. First,569

ternatization-aware distillation from pre-trained570

models reduces the student model’s ability to adapt571

to domain-specific applications. Retraining is still572

necessary to maintain performance on new tasks.573

Second, quantization introduces information loss,574

which can hinder the model’s ability to capture575

subtle image-text alignments compared to the full-576

precision models trained from scratch.577

Additionally, the current TnCLIP framework578

only quantizes weights, leaving activations in FP16579

format. Furthermore, the current implementation580

does not fully leverage mixed-precision techniques,581

such as using INT8 for activations and intermediate582

computations, even though these techniques offer583

promising trade-offs.584

Finally, this work focuses on image-text align-585

ment tasks. The extension of ternary quantization586

techniques to other modalities remains unexplored587

and presents an opportunity for future research.588

8 Ethical Considerations589

TnCLIP inherits the biases of its pre-trained teacher590

models, which may reflect societal biases in image-591

text alignment tasks. Although ternary quantiza-592

tion and distillation methods do not introduce new593

biases, they do not specifically mitigate inherited594

representation biases. Furthermore, the model’s595

reduced interpretability due to aggressive quanti-596

zation complicates the detection and mitigation597

of biases. Future work should explore bias-aware598

quantization techniques to improve fairness and599

transparency when deploying the model in real-600

world applications.601
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A Model Configuration804

In Table 4, we list all configurations of CLIP mod-805

els in our evaluation, including pre-trained CLIPs806

and knowledge distilled CLIPs.807

Model
CLIP LAION CLIP LAION CLIP OpenAI CLIP-KD TnCLIP

Teacher Model Pretrained Pretrained Pretrained LAION(ViT-L/14) LAION(ViT-L/14)
Parameters 427.6M 149.6M 149.6M 149.6M 149.6M
Embed_Dim 768 512 512 512 512

V
is

io
n

Structure ViT-L/14 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16
Image Size 224 224 224 224 224
Patch 14 16 16 16 16
Layers 24 12 12 12 12
Width 1024 768 768 768 768

Te
xt

Vocab Size 49408 49408 49408 49408 49408
Context 77 77 77 77 77
Layers 12 12 12 12 12
Width 768 512 512 512 512
Heads 12 12 12 12 12

Table 4: Model configurations, including name, training strategy(whether to use distillation or not), number of
parameters, embedding dimension, vision and text configurations.

model Teacher: [ViT-L/14]
Student: [ViT-B/16]

weight [OpenAI_400M_ep32, Laion400M_ep32]
quantization weight_quant: [ternary, int3, int4]

activation_quant: [int8, float16]
Ternarization β: [1, 2, 3], ϵ: [1e-6]
precision [amp, amp_bf16, bp16, fp32]
data load num_workers: [4, 8, 16, 32]
epoch [32, 64]
lr [1e-4, 5e-4, 1e-3]
warmup [1000, 5000, 10000, 100000]
batch size [128 *8, 256 *8, 384 *8, 512 *8]
opt adamw(0.9, [0.98, 0.998, 0.999], ϵ: [1e-6])
wd [0.01, 0.05, 0.1, 0.2]
λcrd, τcrd [0.5, 1, 2], [0.5, 1, 2]
λicl [0.5, 1, 2]
λfd [1000, 2000, 4000]
augment cfg [None, Scale, Scale+Color_Jitter+Gray_Scale]

Table 5: Training hyperparameters of TnCLIP: the value with text bold font is the selected hyperparameters after
tuning. For example, λcrd = 1.0 and temperature τcrd = 1.0.

B Training Hyperparameters 808

In Table 5, we exhibit hyperparameters used to 809

train our TnCLIP model, while the values between 810

square brackets are the to-be-selected hyperparam- 811

eters and the values with the text bold font are the 812

selected hyperparameters after tuning procedure. 813
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Figure 7: Task losses of full-precision CLIP-KD,
ternary TnCLIP_Q-FFN and TnCLIP_Q-ALL.

Figure 8: CRD losses of full-precision CLIP-KD,
ternary TnCLIP_Q-FFN and TnCLIP_Q-ALL.

Figure 9: ICL losses of full-precision CLIP-KD, ternary
TnCLIP_Q-FFN and TnCLIP_Q-ALL.

Figure 10: FD losses of full-precision CLIP-KD, ternary
TnCLIP_Q-FFN and TnCLIP_Q-ALL.

Figure 11: Zero-shot image classification performance: Accuracy@1 across 37 datasets.

13



C Details of Training TnCLIP814

In Figure 7, 8, 9, and 10, we show the loss curves815

of three models on the number of samples seen.816

The first model is full-precision CLIP-KD, the sec-817

ond model is TnCLIP (Q-FFN) with FFN ternar-818

ized, and the third model is TnCLIP (Q-ALL) with819

MHA+FFN ternarized. The first loss curve is task820

loss. The second loss curve is contrastive relational821

distillation (CRD) loss. The third loss curve is in-822

teractive constrastive learning (ICL) loss. The last823

loss curve is feature distillation (FD) loss. The loss824

curves are plotted against the number of samples825

seen during training.826

D Details of Zero-Shot Classification827

In Figure 11 and Table 7, it is shown that TnCLIP828

with 99% ternary parameters obtains only 2.71%829

performance reduction compared with CLIP-KD830

of the same model architecture and size.831

E Details of Inference Latency832

In Table 6, we present a comprehensive analysis of833

CLIP model inference latency across various preci-834

sion formats with the corresponding bit-per-weight835

(BPW) configurations, showing the decomposition836

of total latency into model loading, image loading,837

and model forwarding components, with all bench-838

marks conducted on Apple M4 Pro hardware over839

1,000 test rounds.840

F Ablation Study841

In Figure 12 and Figure 13, we show the ablation842

study of data augmentation and int8 activation qua-843

Model Precision BPW ↓ Storage(MB) ↓ Model Load(ms) ↓ Image Load(ms) ↓ Model Forward(ms) ↓ Total Latency(ms) ↓

ViT-L/14
Float32 32 1630.9 382.22 ± 22.58 5.32 ± 1.65 498.60 ± 85.66 886.15 ± 90.65
Float16 16 817.3 199.42 ± 9.50 5.35 ± 0.24 506.10 ± 75.54 710.88 ± 76.38

ViT-B/16
Float32 32 571.6 153.02 ± 7.41 5.35 ± 0.22 83.02 ± 55.47 241.40 ± 56.47
Float16 16 287.7 90.15 ± 4.27 5.42 ± 0.63 79.04 ± 50.26 174.62 ± 50.52

TnCLIP_Q_FFN ViT-B/16

Float32 32 571.6 154.55 ± 21.00 5.79 ± 0.77 90.03 ± 59.39 250.38 ± 67.65
Float16 16 287.7 90.52 ± 4.87 5.84 ± 0.72 86.62 ± 53.00 182.99 ± 53.57
Q4_0 4 140.9 57.32 ± 4.35 5.83 ± 0.44 74.02 ± 49.97 137.18 ± 50.52
Q4_1 4 147.3 58.53 ± 2.86 5.82 ± 0.38 70.40 ± 48.54 134.75 ± 48.68
TQ1_0 1.6875 105 49.09 ± 3.47 5.81 ± 0.33 71.14 ± 50.89 126.05 ± 51.05
TQ2_0 2.0625 109.8 50.15 ± 3.00 5.82 ± 0.38 76.26 ± 50.06 132.23 ± 49.99

TnCLIP ViT-B/16

Float32 32 571.6 149.82 ± 11.73 5.63 ± 0.45 87.83 ± 56.36 243.28 ± 57.14
Float16 16 287.7 89.12 ± 3.77 5.77 ± 0.32 79.70 ± 50.35 174.60 ± 50.40
Q4_0 4 84.9 44.16 ± 1.79 5.75 ± 0.24 71.30 ± 49.68 121.22 ± 49.79
Q4_1 4 93.7 46.10 ± 1.87 5.75 ± 0.29 68.46 ± 46.07 120.32 ± 46.08
TQ1_0 1.6875 35.3 33.05 ± 1.70 5.74 ± 0.19 67.96 ± 45.58 106.75 ± 45.68
TQ2_0 2.0625 41.9 34.77 ± 2.75 5.78 ± 0.45 75.78 ± 48.16 116.33 ± 48.21

Table 6: CLIP model inference latency overview on different precisions and bpw (bits per weight). The CPU
hardware is Apple M4 Pro. Total latency is combined with model loading, image loading and model forwarding.
Latency = A ± B: A represents the average value and B represents three standard deviations 3 ∗ σ under 1,000
rounds of benchmarks.

ntization. Based on the performance gap of loss 844

curves, we determine training TnCLIP without any 845

data augmentation and activation quantization. 846

Figure 12: Ablation study of data augmentation on
TnCLIP. Data augmentation makes loss convergence
much more slower than the baseline.

Figure 13: Ablation study of int8 or float16 activation
quantization on TnCLIP. Int8 activation quantization
makes loss convergence much more slower than the
baseline.
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Dataset Type ViT-L/14 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16
LAION OpenAI LAION CLIP-KD TnCLIP_Q-FFN TnCLIP

Natural Datasets

caltech101 natural 83.99% 82.10% 83.63% 81.15% 79.61% 77.70%
cars natural 89.64% 64.73% 83.77% 46.50% 49.67% 42.20%
cifar10 natural 94.63% 90.77% 91.73% 89.99% 89.24% 86.45%
cifar100 natural 77.39% 66.94% 71.15% 63.57% 61.96% 55.28%
country211 natural 23.04% 22.87% 18.12% 13.41% 14.04% 12.68%
dtd natural 60.43% 44.95% 51.28% 43.88% 39.89% 33.83%
fer2013 natural 50.22% 46.22% 43.13% 46.53% 44.52% 41.40%
fgvc_aircraft natural 25.02% 24.24% 17.64% 8.73% 7.29% 6.15%
flowers natural 75.56% 71.18% 69.28% 52.66% 48.92% 44.97%
gtsrb natural 49.92% 43.56% 43.42% 28.79% 33.49% 27.75%
imagenet-a natural 46.49% 49.92% 33.19% 21.12% 20.91% 19.36%
imagenet-o natural 41.95% 42.30% 50.65% 47.45% 45.00% 45.20%
imagenet-r natural 84.68% 77.71% 77.93% 71.83% 71.28% 67.22%
imagenet1k natural 72.77% 68.36% 67.07% 57.44% 56.76% 53.28%
imagenetv2 natural 65.41% 61.90% 59.65% 50.01% 49.43% 46.10%
objectnet natural 59.86% 55.33% 51.49% 37.41% 37.02% 33.89%
pets natural 91.91% 89.04% 89.26% 84.44% 82.56% 81.14%
stl10 natural 98.05% 98.25% 96.99% 96.05% 95.29% 95.16%
sun397 natural 72.59% 64.34% 69.61% 67.41% 65.84% 64.48%
svhn natural 37.97% 31.27% 38.53% 16.72% 16.33% 21.79%
voc2007 natural 75.64% 78.32% 76.85% 70.23% 71.51% 70.10%

Specialized Datasets

diabetic_retinopathy specialized 6.19% 3.57% 7.75% 20.09% 3.03% 2.27%
eurosat specialized 62.24% 56.00% 50.07% 45.96% 42.59% 45.59%
imagenet_sketch specialized 59.65% 48.24% 52.37% 44.79% 43.91% 40.23%
mnist specialized 76.10% 51.85% 66.39% 46.90% 31.86% 47.93%
pcam specialized 49.38% 50.67% 59.73% 53.98% 59.30% 58.18%
renderedsst2 specialized 56.12% 60.79% 54.48% 48.82% 52.28% 50.30%
resisc45 specialized 67.43% 58.27% 58.54% 49.83% 46.21% 43.24%

Structured Datasets

clevr_closest_object_distance structured 14.91% 15.83% 24.51% 16.75% 16.40% 21.90%
clevr_count_all structured 24.25% 21.03% 28.65% 21.27% 18.37% 19.65%
dmlab structured 18.66% 15.50% 15.10% 16.92% 14.39% 14.40%
dsprites_label_orientation structured 2.61% 2.34% 2.87% 2.71% 2.92% 3.28%
dsprites_label_x_position structured 2.99% 3.00% 3.15% 2.93% 2.86% 3.04%
dsprites_label_y_position structured 3.16% 3.11% 3.24% 3.16% 3.07% 3.28%
kitti_closest_vehicle_distance structured 20.39% 26.30% 18.28% 27.99% 13.08% 19.69%
smallnorb_label_azimuth structured 5.25% 5.18% 6.02% 6.20% 5.46% 5.16%
smallnorb_label_elevation structured 11.00% 12.21% 9.96% 11.59% 11.11% 10.71%

Summary

Average (natural) natural 65.58% 60.68% 61.16% 52.16% 51.46% 48.86%
Average (specialized) specialized 53.87% 47.06% 49.90% 44.34% 39.88% 41.11%
Average (structured) structured 11.47% 11.61% 12.42% 12.17% 9.74% 11.24%
Average (All) All Types 50.20% 46.17% 47.18% 40.95% 39.12% 38.24%
Performance vs. ViT-L/14 LAION All Types rel. 0% -4.03% -3.02% -9.25% -11.08% -11.96%
Performance vs. ViT-B/16 OpenAI All Types +4.03% rel. 0% +1.01% -5.22% -7.05% -7.93%
Performance vs. ViT-B/16 LAION All Types +3.02% -1.01% rel. 0% -6.23% -8.06% -8.94%
Performance vs. ViT-B/16 CLIP-KD All Types +9.25% +5.22% +6.23% rel. 0% -1.83% -2.71%

Table 7: Zero-shot classification performance: Accuracy@1 across 37 datasets.

G Ternary Weight Distribution847

In Figure 14 15 16, we illustrate the distribution848

of ternary weight for TnCLIP Q-FFN and Q-ALL849

models. It is obvious that ternary weights main-850

tain a good sparsity in addition to other benifits of851

quantization that we conlude during experiments.852
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Figure 14: Ternary weight distribution of TnCLIP Q-FFN.
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Figure 15: Ternary weight distribution of TnCLIP Q-ALL (Part1).
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Figure 16: Ternary weight distribution of TnCLIP Q-ALL (Part2).
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