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Abstract

Recent years have witnessed increasing interest
in image-text contrastive modeling, exempli-
fied by models like CLIP, which have been
widely used for zero-shot classification and
image-text retrieval. In this paper, we pro-
pose TernaryCLIP, a lightweight computational
framework that converts both the vision and
text encoders of CLIP into ternary-weight for-
mats. TernaryCLIP incorporates quantization-
aware training and ternarization-aware distilla-
tion modules from a full-precision CLIP, en-
abling low-cost and high-efficiency comput-
ing. Comprehensive experiments across 41 real-
world datasets demonstrate that TernaryCLIP
achieves up to a 16x storage reduction, 60%
sparsity, and 2.3x inference acceleration while
maintaining competitive accuracy on zero-shot
image classification and image-text retrieval
tasks. Our work highlights the feasibility of ex-
treme quantization for large multimodal mod-
els, supporting effective and efficient deploy-
ment on resource-constrained devices.

1 Introduction

Large-scale multimodal models, like Contrastive
Language-Image Pretraining (CLIP, Radford et al.,
2021), have demonstrated exceptional performance
in zero-shot classification, image-text retrieval, and
cross-modal understanding. However, their impres-
sive capabilities come at the cost of huge computa-
tional and memory demands, making them imprac-
tical for resource-constrained environments.
Model quantization has emerged as a promis-
ing solution for reducing compute costs by repre-
senting model weights with lower precision (Jacob
et al., 2018; Wu et al., 2016; Banner et al., 2019).
Unlike traditional quantization approaches, such
as 8-bit or 4-bit quantization, which achieve a cer-
tain degree of memory reduction, recent advances
in ternary quantization have demonstrated even
greater potential (Zhu et al., 2017a; Li et al., 2016).

By compressing the weights into three discrete val-
ues: {—A,0,+A}, ternary quantization reduces
memory consumption and enables efficient bitwise
operations during inference (Wang et al., 2019;
Micikevicius et al., 2018). Previous works like
TernaryBERT (Zafrir et al., 2019) and TTQ (Zhu
et al., 2017a) have validated ternarization for uni-
modal tasks, but the extension to multimodal mod-
els like CLIP remains largely unexplored.

In this work, we propose TernaryCLIP (referred
to as TnCLIP in the following sections), a fully
ternarized version of CLIP that compresses both the
vision and text encoders. To preserve the critical
image-text alignment capabilities of CLIP, we em-
ploy Quantization-Aware Training (QAT) (Nagel
et al., 2020; Esser et al., 2020) and integrate Knowl-
edge Distillation (KD) (Hinton et al., 2014; Sanh
et al., 2019) from a full-precision teacher model.
QAT enables adaptation to ternary constraints dur-
ing training, mitigating the typical accuracy drop
observed in post-training quantization (Gong et al.,
2019). Meanwhile, distillation aligns the repre-
sentations of the ternary student with those of the
teacher, minimizing the performance gap (Romero
et al., 2015).

We introduce the first ternary quantization of
both vision and text encoders of CLIP, achieving
substantial model compression while maintaining
alignment capabilities through a distillation frame-
work. Our approach achieves up to a 16x storage
reduction, 3x memory decrease, 60% sparsity and
2.3x inference acceleration, while preserving com-
petitive classification and retrieval performance.
Our results demonstrate that ultra-low-bit multi-
modal models are feasible, closing the gap be-
tween state-of-the-art performance and practical
deployment (Shen et al., 2020; Zhu et al., 2017b).
TnCLIP enables efficient multimodal learning with-
out sacrificing much accuracy, marking an impor-
tant step toward deploying vision-language models
on resource-constrained devices (Liu et al., 2023).



To promote reproducibility and encourage fu-
ture research, we are publicly releasing the entire
TnCLIP codebase, including model checkpoints.
This release includes training and inference scripts,
evaluation pipelines, and all settings used in our
experiments.

2 Preliminaries

CLIP (Radford et al., 2021) is a multimodal model
that aligns images and text in a shared embedding
space. Trained on large image-text datasets such
as LAION-400M (Schuhmann et al., 2021), CLIP
enables tasks such as zero-shot classification, re-
trieval, and transfer learning. It consists of an im-
age encoder f; such as ViT and a text encoder f;
such as BERT. Minimizing cosine similarity be-

tween image-text pairs while maximizing cosine
similarity of negative samples. Let D = (I;, T;) ‘fj'l
denotes dataset used for training.

CLIP is trained with an InfoNCE-based con-
trastive loss (van den Oord et al., 2018), enabling
it to learn meaningful image-text representations.
The proposed TnCLIP leverages this contrastive
loss, which is illustrated in Figure 1 and formu-

lated as Lsk = (L1t + L1-1)/2 With

Lyt = CrossEntropy (logits, labels) ,
Lt_,1 = CrossEntropy (logits”, labels) .

Here, we employ logits = I.(T;)" - ™ to represent
the scaled pairwise cosine similarities, where 7 is
a temperature parameter that controls the scaling
of the logits, and I, and 7 separately are the joint
multimodal embeddings of image and text in

I, = ly-normalize(I;W;) € R™*%
T, = ly-normalize(TFW;) € R de

where Iy = f;(I) and Ty = f;(T) are the encoded
features, W; and W, separately are the projection
matrices for image and text features, and the ¢5-
normalization ensures that the embeddings are unit
vectors in the joint embedding space. The labels
are the indices of the positive pairs in the batch.

There are several KD methods for CLIP, in-
cluding CLIP-KD (Yang et al., 2023), ComKD-
CLIP (Chen et al., 2024), and SiCLIP (Liu
et al., 2024). Guided by Occam’s razor principle,
TnCLIP employs three KD approaches from CLIP-
KD: Contrastive Relational Distillation (CRD), In-
teractive Contrastive Learning (ICL), and Feature
Distillation (FD).

The CRD loss is used to distill the contrastive
information from the teacher encoder to a student
encoder by aligning the image-to-text and text-to-
image distributions through KL-divergence

Lea = KL(P®|Ip") +KL(¢%||¢7) ,

where p° and p” separately are the image-to-text
distributions of student and teacher models, and the
KL divergence measures the difference between
the text-to-image distributions ¢° and ¢7 .

The ICL loss is used to distill the cross-modal
interactive information through anchor-contrastive
relationships between student and teacher encoders

1
L = §(£I—>I + Lror),

L1_,1 = CrossEntropy (logits;, labels;) ,
Lt_,1 = CrossEntropy(logitsy, labelsr) ,

where logits; = I5(I7)T - ¢7 indicates the scaled
pairwise cosine similarities between student im-
age embeddings and teacher image embeddings,
logits; = T2 (TT)T - €7 is the scaled pairwise co-
sine similarities between the student and teacher
text embeddings, and labelsy and labelst denote the
indices of the identical positions in the batch, as we
aim to interactively align each student embedding
with its corresponding teacher embedding.

The FD loss is used to distill direct embedding-
level information by minimizing the mean squared
error between student and teacher embeddings for
both visual and textual modalities

1 < 1 <
Lig = EZHIE*IZH%+;ZHT§*T§H§,
=1 =1

where || - ||3 denotes the mean squared error be-
tween the student and teacher embeddings.

3 Methodology

We propose TnCLIP, consisting of ternarization-
aware training and ternarization-aware distillation,
corresponding to subsection 3.1 and subsection 3.2
for ternarizing model with the reduced resource
prerequisite and minimal performance degradation
during deployment and inference.

3.1 Ternarization-Aware Training

This subsection presents the Ternarization-Aware
Training (TAT) module, which converts weights
from full-precision to ternary formats. We start the
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Figure 1: The workflow of the TnCLIP framework, which comprises (a) ternarization-aware training and (b)

ternarization-aware distillation.

TAT module with a ternary conversion from the
full-precision weights W to ternary ones W

—~ %%
W = RoundClip <, —1, 1> ,
v+e

where RoundClip clips the rounded values to the
range [a,b] according to RoundClip(z,a,b) =
max(a, min(b, round(z))), and the scaling factor
v is computed as

B
= Wz )
Y i Eij | Wil

in which § is the hyperparameter to calibrate ternar-
ization threshold, nm is the total number of ele-
ments in the weight matrix, and € is a small con-
stant to prevent division by zero. This scaling factor
adaptively adjusts the ternarization threshold based
on the magnitude of the weights, preserving better
representation of the original weight distribution.

Ternary conversion enables forward propagation
with full-precision weights, while gradient updates
are applied to the original full-precision parame-
ters. This process is formulated as the following
optimization

n%%’n h(y, g(ternarize(W),x; W)), (1)

where 7 represents the loss function, x is the input
data, y denotes the ground truth objective, g is the
CLIP model function.

In this work, we solve the optimization in Eq. (1)
by backward propagation with gradient descent.
Notice that the ternary conversion is inherently non-
differentiable, which creates challenges for stan-
dard optimizers. Hence, we employ the Straight-
Through Estimator (STE) by Bengio (2013) to en-
able gradient flow through the non-differentiable

ternarization operation, i.e., 9£/OW < 9L/OW,
where the forward pass uses the ternary weights
W, but gradients flow directly to the full-precision
weights W during backpropagation.

The TAT approach allows the CLIP model to
learn parameters that are well-suited for ternary
representation while maintaining the optimization
stability provided by full-precision updates. Al-
gorithm 1 lists the pseudocode of CLIP equipped
with TAT. The TAT algorithm provides a robust
framework for adapting CLIP models to efficient
ternary representations while preserving model per-
formance. A key strength of this approach is the
adaptivity of the weights W, which can originate
from the initialization from scratch, the pre-trained
weights or the knowledge distilled weights.

3.2 Ternarization-Aware Distillation

TnCLIP framework integrates KD with TAT to
develop an efficient ternary CLIP model and en-
sure that the model learns to perform effectively
with ternary representations while benefiting from
the knowledge of the high-capacity teacher model.
The unified training objective combines both task-
specific contrastive learning and teacher-student
knowledge transfer, formulated as

Eternary = Etask(wa X W) + cdistill(W7 X3 W)v

where the second term indicates the overall KD
loss, as shown in Figure 1 and formulated as fol-
lows

Laistin = Aerd - Lerd + il - Liet + At - Lar

where Acd, Aiel, and Agr are hyperparame-
ters. During training, forward propagation em-



Algorithm 1 Ternarization-Aware Training

Input: Full-precision CLIP model with weights
W, dataset D, hyperparameter 3 .
Output: Ternarized CLIP model with weights W
and scaling factor ~y
1: Initial full-precision weights W
2: while not converged do
3:  Sample a minibatch (I, 7") from D
// Ternarize weights
Zf_ % Zij (Wi
W ¢ RoundClip(317;, —1,1)
/ Forward pass with ternarized weights
I¢, Ty < Encoders(I,T; W)
logits < Similarity(I, Ty; W, )
10:  Loss + ContrastiveLoss(logits)
11:  // Backward pass with STE
12: ks o QTR(2koss)
13:  // Update full-precision weights
14: W < Optimizer(W, 255)
15: end while
16: // Final ternarization
17y <= % > (Wi

18: W RoundClip(%,

R A A

_17 1)
19: return W,

ploys ternary weights W while maintaining full-
precision weights W for gradient updates. The
task loss Li,sk preserves the model’s ability to align
image-text pairs through contrastive learning, while
the distillation loss Lgigin transfers complemen-
tary knowledge from the teacher model through
these three distillation mechanisms: contrastive re-
lational distillation, interactive contrastive learning,
and feature distillation.

By simultaneously optimizing for both task and
distillation objectives with ternarized weights, the
student model learns parameter distributions that
are well-suited for ternary quantization while main-
taining competitive performance. During infer-
ence, the model only operates with the ternary
weights, significantly reducing computational and
memory requirements without substantial perfor-
mance degradation.

3.3 Inference Efficiency

TnCLIP uses 1.6875-bit ternary weights', achiev-
ing a reduction in storage and memory compared
to 32-bit representations with the same architec-
ture. This enables deployment on edge devices

"Tmplemented by TQ1_0 in GGML library.

with limited memory. During inference, matrix
multiplication Wx is optimized with two binary
masks M and M_ representing positive and neg-
ative weights

Wx =A-((My —M_)x).

This replaces floating-point operations with bit-
wise logic, accelerating computation. Therefore,
FLOPs are significantly reduced, as dense ma-
trix multiplications are replaced by bitwise opera-
tions. Implementations like FATNN report nearly
2x speedups over 8-bit quantization (Chen et al.,
2021). TnCLIP’s aggressive weight quantization
preserves performance with QAT and KD, mak-
ing it deployable in memory-constrained settings
without sacrificing accuracy.

4 Experiments

We have trained two TnCLIP variants and per-
formed extensive evaluations. The first model is
TnCLIP_Q-FEN indicating all feedforward blocks
are ternarized, and the second one is TnCLIP_Q-
ALL indicating all feedforward and multi-head at-
tention blocks are ternarized. In the following sec-
tions, TnCLIP refers to TnCLIP_Q-ALL if there is
no specific declaration. TnCLIP applies ternariza-
tion on 99% parameters, as shown in Table 1.

Ternarized | Ternarized

MHA FFN | Proportion
TnCLIP_Q-FNN X v 171.62%
TnCLIP_Q-ALL v v 1 99.00%

Table 1: Comparison of ternarized components and
proportion for different model variants.

4.1 Datasets and Configurations

Training Datasets and Models. We use Concep-
tual 12M (Changpinyo et al., 2021) for vision-and-
language ternary distillation with 384 batch size
per GPU and 3,072 total batch size. In terms of
balancing performance and model size, we select
CLIP model with ViT-B/16 image encoder as our
student model and LAION’s CLIP model with ViT-
L/14 image encoder as the teacher model. The
more detailed configurations of CLIP models can
be checked on Appendex A.

Hyperparameter Tuning. The epoch is set to
32 during hyperparameter tuning and adjust differ-
ent groups to obtain better loss convergence. Then



we select the best group of hyperparameters. Ba-
sically, we train TnCLIP through an AdamW opti-
mizer with 1e-3 initial learning rate, 10K warm-up
steps, cosine annealing scheduler and 0.1 weight
decay in 64 epochs. For distillation loss, we set
Aerd = 1.0, Ajgg = 1.0, and Ayq = 2000.0. Check
Appendix B for further details on hyperparameters.
Evaluation Tasks and Metrics. The evaluated
datasets comprise 37 multi-classification datasets,
1 multi-label classification dataset and 3 image-text
retrieval datasets. The tasks are all zero-shot, in-
cluding standard image classification with the met-
ric of top-1 accuracy (Accuracy @1), multi-label
image classification with the metric of mean av-
erage precision (mAP), image-text retrieval with
the metric of top-5 recall (Recall@5). Considering
different CLIP models, CLIP ViT-L/14 LAION is
the teacher model of CLIP-KD and TnCLIP vari-
ants, while CLIP ViT-B/16 OpenAl and LAION
are models for comparison, which are trained from
scratch. We benchmark CLIP models (ViT-L/14
and ViT-B/16) and TnCLIP variants (ViT-B/16) on
ARM CPU (Apple M4 Pro) to evaluate TnCLIP’s
sparsity, storage, memory and latency to simulate
performance in resource-constrained environments.
Inference Configurations. To eunsure robust
and reproducible evaluation on model inference,
we employ several configurations. Each benchmark
is executed 1,000 times, with average values re-
ported in Table 2 and comprehensive statistics pro-
vided in Appendix E. For consistency across exper-
iments, all model weights are stored in the GGUF
format® and model inference is performed under
the GGML framework?. For TnCLIP, we employ
TQ1_0 quantization data type to implement infer-
ence, which efficiently packs and unpacks ternary
parameters, optimizing both computational perfor-
mance and model effectiveness. The benchmarks
using alternative quantization data types such as
TQ2_0 and TQ4_0 are listed in Appendix E.

4.2 Zero-Shot Classification Performance

Classification Data Types. We assess our TnCLIP
and other models on 37 image classification
datasets. There are three dataset types: natu-
ral, specialized and structured. Natural datasets
contain everyday objects and scenes that human
commonly encounter, e.g., ImageNet series (Deng
et al., 2009). Specialized datasets focus on domain-

Zhttps://github.com/ggml-org/ggml/blob/master/
docs/gguf.md
Shttps://github.com/ggml-org/ggml
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Figure 2: Zero-shot image classification performance
(Accuracy @1) on three dataset types and six CLIP mod-
els. ViT-L/14 or ViT-B/16 indicates which image en-
coder is used for the structure of CLIP.
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Figure 3: Zero-shot multi-label classification perfor-
mance (mean average precision) on PASCAL VOC
2007. ViT-L/14 or ViT-B/16 indicates which image
encoder is used for the structure of CLIP.

specific application requiring expert knowledge,
e.g. PatchCamelyon(PCam) covering histopatho-
logic scans of Iymph node sections (Veeling et al.,
2018). Structured datasets focus on spatial rela-
tionships, counting, positioning and other struc-
tured reasoning tasks, e.g., CLEVR, a synthetic
visual question answering dataset (Johnson et al.,
2017). The details of all datasets are provided in
Appendix D.

Evaluation of Accuracy @1. Figure 2 illustrates
TnCLIP variants can handle performance degrada-
tion due to quantization error and the performance
gap is less than 3% compared to CLIP-KD, consid-
ering all evaluated dataset categories. Compared
to the train-from-scratch models, TnCLIPs appear
around 8% performance reduction, while compared
to the teacher model the reduction is around 11% in
Figure 2 and Table 7. Furthermore, all knowledge
distilled models (CLIP-KD and TnCLIPs) demon-
strate promising performance improvement, around


https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
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20% compared to 36% Accuracy @1 on ImageNet-
1K by the CLIP model without distillation (Yang
et al., 2024). For the zero-shot multi-label classifi-
cation task, TnCLIP variants maintain mAP scores
within 1% margin of other CLIP models in Fig-
ure 3.

Evaluation of Sparsity, Storage, memory
and latency. In Table 2, we observe substan-
tial improvements across all evaluation metrics
for TnCLIP models. The extremely compressed
variant TnCLIP (ViT-B/16) achieves 60.88% total
sparsity, 35.3MB storage, 8MB runtime memory
footprint and 106.75ms latency. For the 60.88%
total model sparsity, TnCLIP provides the possi-
bility for further optimization and compression
in subsequent research that other full-precision
models do not. Regarding storage requirements,
TnCLIP achieves an order-of-magnitude reduction,
shrinking the model size from 1630.9MB (ViT-
L/14 Float32) and 571.6MB (ViT-B/16 Float32)
to merely 35.3MB which represents 94%~98%
decrease. Similarly, memory during inference
is dramatically optimized with a reduction from
24MB~60MB to 8MB, enabling deployment
on memory-constrained devices. With respect
to inference latency, TnCLIP delivers remark-
able acceleration reducing processing time from
241.40ms~886.15ms to 106.75ms, which achieves
a 56%~87% improvement.

Zero-shot classification experiments demon-
strate that our proposed TnCLIP retains competi-
tive effectiveness and achieves great efficiency in
sparsity, storage, memory and latency.

4.3 Zero-Shot Retrieval Performance
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Figure 4: Zero-shot image-to-text retrieval performance
(Recall@5) on three datasets and six CLIP models. ViT-
L/14 or ViT-B/16 indicates which image encoder is used
for the structure of CLIP.
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Figure 5: Zero-shot text-to-image retrieval performance
(Recall@5) on three datasets and six CLIP models. ViT-
L/14 or ViT-B/16 indicates which image encoder is used
for the structure of CLIP.

Datasets. For the evaluation in the zero-
shot cross-modal retrieval scenario, we apply
three commonly used datasets: Flickr8k (Hodosh
et al., 2013), Flickr30k (Young et al., 2014) and
MS COCO (Microsoft Common Objects in Con-
text, Lin et al. (2014)) on two tasks: image-to-text
retrieval and text-to-image retrieval. We choose
Recall@5 as the metric to judge the retrieval per-
formance.

Evaluation. In Figure 4 and Figure 5, it is shown
that the performance reduction is less than 3% rel-
ative to the same model size, while around 5%
relative to the larger model size. TnCLIP achieves
competitive performance compared to CLIP mod-
els with larger architecture and higher precision.
In terms of model sparsity, storage, memory and
latency, TnCLIP performs much better than full-
precision models which is elaborated in the above
section 4.2.

4.4 Covergence and Costs

Covergence. As shown in Figure 6, we analyze the
loss curves and obtain three crucial findings, while
more detailed training information can be seen in
Appendix C. Firstly, ternary loss curves exhibit pe-
riodic higher fluctuations as the full-precision loss
curve does not. It is reasonable since unlike contin-
uous parameter space of the full-precision models,
quantized or ternarized parameter space is discrete
by roundclip(x,—1,1) function which resulting
in slight weight updates but great performance dif-
ferences between two training steps. Secondly,
scaling up the quantized proportion introduces in-
creased quantization error and more computation
to mitigate it. Lastly, more training computation



Model Precision Sparsity 1 Storage(MB) | Memory(MB) | Latency(ms) |
CLIP Float32 0% 1630.9 60 886.15
ViT-L/14 Floatl6 0% 817.3(0.50x%) 30(0.50x) 710.88(0.80x%)
CLIP Float32 0% 571.6(0.35x%) 24(0.40x) 241.40(0.27x)
ViT-B/16 Float16 0% 287.7(0.18 %) 12(0.20x) 174.62(0.20x)
TI.ICLIP_Q_FFN TQ1_0 44.57%(62.27%)  105.0(0.06x) 8(0.13x) 126.05(0.14 x)
ViT-B/16

TnCLIP

VIT-B/16 TQ1_0 60.88%(61.56%)  35.3(0.02x) 8(0.13 %) 106.75(0.12x)

Table 2: CLIP model sparsity, storage, memory and latency on different precisions. For the sparsity of ternary
models, x%(y%): x% represents total sparsity of all parameters and y% represents sparsity of all ternary parameters.

—— CLIP-KD Float32
9 TnCLIP (Q-FFN)
—— TnCLIP (Q-ALL)

0 100 200 300 400 500 600 700
Number of Samples Seen (Million)

Figure 6: Training losses of three models on the number
of samples seen: 1) full-precision CLIP-KD, 2) TnCLIP
(Q-FFN) with FEN ternarized, 3) TnCLIP (Q-ALL) with
MHA+FFN ternarized.

can mitigate the quantization error (or performance
barrier) contributed by the quantization operation
to gain a promising performance compared to the
full-precision model.

Above all, inspired by the scaling law in large
language models (Kaplan et al., 2020), we sum-
marize the scaling law of 1.6875-bit quantization:
increased compute can mitigate performance reduc-
tion.

Ly(C.q) = aC” - f(q) + ¢,

where Ly (C, q) is the quantized model loss. C'is
the training computational budget. « and [ are
the power law parameters. f(q) = (1 — )7 is
the quantization penalty function where ¢ is the
quantized proportion and -~y is the parameter. c is
the regulation.

Computational Costs. Apart from TnCLIP, the
models appearing in the evaluation experiments
are sourced from OpenAl (Radford et al., 2021),
LAION*, and CLIP-KD (Yang et al., 2024). Al-
though the training data and computational re-

*https://laion.ai/

sources used to train a CLIP with ViT-B/16 image
encoder by OpenAl are not released, these are an-
nounced by LAION and CLIP-KD. In this case,
we compare our model TnCLIP with models from
OpenAl, LAION and CLIP-KD about the computa-
tional usage and the performance. We collect GPU
usage information for different models in Table 3
and the prices are calculated from the prices to rent
on Vast.ai’. It is obvious that training TnCLIP is
not only significantly more cost-effective than dis-
tilling by CLIP-KD but also training from scratch
by OpenAl and LAION.

4.5 Discussions

Comprehensive experiments reveal several key in-
sights into ternary quantization for multimodal
models. First, we observe a scaling law for 1.6875-
bit quantization, where the performance degrada-
tion caused by quantization error can be effectively
mitigated by increasing computational resources
during training, specifically training iterations and
dataset size. This finding aligns with recent work
on QAT in large language models (Wang et al.,
2023), indicating that the scaling law generalizes
across modality domains.

Second, TnCLIP effectively achieves the pri-
mary objectives of model ternarization: (1) Re-
duced training cost through knowledge distillation.
(2) Performance preservation with minimal degra-
dation via ternarization-aware training, (3) larger
sparsity, along with lower storage, memory and
latency through efficient ternary operations.

Lastly, the performance trade-offs observed in
some evaluation metrics are acceptable given the
resource efficiency gains, especially for resource-
constrained environments, e.g., edge devices. Ex-
periments demonstrate that the performance gap be-
tween full-precision (CLIP-KD) and ternary mod-

Shttps://vast.ai/pricing
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Model Dataset GPU Time | Price |
ViT-L/14 LAION LAION-400M  400* A100  ~127 hours ~44,704%
ViT-L/14 OpenAl WIT-400M 256* V100  ~288 hours ~34,818%
ViT-B/16 LAION LAION-400M 176* A100  ~61 hours  ~9,448%
ViT-B/16 CLIP-KD | CC3M+CCI12M 8* A800 ~137 hours ~998%
ViT-B/16 TnCLIP | CC12M 8* 6000Ada ~129 hours ~575%

Table 3: Comparison of CLIP model training specifications, including vision transformer size, dataset, GPU

requirements, training time, and associated costs.

els (TnCLIP) under the same model architecture
is minimal (<2.7% on average in Table 7), while
resource consumption decreases by approximately
one order of magnitude in Table 2.

5 Related Work

Model Quantization and Ternarization. Quan-
tization has been a key strategy to compress neu-
ral networks for efficient deployment. Traditional
methods like integer quantization (INT8 and INT4)
effectively reduce memory usage and computa-
tion costs with minimal accuracy loss (Jacob et al.,
2018; Wu et al., 2016). Recent research extends to
ternary quantization, where weights are represented
as {—1,0,+1}, achieving even greater efficiency
while preserving accuracy (Zhu et al., 2017a; Zafrir
et al., 2019). Techniques such as TTQ (Zhu et al.,
2017a) and FATNN (Chen et al., 2021) introduce
learned scaling factors to optimize ternary models.
Our work extends ternary quantization to multi-
modal learning, fully quantizing both the visual
and textual encoders of CLIP.

Transformer Quantization. Transformer quanti-
zation for vision and language processing has been
explored in works such as Q8BERT and Ternary-
BERT, demonstrating low-bit precision with mini-
mal performance degradation (Zafrir et al., 2019;
Zhang et al., 2020). In the vision domain, quantiz-
ing ViTs presents challenges due to sensitivity in at-
tention distributions, which methods such as Q-ViT
address with quantization-aware adjustments (Li
et al., 2022). Building on these ideas, our TnCLIP
is the first to apply ternary quantization to CLIP’s
dual-modality architecture.

Multimodal Model Compression. Compres-
sion for multimodal architectures remains underex-
plored compared to unimodal models like BERT
or ResNet. Recent efforts such as TinyCLIP (Wu
et al., 2023) employ distillation to reduce model
size, focusing on parameter reduction rather than
quantization. Although 8-bit quantization has

demonstrated memory and latency benefits for
CLIP (Jacob et al., 2018; Zafrir et al., 2019), our
TnCLIP achieves 1.6875-bit weight compression
across both image and text encoders, setting a new
benchmark for efficient multimodal learning.
Knowledge Distillation for Low-Bit. KD has been
effective in boosting performance in compressed
models. Techniques like TinyBERT (Wu et al.,
2023) and DistilBERT (Sanh et al., 2019) demon-
strate that distillation from high-precision teachers
can bridge accuracy gaps in quantized students.
Our TnCLIP leverages KD not only for knowledge
transfer but also for mitigating representational loss
from ternary quantization, ensuring robust cross-
modal retrieval.

Multimodal Model Efficiency. As multimodal
models continue to scale up, computational ef-
ficiency for edge deployments becomes crucial.
Although pruning, distillation, and low-bit quan-
tization have been explored for unimodal mod-
els (Hinton et al., 2014; Han et al., 2016; Esser
et al., 2020), ternary quantization remains under-
represented. Our TnCLIP pioneers the full ternar-
ization of a vision-language transformer, offering
substantial memory and compute reductions with-
out sacrificing cross-modal alignment, paving the
way for efficient multimodal learning in resource-
constrained environments.

6 Conclusions and Prospects

We presented TnCLIP, which compresses both
the vision and text encoders of CLIP into ternary
formats. By integrating QAT and KD, TnCLIP
achieves up to 16x storage reduction, 60% spar-
sity, and 2.3x inference acceleration while main-
taining competitive classification and retrieval accu-
racy. Experimental results demonstrate its effective-
ness, supporting efficient deployment on resource-
constrained devices such as mobile phones and
AR/VR applications.



7 Limitations

Although TnCLIP is efficient due to ternary
quantization, it has several limitations. First,
ternatization-aware distillation from pre-trained
models reduces the student model’s ability to adapt
to domain-specific applications. Retraining is still
necessary to maintain performance on new tasks.
Second, quantization introduces information loss,
which can hinder the model’s ability to capture
subtle image-text alignments compared to the full-
precision models trained from scratch.

Additionally, the current TnCLIP framework
only quantizes weights, leaving activations in FP16
format. Furthermore, the current implementation
does not fully leverage mixed-precision techniques,
such as using INTS for activations and intermediate
computations, even though these techniques offer
promising trade-offs.

Finally, this work focuses on image-text align-
ment tasks. The extension of ternary quantization
techniques to other modalities remains unexplored
and presents an opportunity for future research.

8 Ethical Considerations

TnCLIP inherits the biases of its pre-trained teacher
models, which may reflect societal biases in image-
text alignment tasks. Although ternary quantiza-
tion and distillation methods do not introduce new
biases, they do not specifically mitigate inherited
representation biases. Furthermore, the model’s
reduced interpretability due to aggressive quanti-
zation complicates the detection and mitigation
of biases. Future work should explore bias-aware
quantization techniques to improve fairness and
transparency when deploying the model in real-
world applications.
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A Model Configuration

In Table 4, we list all configurations of CLIP mod-
els in our evaluation, including pre-trained CLIPs

B Training Hyperparameters

In Table 5, we exhibit hyperparameters used to
train our TnCLIP model, while the values between

and knowledge distilled CLIPs.

square brackets are the to-be-selected hyperparam-
eters and the values with the text bold font are the
selected hyperparameters after tuning procedure.

Model
CLIP LAION CLIP LAION CLIP OpenAl CLIP-KD TnCLIP
Teacher Model Pretrained Pretrained Pretrained LAION(ViT-L/14) LAION(ViT-L/14)
Parameters 427.6M 149.6M 149.6M 149.6M 149.6M
Embed_Dim 768 512 512 512 512
Structure ViT-L/14 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16
= Image Size 224 224 224 224 224
- Patch 14 16 16 16 16
> Layers 24 12 12 12 12
Width 1024 768 768 768 768
Vocab Size 49408 49408 49408 49408 49408
. Context 77 77 77 77 77
5 Layers 12 12 12 12 12
Width 768 512 512 512 512
Heads 12 12 12 12 12

Table 4: Model configurations, including name, training strategy(whether to use distillation or not), number of
parameters, embedding dimension, vision and text configurations.

model Teacher: [ViT-L/14]
Student: [ViT-B/16]

weight [OpenAl_400M_ep32, Laion400M_ep32]

quantization | weight_quant: [ternary, int3, int4]
activation_quant: [int8, float16]

Ternarization | 3: [1, 2, 3], e: [1e-6]

precision [amp, amp_bf16, bp16, fp32]

data load num_workers: [4, 8, 16, 32]

epoch [32, 64]

Ir [1e-4, 5e-4, 1e-3]

warmup [1000, 5000, 10000, 100000]

batch size [128 *8, 256 *8, 384 *8, 512 *8]

opt adamw(0.9, [0.98, 0.998, 0.999], c: [1e-6])

wd [0.01, 0.05, 0.1, 0.2]

Acrds Terd [0.5,1,2],]0.5,1, 2]

Aicl [0.5,1, 2]

Asd [1000, 2000, 4000]

augment cfg [None, Scale, Scale+Color_Jitter+Gray_Scale]

Table 5: Training hyperparameters of TnCLIP: the value with text bold font is the selected hyperparameters after
tuning. For example, A¢ = 1.0 and temperature 7,4 = 1.0.

12



—— CLIP-KD Float32
~—— TnCLIP (Q-FFN)
—— TnCLIP (Q-ALL)

1.50

= e
o N
S g

Task Loss

e
<
a

0.50

0 100 200 300 400 500

Number of Samples Seen (Million)

600 700

Figure 7: Task losses of full-precision CLIP-KD,
ternary TnCLIP_Q-FFN and TnCLIP_Q-ALL.
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Figure 9: ICL losses of full-precision CLIP-KD, ternary
TnCLIP_Q-FFN and TnCLIP_Q-ALL.
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Figure 8: CRD losses of full-precision CLIP-KD,
ternary TnCLIP_Q-FFN and TnCLIP_Q-ALL.
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Figure 10: FD losses of full-precision CLIP-KD, ternary
TnCLIP_Q-FFN and TnCLIP_Q-ALL.
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Figure 11: Zero-shot image classification performance: Accuracy@1 across 37 datasets.
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C Details of Training TnCLIP

In Figure 7, 8, 9, and 10, we show the loss curves
of three models on the number of samples seen.
The first model is full-precision CLIP-KD, the sec-
ond model is TnCLIP (Q-FFN) with FFN ternar-
ized, and the third model is TnCLIP (Q-ALL) with
MHA+FFEN ternarized. The first loss curve is task
loss. The second loss curve is contrastive relational
distillation (CRD) loss. The third loss curve is in-
teractive constrastive learning (ICL) loss. The last
loss curve is feature distillation (FD) loss. The loss
curves are plotted against the number of samples
seen during training.

D Details of Zero-Shot Classification

In Figure 11 and Table 7, it is shown that TnCLIP
with 99% ternary parameters obtains only 2.71%
performance reduction compared with CLIP-KD
of the same model architecture and size.

E Details of Inference Latency

In Table 6, we present a comprehensive analysis of
CLIP model inference latency across various preci-
sion formats with the corresponding bit-per-weight
(BPW) configurations, showing the decomposition
of total latency into model loading, image loading,
and model forwarding components, with all bench-
marks conducted on Apple M4 Pro hardware over
1,000 test rounds.

F Ablation Study

In Figure 12 and Figure 13, we show the ablation
study of data augmentation and int8 activation qua-

ntization. Based on the performance gap of loss
curves, we determine training TnCLIP without any
data augmentation and activation quantization.
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—— Data Augmentation: None
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Figure 12: Ablation study of data augmentation on
TnCLIP. Data augmentation makes loss convergence
much more slower than the baseline.
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Figure 13: Ablation study of int8 or float16 activation
quantization on TnCLIP. Int8 activation quantization
makes loss convergence much more slower than the
baseline.

Model Precision BPW | Storage(MB)| Model Load(ms)| Image Load(ms)| Model Forward(ms), Total Latency(ms) |
VITL/14 Float32 32 1630.9 382.22 +22.58 532+ 1.65 498.60 + 85.66 886.15 +90.65
Float16 16 817.3 199.42 £ 9.50 535+0.24 506.10 + 75.54 710.88 + 76.38
VIT-B/16 Float32 32 571.6 153.02 + 7.41 535+0.22 83.02 + 55.47 241.40 + 56.47
Float16 16 287.7 90.15 +4.27 5.42 +0.63 79.04 + 50.26 174.62 + 50.52
Float32 32 571.6 154.55 +21.00 5.79 £0.77 90.03 + 59.39 250.38 + 67.65
Float16 16 287.7 90.52 + 4.87 5.84 £0.72 86.62 + 53.00 182.99 + 53.57
. Q4.0 4 140.9 57.32 £4.35 5.83 £0.44 74.02 £ 49.97 137.18 £+ 50.52
TnCLIP_Q_FFN VIT-B/16 Q4_1 4 147.3 58.53 +£2.86 5.82+0.38 70.40 + 48.54 134.75 + 48.68
TQ1_0 1.6875 105 49.09 £ 3.47 5.81 +£0.33 71.14 + 50.89 126.05 + 51.05
TQ2_0 2.0625 109.8 50.15 £ 3.00 5.82+0.38 76.26 + 50.06 132.23 +49.99
Float32 32 571.6 149.82 + 11.73 5.63 £0.45 87.83 £+ 56.36 243.28 + 57.14
Floatl6 16 287.7 89.12 +3.77 5.77 £0.32 79.70 + 50.35 174.60 £ 50.40
. Q4.0 4 84.9 44.16 £ 1.79 5.75+0.24 71.30 + 49.68 121.22 +49.79
TnCLIP VIT-B/16 Q4_1 4 93.7 46.10 £+ 1.87 5.75 £ 0.29 68.46 + 46.07 120.32 + 46.08
TQI_0 1.6875 353 33.05 + 1.70 5.74 + 0.19 67.96 + 45.58 106.75 + 45.68
TQ2_0 2.0625 419 3477 £2.75 5.78 £ 0.45 75.78 + 48.16 116.33 + 48.21

Table 6: CLIP model inference latency overview on different precisions and bpw (bits per weight). The CPU
hardware is Apple M4 Pro. Total latency is combined with model loading, image loading and model forwarding.
Latency = A + B: A represents the average value and B represents three standard deviations 3 * ¢ under 1,000

rounds of benchmarks.
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Dataset Type ViT-L/14 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16

LAION OpenAl LAION CLIP-KD TnCLIP_Q-FFN TnCLIP

Natural Datasets
caltech101 natural 83.99% 82.10% 83.63% 81.15% 79.61% 77.70%
cars natural 89.64% 64.73% 83.77% 46.50% 49.67% 42.20%
cifarl0 natural 94.63% 90.77% 91.73% 89.99% 89.24% 86.45%
cifar100 natural 77.39% 66.94% 71.15% 63.57% 61.96% 55.28%
country211 natural 23.04% 22.87% 18.12% 13.41% 14.04% 12.68%
dtd natural 60.43% 44.95% 51.28% 43.88% 39.89% 33.83%
fer2013 natural 50.22% 46.22% 43.13% 46.53% 44.52% 41.40%
fgvc_aircraft natural 25.02% 24.24% 17.64% 8.73% 7.29% 6.15%
flowers natural 75.56% 71.18% 69.28% 52.66% 48.92% 44.97%
gtsrb natural 49.92% 43.56% 43.42% 28.79% 33.49% 27.75%
imagenet-a natural 46.49% 49.92% 33.19% 21.12% 20.91% 19.36%
imagenet-o natural 41.95% 42.30% 50.65% 47.45% 45.00% 45.20%
imagenet-r natural 84.68% 77.71% 77.93% 71.83% 71.28% 67.22%
imagenetlk natural 72.77% 68.36% 67.07% 57.44% 56.76% 53.28%
imagenetv2 natural 65.41% 61.90% 59.65% 50.01% 49.43% 46.10%
objectnet natural 59.86% 55.33% 51.49% 37.41% 37.02% 33.89%
pets natural 91.91% 89.04% 89.26% 84.44% 82.56% 81.14%
stl10 natural 98.05% 98.25% 96.99% 96.05% 95.29% 95.16%
sun397 natural 72.59% 64.34% 69.61% 67.41% 65.84% 64.48%
svhn natural 37.97% 31.27% 38.53% 16.72% 16.33% 21.79%
voc2007 natural 75.64% 78.32% 76.85% 70.23% 71.51% 70.10%
Specialized Datasets
diabetic_retinopathy specialized 6.19% 3.57% 7.75% 20.09% 3.03% 2.27%
eurosat specialized 62.24% 56.00% 50.07% 45.96% 42.59% 45.59%
imagenet_sketch specialized | 59.65% 48.24% 52.37% 44.79% 43.91% 40.23%
mnist specialized 76.10% 51.85% 66.39% 46.90% 31.86% 47.93%
pcam specialized 49.38% 50.67% 59.73% 53.98% 59.30% 58.18%
renderedsst2 specialized 56.12% 60.79% 54.48% 48.82% 52.28% 50.30%
resisc45 specialized 67.43% 58.27% 58.54% 49.83% 46.21% 43.24%
Structured Datasets
clevr_closest_object_distance structured 14.91% 15.83% 24.51% 16.75% 16.40% 21.90%
clevr_count_all structured 24.25% 21.03% 28.65% 21.27% 18.37% 19.65%
dmlab structured 18.66% 15.50% 15.10% 16.92% 14.39% 14.40%
dsprites_label_orientation structured 2.61% 2.34% 2.87% 2.71% 2.92% 3.28%
dsprites_label_x_position structured 2.99% 3.00% 3.15% 2.93% 2.86% 3.04%
dsprites_label_y_position structured 3.16% 3.11% 3.24% 3.16% 3.07% 3.28%
kitti_closest_vehicle_distance structured 20.39% 26.30% 18.28% 27.99% 13.08% 19.69%
smallnorb_label_azimuth structured 5.25% 5.18% 6.02% 6.20% 5.46% 5.16%
smallnorb_label_elevation structured 11.00% 12.21% 9.96% 11.59% 11.11% 10.71%
Summary

Average (natural) natural 65.58% 60.68% 61.16% 52.16% 51.46% 48.86%
Average (specialized) specialized 53.87% 47.06% 49.90% 44.34% 39.88% 41.11%
Average (structured) structured 11.47% 11.61% 12.42% 12.17% 9.74% 11.24%
Average (All) All Types 50.20% 46.17% 47.18% 40.95% 39.12% 38.24%
Performance vs. ViT-L/14 LAION All Types rel. 0% -4.03% -3.02% -9.25% -11.08%  -11.96%
Performance vs. ViT-B/16 OpenAl ~ All Types +4.03% rel. 0%  +1.01% -5.22% -7.05% -7.93%
Performance vs. ViT-B/16 LAION All Types +3.02% -1.01% rel. 0% -6.23% -8.06% -8.94%
Performance vs. ViT-B/16 CLIP-KD  All Types +9.25%  4+522%  +6.23% rel. 0% -1.83% -2.71%

Table 7: Zero-shot classification performance: Accuracy@1 across 37 datasets.

G Ternary Weight Distribution

In Figure 14 15 16, we illustrate the distribution
of ternary weight for TnCLIP Q-FFN and Q-ALL
models. It is obvious that ternary weights main-
tain a good sparsity in addition to other benifits of
quantization that we conlude during experiments.

15



100%

75%

50%

25%

0%

100%

75%

50%

25%

0%

100%

75%

50%

25%

100%

75%

50%

25%

0%

100%

75%

50%

25%

0%

100%

75%

50%

25%

0%

100%

75%

50%

25%

v.0.mlp.c_fc v.0.mlp.c_proj v.1.mlp.c_fc v.1.mlp.c_proj v.2.mlp.c_fc v.2.mlp.c_proj v.3.mlp.c_fc

3072x768 768%3072 3072x768 768x3072 3072x768 768%3072 3072x768
100% 100% 100% 100% 100% 100%
68.2% 75% _ 75% 75% 75% 75% 75%

63.9% 62.0% 60.7% 61.0% 60.4% 60.3%
50% 50% 50% 50% 50% 50%
16.1% 15.0%| 25%118.1% 18.0%| 25%118.2% 19.8% | 25% {19.7% 19.7%| 25%118.8% 202%| 25%119.8% 19.8% | 25%118.7% 21.0%

0% 0% 0% 0% 0% 0%

“0.0367 o 00367 00311 13 00311 0.0308 o 00308 0.0243 o 00243 “0.0343 o 00343 0.0257 o 00257 00359 o 00359
v.3.mlp.c_proj v.4.mlp.c_fc v.4.mlp.c_proj v.5.mlp.c_fc v.5.mlp.c_proj v.6.mlp.c_fc v.6.mlp.c_proj
768x3072 3072x768 768x3072 3072x768 768x3072 3072x768 768x3072
100% 100% 100% 100% 100% 100%

5% 5% 75% 5% 5% 75%

60.3% 60.3% 59.9% 60.4% 59.8% 60.1%

50% 50% 50% 50% 50% 50%

19.9% 19.9% | 25% 118.9% 20.8%| 25%120.1% 20.0%| 25% 120.0% 19.7%| 25%120.1% 201%| 25%118.7% 25% 120.0% 19.9%

0% 0% 0% 0% 0% 0%

00275 o 00275 00356 13 00356 00285 o 00285 00349 o 00349 -0.0299 o 00299 00371 o 00371 00313 o 00313
v.7.mlp.c_fc v.7.mlp.c_proj v.8.mlp.c_fc v.8.mlp.c_proj v.9.mip.c_fc v.9.mlp.c_proj v.10.mlp.c_fc
3072x768 768x3072 3072x768 768x3072 3072x768 768x3072 3072x768

100% 100% 100% 100% 100% 100%
5% 5% 75% 5% 5% 75%
60.5% 60.5% 60.5% 60.3% 60.2% 60.5% 60.4%
50% 50% 50% 50% 50% 50%
18.3% 213%| 25% {19.8% 19.8%| 25%119.1% 205% | 25% {19.9% 19.9%| 25%419.5% 20.2%| 25%119.7% 19.7%| 25%1{19.8% 19.9%
0% 0% 0% 0% 0% 0%

00381 o 00381 00320 o 00320 00366 o 00366 00311 o 00311 00381 o 00381 00327 o 00327 00854 o 00454
v.10.mlp.c_proj v.11.mlp.c_fc v.11.mlp.c_proj t.0.mlp.c_fc t.0.mlp.c_proj t.1.mlp.c_fc t.1.mlp.c_proj
768x3072 3072x768 768x3072 2048x512 512x2048 2048x512 512x2048
100% 100% 100% 100% 100% 100%

5% 5% 75% 5% 5% 75%

61.4% 61.2% 61.1% 59.4% 60.5% 59.7% 60.8%

50% 50% 50% 50% 50% 50%

19.3% 19.3%| 25% {20.3% 18.5%| 25%119.5% 19.4%| 25% {20.1% 20.5% | 25%19.8% 19.7%| 25%121.3% 19.0%| 25%119.6% 19.6%

0% 0% 0% 0% 0% 0%

00834 o 00134 0.0480 13 00480 0.0a11 o [ 00024 o 00524 0,053 o 00353 0.006 o 00116 0.0317 o 00317
t.2.mlp.c_fc t.2.mlp.c_proj t.3.mlp.c_fc t.3.mlp.c_proj t4.mlp.c_fc t.4.mlp.c_proj t.5.mlp.c_fc
2048x512 512x2048 2048x512 512x2048 2048x512 512x2048 2048x512

100% 100% 100% 100% 100% 100%
5% 5% 5% 5% 5% 75%
59.8% 60.4% 60.0% 60.5% 60.0% 60.8% 60.5%
50% 50% 50% 50% 50% 50%
21.0% 19.2%| 25% 119.8% 19.8%| 25%20.6% 19.4%| 25% 119.8% 19.8%| 25% 20.6% 19.4%| 25%119.6% 19.6%| 25%120.2% 19.4%
0% 0% 0% 0% 0% 0%

-0.0403 o 00203 -0.0294 13 00294 0.0392 0 00392 0.0285 o 00286 0,038 o 00386 0.0284 o 00284 00377 o 00377
t5.mlp.c_proj t6.mlp.c_fc t£6.mlp.c_proj t7.mlp.c_fc t7.mlp.c_proj t8.mlp.c_fc t8.mlp.c_proj
512x2048 2048x512 512x2048 2048x512 512x2048 2048x512 512x2048
100% 100% 100% 100% 100% 100%

5% 5% 75% 5% 5% 75%

60.9% 60.4% 60.8% 60.6% 61.0% 60.6% 61.1%

50% 50% 50% 50% 50% 50%

19.6% 19.5%| 25% 120.1% 19.5%| 25%119.6% 19.5%| 25% 20.0% 19.5%| 25%119.5% 19.5%| 25%119.9% 19.5%| 25%119.4% 19.5%
0% 0% 0% 0% 0% 0%

00285 o 00285 00368 13 00368 00279 o 00279 00360 o 00360 00278 o 00278 00351 o 00351 00274 0 00274
t.9.mlp.c_fc t.9.mlp.c_proj t.10.mlp.c_fc t.10.mlp.c_proj t11l.mip.c_fc t.11.mlp.c_proj token_embedding
2048x512 512x2048 2048x512 512x2048 2048x512 512x2048 49408x512
100% 100% 100% 100% 100% 100%

75% 75% 75% 75% 75% 75% 66.8%
60.8% 61.0% 60.7% 60.9% 60.8% 60.9%
50% 50% 50% 50% 50% 50%
19.8% 19.4%| 25%119.5% 195%| 25%119.6% 19.7%| 25% {19.6% 19.5%| 25%119.4% 19.8%| 25%119.5% 19.6%| 25%116.6% 16.6%
0% 0% 0% 0% 0% 0%
00344 ° 00344 00271 3 00271 0.0346 o 00346 00257 o 00257 00374 o 00374 00204 o 00244 00170 o 00170

Figure 14: Ternary weight distribution of TnCLIP Q-FFN.
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Figure 15: Ternary weight distribution of TnCLIP Q-ALL (Part1).
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Figure 16: Ternary weight distribution of TnCLIP Q-ALL (Part2).
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