From Thousands to Billions: 3D Visual Language Grounding via
Render-Supervised Distillation from 2D VLMs
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Abstract

3D vision-language grounding faces a fundamen-
tal data bottleneck: while 2D models train on
billions of images, 3D models have access to
only thousands of labeled scenes—a six-order-of-
magnitude gap that severely limits performance.
We introduce LIFT-GS, a practical distillation
technique that overcomes this limitation by us-
ing differentiable rendering to bridge 3D and 2D
supervision. LIFT-GS predicts 3D Gaussian rep-
resentations from point clouds and uses them to
render predicted language-conditioned 3D masks
into 2D views, enabling supervision from 2D
foundation models (SAM, CLIP, LLaMA) with-
out requiring any 3D annotations. This render-
supervised formulation enables end-to-end train-
ing of complete encoder-decoder architectures
and is inherently model-agnostic. ~LIFT-GS
achieves state-of-the-art results with 25.7% mAP
on open-vocabulary instance segmentation (vs.
20.2% prior SOTA) and consistent 10-30% im-
provements on referential grounding tasks. Re-
markably, pretraining effectively multiplies fine-
tuning datasets by 2x, demonstrating strong scal-
ing properties that suggest 3D VLG currently op-
erates in a severely data-scarce regime. Project
page: https://liftgs.github.io.

1. Introduction

When a user mentions the keys by the door or the blue mug
on the table, they use language to indicate a specific set
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Figure 1: LIFT-GS Overview. We train a powerful 3D vision lan-
guage grounding model (i.e., 3D mask decoder) with point clouds
and language as inputs by learning from 2D VLM foundation mod-
els without any 3D supervision.

of objects and 3D locations in space. Such 3D language
grounding provides a particularly natural interface for peo-
ple to communicate about their surroundings. For Al sys-
tems operating in physical spaces, identifying the 3D masks
or bounding boxes indexed by language queries represents
a core functionality, with applications across autonomous
navigation, robotic manipulation, and AR/VR.

Yet despite its importance, 3D vision-language grounding
(3D VLG) faces a fundamental bottleneck: data scarcity.
While 2D vision-language models are trained on billions of
labeled images and masks (Achiam et al., 2023; Touvron
et al., 2023; Radford et al., 2021; Labs, 2023), existing
3D VLG models have access to only thousands of labeled
3D scenes and masks. This six-order-of-magnitude gap in
data availability severely limits the capabilities of current
3D grounding systems, creating one of the most significant
challenges in embodied Al.

A common workaround to this scarcity constructs 3D fea-
ture fields from 2D features (e.g., CLIP embeddings) and
performs text queries via dot products between the text and
3D embeddings. Although this provides good generaliza-
tion, performance degrades with more detailed descriptions
typical of real-world queries, as illustrated in Figure 3. From
this perspective, the dual-encoder approach falls short of 3D
grounding as it contradicts a core grounding requirement.

In this paper, we ask: can we combine the best part of both
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pipelines, i.e., training a powerful grounding model while
still overcoming the data scarcity by learning from powerful
2D models? The key insight is that differentiable rendering
provides a natural bridge between 3D and 2D. If we can
predict 3D masks and render them into 2D views, we can
supervise them using 2D foundation models that have been
trained on internet-scale data. This approach could enable
training 3D models without any 3D mask annotations.

We introduce Language-Indexed Field Transfer with Gaus-
sian Splatting (LIFT-GS), which implements this idea as
a practical training pipeline. Given a point cloud and lan-
guage query, LIFT-GS predicts 3D Gaussian representations
that can be rendered into multiple 2D views. These ren-
dered masks are then supervised using pseudo-labels from
2D foundation models. We show results where SAM pro-
vides mask supervision (Kirillov et al., 2023), and CLIP
or LLaMa provide language understanding (Radford et al.,
2021; Meta Al, 2024). The approach effectively distills
internet-scale 2D knowledge into 3D understanding.

This render-supervised formulation offers several key ad-
vantages. First, it is inherently architecture-agnostic; speci-
fying only the outputs leaves flexibility in underlying model
design. Second, this allows us to overcome fundamental
scaling limitations by training a large transformer decoder
instead of previous dual-encoder approaches (as shown in
Fig 3) (Zhu et al., 2023b; Gu et al., 2024). Third, the ap-
proach is highly practical: LIFT-GS operates directly on raw
point clouds from sensors, such as the outputs from SLAM
or SfM systems, eliminating the preprocessing and feature
fusion required by methods like ConceptFusion (Jatavallab-
hula et al., 2023b; Arnaud et al., 2025), reducing inference
time from 60 seconds to just 1 second.

Our experiments validate the effectiveness of this approach.
LIFT-GS achieves state-of-the-art performance on standard
3D VLG benchmarks, with 25.7% mAP on open-vocabulary
instance segmentation (vs. 20.2% previous SOTA) and con-
sistent 10-30% relative improvements on referential ground-
ing tasks. More importantly, we observe that across data
scales for SFT, pretraining effectively "multiplies” the fine-
tuning dataset by approximately a constant factor (2x). That
is, a pretrained model with 50% of fine-tuning data matches
the performance of training from scratch with 100% data.
This somewhat counterintuitive observation indeed matches
empirical data scaling laws for pretraining in other modali-
ties (Hernandez et al., 2021), and the fact that this scaling
coefficient remains constant without diminishing returns
across data scales adds an empirical data point that 3D VLG
currently operates in the very low-data regime '.

The implications extend beyond 3D grounding. Render su-

!(Hernandez et al., 2021) define a “low-data regime as having
10% or less of the amount of data it would take to get to 99% of
the performance that infinite data would yield.”

[The] [telephone] [that] [is] [besides] [the] [chair]

Figure 2: 3D Referential Grounding. For each mentioned in-
stance in a text description, predict a 3D mask and map it to
corresponding text tokens.

pervision is powerful, but we demonstrate that it can serve
as a bridge for large-scale knowledge transfer from 2D
foundation models to 3D models. Any 3D/4D task with
renderable outputs can potentially leverage 2D supervision.
As 2D foundation models continue to improve and scale,
3D models trained using render-supervised distillation are
positioned to benefit. This opens the possibility of train-
ing 3D understanding models at the scale of 2D datasets—
which would represent a fundamental shift from the current
paradigm of limited 3D annotations.

To summarize, our contributions are:

* A render-supervised training pipeline for 3D vision-
language grounding that requires only 2D supervision.
We show how differentiable rendering enables training
3D models with 2D losses, eliminating dependence on
scarce 3D annotations.

¢ Demonstrating a pseudo-labeling strategy for distill-
ing 2D foundation models into 3D. LIFT-GS shows
using SAM, CLIP, and LLMs to generate 2D supervision.

 State-of-the-art performance in realistic evaluations.
LIFT-GS achieves SOTA results using sensor point clouds
common in embodied settings, with detailed ablations
revealing scaling properties.

2. Related Work
2.1. The Data Scarcity Challenge in 3D VLG

3D Vision-Language Grounding (3D VLG) maps language
descriptions to corresponding 3D masks or bounding boxes
in observed scenes (Yuan et al., 2021; Roh et al., 2021;
Yang et al., 2021). Despite its fundamental importance
for embodied Al, existing 3D VLG datasets contain only
thousands of annotated scenes (Dai et al., 2017; Yeshwanth
et al., 2023) compared to billions of images used for training
large multimodal models (Meta Al, 2024).

This scarcity stems from prohibitive annotation costs. Cre-
ating 3D instance masks requires minutes per example even
with assisted tools (Dai et al., 2017), and human verification
remains necessary (Arnaud et al., 2025; Majumdar et al.,
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2024). All existing 3D VLG methods require ground-truth
3D masks or bounding boxes during training (Yuan et al.,
2021; Zhu et al., 2023c; 2024; Zhang et al., 2024), with
many also requiring them during inference (Fang et al.,
2024; Zhang et al., 2023b). This creates a fundamental scal-
ing barrier—these approaches cannot leverage the vast 2D
data that has driven progress in 2D understanding.

2.2. Bridging 2D and 3D: From Lifting to Learning

2D-to-3D Lifting via Optimization. Recent work addresses
data scarcity by lifting 2D models to 3D through per-scene
optimization. Methods use depth unprojection with heuris-
tic merging (e.g., voxel voting) (Jatavallabhula et al., 2023a;
Zhou et al., 2024; Xu et al., 2023b) or differentiable ren-
dering to optimize 3D representations matching 2D fea-
tures (Kerr et al., 2023; Kim et al., 2024; Gu et al., 2024)
or masks (Cen et al., 2023; Xu et al., 2023a). While these
leverage 2D foundation models, they suffer from: (1) slow
optimization (minutes per scene), (2) accumulated errors
from reconstruction and merging, and (3) inability to im-
prove with more data. The fixed lifting pipelines may be a
bottleneck that explains why LIFT-GS outperforms models
trained on these lifted pseudolabels (Genova et al., 2021;
Peng et al., 2023).

Render-Supervised Learning. Differentiable rendering en-
ables training 3D models directly by rendering their predic-
tions into 2D and supervising via 2D losses. While initially
used for reconstruction (Hong et al., 2024; Tang et al., 2024;
Cao et al., 2024; Szymanowicz et al., 2025), (Irshad et al.,
2024; Zhu et al., 2023b) use it to representation learning,
like PonderV2 adds CLIP losses on rendered pixels (Zhu
et al., 2023a). However, existing 3D VLG methods have
significant limitations: PonderV2 only trains encoders and
relies on ground-truth category labels, while other meth-
ods apply simple photometric losses without leveraging 2D
VLMs. LIFT-GS overcomes these challenges by extending
render-supervision in two key ways: (1) it enables training
unified encoder-decoder architectures for 3D VLG tasks,
and (2) it performs knowledge distillation from 2D founda-
tion models (VLMs, SAM, CLIP) through pseudo-labeling,
removing the need for 3D annotations during pretraining.

2.3. Architecture: From Dot-Products to Joint Attention

Limitations of Dual-Encoder Methods. Almost all prior
3D grounding approaches that distill from 2D vision-
language models eventually compute the mask as the dot-
product similarity between 3D features and text embed-
dings (Radford et al., 2021; Guo et al., 2024; Qin et al.,
2023; Kerr et al., 2023; Peng et al., 2023). When modality
embeddings are computed independently, as is the case in
CLIP, these “dual-encoder” models behave as bag-of-words
systems (Yuksekgonul et al., 2022). Using these encoders

“The chair which is close to “The red chair under the

Render View “Chair” the TV’ table”

“the table next to the
window”

“The white table”

P AT

Figure 3: 3D grounding with CLIP-style (dual-decoder) method.
Grounding heatmaps from a representative approach (Guo et al.,
2024). Heatmaps are computed using dot product similarity be-
tween visual tokens and text tokens (as in the CLIP objective),
encoded independently. This performs effectively with very short
prompts, but fails with more detailed queries, as shown in the
image. LIFT-GS addresses this by jointly predicting tokens using a
transformer decoder with expressive attention masks (see Figure 6
and experiments).

causes 3D models to inherit these fundamental limitations;
as shown in the limited ability of 3D dual-encoder models to
handle relational language crucial for referential grounding
(e.g., ’the chair next to the table”) (Fig. 3).

Multimodal Decoders. Transformer decoders address the
bag-of-words behavior by jointly processing the modalities
together through learned attention mechanisms that enable
proper handling of spatial relationships and multi-object
references. Following large multimodal language models
(LLaMA 3, GPT-40, and Qwen 2.5), as well as recent 3D
VLG SotA (Kamath et al., 2021; Jain et al., 2025; Arnaud
et al., 2025), LIFT-GS employs a decoder-based architecture.
LIFT-GS introduces the grounding loss described in Sec. 3.2
to train the decoder.

2.4. Foundation Model Distillation at Scale

Recent work on scaling up pseudolabeling pipelines shows
that although 2D foundation models are increasingly capa-
ble (Hong et al., 2023; Arnaud et al., 2025), they currently
exhibit significant limitations in spatial understanding over
multiple frames, frequently hallucinating 3D spatial rela-
tionships (Majumdar et al., 2024; Yang et al., 2024). This
is why LIFT-GS uses pseudolabels for pretraining: just as
LLMs require supervised fine-tuning (SFT) to align noisy in-
ternet text with desired behaviors, LIFT-GS leverages noisy
pseudolabels for large-scale pretraining, then uses 3D VLG
SFT for state-of-the-art performance.

Our scaling analysis reveals suggests that even imperfect 2D
spatial understanding generates meaningful training signal
(multiplying fine-tuning data effectiveness by 2x in our
experiments). As 2D models advance in spatial reasoning,
this transfer benefit should amplify, potentially reducing
reliance on 3D annotations and moving toward more zero-
shot spatial understanding.
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Figure 4: SAM-CLIP Pseudo-Label Generation. We lever-
age powerful 2D foundation models to generate pseudo language
queries, i.e., CLIP embeddings, along with their corresponding
ground-truth 2D masks for training. All pixels within the same
mask share the same features.

This positions our approach at the intersection of three key
trends: (1) the shift from optimization-based to learning-
based 3D understanding, (2) the move from dual-encoder
to multimodal decoder architectures for complex language
grounding, and (3) the emergence of foundation model dis-
tillation as a solution to 3D data scarcity. Our experiments
demonstrate that this approach not only achieves state-of-
the-art performance but also exhibits strong scaling proper-
ties, suggesting significant potential for using cross-scene
render-supervised distillation with improved multimodal
foundation models and in other settings in besides 3D VLG.

3. Method

LIFT-GS is a (pre-)training pipeline for 3D VLG without
3D GT annotation. During training, it renders the predicted
3D masks from the target viewpoints for 2D supervision;
during testing, 3D masks are used as outputs. This section
covers the 3D VLG formalism in Sec.3.1, 2D loss used for
supervision in Sec.3.2, pseudolabel generation in Sec.3.4,
and implementation details in Sec.3.3.

3.1. Task Formulation
3.1.1. 3D Vision-Language Grounding

Figure 2 shows an example using a point cloud input (P)
and the text query (Q) “the black chair close to the table
near the wall”. Following MDETR (Kamath et al., 2021)
and (Jain et al., 2025), LIFT-GS outputs a set of (m = 256)
3D mask candidates M, and the correspondence matrix C .

3D VLG: (P,Q) — (M, C), (1)

Matrix C € R™*I?l: indicates the correspondence (i.e.
probability logits) between m 3D mask candidates and | Q)|
text tokens, enabling the mapping of each text query to its
most probable mask candidate based on the logits.

3D Mask M € R™*V: stores mask logits over N Gaussian
primitives for m 3D mask candidates. Each logit M, ;
represents the probability (after applying sigmoid) that the j-
th Gaussian primitive is included in the ¢-th mask candidate.

This dual design elegantly handles two key challenges:
(1) text tokens can refer to multiple instances (e.g., “the
chairs”), and (2) instances can be referenced multiple times
with different descriptions throughout the text (e.g. both
“chair” and “it”). It also extends readily to segmenting other
modalities by adding more mappings.

The pointcloud has | P| points and is of shape |P| x 6 (XYZ
+ RGB), and the query token embeddings and are a matrix
of size: Q € RIQI¥Fae  The text mapping C and Gaus-
sian/point cloud mapping M are shown, with each instances
highlighted in a different color in Figure 2.

3.1.2. 3D VLG with Gaussian Masks M

Existing 3D VLG methods are limited by costly point cloud
annotation, where annotation for point cloud masks is by
far the costliest and slowest step in 3D VLG data collection.
This is because human annotators must carefully segment
the mask using a brush or assisted tool, which takes on
the order of minutes per example (Dai et al., 2017). Even
with model assistance, human verification is required in
practice (Arnaud et al., 2025; Majumdar et al., 2024). This
restricts training to only thousands of scenes, making data
scarcity the key bottleneck.

LIFT-GS addresses this by leveraging differentiable render-
ing, distilling knowledge from multimodal vision-language
models trained on billions of images. It predicts the 3D
Gaussians from the point cloud input feed-forwardly, which
are used for rendering later. 3D Gaussians are represented
with xyz locations RV >3, covariance matrices R™*6, color
matrices R™ %3 and feature embeddings RY*¥", LIFT-GS
predicts G € RNV*(m+12+512) containing m masks plus 12
channels for shape/location/color and 512 for feature loss:

LIFT-GS: (P, Q) — (G, M, C), 2)

In practice, training the masks using differentiable render-
ing adds only a small overhead during training. With the
shapes of the inputs and outputs specified, the sections be-
low describe each component: the losses used, pseudolabel
generation, and the model architecture.

3.2. Losses

With differentiable rendering, LIFG-GS enables training
3D VLG models using the simplest 2D grounding losses.
During training, LIFT-GS only requires (sparse) point cloud,
2D posed images as inputs without any other 3D annotations,
which data can be easily obtained from RGB-D videos or
SfM (Yang et al., 2025; Wang et al., 2025a; 2023; 2025b;
Leroy et al., 2024) as done in (Szymanowicz et al., 2025).

LIFT-GS utilizes two groups of losses to train the model:
Lground for grounding (Jain et al., 2025), and per-pixel losses
Lpp commonly used to improve results with differentiable
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Figure 5: Architecture Design. LIFT-GS predicts 3D Gaussian Splatting G and 3D masks M given a point cloud P and language query
embeddings Q as inputs. The 3D masks M are generated by a Transformer-based Mask Decoder.

rendering. For reference, rendered 2D masks, rgb im-
ages, and feature maps are denoted as M,p € REXWxm,
Fop € REXWXFE and [ € REXWX3 regpectively.

Their corresponding ground-truth counterparts have analo-
gous shapes: Myp, Fap, and I, where M,p € REXW XK,

3.2.1. Grounding losses:

LIFT-GS uses the MDETR-style mask grounding loss: Lcg
and Lasx With dpaen (matching distance). Since the num-
ber of predicted and ground-truth masks may differ, we
apply Hungarian matching to pair them based on dych, and
then optimize the matched predictions using Leroung. We
use the 2D variant of these losses under 2D rendering super-
vision, which can be easily replaced by their 3D counterpart
(on 3D Gaussian centers) when 3D labels are available.

K
1 o (i i ;
Leground = K Z /\3£mask(M2[<) ): Mip) +AaLee(Coi), 1) (3)
o(i) = arg min dmaen (M, M;, C) “)
J

Cross Entropy Loss, Lcg: this loss supervises the corre-
spondence between 3D mask candidates and input language
tokens (i.e., the matrix C) by framing it as a (soft) classifi-
cation problem. Recent work suggests that using BCE may
produce sharper masks for long VLG text queries (Jain et al.,
2025; Arnaud et al., 2025; Zhai et al., 2023), echoing similar
findings in image segmentation (Cheng et al., 2021a).

exp(Co(3),i)

- 5
> exp(Cos).;)

Lce(Coi),1) = —log

Mask loss, Lyask: this loss supervises the predicted 3D
masks by comparing them to paired ground-truth 3D masks.
Following SAM (Kirillov et al., 2023), we apply a combina-
tion of Focal (Lin et al., 2017) and Dice (Sudre et al., 2017)
losses to supervise the predicted 3D masks effectively.

Optimal matching, dya¢ch: this function measures the pair-
wise distance between the 3D grounding results and the
ground-truth values, and is used for matching. It is imple-
mented similarly to Lgroung but with different loss weights.

The model always predicts the maximum number of in-
stances (256) but avoids false positive detections by match-
ing the unused instance to a special no-match text to-
ken (Jain et al., 2021). The maximum of 256 was not a
major limitation in practice, but could be increased.

3.2.2. Per-Pixel Losses

While grounding loss alone is sufficient for stable pretrain-
ing (Table 4), LIFT-GS benefits from joint training with
additional photometric and feature losses for faster conver-
gence. These losses are only used during pretraining, not
for finetuning with 3D annotations.

Reconstruction loss, Lrgp: supervises photometric recon-
struction using L; and SSIM losses (Hong et al., 2024; Zhu
et al., 2023b; Wang et al., 2004)

Lres = MLi(I,T) + Mo Lssim (I, ) (6)

Feature loss, Lfeat: uses CLIP-style contrastive regular-
ization to align rendered features F,p with ground-truth
features F»p as in (Zhu et al., 2023b):

HW P
1 : exp(f(u v) * fk)
Lfeat = 7 1 Z _1Og = @)
HxW u,v Zj eXp(f(u»U) ’ fJ>

where f, ,) is the rendered feature at pixel (u,v) from

Fyp, f}, is the corresponding ground-truth feature, and f;
represents the batch of unique features.
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3.3. Architecture

LIFT-GS is network-agnostic with minimal architectural
constraints. The design can be applied to other architectures,
with constraints only arising from the specific losses used.
This section describes the network used in our experiments,
shown in Figure 5.

3.3.1. Grounding Decoder: (see Grounding Losses)

The grounding decoder is a transformer based on Mask-
Former (Cheng et al., 2021b) that predicts the correspon-
dence matrix C € R™*IQl and 3D Gaussian masks
M € R¥*™_ LIFT-GS uses the mask decoder from Uni-
VLG (Jain et al., 2025) with minimal modifications.

The transformer takes Gaussian features G and language
query embeddings Q as inputs, using a set of learnable to-
kens as 3D mask proposals. Cross-attention is computed
between the learnable tokens and both the language and
Gaussian tokens. After extensive information exchange
within the transformer, M (or C) is computed as dot prod-
ucts between mask proposal tokens and Gaussian tokens (or
mask proposal tokens and language tokens, respectively).
The detailed LIFT-GS architecture and hyperparameter set-
tings used in our experiments are provided in Appendix A.

3.3.2. Gaussian Decoder Head: (see Per-Pixel Losses)

LIFT-GS predicts G € RY*F using a learned pointwise
MLP applied to the point cloud encoder outputs. While the
number of predicted Gaussians |G| can differ from input
points | P|, we set |G| = | P| with a bijective mapping for
consistency with point cloud evaluation tasks. Notably, the
Gaussian decoder does not require direct supervision—-3D
Gaussians can be treated as latent variables for 3D VLG, as
shown in Table 4 when per-pixel losses are disabled.

3.3.3. Input Encoders:

Pointcloud Encoder: Tokenizes RGB point clouds of
shape |P|x6 (xyz + RGB) using a sparse convolutional
UNet (Contributors, 2022), following PonderV2 (Zhu et al.,
2023b). Weights are randomly initialized and learned.

Text Encoder: LIFT-GS uses CLIP text embeddings, which
remain frozen during training.

These encoders represent common choices in 3D VLG.
Stronger architectural choices like transformer-based point-
cloud encoders or different text embeddings would likely
improve performance.

3.4. SAM-CLIP 2D Pseudo-Label

While LIFT-GS eliminates the need for 3D annotations, ob-
taining high-quality 2D supervision remains challenging.
We show one way in which 2D foundation models can gen-

“White”

Figure 6: Zero-Shot 3D Segmentation. Trained using only 2D
pseudo-labels, LIFT-GS can localize objects in 3D from real text
inputs in a zero-shot manner. From left to right, we visualize
the input point clouds, segmented 3D masks(in yellow), rendered
images from predicted 3DGS, and rendered segmentation masks.
Language queries include both high-level abstract concepts (e.g.,
white) and detailed descriptions (e.g., black cabinet near the wall).

Table 1: Open-Vocabulary 3D Instance Segmentation. We
evaluate our model on ScanNet200 by using category names as
text queries and compare it against SOTA models.

Model mAPT mAP251 mAP501
OpenScene (Peng et al., 2023) 11.7 17.8 15.2
OpenMask3D (Takmaz et al., 2023) 154 23.1 19.9
PQ3D (Zhu et al., 2024) 20.2 325 28.0
LIFT-GS-Scratch 22.5 35.1 30.7
LIFT-GS 25.7 40.2 35.0
A +321 +517 +4.3 1

erate pseudo-labels that enable reasonable zero-shot perfor-
mance and significantly enhance downstream fine-tuning.

As shown in Figure 4, we generate pseudo-labels using
SAM (Kirillov et al., 2023) and CLIP (Radford et al., 2021).
For each image, SAM provides segmentation masks, and
for each segmented region, we extract CLIP image embed-
dings as pseudo language query embeddings. Since CLIP’s
text and image embeddings share the same feature space,
LIFT-GS can use text embeddings during inference. We con-
catenate these CLIP embeddings to form Q and construct
C s.t. each instance maps to exactly one query token.

With 2D pseudo-labels, LIFT-GS performs zero-shot 3D
grounding using real text queries without fine-tuning (Fig-
ure 6). However, zero-shot performance suffers from low ac-
curacy and struggles with complex expressions — a common
limitation of CLIP-based methods that function as bag-of-
words models (Yuksekgonul et al., 2023). Future improve-
ments in pseudo-labeling, such as better captioning (Meta
Al 2024) and 2D language grounding models (Liu et al.,
2023), could reduce reliance on fine-tuning.

LIFT-GS demonstrates that even simple pseudo-labeling
strategies can be effectively distilled into 3D models. In
the experiments below, pretraining with 2D pseudo-labels
substantially improves downstream task performance. Fine-
tuning data scaling results are consistent with established
transfer learning “scaling laws” (Hernandez et al., 2021).
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4. Experiments

Although supervised via 2D loss, LIFT-GS is a fully 3D
model that explicitly outputs 3D masks. Beyond the zero-
shot setting using 2D pseudo-labels (Figure 6), LIFT-GS
can be readily fine-tuned with 3D annotation data using 3D
losses for significantly improved performance. To enhance
practical applicability, we focus on fine-tuning with 3D an-
notations and demonstrate how 2D model distillation boosts
performance.

In this section, we first provide training details and show
how pretraining significantly improves downstream task
performance through a series of carefully designed ablations.
We also reveal several insights from scaling the amount of
pretraining and fine-tuning data, and explore the impact of
different 2D foundation models.

4.1. Training Details
We provide details below with more details in the Appendix.

Datasets We use ScanNet (Dai et al., 2017) as the primary
dataset for downstream task fine-tuning and evaluation, as
its annotations form the basis for established benchmarks.
We primarily pretrain using ScanNet (Dai et al., 2017) for
comparison to other methods. LIFT-GS enables training on
diverse unlabeled 3D datasets, and we show additional pre-
training scaling experiments using ScanNet++(Yeshwanth
et al., 2023), Taskonomy (Zamir et al., 2018) and Aria Syn-
thetic (Somasundaram et al., 2023).

Architecture LIFT-GS method imposes minimal architec-
tural constraints. In the following experiments, backbones
consist of a text encoder (frozen CLIP-L), point cloud en-
coder (Sparse 3D UNet (Cicek et al., 2016)), and grounding
decoder (8-layer Transformer, hidden size 512 following
(Jain et al., 2025)), and an MLP for the Gaussian decoder.

Training Models are trained end-to-end for 76k steps with
batch size 32 on 32 A100s using AdamW (Loshchilov &
Hutter, 2017) (Ir=1e-4, weight decay=1e-4). Point clouds
are voxel-downsampled to S5cm for an average of 50k points,
and we render masks at resolution 512x 512 to ensure small
masks are captured. Complete implementation details are
provided in the appendix.

4.2. Evaluation on 3D Vision-Language Grounding

We fine-tune and evaluate our pretrained model on two rep-
resentative 3D VLG tasks: 3D open-vocabulary instance
segmentation and 3D referential grounding. Our results,
shown in Tables 1 and 2, demonstrate significant improve-
ments over models trained from scratch and achieve state-
of-the-art performance with pertaining.

4.2.1. GROUNDING SIMPLE NOUNS IN 3D

We first evaluate simple grounding for simple noun-phrases,
using object categories without spatial relationships. Fol-
lowing the protocol in (Zhu et al., 2024), we convert the
standard 3D instance segmentation benchmark on ScanNet
into an open-vocabulary 3D instance segmentation task. The
categories of objects are used as language queries, which are
input to the model to predict the corresponding 3D masks.

Evaluation setting: We evaluate using the standard metric
mAP, a measure of mask overlap averaged across categories.
We fine-tune LIFT-GS for 500 epochs.

Results: Compared against the state-of-the-art baselines
PQ3D (Zhu et al., 2024) and OpenMask3D (Takmaz et al.,
2023), our pretrained model (LIFT-GS) achieves substantial
performance gains (mAP 25.7% vs 20.2%), as shown in
Table 1. It significantly outperforms its counterpart trained
from scratch (LIFT-GS-Scratch mAP +3.2%).

4.2.2. GROUNDING COMPLEX PHRASES IN 3D

Next, we examine grounding multiple objects using more
complex phrases that contain spatial references, referred to
as 3D Referential Grounding (3D RG).

Evaluation Setting. We evaluate LIFT-GS on the most
common 3D Referential Grounding benchmarks: ScanRe-
fer (Chen et al., 2019), SR3D, and NR3D (Achlioptas et al.,
2020; Abdelreheem et al., 2022). We use standard top-1
accuracy as the evaluation metric, considering a predicted
bounding box correct if its IoU with the ground truth ex-
ceeds 0.25 or 0.5. Since LIFT-GS outputs masks instead of
axis-aligned bounding boxes, we derive bounding boxes by
extracting the extreme corner points from the point cloud
within the predicted masks.

LIFT-GS is designed to be practical and we evaluate it using
the “real-world” settings used in more recent 3D VLG work
where (1) we predict 3D masks without assuming known
ground-truth 3D bounding boxes, and (2) we utilize sensor
point clouds (Sensor PC) from RGB-D scans instead of
using mesh-derived point clouds that leak label informa-
tion (Mesh PC). This realistic setting is more challenging,
as reflected in the significant performance drop of BUTD-
DETR (Jain et al., 2021) when transitioning from Mesh PC
to Sensor PC (Table 2), consistent with findings in (Jain
et al., 2024). A more complete comparison of these settings
is provided in (Jain et al., 2021; 2025; Arnaud et al., 2025).

Baselines We compare LIFT-GS against the state-of-the-
art two-stage methods, 3D-VisTA (Zhu et al., 2023c) and
PQ3D (Zhu et al., 2024), as well as the SOTA single-stage
method, BUTD-DETR (Jain et al., 2021). All two-stage
baselines assume access to ground-truth 3D masks or boxes
during inference, so we re-evaluate them using predicted
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Table 2: 3D Referential Grounding. We report top-1 accuracy with various IoU thresholds (0.25, 0.5).

SR3D NR3D ScanRefer

Method Acc@25 Acc@50 Acc@25 Acc@50 Acc@25 Acc@50
Mesh PC

LanguageRefer (Roh et al., 2021) 39.5 - 28.6 - - -

SAT-2D (Yang et al., 2021) 354 - 31.7 - 44.5 30.1

BUTD-DETR (Jain et al., 2021) 52.1 - 433 - 52.2 39.8

3D-VisTA (Zhu et al., 2023c) 56.5 51.5 47.7 422 51.0 46.2

PQ3D (Zhu et al., 2024) 62.0 55.9 52.2 45.0 56.7 51.8
Sensor PC + Bounding Box Proposals using Mesh PC

3D-VisTA (Zhu et al., 2023c) 47.2 43.2 42.1 374 46.4 42.5
Sensor PC

BUTD-DETR (Jain et al., 2021) 433 28.9 322 19.4 422 27.9

LIFT-GS-Scratch 44.0 28.8 37.2 23.1 45.0 29.5

LIFT-GS 50.9 36.5 43.7 29.7 49.7 36.4

A +6.9(16%) +7.727%) +6.5(17%) +6.6(29%) +4.7(10%) +6.9(23%)

Table 3: Comparison with other Pretraining Baseline. LIFT-GS
clearly outperforms Ponder-v2 and its variant Ponder-v27, which
is trained on the same SAM-CLIP features as ours.

Table 4: Loss Ablation. We show the impact of different pretrain-
ing losses on 3D referential grounding task. Lgrouna Significantly
improves results, particularly at high IoU thresholds.

Model | Acc@0.25 Acc@0.5 Acc@0.75
Scratch 42.19 27.23 9.66
Ponder-v2 (official) 40.92 25.97 8.84
Ponder-v2{ 45.40 29.36 9.29
LIFT-GS 47.53 33.75 13.49

boxes from the SOTA object detector Mask3D (Schult et al.,
2022). For fairness, we re-train 3D-VisTA and BUTD-
DETR on sensor point clouds. Because PQ3D uses multiple
backbones and a multi-stage training pipeline, we were not
able to reproduce PQ3D on the sensor point cloud setting.

Results Our model without pretraining (LIFT-GS-Scratch)
achieves slightly better performance than the state-of-the-art
single-stage method BUTD-DETR (Jain et al., 2021), likely
due to architectural similarities with extra modifications.

With pretraining, LIFT-GS achieves significant improve-
ments across all three datasets, with relative gains of
10% — 30%, demonstrating the effectiveness of our pretrain-
ing approach. Notably, LIFT-GS outperforms 3D-VisTA in
Acc@25, despite 3D-VisTA being a two-stage method with
bounding box proposals from Mask3D using Mesh PC.

4.3. Pretraining Ablations

We conduct an in-depth analysis of the proposed method
through a series of ablation and scaling experiments. For
these evaluations, we use a model pretrained only on Scan-
Net as the baseline. To simplify the presentation for the
ablations, we report results on the combined evaluation set
of ScanRefer, SR3D, and NR3D. Additionally, we report
the higher accuracy threshold Acc@0.75.

Compare to SOTA pretraining methods We compare

Model | Lgoms LroB  Lrea | Acc@0.25 Acc@0.5  Acc@0.75
Scratch 42.19 27.23 9.66
- v 46.34 31.54 12.50
- v v 46.67 31.81 1245
- v v 47.69 31.35 11.36
- v v v 47.53 33.75 13.49

against PonderV2 (Zhu et al., 2023b), a state-of-the-art
point cloud pretraining method that also uses render-
supervision. Since the official PonderV?2 relies on limited
human-annotated text labels, we retrain it using our SAM-
CLIP pseudo-labels for fair comparison (PonderV2{ in Ta-
ble 3). This demonstrates the value of distillation, improv-
ing the performance over using GT labels (45.4% vs 40.9%
Acc@0.25). Moreover, LIFT-GS substantially outperforms
PonderV27 (47.5% vs 45.4% Acc@0.25), underscoring the
impact of multimodal decoder architectures enabled by the
LIFT-GS render-supervised formulation.

Loss Ablation Existing pretraining pipelines primarily fo-
cus on the encoder (Zhu et al., 2023b; Banani et al., 2021),
whereas the render-supervised formulation can pretrain the
entire architecture in a unified manner using the ground-
ing loss. We find that grounding loss alone can be used to
pretrain the model end-to-end in Table 4. A model trained
with Lground alone (row 2) substantially improves down-
stream task performance, performing only slightly worse
than the model trained with all losses (row 5). Further-
more, comparing models with and without Lground (row 5
vs. row 4) clearly shows that Lgoung significantly enhances
downstream performance, particularly in more challenging
scenarios (IoU thresholds of 0.5 and 0.75).

4.4. Data Scaling

LIFT-GS exhibits strong scaling properties that reveal 3D
VLG operates in a severely data-scarce regime.
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Table 5: Fine-tune Data Scaling. We show Acc@0.5 results with
different ratio of fine-tuning data on referential grounding task.

Table 6: Pretraining on OOD data. Adding more pretraining data
from ScanNet++ improves performance. Taskonomy and Arial
helped less than ScanNet++, likely due to distribution difference.

Finetuning Data Ratio  10% 20% 50%  100%
ini Q
Scratch 6.93 1504 2300 2723 Pretraining Data Acc@0.25 Acc@0.5 Acc@0.75
LIFT-GS 1470  23.03 28.89 33.75 Scannet 47.53 33.75 13.49
+Scannet++ 48.29 34.35 14.06
T N Accai0s 5 ACCR0TS ++ Taskonomy and Arial 48.49 34.41 14.35
P i s D o m b i Table 7: 2D Foundation Model Exploration.

)

Scratch Scratch
Pretrain Pretrain

0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

Figure 7: Fine-tune Data Scaling. We show how Grounding
Accuracy changes with increasing Data Ratio from 0.1 to 1.0.

Finetuning Data Scaling We observe that pretraining effec-
tively “multiplies” the fine-tuning dataset by approximately
2x. As shown in Figure 7 and Table 5, a pretrained model
using 50% of fine-tuning data matches the performance
of training from scratch with 100% data. This scaling co-
efficient remains constant across different data amounts
(10%, 20%, and 50%) without diminishing—matching em-
pirical scaling laws from other modalities (Hernandez et al.,
2021). The benefits are most pronounced at higher ToU
thresholds, where a pretrained model achieves scratch-level
performance using only 30—40% of the fine-tuning data.
Additional results on Instance Segmentation are provided in
Appendix A.3.

Pretraining Data Scaling Expanding pretraining data
consistently improves downstream performance (Table 6).
Adding ScanNet++ yields notable gains (+0.8%), while
incorporating Taskonomy and Aria Synthetic provides addi-
tional improvements despite distribution differences (likely
due to the mesh reconstruction quality in Taskonomy).

Comparing the scaling results from pretraining and fine-
tuning demonstrates the strong data efficiency of LIFT-GS.
As shown in Table 6, adding ScanNet++ ( 30% of the data
used for pretraining) yields a performance gain equivalent
to adding 15% more ScanNet fine-tuning data with 3D an-
notations, based on the curve in Figure 7. This indicates an
effective transfer ratio of roughly 1:2—i.e., collecting twice
as many raw videos provided improvements comparable to
building a fully annotated 3D SFT dataset.

Therefore, pretraining on ScanNet++ is not only highly ef-
fective but also cost-efficient, especially considering that
annotating 3D referential grounding data requires signifi-
cantly more effort than collecting raw videos alone.

Data Scarcity Implications The consistent 2x multiplier
without saturation, combined with continued gains from
more pretraining data, strongly suggests that current 3D
VLG models are severely limited by data availability—
opening a path for future 3D VLG improvements through
scaling alternate sources (such as 2D foundation models).

2D Models Acc@0.25 Acc@0.5 Acc@0.75
SAM-B + CLIP-B 46.31 31.50 12.41
SAM-H + CLIP-L 47.53 33.75 13.49
SAM-H + LLAMA-Caption 47.50 32.78 13.25

4.5. 2D Foundation Models Scaling and Exploration

Our pipeline leverages powerful 2D foundation models to
generate pseudo-labels. Here, we investigate their impact
by analyzing performance variations with different 2D foun-
dation models, with results presented in Table 7.

Weaker CLIP and SAM The main experiments use SAM-
H and CLIP-L for pseudo-labeling. Replacing them with
smaller models, MobileSAM (Zhang et al., 2023a)(ViT-
tiny) and CLIP-B, leads to a noticeable performance drop,
especially at higher accuracy thresholds. This suggests that
render-supervised distillation directly benefit from advance-
ments in 2D foundation models.

Captions from LMMs Table 7 shows results using large
LMMs instead of CLIP to generate queries (LLAMA-3V
+ SAM grounding, details in Appendix). After segmenting
objects in 2D images using SAM, we prompt LLAMA-V
to describe the segmented regions. Pretraining with these
captions achieves performance comparable to our original
pipeline with SAM-H and CLIP-L. As LMMs continue
to improve, we believe text-based captions hold significant
potential for future research, and the approach highlighted in
the paper is positioned to benefit from LMM improvements.

5. Conclusion

LIFT-GS tackles data scarcity that limits 3D VLG by intro-
ducing render-supervised distillation from 2D VLM models.
By training 3D models using only 2D supervision from mod-
els like SAM and CLIP, LIFT-GS achieves state-of-the-art
performance for 3D VLG. Our findings, including consistent
2x data multiplication effects, reveal that 3D grounding cur-
rently operates with substantial data limitations. LIFT-GS
circumvents a key 3D annotation bottleneck by introduc-
ing a scalable training approach that benefits directly from
advancements in frontier multimodal language models. It
offers a practical technique to leverage progress in 2D to
accelerate the development of other data-scarce capabilities
essential for robotics, AR/VR, and embodied Al.
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A. More Details
A.1. Training Details

LIFT-GStakes point clouds and posed RGB images for training. For efficiency, we preprocess point clouds and posed RGB
images, caching the processed features.

Point clouds originate from multi-frame RGB-D scans. We unproject them using depth information and fuse the unprojections
into the final point clouds. Each dataset sample is preprocessed into Scm-resolution point cloud chunks with corresponding
posed RGB images.

For 2D pseudo-labels, we precompute SAM-CLIP features and cache them. Given the large size of the feature map, we
decompose it into two components: Semantics and Index2Semantics.

Semantics: A tensor of shape H x W, where each pixel stores the index of the segment it belongs to. Index2Semantics:
A tensor of shape N x F, where N is the number of unique segments, and F' is the CLIP feature dimension. This
decomposition significantly reduces storage costs. When computing the feature rendering loss Ly, we directly use features
from Index2Semantics for contrastive loss.

Each training sample consists of a sparse point cloud and a posed image with corresponding SAM-CLIP features. We
randomly sample up to 8 unique instances, using their CLIP features as pseudo language queries and their masks as target
2D masks. To ensure mask quality, we filter out masks smaller than 1024 pixels.

Randomly sampling instances is important for training, especially for zero-shot segmentation, as it prevents the model to
reconstruct the whole images given all the input embeddings.

For grounding loss, we assign weights of 15.0, 2.0, and 6.0 to the mask cross-entropy loss, soft token loss, and Dice loss,
respectively. We also use a photometric loss (L1 and SSIM) with a weight of 1.0 and a feature loss with a weight of 0.1.

UNet Encoder: 8 layers, maximum channel dimension of 256, output feature dimension of 96. MaskDecoder: 8-layer
Transformer decoder with a hidden state size of 512. It uses 256 learnable mask proposal tokens, generating 256 masks.
Each Transformer block has 8 attention heads, a feedforward MLP of dimension 2048, and a dropout ratio of 0.15. Language
Encoder: We use clip-vit-large—patchl4, with a feature dimension of 768.

A.2. Comparison to 3D pseudolabels

Table 8: Comparison to 3D pseudolabels. A mask decoder trained on top of frozen LIFT-GS features matches and even outperforms a
decoder trained on top of lifted 3D pseudolabels (voxel-pooled ConceptFusion (Jatavallabhula et al., 2023a)). LIFT-GS learns to pool
features in 3D in order to optimally reproduce the pseudolabels after rendering, which outperforms using a hand-crafted aggregation.
Note: in this experiment we used a more expressive mask decoder in this experiment with a larger MLP ratio, which improves the results
for all methods, including LIFT-GS.

Features Acc@0.25 Acc@0.5
Scratch (RGB) 44.1 30.6
3D pseudolabels 50.1 34.7
2D pseudolabels (LIFT-GS features) 51.8 38.3
LIFT-GS (finetuned) 54.7 40.5

A.3. Data Scaling Results

A similar trend is observed for 3D open-vocabulary instance segmentation, though the benefits of pretraining are slightly
less pronounced due to the task’s lower complexity. This aligns with our findings that pretraining is more beneficial for
challenging tasks, such as those with higher IoU thresholds or greater complexity.

A.4. VLM Captions

We explore using vision-language models (VLMs) to generate captions for each SAM-segmented object and encode these
captions into CLIP embeddings as pseudo language queries.

Specifically, given a SAM-segmented region, we draw a red bounding box on the 2D image and highlight the masked region

15



From Billions to Thousands: 3D Language Grounding via Render-Supervised Distillation

mAP MAP@25% MAP@50%
25 40 351
--------------------- > e [T Y SRR ——- <R R P SR
20 1 30 55 |
15 1 251 20 1
101 Scratch i(S) Scratch 191 Scratch
5 Pretrain Pretrain 101 Pretrain
T T T T 10— T T T T T T T T
0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

Figure 8: Finetunning Data Scaling on Open Vocabulary 3D Instance Segmentation. We show how mAP changes along with
increasing Data Ratio from 0.1 to 1.0

using alpha blending, as shown in Figure 9. We then prompt a VLM, such as LLama-3.2v, with the following instruction:

You are a helpful assistant for image captioning. You are given an image with a red bounding box specifying the object of
interest. Caption that object in a few words, keeping it precise and concise. The object is also slightly highlighted. Examples
output: “ared traffic light,” ’the box near the wall.” Just output the caption; no other text is needed.

This approach leverages VLM-generated textual descriptions to improve pseudo-language queries for training.

B. Discussion and Limitations

The core contribution of LIFT-GS is training a 3D model without 3D supervision by leveraging differentiable rendering
and distilling knowledge from 2D foundation models. This approach is novel and motivated by the fact that 2D foundation
models, trained on vast amounts of 2D data, currently outperform any existing 3D model. Distilling knowledge from these
powerful 2D models presents a promising and scalable direction for 3D learning.

Our proposed pipeline is general and unified. Beyond 3D masks, any renderable 3D attributes can, in principle, be trained
using 2D supervision. This idea could extend to dynamic scenes and other properties, opening new opportunities for 3D
model training.

However, LIFT-GS is inherently constrained by how well we leverage 2D foundation models for pseudo-labeling. Currently,
we use CLIP image embeddings as text queries, but CLIP’s claim of a shared embedding space for images and text is
imperfect. In practice, these embeddings can differ significantly, leading to challenges in zero-shot 3D segmentation.

Our CLIP-SAM features may not be optimal pseudo-labels for pretraining, and we anticipate that improved pseudo-labeling
strategies will lead to better scaling properties, stronger performance, and even robust zero-shot 3D segmentation without
fine-tuning. Addressing our current limitations presents a key opportunity for future work.

Although LIFT-GS significantly improves performance and surpasses the single-stage SOTA method BUTD-DETR (Jain
et al., 2021), it still falls short of two-stage SOTA methods like 3D-VisTA (Zhu et al., 2024) on 3D referential grounding at
an IoU threshold of 0.5. A robust single-stage 3D VLG model would have a major impact across various applications. We
hope that our architecture-agnostic pretraining pipeline can further enhance future models.
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Figure 9: Input Image to VLM for Captions. Given the segments from SAM, we draw red bounding box around the segments and ask
VLM models to describe the segments inside the red bounding boxes.
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