
Published in Transactions on Machine Learning Research (01/2024)

Data-Dependent Generalization Bounds for Neural Networks
with ReLU

Harsh Pandey bokharsh@gmail.com
Department of Computer Science
IIT Delhi
New Delhi, India

Amitabha Bagchi bagchi@cse.iitd.ac.in
Department of Computer Science
IIT Delhi
New Delhi, India

Srikanta Bedathur srikanta@cse.iitd.ac.in
Department of Computer Science
IIT Delhi
New Delhi, India

Arindam Bhattacharya arindambhattacharya@protonmail.com
Department of Computer Science
IIT Delhi
New Delhi, India

Reviewed on OpenReview: https: // openreview. net/ forum? id= mH6TelHVKD

Abstract

We try to establish that one of the correct data-dependent quantities to look at while trying1

to prove generalization bounds, even for overparameterized neural networks, are the gradients2

encountered by stochastic gradient descent while training the model. If these are small, then3

the model generalizes. To make this conclusion rigorous, we weaken the notion of uniform4

stability of a learning algorithm in a probabilistic way by positing the notion of almost sure5

(a.s.) support stability and showing that algorithms that have this form of stability have6

generalization error tending to 0 as the training set size increases. Further, we show that7

for Stochastic Gradient Descent to be a.s. support stable we only need the loss function8

to be a.s. locally Lipschitz and locally Smooth at the training points, thereby showing low9

generalization error with weaker conditions than have been used in the literature. We then10

show that Neural Networks with ReLU activation and a doubly differentiable loss function11

possess these properties. Our notion of stability is the first data-dependent notion to be able12

to show good generalization bounds for non-convex functions with learning rates strictly13

slower than 1/t at the t-th step. Finally, we present experimental evidence to validate our14

theoretical results.15

1 Introduction16

Deep neural networks are known to perform well on unseen data (test data), c.f. e.g. Jin et al. (2020)), but17

theoretical explanations of this behaviour are still unsatisfactory. Under the assumption that the error on18

the training set (empirical error) is low, studying the gap between the empirical error and the population19

error is one route to investigating why this performance is good. In this paper we look at the gap between20

the population error (risk) and empirical error (empirical risk) 1. Following works like Bousquet & Elisseeff21

(2002), we use the term generalization error for this quantity. Chatterjee & Zielinski (2022) articulated the22

1

https://openreview.net/forum?id=mH6TelHVKD

Published in Transactions on Machine Learning Research (01/2024)

Paper Number of
Epochs

Step Size Neural Network
Type

Key Assumptions

Hardt et al. (2016) O(mc), c > 1/2 O(1/t) No restrictions No data-dependence.

Kuzborskij &
Lampert (2018)

1 epoch O(1/t) No restrictions Bounded Hessian

Lei & Ying (2020) O(1) O(1/t) No restrictions Strongly convex
objective but non
convex loss function

Charles &
Papailiopoulos
(2018)

O(m) O(1) 1-layered networks
with leaky ReLU or
linear

PL and QG growth
conditions

Lei et al. (2022) O(m) O(1) 1-layered networks
with smooth
activation functions

Smooth loss function,
Bound in
expectation, lower
bound on number of
parameters
n > m

3
(α+1) , α > 0

Our Paper O(log m) O
(

1/t1− c
ρ(τ,m)

)
,

c ∈ (0, 1)
No restrictions Bounded Spectral

Complexity

Table 1: Recent related works addressing the question of generalization error and stability of neural networks
in comparison to the results in this paper.

main question as follows: why (or when) do neural networks generalize well when they have sufficient capacity23

to memorize their training set? Although a number of formalisms have been used in an attempt to derive24

theoretical bounds on the generalization error, e.g., VC dimension (Vapnik, 1998), Rademacher complexity25

(Bartlett & Mendelson, 2003) and uniform stability (Bousquet & Elisseeff, 2002) but, as Zhang et al. (2017)26

showed, all of these fail to resolve the conundrum thrown up by overly parameterized deep neural networks.27

One clear failing identified in Zhang et al. (2017) was that many of these notions were data-independent. A28

simple counterexample provided by Zhang et al. (2017) clearly established that a data-independent notion29

was bound to fail to distinguish between data distributions on which deep NNs will generalize well and30

those on which they will not. Further, the paper also raised doubts on the possibility of proving so-called31

uniform convergence bounds for generalization error, i.e., bounds that were independent of the the size of the32

training data. These doubts were concretized by Nagarajan & Kolter (2019) who constructed examples for33

which the best possible algorithms were shown to not have uniform convergence bounds. We do not directly34

address the issue of uniform convergence in this paper, instead focusing on the question that Chatterjee &35

Zielinski (2022) formulated as follows: For a neural network, is there a property of the dataset that controls36

the generalization error (assuming the size of the training set, architecture, learning rate, etc are held fixed)?37

We give an affirmative answer to this question in one direction: We identify the data-dependent quantities,38

namely SMSTrG, WCTrG and TeG and show that if these are bounded, we can guarantee the generalization39

of neural networks. We show that the bound on these quantities depends on the difference between the initial40

value and optimal value of the loss function and also do experiments to validate our results. Our techniques41

are able to rigorously handle nonlinearities like ReLU and work for non-convex loss functions, and this holds42

for classification case. We also allow for a learning rate that is asymptotically strictly slower than θ(1/t) at43

the t-th step of SGD. All this holds for any bounded value loss function, which is twice differentiable.44

2

Published in Transactions on Machine Learning Research (01/2024)

Name Shorthand Mathematical Notation
Worst Case Training Gradient WCTrG LS

Second Moment of Step Training
Gradient

SMSTrG σS

Test Gradient TeG Lg

Training Smoothness Constant - - KS

Table 2: These are the important random variables which are used in the paper. All these are defined in
Section 4.1.1.

Our work is within the theoretical paradigm of stability. We asked the question, Is there an appropriate45

version of stability that is flexible enough to incorporate dataset properties and can also adapt to most neural46

networks? In a partial answer to this question, we introduce a notion called almost sure (a.s.) support47

stability which is a data-dependent probabilistic weakening of uniform stability. Following the suggestions48

made by Zhang et al. (2017), data-dependent notions of stability were defined in (Kuzborskij & Lampert,49

2018, Definition 2) and (Lei & Ying, 2020, Definition 4) as well. However, a.s. support stability is a more50

useful notion on three counts: it can handle SGD learning rates that are strictly slower than θ(1/t), its initial51

learning rate is much higher, and, while these past works bound generalization error in expectation, a.s.52

support stability can be used to show high probability bounds on generalization error. But, over and above53

these technical benefits, our main contribution here is the identification of the data-dependent quantities as a54

key indicator of generalization. Which in turn connects the generalization of neural networks to the difference55

of initial and optimal loss values. A brief description of recent related works are summarized in table 1.56

Earlier works for showing generalization (like Kuzborskij & Lampert (2018)) have a global Lipschitz constant57

and show generalization using some other parameter. More recent works like Lei & Ying (2020) try to58

completely remove the role of Lipschitz constants by taking some other assumptions on the structure or on59

the loss function. We argue that the gradients are the correct quantities to look at for generalization.60

We show generalization bounds for neural networks via two paths. One path uses Worst Case Training61

Gradient (WCTrG) which is the the worst-case gradient across all steps of SGD and Test Gradient (TeG)62

which is a gradient computed at the final parameter vector computed by the training. The other path uses63

the Second Moment of Step Training Gradient (SMSTrG) which is related to the second moment of the64

gradients encountered during training and TeG. Using some results from Bottou et al. (2018) we show a65

bound on SMSTrG in terms of the difference between the initial loss and optimal loss values. This directly66

bounds the generalization error of neural networks in terms of this difference and makes this bound more67

usable. We show examples of cases that take advantage of our bounds. We perform experiments to validate68

the results and also empirically show that for random label case, WCTrG grows unboundedly, and so we69

can’t guarantee generalization in this case, which is as expected.70

We note that although we can say that when the data-dependent quantities are small, our results guarantee71

good generalization performance, we do not establish that this condition is necessary.72

In particular, our contributions are:73

• In Section 3 we define a new notion of stability called a.s. support stability and show in Theorem 3.2 that74

algorithms with a.s. support stability o(1/ log2 m) have generalization error tending to 0 as m → ∞ where m75

is the size of the training set.76

• In Section 4 we first define the data-dependent quantities. We run SGD for τ epochs with the slowest77

learning rate of α0/t1−ρ(τ,m), where ρ(τ, m) = O(log log m/(log τ + log m))) for appropriate value of α0. For78

reasonable values of m and τ , this marks a significant slowing down of the learning rate from θ(1/t). We use79

two different ways to show a.s. support stability of SGD and we also show a bound on SMSTrG based on80

SGD properties.81

– In Section 4.1 we define the data-dependent quantities and show their existence.82

3

Published in Transactions on Machine Learning Research (01/2024)

– In Section 4.2 we show a.s. support stability of SGD using WCTrG and TeG. We show this for learning83

rate of α0/t1−ρ(τ,m), where ρ(τ, m) < 1 for reasonable size of training set (m) and epochs (τ) proportional84

to log(m).85

– In Section 4.3 we show a.s. support stability of SGD using SMSTrG and TeG where τ = 1. This also86

enjoys the small learning rate of α0/t1−ρ(τ,m).87

– In Section 4.4, we show a bound on SMSTrG based on properties of SGD and a very minor assumption88

(P1) as highlighted by Bottou et al. (2018). The main highlight of the bound on SMSTrG is that this89

takes advantage of the fact that even for non-convex optimization the gradients of loss function decrease90

as shown by Bottou et al. (2018).91

• In Section 5, we combine results from Section 3 and 4 to show generalization error bound for neural92

networks. We also translate these bound to the neural network setting. And show practical examples93

highlighting the advantages of our data-dependent constants.94

– In Section 5.1 using Section 4.2, we bound WCTrG by the spectral property (Proposition 5.3) and show95

generalization bounds based on these spectral properties.96

– In Section 5.2 using Sectoin 4.3 and 4.4, we show generalization via SMSTrG and show bound on it97

which depends on the difference of initial loss and optimal loss values. The main advantage of this is98

that this is much more practical and easy to verify as compared to the spectral property.99

• Then, in Section 6, we experimentally verify the results showing that the bounded condition holds and plot100

the generalization error. We also experimentally analyze the Test Gradient (TeG) for random labelling setting101

suggested by Zhang et al. (2018) and conclude the Test Gradient is actually not bounded and increases with102

the training set size. We relate this to the high variance of the loss function in random labelling case and103

hence provide an explanation of which this example cannot be proved incorrectly to generalize using our104

methods.105

2 Related Work106

Although NNs are known to generalize well in practice, many different theoretical approaches have been107

tried without satisfactorily explaining this phenomenon, c.f., Jin et al. (2020); Chatterjee & Zielinski (2022).108

We refer the reader to the work of Jin et al. (2020) which presents a concise taxonomy of these different109

theoretical approaches. Several works seek to understand what a good theory of generalization should look110

like, c.f. Kawaguchi et al. (2017); Chatterjee & Zielinski (2022). Our own work falls within the paradigm111

that seeks to use notions of algorithmic stability to bound generalization error that began with Vapnik &112

Chervonenkis (1974) but gathered steam with the publication of the work by Bousquet & Elisseeff (2002).113

The applicability of the algorithmic stability paradigm to the study of generalization error in NNs was114

brought to light by Hardt et al. (2016), who showed that functions optimized via Stochastic Gradient Descent115

have the property of uniform stability defined by Bousquet & Elisseeff (2002), implying that NNs should116

also have this property. Subsequently, there was renewed interest in uniform stability, and a sequence of117

papers emerged using improved probabilistic tools to give better generalization bounds for uniformly stable118

algorithms, e.g., Feldman & Vondrak (2018; 2019a) and Bousquet et al. (2020). Some other works, e.g.119

Klochkov & Zhivotovskiy (2021), took this line forward by focussing on the relationship of uniform stability120

with the excess risk. However, the work of Zhang et al. (2017) complicated the picture by pointing out121

examples where the theory suggests the opposite of what happens in practice. This led to two different122

strands of research. In one thread, an attempt was made to either discover those cases where uniform stability123

fails (e.g. Charles & Papailiopoulos (2018)) or to show lower bounds on stability that ensure that uniform124

stability does not exist (e.g. Zhang et al. (2022)). The other strand of research, a category in which our125

work falls, focuses on weakening the notion of uniform stability, specifically by making it data-dependent,126

thereby following the suggestion made by Zhang et al. (2017). (Kuzborskij & Lampert, 2018, Definition 2)127

defined “on-average stability” which is weaker than our definition of a.s. support stability. Consequently,128

their definition leads to a weaker in-expectation bound on the generalization error where the expectation is129

over the training set as well as the random choices of the algorithm. Our Theorem 3.2, on the other hand,130

provides a sharp concentration bound on the choice of the training set. (Lei & Ying, 2020, Definition 4)131

4

Published in Transactions on Machine Learning Research (01/2024)

define an “on-average model stability” that requires the average replace-one error over all the training points132

to be bounded in expectation. While their smoothness requirements are less stringent, the problem is that133

their generalization results are all relative to the optimal choice of the weight vector, which implies a high134

generalization error in case of early stopping.135

A key question in the study of generalization in NNs is that of the possibility of proving uniform convergence136

bounds for norm-bounded classes of NNs, a question that can be traced to Bartlett (1996). This question137

was answered negatively by Nagarajan & Kolter (2019) who showed that in general norm bounds on deep138

networks show non-uniform growth, i.e., they grow with the training set size. For further discussion on this139

question the reader is referred to Negrea et al. (2020a). Our current work is more focussed on identifying the140

relevant quantities that bound generalization error, postponing the question of the exact relationship of these141

quantities to the training set size to future study.142

The role of the norm of gradients for bounding generalization error has been observed from a different angle by143

Negrea et al. (2020b) and also by Haghifam et al. (2020). Their work focuses on giving information-theoretic144

generalization bounds for Stochastic Gradient Langevin Dynamics (SGLD) and Langevin dynamics algorithm.145

Although their setting and methods is different from ours, the general flavour is similar.146

3 Almost Sure (a.s.) Support Stability and Generalization147

In this section, we present a weakening of the notion of uniform stability defined by (Bousquet & Elisseeff,148

2002, Definition 6) and show that exponential concentration bounds on the generalization error can be proved149

for learning algorithms that have this weaker form of stability.150

3.1 Terminology151

Let X and Y be the input and output spaces respectively. We assume we have a training set S ∈ Zm of size152

m where each point is chosen independently at random from an unknown distribution D over Z ⊂ X × Y.153

For z = (x, y) ∈ Z we will use the notation xz to denote x and yz to denote y. Let R be the set of all finite154

strings on some finite alphabet, and let us call the elements of R decision strings and let us assume that there155

is some probability distribution Dr according to which we will select r randomly from R. This random string156

abstracts the random choices of the algorithm. For example, in an NN trained with SGD it encapsulates the157

random initial parameter vector and the random permutation of the training set as seen by SGD. For an158

algorithm like Random Forest r would abstract out the random points chosen to divide the space.159

Further, let F be the set of all functions from X to Y. In machine learning settings we typically compute a160

map from Zm × R to F . We will denote the function computed by this map as AS,r. Since the choice of S161

and r are both random, AS,r is effectively a random function and can also be thought of as a randomized162

algorithm.163

Given a constant M > 0, we assume that we are given a bounded loss function ℓ : Y × Y → [0, M]. We define164

the risk of AS,r as165

R(AS,r) = Ez∼D [ℓ(AS,r(xz), yz)] ,

where the expectation is over the random choice of point z according to data distribution D. Note that the166

risk is a random variable since both S and r are randomly chosen. The empirical risk of AS,r is defined as167

Re(AS,r) = 1
|S|
∑
z∈S

ℓ(AS,r(xz), yz).

We are interested in bounding the generalization error168

|R(AS,r) − Re(AS,r)| . (1)

When talking about SGD we omit A and just use R(S, r) and Re(S, r) to represent R(AS,r) and Re(AS,r)169

respectively.170

5

Published in Transactions on Machine Learning Research (01/2024)

About the loss function l(·, ·). When we talk about the loss function we refer to the commonly used loss171

functions in machine learning, like cross-entropy, focal loss, mean squared error (for bounded inputs) etc.172

Our results are valid for any bounded value loss function which is doubly differentiable. In machine learning173

an implicit assumption is that the algorithm is able to successfully minimize the loss function chosen, i.e., a174

loss function is used that can be minimized to a reasonable value over a training set. We also work with this175

assumption.176

3.2 A Weakening of Uniform Stability177

Given S = {Z1, . . . , Zm} where all points are chosen randomly from D, we construct Si via replacing the i-th178

element of S by an independently generated element from D. To quote it formally we choose {Z1+m, . . . , Z2m}179

points such that all are chosen randomly from D such that they are independent from all points in S. For180

each i ∈ [m] we define181

Si = {Z1, . . . , Zi−1, Zi+m, Zi+1, . . . , Zm},

where [m] represents integer points from [1, m].182

Definition 3.1 (Almost Sure (a.s.) Support Stability). We say an algorithm AS,r has almost sure (a.s.)
support stability β with respect to the loss function ℓ(·, ·) if for Z1, . . . , Z2m chosen i.i.d. according to an
unknown distribution D defined over Z,

∀i ∈ [m] : ∀z ∈ supp (D) : Er

[
|ℓ(AS,r(xz), yz) − ℓ(ASi,r(xz), yz)|

]
≤ β

with probability 1 over the choice of points Z1, . . . , Z2m where ∀i, Zi ∼ D or in other words {Z1, . . . , Z2m} ∼183

D2m.184

We note that this notion weakens the notion of uniform stability introduced by (Bousquet & Elisseeff, 2002,185

Definition 6) by requiring the bound on the difference in losses to hold D2m- almost everywhere. This186

probability is defined over the random choices of Z1, . . . , Z2m. Besides the condition on the loss is required to187

hold only for those data points that lie in the support of D. These conditions make a.s. support stability a188

data-dependent quantity on the lines of the suggestion made by Zhang et al. (2017). We also observe that189

a.s. support stability is comparable to but stronger than the hypothesis stability of Kearns & Ron (1999) as190

formulated by Bousquet & Elisseeff (2002).191

While the quantification of z, i.e., ∀z ∼ supp (D) appears to be a very strong condition it is a weakening192

of uniform stability. In (Bousquet & Elisseeff, 2002, Section 5) it was shown that uniform stability (which193

is ∀z ∼ D) holds for several classical machine learning algorithms like soft margin SVM, bounded SVM194

regression and regularized least square regression. Hence a.s. support stability also holds for these algorithms.195

As we will see ahead, the weakening helps us fulfil key technical requirements when it comes to the study of196

neural networks.197

3.3 Exponential Convergence of Generalization Error198

Almost Sure (a.s.) Support Stability can be used in place of uniform stability in conjunction with the techniques199

of (Feldman & Vondrak, 2019a, Theorem 1.1) to give guarantees on generalization error for algorithms that are200

symmetric in distribution. A function f(x1, . . . , xm) is called symmetric if f(x1, . . . , xm) = f(σ(x1), . . . , σ(xm))201

for any permutation σ . But if we have a function f which is not symmetric but the probability of choosing202

any permutation of a given set of elements is equal then we use the term symmetric in distribution to refer to203

such a function along with the distribution by which its inputs are picked. In (Bousquet & Elisseeff, 2002,204

Section 2.1) the term “symmetric algorithm” was used but it was potentially misleading since what they205

meant was symmetric in distribution in the sense that we have used it. Since SGD randomly permutes the206

training points it is clearly symmetric in distribution.207

In particular, we can derive the following theorem.208

Theorem 3.2. Let AS,r be an algorithm that is symmetric in distribution and has a.s. stability β with
respect to the loss function ℓ(·, ·) such that 0 ≤ ℓ(AS,r(xz), yz) ≤ 1 for all S ∈ Zm, for all r ∈ R and for all

6

Published in Transactions on Machine Learning Research (01/2024)

z = (xz, yz) ∈ Z. Then, there exists a constant c > 0 independent of m s.t. for any m ≥ 1 and δ ∈ (0, 1),
with probability 1 − δ,

Er [R(S, r) − Re(S, r)] ≤ c

(
β log(m) log

(m

δ

)
+
√

log(1/δ)
m

)
.

The constant c is independent of m and, because our analysis is asymptotic in m, this is sufficient for us.209

Proof outline. We give a high-level outline here. Our proof extends the proof of Feldman and Vondrak210

((Feldman & Vondrak, 2019a, Theorem 1.1)) to accommodate the generalization of McDiarmid’s Lemma A.2211

from (Combes, 2015, Proposition 2). Feldman & Vondrak (2019b) used two steps to get a better generalization212

guarantee. The first step is range reduction, where the range of the loss function is reduced. For this, they213

define a new clipping function in Lemma 3.1 Feldman & Vondrak (2019a) which preserves uniform stability214

and hence it will also preserve a.s. support stability. They also use uniform stability in Lemma 3.2 Feldman215

& Vondrak (2019a) where they show the shifted and clipped function will still be stable which is done by216

applying McDiarmid’s inequality to β sensitive functions. Here use a modification of McDiarmid’s inequality217

(Lemma A.2 given in Appendix A) to get bounds for a.s. support stability. The second step is dataset218

size reduction (as described in Section 3.3 Feldman & Vondrak (2019a)) which will remain the same for a.s.219

support stability as this only involves stating the result for a smaller dataset and the probability, and then220

taking a union bound. Therefore both steps of the argument given in Feldman & Vondrak (2019a) go through221

for a.s. support stability.222

4 Almost Sure (a.s.) Support Stability of Stochastic Gradient Descent223

In this section, we show how to bound the a.s. support stability of a model whose parameters are learned by224

performing Stochastic Gradient Descent (SGD) using a training set. We will see that the bounds on stability225

can be formulated in terms of the gradients encountered during training and the value of the gradient at the226

end of the training. Since these gradients are determined by both the training set and the random choices227

made by SGD, this section shows that stability can be understood not just by looking at the data distribution,228

but by going beyond that and looking more carefully at the training process.229

This section is organized as follows:230

Section 4.1. We define three quantities associated with SGD that will be used to bound a.s. support231

stability: Worst Case Training Gradient (WCTrG), the Test Gradient (TeG) and Second Moment232

of Step Training Gradient (SMSTrG). We will also show that these quantities are bounded under233

certain mild conditions in Section 4.1.2.234

Section 4.2. We will show a bound on a.s. support stability that depends on WCTrG and TeG. This235

bound is weak in the sense that WCTrG is related to the largest of the gradients encountered during236

training and strong in the sense that the stability bound decreases as m−1.237

Section 4.3. We will show a bound on a.s. support stability that depends on SMSTrG and TeG for one238

epoch. This bound is stronger than the bound shown in Section 4.2 in the sense that SMSTrG is239

associated with an averaging of the gradients encountered during training rather than the largest of240

the gradient. However, the bound is weaker in the sense that it decreases as m−1/2.241

Section 4.4. This section is devoted to making the bound presented in Section 4.3 more useable by242

bounding Second Moment of Step Training Gradient in terms of the initial and final values of the243

loss function.244

Terminology. We assume that the learned function is parameterized by a vector w ∈ Rn for some n ≥ 1,245

i.e., we have some fixed function f : Rn × X → Y. The training set is used to learn a suitable parameter246

vector w ∈ Rn such that the value f(w, xz) is a good estimate of yz for all z ∈ Z. We assume that this value247

of w is learned by running SGD using a training set drawn from the unknown distribution. We will say that248

7

Published in Transactions on Machine Learning Research (01/2024)

the size of the training set is m, and the algorithm proceeds in epochs of m steps each. The parameter vector249

at step t is denoted by wt for 0 ≤ t ≤ τ · m, where τ is the total number of epochs during training.250

To frame the learned function output by this algorithm in the terms defined in Section 3.1, the random decision251

string r consists of the pair (w0, π = (π0, . . . , πτ−1)) which we also write as (rinit, rp), i.e., the random initial252

parameter vector w0 (or rinit) from which SGD begins and the sequence of τ random permutations used in253

the τ epochs. The weights encountered at step t using permutation π will be represented as wt,π. For the254

sake of brevity, except for Section 4.1.1 we omit the use of π and only write wt.255

4.1 Some quantities associated with SGD gradients256

4.1.1 Definitions257

Definition 4.1. If Π is the set of all permutations of S, then SGD as defined above has the following258

quantities associated with it259

1. Worst Case Training Gradient (WCTrG) LS.260

Lz,A = max
w∈A

{∥∥∥∥ ∂

∂w
f(w, z)

∥∥∥∥} .

Where the set A = ∪π∈Πτ {w1,π, . . . , wτm−1,π}, i.e. all the parameter vectors encountered across all261

time steps across all possible permutations of S. LS = maxz∈S{Lz,A} which is a random variable262

depending on the choice of S and w0.263

2. Training Smoothness Constant KS.264

Kz,A = max
w,w′∈A2

w ̸=w′

{
∥f ′(w, z) − f ′(w′, z)∥

∥w − w′∥

}
.

Where the set A = ∪π∈Πτ {w1,π, . . . , wτm−1,π}. We will say that KS = maxz∈S{Kz,A}. Note that265

KS is a random variable depending on the choice of S and w0.266

3. Test Gradient (TeG) Lg.267

Lz,g = max
w,w′∈A2

w ̸=w′

{
∥f(w, z) − f(w′, z)∥

∥w − w′∥

}
.

Where the set A = ∪π∈Πτ {wτm,π}, i.e. all parameter vectors encountered at the end of the training268

process across all possible permutation of S. We will say that Lg = maxz∈Z{Lz,g}. Note that Lg is269

a random variable depending on the choice of S and w0.270

4. Second Moment of Step Training Gradient (SMSTrG) σS. This is defined for τ = 1.271

σz =

√√√√ 1
m

m∑
t=0

∥∥∥∥max
w∈At

{
∂

∂w
f(w, z)

}∥∥∥∥2
.

Where the set At = ∪π0∈Π{wt,π0} i.e. set of all possible parameter vectors encountered during272

training at step t of SGD across all permutations. We say that σS = maxz∈S{σz}. Note that σS is a273

random variable in S and w0.274

Our stability analysis of SGD will depend on these quantities. However, when we take this analysis and try275

to apply it to NNs with discontinuous activation functions like ReLU, Training Smoothness Constant and276

Test Gradient defined above are not guaranteed to be bounded. So, it is necessary to establish the conditions277

under which they are bounded.278

8

Published in Transactions on Machine Learning Research (01/2024)

4.1.2 Boundedness279

We now present the property under which the quantities defined above will be (almost surely) bounded.280

Definition 4.2 (Almost surely Locally Parameter Lipschitzness of parametrized functions). A parameterized281

function f : Rn × Z → R is said to be almost surely locally L-parameter Lipschitz w.r.t D if for a fixed282

w ∈ Rn and for z ∼ D there exist constants L > 0 and ϵ > 0 such that, with probability 1 (over the choice of283

z), for all w′ ∈ Rn, ∥w′ − w∥ < ϵ implies284

∥f(w′, z) − f(w, z)∥ ≤ L∥w′ − w∥.

We will use the abbreviation a.s. L-LPL or simply a.s. LPL for a function that satisfies Definition 4.2. Since285

training is always run for a finite number of steps it is easy to observe that if the loss function is a.s. LPL,286

then LS and σS are bounded.287

If ∇wf(·, ·) satisfies Definition 4.2 we will call such a function almost surely locally L-parameter Smooth or a.s.288

L-LPS for short. We now see that these two properties imply the almost sure boundedness of the quantities289

defined in Section 4.1.1. The important insight is that if the function (or its gradient) is locally bounded,290

and, if we only look at this function at a finite number of points, we get a “global” property within this finite291

set of points. We state this as a lemma.292

Lemma 4.3. If f : Rn × Z → R is bounded and a.s. Ll-LPL, and A is a finite subset of Rn, then with293

probability 1 there is an L > 0 such that for every pair w, w′ ∈ A, if z ∼ D, then294

∥f(w, z) − f(w′, z)∥ ≤ L∥w − w′∥,

The proof is in Appendix B.295

Corollary 4.4. If f : Rn × Z → R is a.s. L-LPL then Lg is almost surely bounded. Further, if f is a.s.296

K-LPS then KS is almost surely bounded.297

The corollary follows by observing that due to the finiteness of the training process, the parameters on which298

the slopes are computed in Definition 4.1 are all drawn from finite sets.299

4.2 Almost Sure (a.s.) Support Stability of SGD with WC TG300

We now work towards the a.s. support stability of SGD using WCTrG and TeG. First, we state a theorem301

that bounds the replace-one error of SGD up to a certain number of epochs. To make the theorem statement302

easier to read, we first separate out our assumptions.303

S1. We are given a space Z = X × Y and a probability distribution D defined over it. We have a304

parameterized loss function f : Rn × Z → R that is a.s. Ll-LPL w.r.t supp (D) and a.s. Kl-LPS305

w.r.t S.306

S2. For a training set S of size m for each i ∈ [m] chosen i.i.d. according to D we run SGD on f for τ307

epochs with random decision string r. Parallelly, we do the same for set Si with the same set of308

random decision string r. For Si, the i-th data point zi of S has been replaced by another data point309

z′
i chosen from D independent of all other random choices.310

S3. At step t of SGD let the learning rate αt ≤ α0/t(1−ρ(τ,m)), ρ(τ, m) = log log m
log τ+log m , wt and w′

t the parameter311

vectors obtained for the t-th step of SGD while training with set S and Si respectively.312

Theorem 4.5. Given assumptions S1, S2 and S3, we have LS as WCTrG, Lg as TeG and KS as Training313

Smoothness Constant. Let the random decision string r = (w0, π0), then with probability 1 over z we have,314

Er [f(wτm, z) − f(w′
τm, z)] ≤ 2τ α0 · Er

[
LSLg · U(α0, KS , ρ(τ, m))

m

(
1− α0KS

ρ(τ,m)

)]
, (2)

where U(α0, KS , ρ(τ, m)) ≤ 1 + 1
KSα0

, and as α0 → 0, U(α0, KS , ρ(τ, m)) → 1 + mρ(τ,m)

ρ(τ,m) .315

9

Published in Transactions on Machine Learning Research (01/2024)

Here, the expectation is over r for random variables LS , Lg and KS . Remember, the L.H.S. is still a random316

variable in S and a.s. support stability is almost surely over this S.317

Proof outline. The proof follows the lines of the argument presented by (Hardt et al., 2016, Theorem 3.12)318

with the difference that we allow for a probabilistic relaxation of the smoothness conditions and more319

relaxed constraint on gradient bounds in line with our definition of a.s. stability. Also, note that we have to320

account for an expectation over the random string r and that we have been able to extend the argument to321

multiple epochs which was not possible in (Kuzborskij & Lampert, 2018, Theorem 4). The complete proof of322

Theorem 4.5 is in Appendix B.323

Data-dependence with WCTrG and TeG. A key feature of the bound presented in equation 2 is that the324

dependence on the data is expressed through the data-dependent quantities WCTrG (LS) and TeG (Lg).325

The WCTrG depends on the gradients at training points and the replacement point z′
i, which is also picked326

from the data distribution, and TeG depends on the gradients of the trained network calculated at points327

from distribution. The advantage of splitting TeG and WCTrG instead of a global bound is that TeG could328

potentially be very small when the loss is converged as it’s calculated at the end of training. And, WCTrG329

only depends on training points instead of the entire distribution.330

Corollary 4.6. Given assumptions S1, S2 and S3, and under the condition that KS is a constant, w.r.t. m,331

for all r, and Er [LgLS] is also constant w.r.t m, there is a constant c ∈ (0, 1) that depends on α0 and KS332

such that if the number of epochs τ is at most c log m epochs, the expectation of the generalization error of the333

algorithm taken over the random choices of the algorithm decreases as Õ
(
m− min(ϵ,1/2)) (where tilde hides the334

logarithmic factors) with probability at least 1 − 1/m over the choice of the training set if α0KS

ρ(1,m) + c log 2 < 1,335

where ϵ = 1 − c log 2 − α0KS

ρ(1,m) .336

Proof. Let us consider two cases. In the first case when ϵ > 1/2 (i.e. we get the usual rate Õ(m−1/2)), this337

happens when α0 < ρ(1,m)
2KS

and we choose a small enough c. One the other hand for case where ϵ < 1/2 (i.e.338

rate of Õ(m−ϵ)), which allows for a larger learning rate ρ(1,m)
2KS

< α0 < ρ(1,m)
KS

(for small enough c). This339

clearly shows that a larger initial learning rate could be bad for generalization. It is easy to check from340

Theorem 4.5 that with the conditions given in the statement of Corollary 4.6 the learning algorithm has a.s.341

support stability β where β is o(1/mϵ) if α0KS

ρ(1,m) + c log m < 1. We can therefore apply Theorem 3.2 with342

δ = 1/m to get the result.343

4.3 Almost Sure (a.s.) Support Stability of SGD with SMSTrG344

We present a more fine-grained analysis that provides an alternate bound of Theorem 4.5 by replacing the345

WCTrG (Worst Case Training Gradient), which was defined for all SGD steps, with the SMSTrG (Second346

Moment of Step Training Gradient). The significance of this is that this expected value could be substantially347

smaller than the worst case value in many cases, especially when the training converges rapidly from a high348

value of the loss to a low value. We present the bounds using SMSTrG below.349

Theorem 4.7. Given the assumption S1, S2 and S3 for τ = 1, we have σS as SMSTrG, Lg as TeG and KS350

as Training Smoothness Constant. Let the random decision string r = (w0, π0), then with probability 1 over z351

we have,352

Er [f(wm, z) − f(w′
m, z)] ≤ α0 · Ew0

[
Lg · σS ·

√
U ′(α0, KS , m)

m
1
2 − α0KS (log m−1)

log log m

]
. (3)

Where U ′(α0, KS , m) ≤ 1 + 1
2α0KS

and as α0 → 0, U ′(α0, KS , m) → 1 + log(m)2

log log m .353

Proof outline. The proof follows the proof of Theorem 4.5, but instead of using the WCTrG for bounding the354

gradients encountered at the step where the training points differ, we use the exact gradient at that step, i.e.355

f(wπ0(i), ·) for every permutation π0 ∈ Π. Then, the proof continues till m steps. Finally, when taking the356

expectation over the permutations we apply Cauchy Schwarz to separate other random variables and obtain357

the SMSTrG (σS). The complete proof of Theorem 4.7 is in Appendix B.358

10

Published in Transactions on Machine Learning Research (01/2024)

Although the bound in Theorem 4.7 looks weaker than the bound in Theorem 4.5 because of m
1
2 term, the359

key part here is the use of SMSTrG instead of WCTrG. SMSTrG could potentially be a lot smaller because360

it’s averaged over the training steps. This will especially benefit the case when training converges fast and361

gradients quickly become small. We later in Section 4.4 show that we can bound SMSTrG by the decrease in362

loss during training under some very mild conditions of assumption P1.363

We now present the alternate version of Corollary 4.6 using Theorem 4.7.364

Corollary 4.8. Given assumption S1, S2 and S3 for τ = 1, and under the condition that KS is constant365

w.r.t. m for all r = (w0, π0), and Ew0 [Lg · σS] is also constant w.r.t. m, the expectation of generalization366

error of algorithm taken over the random choices of the algorithm decreases as Õ(mϵ) (were tilde hides the367

logarithmic factors) with probability at least 1 − 1/m over the choice of training set if α0KS(log m−1)
log log m < 0.5,368

where ϵ = 0.5 − α0KS(log m−1)
log log m .369

Proof. It’s direct to see when we apply the conditions stated in the above corollary in Theorem 4.7 we get370

the desired result.371

4.4 Bound on SMSTrG372

We now proceed to show the bound on SMSTrG (i.e. Second Moment of Step Training Gradient) along with373

the assumption required for the bound to hold. For this, we use a result from Bottou et al. (2018) and modify374

it slightly to show a bound on the expectation of SMSTrG over S and w0. Although this is a bound on375

expectation, we later show in the discussion of Section 5.2.2 that we can use this as a high probability bound.376

And this is sufficient because of the probabilistic form of a.s. support stability.377

First we define FS(wt) = 1
m

∑m
i=1 f(wt, zi). Now, in order to bound the expectation of SMSTrG over the378

training set, we use the result from (Bottou et al., 2018, Theorem 4.10) and modify it to get the required379

bound. This theorem, combined with Assumption P1, provides a bound on the expectation of SMSTrG over380

the training set (Corollary 4.10). The bound is in terms of the initial and optimal (final) values of the loss381

function (and includes terms based on the learning rate), so unless the initial loss is very bad, the bound will382

be useful. The theorem requires the following condition which is a kind of version of a bound on the variance383

of the gradients encountered during training.384

P1. (Assumption 4.3 (equation 4.9) of Bottou et al. (2018)). There exist constants M ≥ 0 and385

MG ≥ 0 (independent of the size of the training set) such that,386

1
m

∑
z∈S

∥∇f(wt, z)∥2 ≤ M + MG ∥∇FS(wt)∥2
. (4)

Theorem 4.9. (Bottou et al., 2018, Theorem 4.10) Suppose we run SGD under the assumption that KS is387

constant for all r and P1 holds, for M ≥ 0, MG ≥ 0. If w0 is the initialization weight, w∗ is optimal value388

for FS(w) and αt is any diminishing step size then,389

T∑
t=1

αtE
[
∥∇FS(wt)∥2] ≤ 2(E [FS(w0)] − E [FS(w∗)]) + E [KS] M

T∑
t=1

α2
t , (5)

where FS(wt) = 1
m

∑m
i=1 f(wt, zi).390

Now, using Theorem 4.9 and assumption P1 we can get a bound on the expectation of SMSTrG. We state391

this in the next corollary.392

Corollary 4.10. If we run SGD for 1 epoch under the assumption that KS is constant for all r and P1 holds,393

for M ≥ 0, MG ≥ 0, w0 is the initialization weight, w∗ is optimal value for Ez∈S [f(w, z)], r = (w0, π0) is394

the random string for SGD and αt is any diminishing learning rate then,395

ES,w0 [σS] ≤ M + 2MGE [f(w0, z) − f(w∗, z)] + E [KS] MGM

α0

T∑
t=0

α2
t (6)

11

Published in Transactions on Machine Learning Research (01/2024)

The proof of this theorem is in Appendix B at the end. The R.H.S of this equation is constant w.r.t. m if396 ∑T
t=1 α2

t is constant w.r.t. m and in our analysis this is true (c.f. assumption S3). Hence, this corollary397

becomes useful for us since it shows that we can bound the expectation of SMSTrG under a mild assumption.398

5 Neural Networks with ReLU Activation399

We now proceed to show what the a.s. support stability bounds on SGD translates into for neural networks.400

This includes two generalization bounds, one using WCTrG (i.e. Worst Case Training Gradient) in Section401

5.1 and the other using SMSTrG (i.e. Second Moment of Step Training Gradient) in Section 5.2. We also402

emphasise on the conditions required for generalization bounds to hold and translate those conditions to403

more practical constraints.404

5.1 Almost Sure (a.s.) Support Stability of Neural Networks with ReLU Activation: WCTrG405

First, we present the generalization bound of neural networks via a.s. support stability using WCTrG (Worst406

Case Training Gradient) in Section 5.1.1. We then, in Section 5.1.2, show the conditions required for the407

bounds to hold. We also present a discussion at the end highlighting an example where the actual data408

dimension is small, and our gradient bounds will be better.409

5.1.1 Generalization Using WCTrG.410

For ease of reading, we first state our assumptions and then, in Theorem 5.1 we present the bound.411

N1. We have a fully connected neural network with ReLU activation and 1 output neuron.412

N2. The NN is trained on set S ∼ Dm using SGD for τ epochs, where D is over Rd × Y, such that Y is413

countable and for each y ∈ Y we get a countable set {x ∈ Rd : PrD {lab(x) = y} > 0}, where lab(x)414

is label of x.415

N3. We have a doubly differentiable loss function with bounded first and second order derivatives and416

learning rate αt = α0/t(1−ρ(τ,m)), where ρ(τ, m) = log log m
log τ+log m and the data points of S and the417

spectral norms of weight matrices explored by SGD are bounded418

Theorem 5.1. If N1, N2 and N3 hold, then there is a constant c > 0 such that

Er [|R(S, r) − Re(S, r)|] ≤ c

(
2τ α0 · Er [LSLg] · U(α0, KS , ρ(τ, m)) log(m)2

m

(
1− α0KS

ρ(τ,m)

) +
√

log(m)
m

)
,

with probability at least 1 − 1/m, where U(α0, KS , ρ(τ, m)) ≤ 1 + 1
α0KS

and α0 → 0 implies419

U(α0, KS , ρ(τ, m)) → 1 + mρ(τ,m)

ρ(τ,m) .420

The proof of the above theorem is at the end of Section 5.1.2 before discussion. Note that for some c1 log(m)421

epochs and with an initial learning rate of α0 such that α0KS

ρ(1,m) + c1 log 2 < 1, the RHS decreases as m422

increases. It is important to note that TeG (Lg) is the constant that depends on the actual distribution D423

and is calculated for a trained neural network (i.e. at wτm). This aligns with the notion that if the network424

has reached a “good enough” minima, then the gradient values should be less; hence, this will show better425

generalization. Also, WCTrG (LS) and Training Smoothness Constant (KS) depend on the training set S.426

These are “global” over the data set in the sense that the expectation is for the entire training process over427

the (random) choice of initial parameters and the permutation that SGD chooses. For cases where SGD428

chooses a good set of initial parameters with good probability, these are likely to be small.429

For Training Smoothness Constant (KS), we are constrained in the sense that we need this value to be small430

throughout the training, even at the beginning. Also it is interesting to note that when LS → 0 and Lg → 0431

the generalization error becomes zero, but when KS → 0, we have U(α0, KS , ρ(τ, m)) → 1 + mρ(τ,m)

ρ(τ,m) which432

12

Published in Transactions on Machine Learning Research (01/2024)

leads to generalization error behave like O

(
log m3

m +
√

log m
m

)
. Although this is still a decreasing function of433

m, this does not directly go to zero. This highlights that unlike LS and Lg, just KS → 0 alone is insufficient434

for zero generalization error.435

The role of gradients in bounding generalization error that we identify has the same flavour, in a very different436

context, as the work of (Negrea et al., 2020b, Theorem 3.1) and (Haghifam et al., 2020, Theorem 4.2) where437

Information-Theoretic generalization bounds for SGLD (Stochastic Gradient Langevin Dynamics) are given438

in terms of gradient values of the loss function. Next in Section 5.1.2, we first establish that the theory of439

a.s. support stability applies to NNs under conditions specified, then we prove the Theorem 5.1 along with440

empirical validation.441

5.1.2 Conditions on NNs for Generalization442

The key to showing the a.s. support stability of NNs with ReLU is to establish that they are locally443

parameter-Lipschitz and locally parameter-smooth. First, we show the existence of these constants. Then we444

will show an upper bound under some reasonable assumptions and finally present an example in discussion.445

Theorem 5.2. For every w ∈ Rn, a doubly differentiable loss function, ℓ : R × R → R, applied to the output446

of a NN with ReLU activation is locally parameter-Lipschitz and locally parameter-smooth for all x ∈ Rd
447

except for a set of measure 0.448

Proof outline. The proof of this theorem is based on the argument that for a given w a point of discontinuity449

exists at a given neuron if the input x lies in the set of solutions to a family of equations, i.e., in a lower450

dimensional subspace of Rd. This proof is an adaption of an idea of (Milne, 2019, Lemma 1) and can be451

found in Appendix C.2.452

Theorem 5.2 begs the question: How large are these WCTrG, TeG and Training Smoothness Constant? We453

provide some general bounds that can be improved for specific architectures:454

Proposition 5.3. Suppose we have a fully connected NN of depth H + 1, with ReLU activation at the inner455

nodes. Then, if the spectral norms of weight matrices are bounded for every layer i.e., ∥W i∥σ is bounded456

∀i ∈ [H], and the size of each layer be {l0, . . . , lH} and the distribution of dataset is normalized with ∥x∥2 ≤ 1457

then,458

Lg ≤

(
H∏

k=1
∥W k∥σ

)
× A(M, W)1/2 (7)

KS ≤

(
H∏

k=1
∥W k∥σ

)
× A(M, W) (8)

where459

A(M, W) =
H∑

l=1

∥M l∥2
2,2

∥W l−1∥2
σ · ∥W l∥2

σ · ∥W l+1∥2
σ

where (i, j)th element of matrix M l[i, j] = ∥M ′(l, i, j)∥σ, and where M ′(l, i, j) is a matrix such that (p, q)th
460

element is M ′(l, i, j)[p, q] = w
(l+1)
j,p w

(l−1)
q,i . Note that equation 7 holds for both WCTrG (LS) and TeG (Lg).461

The proof of the proposition is in Appendix C.2. Note that it’s possible to give a tighter bound for the above462

theorem by not bounding the product of weight matrices (which we do after equation 19 in Appendix), but463

we keep the above equation because of its clarity. The bounds on these should be compared to the bounds464

given in the context of Rademacher complexity by (Bartlett et al., 2017, Equation 1.2) and Golowich et al.465

(2018). Our bound is related to the spectral complexity and can potentially be independent of the size of the466

network. We are now ready to prove our main theorem.467

13

Published in Transactions on Machine Learning Research (01/2024)

Proof of Theorem 5.1. Theorem 5.2 tells us that a NN with ReLU activations is locally parameter-Lipschitz468

and locally parameter-smooth. From Proposition 5.3, we see that the boundedness of the first and second469

derivatives of the loss function and the boundedness of the spectral norm of weight matrices and data points470

ensures that the gradient bound and smoothness constants associated with the NN’s training are bounded471

w.r.t. m. With all these in place, we can apply Theorem 4.5 to get the a.s. support stability followed by472

Theorem 3.2 to get the desired result.473

Discussion: An example showing the benefits of data-dependent gradient bounds. In general,474

data-dependent gradients (WCTrG and TeG) can be much smaller than the global Lipschitz constant of475

the space from which the data might appear. There are probably many scenarios in which this can be476

demonstrated, but we turn to a well-appreciated scenario: a data set that has much smaller dimensionality477

than the space in which it is embedded. We will now argue that in such scenarios, data-dependent gradients478

(WCTrG and TeG) can be significantly smaller.479

Suppose we have data as x ∈ Rd, but the actual dimension of the data is D ≪ d, a situation that is often480

seen in many cases, for example, image data. For simplicity of presentations, we assume that each data point481

has x1, . . . , xD non-zero and the remaining coordinates are 0. The arguments we make can be made even482

without this assumption by considering the data points with coordinates based on their projection onto a483

basis of the subspace they are taken from.484

Suppose we have a neural network with 1 hidden layer of d1 neurons and a single output layer. Let W 1 ∈ Rd1×d
485

and W 2 ∈ R1×d1 be the weights of 1st and 2nd layer respectively and we use w
(l)
i,j to represent i, j weight of486

lth layer. For simplicity, let the output of the neural network O(w, x) = W 2W 1x. Now, assuming MSE loss,487

we calculate the gradients and show that the effective upper bound of this could be smaller because of the488

fact that our WCTrG and TeG are calculated only from S and supp(D). This is under the assumption that489

the weights are upper bounded by some quantity B1. We will also assume that all data points have been490

re-scaled so that their norm is at most 1.491

Theorem 5.4. If the above conditions holds then we have a bound on ℓ2 norm of the gradients of the492

parameter vector w as,493

∥∇wf(w, x)∥2
2 ≤ B2

1 · d1 · D(1 + D)

Proof of the Theorem 5.4 is in Appendix C.2.494

Here, we see that we obtain a bound on the norm of the gradients that are related to D, which is significantly495

smaller than d, whereas in general, we can expect the norm of the gradients to be of the order of d even496

under the assumptions of bounded weights and rescaled data points.497

Note that we show here the value of WCTrG (LS) and TeG (Lg), but for generalization, we actually need498

Er[LS · Lg] to be bounded. Using Cauchy-Schwarz inequality we could see that we need bound on just the499

expectation of square (or the second moment) of each term. This means that when we select the initial weight500

parameter vector w0, we need the boundedness constraints on weights only, which is a fairly mild constraint.501

5.2 Almost Sure (a.s.) Support Stability of Neural Networks with ReLU Activation: SMSTrG502

This Section focuses on stating the generalization bound of neural networks via a.s. support stability using503

the SMSTrG (i.e. Second Moment of Step Training Gradient). It’s already shown in Bottou et al. (2018)504

that even for non-convex cases, the gradients of SGD decrease as the training proceeds. But earlier analysis505

and even Section 5.1 could not use this fact. So, we use the SMSTrG (i.e. Second Moment of Step Training506

Gradient), which will help us exploit this fact and provide a generalization bound for NNs. In Section 5.2.2,507

we present the proof and discuss the conditions under which our bound holds. We also present a real-world508

example highlighting the applicability of our results.509

5.2.1 Generalization Using SMSTrG510

We use the same conditions as defined in Section 5.1.1. Now, applying this to NNs and using SMSTrG, we511

get a generalization bound, which is an alternate version of Theorem 5.1 for the 1-epoch case.512

14

Published in Transactions on Machine Learning Research (01/2024)

Theorem 5.5. If N1, N2 and N3 hold there is a constant c > 0 such that for all i ∈ [m]

Er [|R(S, r) − Re(S, r)|] ≤ c

(
α0 ·

√
Ew0

[
L2

g

]
Ew0 [σS] · U ′(α0, KS , S) log(m)2

m

(
1
2 − α0KS (log m−1)

log log m

) +
√

log(m)
m

)
,

with probability at least 1−1/m, where U ′(α0, KS , m) ≤ 1+ 1
2α0KS

and as α0 → 0, U ′(α0, KS , m) → 1+ log(m)2

log log m513

Note the presence of SMSTrG (σS) on the R.H.S here as opposed to WCTrG (LS) in the statement of514

Theorem 5.1. We propose this is a much more practical quantity to bound. We have already shown in515

Section 4.4 an expectation bound on SMSTrG by the difference between the initial and optimal values of the516

loss function.517

5.2.2 Conditions on NNs to Hold for Generalization518

Proof outline of Theorem 5.5. Using Corollary 4.10 we already have a bound on expectation of SMSTrG.519

So instead of Proposition 5.3, we use this Corollary to achieve the result. Although note that the result is520

in expectation over the training set, we can simply apply Markov inequality as done in the discussion after521

Theorem 5.6 to get a probability bound. This is sufficient because of the probabilistic form of a.s. support522

stability. Also, the bound on the expectation of SMSTrG required only assumption (P1), which is a relatively523

mild assumption.524

It’s important to note that, like in the previous case (Section 5.1.2), we required the spectral norm of weight525

matrices to be bounded, but it’s a difficult condition to ensure while training a neural network. On the other526

hand, the bound on the expectation of SMSTrG depends on the difference between the initial and optimal527

loss values, which is very easy to ensure and verify. This means we get a reasonable bound unless we have a528

very bad initial loss. Moreover, the assumption P1 in Section 4.4 is also intuitive as a very bad training point529

could badly affect the training, so bounding the variance of gradients (that too with respect to the average of530

gradients) restricts such bad points to be present in the distribution.531

We now move on to show the applicability of our bound for SMSTrG.532

Discussion: Applicability in Classification with Two Layer Neural Network. We now use Corollary533

4.10 to establish a generalization bound for the case of two-class classification with a two-layer Neural Network.534

For simplicity of exposition, we have assumed that the data points are taken from R2. We fully specify the535

problem through the following assumptions:536

X1. We have a two class classification (Y = {−1, 1}) in 2 dimension (x = [x1, x2]) such that for expectations537

of centers we have E [x1|y = 1] = E [x2|y = 1] = 2 and E [x1|y = −1] = E [x2|y = −1] = −1, for538

second moment for a constant σ > 0 we have E
[
x2

1
]

= E
[
x2

2
]

= σ2 and also for a constant µp > 0539

E [|x1|] = E [|x2|] = µp.540

X2. We use a single hidden layer feed-forward neural network, with k as hidden layer size. Its parameters541

are initialized from w
(l)
i,j = N (0, 1). The total number of parameter values are n = 2k + k. For a542

loss function f(w, z) = |y − O(w, x)|, where O(w, x) is the output of the neural network, ∇f(w, z)j543

denotes the j-th partial derivative of function f and wj1
j2,j3

be the associated weight. Let αt be any544

diminishing step size at step t of SGD.545

X3. We assume the ratio of absolute values of the weights of the Neural Network are bounded by B where546

B > 1.547

Theorem 5.6. If X1,X2,X3 hold, for r = (w0, π0) we have,548

ES,w0 [σS] ≤
16B4σ2 (π + 4kσ2µp

)
(B − 1)2π

(9)

15

Published in Transactions on Machine Learning Research (01/2024)

0 5000 10000 15000 20000
Number of Datapoints

10

20

30

40

50

60
Em

pi
ric

al
 m

ax

WCTrG
Training Smoothness constant

(a) MNIST

0 5000 10000 15000 20000
Number of Datapoints

20

40

60

80

100

Em
pi

ric
al

 m
ax

WCTrG
Training Smoothness constant

(b) FashionMNIST

Figure 1: Experiment 1, Maximum of the Worst Case Training Gradient (WCTrG) and Training Smoothness
Constant at every p (= 20) interval of updates of SGD (we plot both the running average and the highest
value found so far). Notice that these constants have a clear upper bound throughout the training process.

The proof of this theorem is in Appendix C.3. Now we can directly use Markov inequality to get a high549

probability bound. Assuming R.H.S of above is B′, so we will have,550

PrS

{
Ew0 [σS] ≥ 16B4σ2 log m × (kπ + 4k2σ2µp)

(B − 1)2π

}
≤ 1

k log m

Since the distance between the centers of the two classes is fixed at 2, the bound presented here satisfies our551

intuition by showing that if the variances of the two classes are small, i.e., the classes are well-separated,552

then the expectation of SMSTrG is small, and hence the generalization bound of Theorem 5.5 is small. It’s553

important to note that since we have a probability bound, we need to apply the probabilistic version of554

support stability, although we show generalization only through a.s. support stability. The probability version555

can easily be derived using Theorem A.2 as we discuss in Section 3.3.556

6 Experiments and Empirical Results557

We now proceed to verify the results in a real-world case empirically. First, we perform the experiment to558

show that WCTrG, SMSTrG and TeG are bounded. We also show in the case of random labelling that our559

TeG are not bounded throughout the training, and hence, our results do not imply good generalization as560

expected.561

6.1 Experimental Validation of Results562

Here, we will experimentally show that the WCTrG (LS), TeG (Lg) and Training Smoothness Constant (KS)563

that we reasoned with are indeed bounded and that the theoretical upper bound that we derived for the564

generalization error of a neural network holds in practice. Note that if LS is bounded, then σS will also be565

bounded. For simplicity in this experiment, we assume WCTrG to be a good proxy for TeG (as in general566

Lg ≤ LS).567

Setup. For our experiments we use MNIST and FashionMNIST datasets. In both datasets, we randomly568

selected 20, 000 training and 1, 000 test points. All experiments were conducted using a fully connected feed569

forward neural network with a single hidden layer and ReLU activation. We train the model using SGD570

(batch size = 1), with cross-entropy loss, starting with randomly initialized weights. As suggested in our571

analysis we use a decreasing learning rate αt = α0
t . In each epoch, we consider a random permutation of the572

training set. WCTrG and Training Smoothness Constant are computed by calculating the norm of gradients573

and Hessian across the training steps and taking their max.574

16

Published in Transactions on Machine Learning Research (01/2024)

0 5000 10000 15000 20000
Number of Datapoints

10 7

10 5

10 3

10 1

101

103

Ge
ne

ra
liz

at
io

n
er

ro
r via SMSTrG

via WCTrG
Observed Generalization Error

(a) MNIST

0 5000 10000 15000 20000
Number of Datapoints

10 2

100

102

Ge
ne

ra
liz

at
io

n
er

ro
r via SMSTrG

via WCTrG
Observed Generalization Error

(b) FashionMNIST

Figure 2: Experiment 2, comparison of empirical generalization error (in green) vs. theoretical upper bound
via WCTrG (in red) and via SMSTrG (in blue) with varying training set size for different datasets.

Experiment 1. Our first experiment is aimed towards establishing that the WCTrG (LS) and Training575

Smoothness Constant (KS) values estimated using local values at each step are bounded. Figure 1 summarizes576

the results of these experiments over MNIST and FashionMNIST datasets (α0 = 0.001). The plots contain577

the maximum of the gradients and smoothness values obtained after running each experiment 10 times with578

random weight initialization. These results support our Theorem 5.2 since the upper bound values quickly579

stabilize and do not grow with the size of the training set in both datasets. Similarly, the bounded smoothness580

constant supports our constraint on the learning rate, α0 ≤ ρ(τ,m)
KS

, ρ(τ, m) = log log m
log τ+log m . We find LS to be581

8.1174 (MNIST) & 12.5737 (FashionMNIST), and KS to be 58.185 (MNIST) and 102.7096 (FashionMNIST).582

Experiment 2. We now turn our attention to the experiment to support our main result, i.e., the empirical583

generalization error estimated using the validation set is upper bounded by our theoretical upper bound. We584

first split each dataset in a 20:1 ratio into training and validation sets and train the model at varying sizes of585

training sets. We empirically compute the generalization error at each training set size using the validation586

set. Figure 2 compares this empirical generalization error (in green) vs. the theoretical upper bound using587

WCTrG (in red) and using SMSTrG (in blue). From these results, we can see that our bound decreases along588

with the generalization error, thus empirically validating our reasoning. But clearly, the bound is not as tight589

as we would like it to be. We conjecture that this is because of the upper bounding of the U(·) term and the590

maximum which is taken across permutations of weights even for SMSTrG at t-th step.591

6.2 Random Labelling Case592

In making their case against the applicability of uniform stability as a tool for theoretically establishing the593

good generalization properties of neural networks, Zhang et al. (2017) presented the following classification594

problem: Given points picked from Euclidean space using some well-behaved distribution, say a Gaussian, each595

point was assumed to have a class label picked uniformly at random from a finite set of labels independent of all596

other points. Clearly, any classification algorithm trained on a finite training set will have ω(1) generalization597

error for this problem. We now demonstrate that our results do not imply good generalization for this598

problem. Specifically, we show empirically that the assumption of TeG (Lg) being independent of m breaks599

in this case and this “constant” actually increases with m.600

Setup. We pick images from the 0 and 1 label class of MNIST dataset. For random labelling case, we601

assign random labels to all the points. We then randomly sample a test set T (|T | = 50). We take a single602

hidden layer (128 neurons) fully connected neural network having ReLU activation in the hidden layer. We603

take the loss function as l(ŷ, y) = 1 − Softmax(c · ŷ, y) where c = 6. We use a constant learning rate of 0.003,604

batch size of size 8.605

17

Published in Transactions on Machine Learning Research (01/2024)

250 500 750 1000 1250
Number of Datapoints

30

40

50

60
Te

st
 G

ra
di

en
t

(a) Increasing Lg for random label MNIST

250 500 750 1000 1250
Number of Datapoints

6

8

10

12

Te
st

 G
ra

di
en

t

(b) Decreasing Lg for standard (non random) MNIST

Figure 3: Experiment 3, Test Gradient (Lg) plot as training set size increases.

Experiment 3. The experiment proceeds by selecting initial random weights for a model say w0 (we do606

this 10 times). Then for every initialization we pick training set S from our modified dataset (we do this607

for 5 times). Now for every training set, we train the model either till accuracy is ≥ 98% or till 500 epochs608

whichever is reached first. Now we calculate the loss i.e. f(r, S, z) and the gradient ∇wf(r, S, z) for all z ∈ T .609

For the TeG we do Lg ≃ maxz∈T {∥∇wf(r, S, z)∥}. In figure 3a we can clearly see that the TeG (Lg) scales610

as the size of the training set (m) increases. On the contrary for the standard (non-random) dataset the TeG611

shows a decreasing trend with m see figure 3b. Therefore we can expect that in the random labelling case,612

the upper bound in Theorem 5.1 becomes so large as to become vacuous.613

Discussion. We note that the random labelling example has the property that the variance over the choice614

of training sets of the loss of any algorithm, V arS [f(r, S, z)], is bound to be high. One possible direction for615

theoretically showing that this implies that the TeG are likely to be high is by using Poincare-type inequalities.616

This shows that the norm of the gradients of a function of a random vector is lower bounded by the variance617

of the function. We do not pursue this direction further here, but we point out that it may help develop a618

general theory for the limitations of what can be learned using parametrized methods trained using gradient619

descent methods.620

7 Applicability and Conclusion621

7.1 Discussion on the Applicability of Our Results622

• Removing the fully connectedness constraint. Although we considered a fully connected network for623

Theorem 5.2 and Proposition 5.3, our data-dependent quantities are independent of the architecture of Neural624

Networks. We only provide a bound on WCTrG and TeG using this. Note that even the bound on SMSTrG625

is independent of the architecture of the network. We conjecture that it can be applied to architectures like626

CNNs which have partially connected convolution layers with intermediate pooling, normalization and skip627

connections (e.g., ResNet, DenseNet, etc). Our work provides a framework in which the study of the gradients628

obtained during training such networks can help guide our understanding of their generalization properties.629

• Adding regularization terms to the loss function. Several popular regularizers, the ℓ2 regularizer being a630

prominent example, are doubly differentiable and therefore Theorem 5.1 can be applied when such regularizers631

are used along with a doubly differentiable loss function. Here as well a mild addition for bound on derivative632

of regularization term in Theorem 5.3 may be able to help us prove results for this setting. However, it633

requires further investigation to establish such a result.634

• Activation functions apart from ReLU. We present a comprehensive treatment of ReLU activation but we635

conjecture that results are not restricted to this kind of activation. Non-linearities like max-pool can also be636

18

Published in Transactions on Machine Learning Research (01/2024)

handled in our framework by proving that, like with ReLU, the points of discontinuity of such a non-linearity637

also lie in a set of Lebesgue measure 0. This provides a direction for future research in this area.638

• The case of multiple outputs Although we state the Theorem 5.1 and Theorem 5.5 for the case of a NN639

with a single output, it is not difficult to extend the technique to cover the case of multiple outputs. However,640

this requires a full treatment, which we postpone to future work.641

What about other distributions? The data-dependent gradient bounds (SMSTrG, WCTrG and TeG) turn out642

to be the deciding factor of generalization error. However, our analysis is limited to the bounds we derive643

for them. There is a requirement for a more fine-grained analysis of these gradient bounds and we believe644

that optimizing these data-dependent gradient bounds will be the right direction to proceed. This may be645

made possible by looking at the network structures, the data distribution and the training set in more detail.646

We hope that the polynomial characterization of the NN presented in Appendix C.1.2 will help this process.647

We conjecture that it may be able to show that for certain distributions, the constants actually improve648

(decrease) w.r.t. training set size as the training proceeds, resulting in a much slower decay of learning rate649

and this could lead to a proof of a.s. support stability in these cases.650

7.2 Conclusion651

Using a.s. support stability, we derive the generalization error bounds for neural networks. We most652

importantly identify the data-dependent quantities (WCTrG, SMSTrG, TeG) whose boundedness implies653

generalization of neural networks. We also show how to upper bound these quantities either in terms of654

spectral property or the initial loss and variance of gradients of the neural network. So, this paper links the655

generalization of neural networks directly with the gradients and shows a guarantee of better generalization656

if we start with a small (constant w.r.t. training size) initial value of loss function and descent (defined in657

assumption P1) value of variance of the gradient at each step of SGD. However, we feel it is possible to658

prove stronger and more widely applicable results in this framework than the ones we have presented here.659

Immediate lines of research are to apply our methods for CNNs and GNNs and to investigate what other660

architectures can be approached with our method and whether the gradient bounds play some significant role661

because of a different network structure. Also, we do provide empirical evidence to support the example of662

the random labelling case but it lacks a theoretically concrete statement.663

References664

Peter L. Bartlett. For valid generalization, the size of the weights is more important than the size of the665

network. In Proceedings of Advances in Neural Information Processing Systems, NeurIPS 1996, 1996.666

Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural667

results. JMLR, 3:463–482, march 2003. ISSN 1532-4435.668

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for Neural669

Networks. In Proc. Advances in Neural Information Processing Systems 30, pp. 6240–6249, 2017.670

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning.671

SIAM Rev., 60(2):221–487, 2018.672

Olivier Bousquet and André Elisseeff. Stability and Generalization. J. Mach. Learn. Res., 2(Mar):499–526,673

2002.674

Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly stable algorithms.675

Proc. Machine Learning Research, 125:1–17, 2020.676

Zachary Charles and Dimitris Papailiopoulos. Stability and generalization of learning algorithms that677

converge to global optima. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International678

Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 745–754.679

PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/charles18a.html.680

19

https://proceedings.mlr.press/v80/charles18a.html

Published in Transactions on Machine Learning Research (01/2024)

Satrajit Chatterjee and Piotr Zielinski. On the generalization mystery in Deep Learning. arXiv:2203.10036,681

2022.682

Richard Combes. An extension of McDiarmid’s inequality, 2015. URL https://arxiv.org/abs/1511.05240.683

Vitaly Feldman and Jan Vondrak. Generalization bounds for uniformly stable algorithms. In Advances in684

Neural Information Processing Systems, 2018.685

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable algorithms686

with nearly optimal rate. In Alina Beygelzimer and Daniel Hsu (eds.), Proceedings of the Thirty-Second687

Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pp. 1270–1279.688

PMLR, 25–28 Jun 2019a. URL https://proceedings.mlr.press/v99/feldman19a.html.689

Vitaly Feldman and Jan Vondrak. High probability generalization bounds for uniformly stable algorithms690

with nearly optimal rate. In Alina Beygelzimer and Daniel Hsu (eds.), Proceedings of the Thirty-Second691

Conference on Learning Theory, volume 99 of Proceedings of Machine Learning Research, pp. 1270–1279.692

PMLR, 25–28 Jun 2019b. URL https://proceedings.mlr.press/v99/feldman19a.html. Supplementary693

section.694

N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks (extended695

abstract). Proc. Machine Learning Research, 75:1–3, 2018.696

Mahdi Haghifam, Jeffrey Negrea, Ashish Khisti, Daniel M. Roy, and Gintare Karolina Dziugaite. Sharpened697

generalization bounds based on conditional mutual information and an application to noisy, iterative698

algorithms, 2020.699

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient700

descent. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd International701

Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pp. 1225–702

1234, New York, New York, USA, 20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/703

hardt16.html.704

Pengzhan Jin, Lu Lu, Yifa Tang, and George Em Karniadakis. Quantifying the generalization error in deep705

learning in terms of data distribution and neural network smoothness. Neural Networks, 130:85–99, 2020.706

ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2020.06.024. URL https://www.sciencedirect.707

com/science/article/pii/S0893608020302392.708

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning. CoRR,709

abs/1710.05468, 2017.710

M. Kearns and D. Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross- validation.711

Neural Computation, 11(6):1427–1453, 1999.712

Yegor Klochkov and Nikita Zhivotovskiy. Stability and deviation optimal risk bounds with convergence rate713

o(1/n). In Advances in Neural Information Processing Systems, 2021.714

Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent. In Jennifer715

Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,716

volume 80 of Proceedings of Machine Learning Research, pp. 2815–2824. PMLR, 10–15 Jul 2018. URL717

https://proceedings.mlr.press/v80/kuzborskij18a.html.718

Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic gradient719

descent. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on720

Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5809–5819. PMLR, 13–18721

Jul 2020. URL https://proceedings.mlr.press/v119/lei20c.html.722

Yunwen Lei, Rong Jin, and Yiming Ying. Stability and generalization analysis of gradient methods for shallow723

neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in724

Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=BWEGx_GFCbL.725

20

https://arxiv.org/abs/1511.05240
https://proceedings.mlr.press/v99/feldman19a.html
https://proceedings.mlr.press/v99/feldman19a.html
https://proceedings.mlr.press/v48/hardt16.html
https://proceedings.mlr.press/v48/hardt16.html
https://proceedings.mlr.press/v48/hardt16.html
https://www.sciencedirect.com/science/article/pii/S0893608020302392
https://www.sciencedirect.com/science/article/pii/S0893608020302392
https://www.sciencedirect.com/science/article/pii/S0893608020302392
https://proceedings.mlr.press/v80/kuzborskij18a.html
https://proceedings.mlr.press/v119/lei20c.html
https://openreview.net/forum?id=BWEGx_GFCbL

Published in Transactions on Machine Learning Research (01/2024)

Tristan Milne. Piecewise strong convexity of neural networks. In H. Wallach, H. Larochelle, A. Beygelz-726

imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Sys-727

tems, volume 32. Curran Associates, Inc., 2019. URL https://papers.nips.cc/paper/2019/file/728

b33128cb0089003ddfb5199e1b679652-Paper.pdf.729

Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain general-730

ization in deep learning. In Proceedings of Advances in Neural Information Processing Systems,731

NeurIPS 2019, pp. 11611–11622, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/732

05e97c207235d63ceb1db43c60db7bbb-Abstract.html.733

Jeffrey Negrea, Gintare Karolina Dziugaite, and Daniel M. Roy. In defense of uniform convergence: general-734

ization via derandomization with an application to interpolating predictors. In Proceeding of ICML 2020,735

2020a.736

Jeffrey Negrea, Mahdi Haghifam, Gintare Karolina Dziugaite, Ashish Khisti, and Daniel M. Roy. Information-737

theoretic generalization bounds for sgld via data-dependent estimates, 2020b. URL https://arxiv.org/738

abs/1911.02151v3.739

Vladimir Vapnik. Statistical learning theory. Wiley, 1998. ISBN 978-0-471-03003-4.740

Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974.741

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep742

learning requires rethinking generalization. In International Conference on Learning Representations, 2017.743

URL https://openreview.net/forum?id=Sy8gdB9xx.744

Chiyuan Zhang, Qianli Liao, Alexander Rakhlin, Brando Miranda, Noah Golowich, and Tomaso A. Poggio.745

Theory of deep learning iib: Optimization properties of sgd. ArXiv, abs/1801.02254, 2018.746

Yikai Zhang, Wenjia Zhang, Sammy Bald, Vamsi Pritham Pingali, Chao Chen, and Mayank Goswami.747

Stability of SGD: Tightness analysis and improved bounds. In The 38th Conference on Uncertainty in748

Artificial Intelligence, 2022. URL https://openreview.net/forum?id=Sl-zmO8j5lq.749

A Modification of McDiarmid’s Theorem750

We first define a probabilistic weakening of bounded difference property.751

Definition A.1. Given 2m i.i.d. random variables X1, . . . , X2m drawn from some domain Z according to752

some probability distribution D, for some β > 0 and η ∈ [0, 1], a function f : Zm → R is called η-almost β-753

bounded difference w.r.t. D if754

∀i ∈ {1, · · · , m} : |f (X1, . . . , Xm) − f (X1, . . . , Xi−1, X ′
i, Xi+1, . . . , Xm)| ≤ β,

with probability at least 1 − η. In case η = 0 we say that f satisfies almost surely β-bounded difference w.r.t755

D. When D is understood we will omit it.756

We now state a modified version of McDiarmid’s theorem that holds for η-almost β- bounded difference757

functions.758

Lemma A.2. Let X1, . . . , Xm be i.i.d. random variables. If f satisfies η-almost β- bounded difference and759

takes values between 0 and M , then,760

Pr {f(X1, . . . , Xm) − E [f(X1, . . . , Xm)] ≥ ϵ} ≤ exp
[

−2ϵ2

m (β + Mη)2

]
+ η.

Lemma A.2 follows directly from a result shown in (Combes, 2015, Proposition 2). Since the proof is available761

in Combes (2015) we omit it here.762

21

https://papers.nips.cc/paper/2019/file/b33128cb0089003ddfb5199e1b679652-Paper.pdf
https://papers.nips.cc/paper/2019/file/b33128cb0089003ddfb5199e1b679652-Paper.pdf
https://papers.nips.cc/paper/2019/file/b33128cb0089003ddfb5199e1b679652-Paper.pdf
https://proceedings.neurips.cc/paper/2019/hash/05e97c207235d63ceb1db43c60db7bbb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/05e97c207235d63ceb1db43c60db7bbb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/05e97c207235d63ceb1db43c60db7bbb-Abstract.html
https://arxiv.org/abs/1911.02151v3
https://arxiv.org/abs/1911.02151v3
https://arxiv.org/abs/1911.02151v3
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sl-zmO8j5lq

Published in Transactions on Machine Learning Research (01/2024)

Symbol Explanation
LS Worst Case Training Gradient.
σS Second Moment of Step Training

Gradient.
Lg Test Gradient.
KS Training Smoothness Constant.
X , Y Input and output Space.
D Distribution over Z ⊂ X Y.
z =
(xz, yz)

Input point and label picked from
distribution D defined over Z.

r ∈ R random string from a random set to
show randomness in an algorithm.

S Training set of size m.
Si Training set S with ith point replaced by

another point picked i.i.d from D.
AS,r Training Algorithm.
ℓ(·, ·) Bounded value Loss function with

domain Y × Y → [0, M].
R(AS,r) Risk (Population error).
Re(AS,r) Empirical Risk (Training error).
wt Weight of the parameterized function

trained by SGD at tth step.
αt Learning rate at t-th step of SGD.
∥.∥σ Spectral norm of matrix.

Symbol Explanation
τ Total number of epochs, each epoch is

of m step, w0 is the initial weight.
π ∈ Π π is some permutation of m points

picked from set of all possible
permutation Π.

rinit Random initialization i.e. w0.
rp A random permutation for m points.
r =
(rinit, rp)

Random string r having w0 and
{πi}τ−1

i=0 i.e., for all epochs.
Ll Local parameter Lipschitz constant.
Kl Local parameter Smoothness constant.
W l Weight matrix of l-th layer on NN.
W l

j,: The j-th row of l-th layer weight of
NN.

w
(l)
i,j Weight value of l-th layer from ith

neuron of l-th layer to j-th neuron of
l + 1-th layer.

T Size of test set.
f(wt, z) Loss at t-th step of SGD computed on

point z.
f(r, S, z) Loss of NN trained on set S and

evaluated on point z.

Table 3: Notation used in the body of the paper.

B Almost Sure (a.s.) Support Stability of SGD Proved763

Proof of Lemma 4.3. Let f be the partial function of w (i.e., assuming z is already given) is locally Lipschitz764

at w ∈ A, there is an εw > 0 and an Lw > 0 such that for all w′ ∈ Rn with ∥w −w′∥ ≤ εw, |f(w)−f(w′)| ≤765

Lw∥w − w′∥. So, let us turn our attention to those w′ ∈ A that lie outside the ball of radius εw around w.766

Note that for such a w′, if B > 0 is the bound on f , we have that767

|f(w) − f(w′)|
∥w − w′∥

≤ 2B

εw
.

Therefore the “global” Lipschitz constant for f within A is max{Lw, 2B/εw : w ∈ A} which is bounded since768

A is finite. This is valid for all the partial functions (i.e., for all z ∈ Ω) and hence proves the theorem.769

Proof of Theorem 4.5. For some i ∈ [m] we couple the trajectory of SGD on S and Si where zi ∈ S has been770

replaced with z′
i. Our random decision string r, in this case, is a random choice of an initial parameter vector,771

w0, and a random set of τ i.i.d permutations π0, . . . , πτ−1 of [m] chosen uniformly at random. We use these772

random choices for training both the algorithms with S and Si. For 0 ≤ j ≤ τ − 1, we denote π−1
j (i) by Ij ,773

i.e., Ij is the (random) position where the ith training point is encountered in the jth training epoch. The774

key quantity we will track through the coupled training process will be775

δt = ∥wt − w′
t∥,

for 1 ≤ t ≤ τm. If we can show that Er [Lgδτm] is bounded by some quantity B almost surely, we can invoke776

the fact that f is a.s. Ll-LPL to say that ∥Er [f(wt, z) − f(w′
t, z)] ∥ ≤ Er [Lgδτm] ≤ B for all z ∈ supp (D),777

where Lg is the Test Gradient.778

22

Published in Transactions on Machine Learning Research (01/2024)

We argue differently for the first epoch and differently for later epochs. For the first epoch, we note that for779

t ≤ I0, δt = 0 since SGD performs identical moves in both cases. At t = I0 + 1780

δI0+1 = ∥wI0 − αI0∇f(wI0 , zi) − (w′
I0

− αI0∇f(w′
I0

, z′
i))∥ = αI0∥∇f(wI0 , zi) − ∇f(w′

I0
, z′

i)∥, (10)

where the second equality follows from the fact that wI0 = w′
I0

by the definition of I0. Using Lemma 4.3781

we can say that δI0+1 ≤ 2αI0LS almost surely. Notice here we use data-dependent Worst Case Training782

Gradient LS which is only defined for points in set S, unlike Test Gradient. Now,783

δI0+2 ≤ ∥wI0+1 − w′
I0+1∥ + αI0+1∥∇f(wI0+1, zi) − ∇f(w′

I0+1, z′
i))∥.

Here although the parameter vectors wI0+1 and w′
I0+1 are not the same, zπ0(I0+1) and z′

π0(I0+1) are the same784

by the definition of I0 (assuming that I0 ̸= m). Therefore we get that785

δI0+2 ≤ δI0+1 + αI0+1KSδI0+1

with probability 1 since from Lemma 4.3 we have that f has a “global” smoothness property for the entire786

set of at most 2τm parameter vectors that will be encountered during the coupled training of S and Si. So787

we used Training Smoothness Constant (KS). Noting that a similar recursion can be applied all the way to788

the end of the first epoch, i.e. till t = m we get789

δm ≤ 2αI0LS

m∏
t=I0+1

(1 + αtKS) ≤ 2αI0LS exp
{

m∑
t=I0+1

αtKS

}
, (11)

with probability 1. Moving on to the next epoch, we note that we can make the argument above till the next790

point where the two training sequences differ, i.e., till the m + I1 + 1st step. At this point we have,791

δm+I1+1 ≤ δm+I1 + αm+I1∥∇f(wm+I1 , zi) − ∇f(w′
m+I1

, z′
i))∥.

Since neither the parameter vector nor the training points are the same in the second term, we have no option792

but to use the data-dependent Worst Case Training Gradient to say that,793

δm+I1+1 ≤ δm+I1 + αm+I12LS .

Since αm+I1 < αI0 , observing that our current bound for δm+I1 is larger than αm+I12LS . Therefore794

δm+I1+1 ≤ 2δm+I1 .

So, we see that in the second and subsequent epochs, for time step jm + Ij + 1, 1 ≤ j < τ we have the bound795

δjm+Ij+1 ≤ 2δjm+Ij
,

and for all t > m + I1, t ̸= I1, . . . , Iτ−1 we have, as before, by the smoothness property that796

δt+1 ≤ δt(1 + αt+1KS).

Therefore, we have that797

δτm ≤ 2αI0LS(2)τ−1 exp
{

τm∑
t=I0+1

αtKS

}
≤ α0LS2τ 1

I
1−ρ(τ,m)
0

exp

α0KS

(
(τm)ρ(τ,m) − I

ρ(τ,m)
0

)
ρ(τ, m)

 . (12)

where, in the first inequality for ease of calculation we have retained the terms of the form (1 + αIj KS),798

2 ≤ j < τ in the product on the right although we can ignore them. In the second inequality, we have799

substituted αt = α0/t(1−ρ(τ,m)) and bound the summation using integration.800

Finally, in order to compute Er [LgδT] remember there were two source of randomness first is random801

initialization w0 or lets call it rinit and random permutation π lets call it rp. Now because rinit and rp are802

23

Published in Transactions on Machine Learning Research (01/2024)

independent we can write Er [Lgδτm] = Erinit

[
Erp

[Lgδτm|rinit]
]
. Now in order to compute Erp

[Lgδτm|rinit]803

note that Lg, LS and KS are constant.804

Note that, since π0 is uniformly drawn from the set of permutations of [m], I0 is uniformly distributed on805

[m]. Summing up the last term of (12) over I0 ∈ [m] and dividing further by m we get806

Erp [Lgδτm|rinit] ≤ 2τ α0LgLS × 1
m

m∑
I0=1

1
I

1−ρ(τ,m)
0

exp

α0KS

(
(τm)ρ(τ,m) − I

ρ(τ,m)
0

)
ρ(τ, m)


Using integration we bound the summation part and also using exp(−α0KS/ρ(τ, m)) ≤ 1 we get the upper807

bound for the summation part as808

≤ U (α0, KS , ρ(τ, m)) · exp
(

α0KS

ρ(τ, m) (τm)ρ(τ,m)
)

where809

U (α0, KS , ρ(τ, m)) := 1 + 1 − exp(−α0KSmρ(τ,m)/ρ(τ, m))
α0KS

,

we get810

Erp
[LgδT |rinit] ≤ 2τ α0LgLS · U (α0, KS , ρ(τ, m)) ·

exp
{

α0KS

ρ(τ,m) (τm)ρ(τ,m)
}

m
(13)

taking ρ(τ, m) = log log m
log τ+log m and expectation over rinit we get the desired result.811

We also present the proof of Theorem 4.7, which is very similar to the proof of Theorem 4.5 with some812

changes.813

Proof of Theorem 4.7. The proof of this is very similar to the proof of Theorem 4.5. The main point is that
in the paragraph after Equation 10, we can actually use the exact gradient maxed over all permutation at
I0-th step (lets call it σS,I0) instead of LS as it’s the gradient at I0-th step. The rest of the steps follow
similarly till equation 11 so we get

δm ≤ 2αI0σS,I0 exp
{

m∑
t=I0+1

αtKS

}

Now calculating Er [Lgδm], note that earlier (in line 622) LS was constant w.r.t the permutation (rp) but814

here σS,I0 depends on the step, so taking expectation over permutation is equivalent to taking expectation815

over random variable I0 which is picked uniformly from 1 to m.816

Erp
[Lgδm|rinit] ≤ α0Lg · Erp

 σS,I0

I
1− log log m

log m

0

exp
{

m∑
t=I0+1

αtKS

}
So using Cauchy Schwarz inequality to separate expectation over the random variable σS,I0817

Erp
[Lgδm|rinit] ≤ α0Lg ·

√
Erp

[
σ2

S,I0

]√√√√ 1
m

m∑
I0=1

1

I
2− 2 log log m

log m

0

exp
{

m∑
t=I0+1

2αtKS

}
Upper bounding summation inside exponent by integration exactly like we did in equation 12. we get the818

second square-root terms as819

≤ 1
m

m∑
I0=1

1

I
2− 2 log log m

log m

0

exp


2α0KS

(
(m)

log log m
log m − I

log log m
log m

0

)
log m

log log m


24

Published in Transactions on Machine Learning Research (01/2024)

Assuming p = log log m
log m to simplify the equation,820

≤ 1
m

exp
{

−2α0KS

p

}(
exp −2α0KS

p
+

m∑
I0=2

1
I

(2−2p)
0

exp
{

−2α0KSIp
0

p

})
Now, we use integration to bound the summation term,

m∑
I0=2

1
I

(2−2p)
0

exp
{

−2α0KSIp
0

p

}
=
∫ m

x=1
x−2(1−p) exp

{
−2α0KS

p
xp

}
Substituting u = xp

p , and in next step upper bounding (u · p)(1−1/p) by 1 (as p < 1 and u· ≥ 1 throughout the
limit) and then putting the limits.

m∑
I0=2

1
I

(2−2p)
0

exp
{

−2α0KSIp
0

p

}
=
∫ mp/p

u= 1
p

(u · p)(1−1/p) exp {−2α0KSu}

≤ p1−1/p

∫ mp/p

u=1/p

exp {−2α0KSu}

≤ p1−1/p

2α0KS
exp

{
−2α0KS

p

}
Using this and putting the value of p and taking p1−1/p we get,821

Erp [Lgδm|rinit] ≤ α0Lg ·
√

U ′ (α0, KS , m)
√

Erp

[
σ2

S,I0

]
· 1

m
1
2 − α0KS (log m−1)

log log m

(14)

where822

U ′(α0, KS , m) = 1 + 1
2α0KS

and expectation over rp for σS,I0 is just taking the average across SGD steps, so we get σS .823

We also present the proof of Corollary!4.10.824

Proof of Corollary 4.10. Writing assumption P1 averaged over m steps and multiplying both side by α0 we825

get,826

1
m

m∑
t=1

α0

[
1
m

∑
z∈S

∥∇f(wt, z)∥2

]
≤ α0M + α0MG

m

m∑
t=1

∥∥∥∥∥ 1
m

∑
z∈S

∇f(wt, z)
∥∥∥∥∥

2

Now we take total expectation over the above equation and use Theorem 4.9 to bound the R.H.S of the827

equation. For L.H.S first, let the worst gradient (because of permutation) at t-th step computed on point zi is828

Lzi,t = maxw∈At
{ ∂

∂w f(w, zi)}, where set At = ∪π0∈Π{wt,π0}. Keeping this in mind, we can write L.H.S as,829

L.H.S = E
[

1
m

m∑
t=1

[
1
m

m∑
i=1

L2
zi,t

]]
(15)

= E
[

1
m

m∑
t=1

[
1
m

m∑
i=1

Ezi∼Z
[
L2

zi,t

]]]
(16)

(17)

Now note that because all zi are identical (picked from the same distribution) so expectation over them will830

be equal. So maxi∈[m](Ezi∼Z
[
L2

zi,t

]
) = Ezi∼Z

[
L2

zi,t

]
and therefore we can replace the above with SMSTrG831

(i.e. σS). Using this, we get the statement of Corollary 4.10.832

25

Published in Transactions on Machine Learning Research (01/2024)

C Neural Networks: Characterization and Proofs833

Symbol Explanation
kl Number of neurons in l-th layer.
H Depth of neural network.
ini,j(w, x) Input to the i-th neuron of j-th layer.
outi,j(w, x) Output of the i-th neuron of j-th layer.
outH,1 =
out(w, x)

Is the label returned by the neural network.

ϕ(w, x) Polynomial associated with fully connected NN.
ϕi,j(w, x) Base polynomial associated with j-th neuron of i-th layer.
Gw,x The set of weights need to set to zero, to apply all closed ReLU gate in NN (with

ReLU).
ϕ(w, x){Gw,x} A neural network with ReLU activation with closed ReLU gates set to 0.
lab(x) Label of point x.
Ij Position in permutation in j-th epoch when i-th training points (i.e. the replaced

point) is encountered based on πj .
δt Norm of difference between weights for S and Si at t-th step of SGD (i.e., ∥wt − w′

t∥).

Table 4: Notation used in section C

In order to prove Theorem 5.2 we first need to describe a characterization of neural networks that allows us834

to get a better insight into their smoothness properties. We present the characterization in Section C.1 and835

the proof in Section C.2.836

After that, we continue presenting the proof of Section 5. In Sections C.2 we also present the proof of837

Theorem 5.1, Proposition 5.3 and Theorem 5.4. Then finally in Section C.3 we present the proofs of Section 5.2838

C.1 A Polynomial-based Characterization Neural Networks839

C.1.1 Neural Network Terminology840

Neural networks provide a family of parameterized functions of the form we have discussed in Section 4. The841

parameter vector w ∈ Rn is applied over a network structure with layers. In this case, we specify Z to be842

Rd × R, i.e., the data points are from Rd and the label is from R, i.e., the NN has a single output. We will843

denote the depth of the network by H. The layers will be numbered 0 to H with layer 0 being the input layer.844

The number of neurons in layer i will be ki. For this discussion, we assume a fully connected network. We845

will denote by wi
j,k the weight of the edge from the j neuron of the ith layer to the kth neuron of the i + 1st846

layer. For the NN with parameters w at a point x ∈ Rd we will denote the input into the jth neuron of the847

ith layer by ini,j(w, x) and its output by outi,j(w, x). Further, we will assume that all neurons in all layers848

of the network except the input layer and the output layer have ReLU activation applied to them. In case849

the output of a node is 0 due to ReLU activation we will say the ReLU gate is closed otherwise we will say it850

is open. The label output by the network will be outH,1 = out(w, x). For each exposition, we will assume851

that out(w, x) = 1 if in(w, x) > 0 and 0 otherwise, i.e., there are only two labels in Y. For convenience we852

will denote this architecture as N .853

C.1.2 Multivariate Polynomials Associated with a Neural Network854

Given a set of indeterminates x = x1, . . . , xl, let P(x) be the set of multivariate polynomials on x1, . . . , xl855

with real coefficients. For any polynomial p(x), i1, . . . , iq ∈ [l] and any α1, . . . , αq ∈ R for some q ≤ l, we will856

denote by p(x)
{

xij
=αj :j∈[q]

}
the polynomial in P(x\{xi1 , . . . , xiq

}) that is obtained by setting all occurrences857

of xij
to αj in p(x). In particular, p(x) {xi=0} is the polynomial p(x) with all monomials containing xi858

removed, and p(x) {xi=1} retains all the monomials of p(x) but those monomials that contain xi appear859

without the term xi.860

26

Published in Transactions on Machine Learning Research (01/2024)

Returning to NNs, let us consider two sets of indeterminates: x = {xi : i ∈ [d]} and w = {w
(i)
j,k : 0 ≤ i <861

H, 1 ≤ j ≤ ki, 1 ≤ k ≤ ki+1} and k0 = d. Let us consider N defined in Sec. C.1.1 and create a version of it862

that replaced the ReLU activation at each node with the identity activation function. We will call this the863

identity version of N and denote it I(N). We will say that I(N) has the following polynomial associated864

with it:865

ϕ(w, x) =
k0∑

j0=1

k1∑
j1=1

· · ·
kH−1∑

jH−1=1
xj0w

(0)
j0,j1

w
(1)
j1,j2

· · · w
(H−1)
jH−1,1.

Note that the output layer has only one neuron. We will refer to this as the base polynomial of N . The base866

polynomial associated with the jth neuron in layer i can be derived from the base polynomial of the network,867

we express this in figure 4 and also write formally as follows868

ϕi,j(w, x) =
ϕ(w, x)

{
w

(i)
l1,l2

=0,w
(l3)
l4,l5

=1:l1∈[ki]\{j},l2∈[ki+1],l3>i,l4∈[kl3],l5∈[kl3+1]
}∏H

p=i+1 ki

. (18)

-th layer -th layer

-th
node

Figure 4: The output of the j-th neuron of the i-th layer represented represented by the base polynomial.
Here the weights along the dotted red lines are set to zero and the weights along the green lines are set to
one. The output of the neuron is represented by the values on the connection. Notice that the output is
scaled by the product of the number of intermediate nodes because of which we divide it later in 18.

Also we could describe a Network whose say ith layer jth neuron’s gate is closed by ϕ(w, x){wi
l1,j = 0, ∀l1 ∈869

ki−1}, This is represented by the figure 5. We will write Gw,x as the set of weights needed to be equated to870

zero for all closed ReLU gates. It’s clearly visible that due to ReLU activations varying at different points,871

there is no single polynomial that captures the output of the NN everywhere in Rn × Rd. However, the872

following observation shows a way of defining polynomials that describe the output over certain subsets of873

space.874

Observation C.1. Given w ∈ Rn and x ̸= (0, . . . , 0) ∈ Rd, i ∈ [H], j ∈ [ki] and ϕi,j(w, x){Gw,x = 0} be the
polynomial representing output and Gw,x be the set of weights for closed ReLU gates as discussed above. For
the case where inl1,l2(w, x) ̸= 0 for all 1 ≤ l1 ≤ i and all 1 ≤ l2 ≤ kl1 , there is an ϵ > 0 depending on w, x
such that, for all w′ with ∥w − w′∥ < ϵ,

ϕi,j(w′, x){Gw′,x = 0} = ϕi,j(w′, x){Gw,x = 0}

i.e. the polynomial remains same for w′ and w.875

27

Published in Transactions on Machine Learning Research (01/2024)

 -th
node

-th layer-th layer

Figure 5: For a neural network with ReLU, if the i-th layers j-th neuron’s ReLU gate is closed, this is
represented by the base polynomial. Here the dotted red lines are set to zero.

Proof. Since ini,j(w, x) is strictly separated from 0 and there are only a finite number of neurons in the876

network there must be an ϵ small enough for which all open ReLU gates remain open and all closed gates877

remain closed. And because of this, we can use the same polynomial with new weights as no ReLU gate878

switches their state.879

C.2 Proofs for Section 5.1880

We use the NN characterization for the proof of Theorem 5.2.881

Proof of Theorem 5.2. The idea behind this proof is due to (Milne, 2019, Lemma 1) who used it for a different882

purpose. From Observation C.1 it follows that if we have x ̸= (0, . . . , 0) ∈ Rd such that ini,j(w, x) ̸= 0 for all883

1 ≤ i ≤ H and all 1 ≤ j ≤ ki, then out(w, x) is, in fact, just the polynomial ϕ(w′, x){Gw,x = 0} within a884

small neighbourhood of w. Therefore it is doubly differentiable. Since the loss function is also differentiable,885

we are done for all such values of x.886

So now let us consider the set of points x for which i is the smallest layer index such that ini,j(w, x) = 0.887

In case there are two such indices, we break ties using the neuron index j. By Observation C.1, in a888

neighbourhood of w, ini,j(w, x) is a polynomial in w and x for each x.889

Now, we consider two cases. In the first case, outi−1,j′(w, x) = 0 for all j′ ∈ [ki−1], i.e., all the ReLU gates890

from the previous layers are closed because ini−1,j′(w, x) < 0 for all j′ ∈ [ki−1]. In this case out(w′, x) = 0891

everywhere in the neighbourhood guaranteed by Observation C.1 and therefore ℓ(out(w′, x), lab(x)) is doubly892

differentiable in the parameter space at w for all such x, where we assume that each data point has a label893

lab(x) ∈ {0, 1} associated with it. We note that this argument is easily portable to the case of a more general894

label set Y with the property described in the statement of Theorem 5.1 since inH,1 will be 0 everywhere in a895

small neighbourhood.896

In the second case we have some j′ ∈ [ki−1] such that outi−1,j′(w, x) > 0. Let Ci,j ⊆ Rd be those x for which897

this case holds. Ci,j contains the solutions to ini,j(w, x) = 0. Since we are working with a specific value of w,898

this simply becomes a polynomial in x. In fact, inspecting the definition of base polynomials we note that899

when w is fixed ini,j(w, x) is simply a linear combination of x1, . . . , xd
R. This implies that Ci,j is a hyperplane900

in Rd. We note that this argument can also be made of the output node under the condition on the label901

set given in the statement of Theorem 5.1 because for inH,1(w, x) to give a value that lies on the boundary902

between two sets with different labels for a given w, x must be drawn from a set of Lebesgue measure 0.903

28

Published in Transactions on Machine Learning Research (01/2024)

Since the network size is finite the set of all possible values of x for which case 2 occurs, i.e.,
⋃

i∈[H],j∈[ki] Ci,j904

is a finite union of hyperplanes in Rd and therefore a set of Lebesgue measure 0.905

Proof of Proposition 5.3. Let us consider the partial derivative w.r.t w
(l)
i,j . For this let I

(l)
i,j , A

(l+1)
j and B

(l−1)
i906

be 3 matrices of size W (l), W (l+1) and W (l−1) respectively such that I
(l)
i,j [i, i] = 1 and reset all entries are 0,907

A
(l+1)
j [k, j] = W (l+1)[k, j], ∀k and rest all entries are 0 and B

(l−1)
i [i, k] = W (l−1)[i, k], ∀k and rest all entries908

are one. Using these 3 matrices and the weight matrices we can compute the gradient as909

∂ϕ(w, x)
∂w

(l)
i,j

= W (H) · · · W (l+2) · A
(l+1)
j · I

(l)
i,j · B

(l−1)
i · W l−2 · · · W 1 · x (19)

Let M ′(l, i, j) be a matrix such that910

M ′
l,i,j = A

(l+1)
j · I

(l)
i,j · B

(l−1)
i

Although we have scalar values taking spectral norm on both sides of eq 19 we get911 ∣∣∣∣∣∂ϕ(w, x)
∂w

(l)
i,j

∣∣∣∣∣ =
H∏

k=1
∥W (k)∥σ

∥M ′
l,i,j∥σ

∥W (l+1)∥σ · ∥W (l)∥σ · ∥W (l−1)∥σ
∥x∥

Now lets define another matrix Ml such that (p, q)th element of matrix Ml[p, q] = ∥M ′
l,i,j∥σ. Now, the912

expression for 2, 2 norm (Frobenius norm) of the gradient vector directly gives us the required expression for913

bound on gradients.914

We can give a similar argument for bounding KS , for some w
(l1)
i1,j1

and w
(l2)
i2,j2

we have915

∣∣∣∣∣ ∂2ϕ(w, x)
∂w

(l2)
i2,j2

∂w
(l1)
i1,j1

∣∣∣∣∣ ≤
H∏

k=1
∥W (k)∥σ

(∥M ′
l1,i1,j1

∥σ

∥W (l1+1)∥σ · ∥W (l1)∥σ · ∥W (l1−1)∥σ

)

·
(∥M ′

l2,i2,j2
∥σ

∥W (l2+1)∥σ · ∥W (l2)∥σ · ∥W (l2−1)∥σ

)
∥x∥

Note that the above equation is exactly if l1 + 2 < l2 or l1 − 2 > l2 and for the rest of the case we can use916

this as the upper bound this is because for a matrix M spectral norm ∥M∥σ is upper bound for when we set917

all except one row or column of matrix to zero and calculate the spectral norm. Now if we take the 2, 2 norm918

(Frobenius norm) of the Hessian matrix we get the desired result.919

We now show the proof of Theorem 5.4 present in the discussion of Section 5.1.2, where we bound the920

gradients encountered.921

Proof of Theorem 5.4. We first write the ℓ2 norm of gradients of parameter vector w as,

∥∇wf(w, x)∥2
2 = ∥∇W 1f(w, x)∥2

2 + ∥∇W 2f(w, x)∥2
2

Calculating gradients norm for both layers, assuming for given w0 (i.e., weight at initialization, note that
this is part of r randomness), we have a value of weights bounded above by B1∥∥∥∥∥∂f(w, x)

∂w
(2)
j

∥∥∥∥∥
2

2

= |⟨W 1
j,:, x⟩|2, Where W 1

j,: are the jth row of W 1

≤ B2
1 · D2

29

Published in Transactions on Machine Learning Research (01/2024)

The effective dimension of x is D, so the above dot product dimension will also be bounded by D as x is 0 in
all other dimensions. ∥∥∥∥∥∂f(w, x)

∂w
(1)
i,j

∥∥∥∥∥
2

2

= |w(2)
i xj |2

≤ B2
1

So, summing up the squared partial derivatives across all parameters we get,

∥∇wf(w, x)∥2
2 ≤ d1 · D · B2

1 + d1 · D2 · B2
1

= B2
1 · d1 · D(1 + D)

922

C.3 Proofs for Section 5.2923

Proof of Theorem 5.6. First lets assume that assumption P1 holds so we need to show Ew0,z∈S [f(w0, z)] is
bounded, so calculating the value for this,

f(w0, z) = |y − O(w, x)|

=
∣∣∣∣∣y −

k∑
i=1

w
(2)
i w

(1)
i,1 x1 −

k∑
i=1

w
(2)
i w

(1)
i,2 x2

∣∣∣∣∣
= |y| +

∣∣∣∣∣
k∑

i=1
w

(2)
i w

(1)
i,1 x1

∣∣∣∣∣+
∣∣∣∣∣

k∑
i=1

w
(2)
i w

(1)
i,2 x2

∣∣∣∣∣
Let o1(w0) =

∑k
i=1 w

(2)
i w

(1)
i,1 and o2(w0) =

∑k
i=1 w

(2)
i w

(1)
i,2 for ease of writing, then take expectation over

w0, we directly place Ew0 [|o1(w0)|] = Ew0 [|o2(w0)|] ≤ 2kσ2

π because of half normal distribution and i.i.d
assumption ,i.e.,

Ew0 [f(w0, z)] ≤ |y| + 2kσ2

π
(|x1| + |x2|)

Taking expectation over z, we have924

Ew0,z∈S [f(w0, z)] = 1 + 4kσ2µp

π
(20)

Now, we show the assumption P1 holds. Note that we ignore the case when weights are exactly zero or925

weights become exactly equal to other weights to avoid zero in the denominator. We take M = 0 from926

assumption P1. Now we take the upper bound of L.H.S. of assumption P1 (without expectation),927

∥∇f(w, z)∥2 ≤ n · max
j

(∇f(w, z)2
j)

and we take the lower bound of R.H.S. using928

n · min
i

(Ez∈S [∇f(w, z)i])2 ≤ ∥Ez∈S [∇f(w, z)] ∥2

Using the above two inequalities and taking M = 0 in assumption P1, we get,929 (
Ez∈S

[
maxj∈[n]{∇f(w, z)2

j}
]

mini∈n{Ez∈S [∇f(w, z)i]2}

)
≤ MG

30

Published in Transactions on Machine Learning Research (01/2024)

Now, calculating for numerator, we first write the max over the square of gradients,

max
j

{(∇f(w, z)j)2} = max
j


(

∂O(w, x)
∂w

(j1)
j2,j3

)2


= max{(w(2)
j2

)x2
j3

}, if j1 = 1

= max{(w(1)
j2,1x1 + w

(1)
j2,2x2)2}, if j1 = 2

Let wh be the highest absolute value of weight(s) and wl be the lowest absolute value of weight(s). To easily
calculate expectation, we take out the max weights across all, we get an upper bound for the numerator,

Ez∈S

[
max

j

{
(∇f(w, z)j)2}] ≤ 2w2

hσ2 (21)

Now lower bounding denominator, so square of expectation of partial derivative, i.e.,

Ez∈S [∇f(w, z)i]2 =
(

Ez∈S

[
∂O(w, x)
∂w

(i1)
i2,i3

])2

= (w(2)
i2

E [xi3])2, if i1 = 1

= (w(1)
i2,1E [x1] + w

(1)
i2,2E [x2])2, if i1 = 2

For i1 = 2 term, after taking expectation, we could write it as,930

(w(1)
i2,1E [x1] + w

(1)
i2,2E [x2])2 = 1

4

(
w

(1)
i2,1 + w

(1)
i2,1

)2

Since we have B for all ratios of weights we could use this to bound below the absolute difference between931

any pair of weights (i.e., |w′
l − wl| ≥ |wl/B − wl|), and we get932

(w(1)
i2,1E [x1] + w

(1)
i2,2E [x2])2 ≥ w2

l (B − 1)2/B2

So we can bound the whole denominator by,

min
i

{
(Ez∈S [∇f(w, z)i])2} ≥ 1

4 min
{

w2
l ,

w2
l (B − 1)2

B2

}
(22)

≥ w2
l (B − 1)2

4B2 (23)

Using 21 and 22 we get,933

MG = 8B4σ2

(B − 1)2 (24)

And from 20 and 24 we get the theorem statement.934

31

	Introduction
	Related Work
	Almost Sure (a.s.) Support Stability and Generalization
	Terminology
	A Weakening of Uniform Stability
	Exponential Convergence of Generalization Error

	Almost Sure (a.s.) Support Stability of Stochastic Gradient Descent
	Some quantities associated with SGD gradients
	Definitions
	Boundedness

	Almost Sure (a.s.) Support Stability of SGD with WC TG
	Almost Sure (a.s.) Support Stability of SGD with SMSTrG
	Bound on SMSTrG

	Neural Networks with ReLU Activation
	Almost Sure (a.s.) Support Stability of Neural Networks with ReLU Activation: WCTrG
	Generalization Using WCTrG.
	Conditions on NNs for Generalization

	Almost Sure (a.s.) Support Stability of Neural Networks with ReLU Activation: SMSTrG
	Generalization Using SMSTrG
	Conditions on NNs to Hold for Generalization

	Experiments and Empirical Results
	Experimental Validation of Results
	Random Labelling Case

	Applicability and Conclusion
	Discussion on the Applicability of Our Results
	Conclusion

	Modification of McDiarmid's Theorem
	Almost Sure (a.s.) Support Stability of SGD Proved
	Neural Networks: Characterization and Proofs
	A Polynomial-based Characterization Neural Networks
	Neural Network Terminology
	Multivariate Polynomials Associated with a Neural Network

	Proofs for Section 5.1
	Proofs for Section 5.2

