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ABSTRACT

We develop the Lorentz group autoencoder (LGAE), an autoencoder that is equiv-
ariant with respect to the proper, orthochronous Lorentz group SO+(3, 1), with a
latent space living in the representations of the group. We present our architecture
and several experimental results on data at the Large Hadron Collider and find it
outperforms a graph neural network baseline model on several compression, re-
construction, and anomaly detection tasks. The PyTorch code for our models is
provided in Hao et al. (2022a).

1 INTRODUCTION

Deep neural networks (DNNs) are increasingly applied to the exabyte-scale volume of data pro-
duced in high energy physics (HEP), such as at the Large Hadron Collider (LHC). They have a
variety of applications, ranging from classification and regression to anomaly detection and gener-
ative modeling (Guest et al., 2018; Radovic et al., 2018; Carleo et al., 2019; HEP ML Community,
2021). Recently, the most successful have been those incorporating key inductive biases of HEP
data, such as infrared and colinear (IRC) safety in energy flow networks (Komiske et al., 2019) and
permutation symmetry and sparsity of jet constituents via GNNs (Thais et al., 2022; Qu & Gouskos,
2020; Kansal et al., 2021). In addition to potentially higher performance, incorporating such biases
can enable training models with less data and more interpretable models.

In this work, we explore incorporating another fundamental symmetry in HEP, equivariance to
Lorentz transformations, into a novel autoencoder (AE) model for data compression and anomaly
detection. Data compression is of utmost importance to store and process the exabytes of data to
be produced in the coming decade at the LHC, and detecting anomalous collisions in a model-
independent manner could prove to be a powerful tool to uncover new physics. AEs can perform
data compression by learning an encoding of input data into a lower dimensional latent space. More-
over, by training them on typical “background” data alone, we can exploit the poor reconstruction
of out-of-distribution signal to identify them as anomalies Govorkova et al. (2022); Pol et al. (2020).
While there has been recent success in developing Lorentz-equivariant models for classifying colli-
mated sprays of particles prevalent at the LHC, known as jets (Bogatskiy et al., 2020; Gong et al.,
2022; Butter et al., 2018), to our knowledge, this work represents the first attempt to exploit Lorentz
equivariance in compressing and detecting anomalous jets.

2 RELATED WORK

A neural network NN : V → W is equivariant with respect to a group G if

∀g ∈ G, v ∈ V : NN(ρV (g) · v) = ρW (g) ·NN(v), (1)

where ρV : G → GL(V ) and ρW : G → GL(W ) are representations of G in spaces V and W
respectively. Equivariance has long been built into a number of successful DNN architectures, such
as translation equivariance in convolutional neural networks, and permutation equivariance in graph
neural networks (GNNs) (Bronstein et al., 2021). This has also been extended to a broader set
of symmetries like the group of 3D rotations and translations E(3) (Thomas et al., 2018; Batzner
et al., 2022), and recently, even transformations defined by the special orthochronous Lorentz group
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Figure 1: Individual Lorentz group equivariant message passing (LMP) layers are shown on the left,
and the LGAE architecture is built out of LMPs on the right. Here, MixRep denotes the node-level
operator that upsamples features in each representation space to τr channels, where r is the label for
different components of the irreps; it appears as W in Eq. (3).

SO+(3, 1), which is relevant in high energy particle collisions. This group is generated by 3D spatial
rotations and Lorentz boosts (transformations from one reference frame to another that is moving at
a constant velocity relative to the former). This group expresses the fundamental symmetry of space
and time and is respected by all known fundamental laws of nature, including the standard model of
particle physics.

The Lorentz group network (LGN) (Bogatskiy et al., 2020) was the first DNN architecture devel-
oped to be covariant to the SO+(3, 1) group, with an architecture similar to that of a GNN, but
operating entirely in Fourier space on objects in irreducible representations (irreps) of the Lorentz
group. It uses tensor products between irreps and Clebsch–Gordan (CG) decompositions to intro-
duce nonlinearities in the network. More recently, LorentzNet (Gong et al., 2022) uses a similar
GNN framework for equivariance, with additional edge features—Minkowski inner products be-
tween node features—but restricted to only scalar and vector representations of the group. Both
networks have been successful in jet classification, achieving state-of-the-art (SOTA) results.

3 LGAE ARCHITECTURE

The LGAE (Figure 1), inspired by the LGN framework, is built out of Lorentz-group-equivariant
message passing (LMP) layers comprising its encoder and decoder networks. Its input data is rep-
resented as a point cloud of N particles, or a “particle cloud”, each associated with a 4-momentum
vector (consisting of the particle’s energy and 3D spatial momentum) and an arbitrary number of
scalars representing physical features such as mass, charge, and spin.

The (t + 1)-th LMP layer operation consists of message-passing between each pair of nodes in the
particle cloud, with a message m

(t)
ij to node i from node j (where j ̸= i) and a self-interaction term

mii defined as

m
(t)
ij = f

((
p
(t)
ij

)2
)
p
(t)
ij ⊗F (t)

j , m
(t)
ii = F (t)

i ⊗F (t)
i , (2)

where F (t)
i are the node features before the (t+1)-th layer, pij = pi − pj is the difference between

node four-vectors, p2ij is the squared Minkowski norm of pij , and f is a learnable, differentiable
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function acting on Lorentz scalars. A CG decomposition, reducing the features to direct sums of ir-
reps of SO+(3, 1), is performed on both terms before concatenating them to produce the aggregated
message mi for node i ∈ {1, . . . , Nparticle}, which is then used to update the node’s features:

m
(t)
i = CG

[
m

(t)
ii

]
⊕ CG

∑
j ̸=i

m
(t)
ij

 , F (t+1)
i = W

(
F (t)

i ⊕m
(t)
i

)
, (3)

where W is a node-wise operator with learnable parameters which linearly mixes features in the
same representation space to the desired multiplicity.

The encoder first mixes each isotypic component in the input cloud via learned weights, to a chosen
multiplicity. The resultant cloud is then processed through NE

MP LMP layers, after which node
features are aggregated to the latent space by a component-wise minimum (min), maximum (max)—
on the respective Lorentz invariants—or mean. We also find, empirically, interesting performance
by simply concatenating isotypic components across each particle and linearly “mixing” them via a
learned matrix as in Eq. (3), which thereby breaks the permutation symmetry.

The decoder recovers the N -particle cloud by acting on the latent space with N independent, learned
linear operators, which mix components living in the same representations (the MixRep block in
Fig. 1), an operation similar to Eq. 3, right. This cloud passes through ND

MP LMP layers, after which
node features are mixed back to the input representation space by applying a linear mixing layer and
truncating other isotypic components. We refer the interested reader to Bogatskiy et al. (2020); Hao
et al. (2022b) for more detail on the architecture and theoretical background.

4 RESULTS

We experiment with and evaluate the performance of the LGAE on reconstruction and anomaly
detection for simulated high-momentum jets. LGAE model results are presented using both the min-
max (LGAE-Min-Max) and “mix” (LGAE-Mix) aggregation schemes for the latent space, which
consists of varying numbers of complex Lorentz vectors—corresponding to different compression
rate, where the compression rate is considered to be the total number of features in the latent space
relative to the number of input features.

We compare the LGAE to a baseline GNN autoencoder model (referred to as “GNNAE”) composed
of fully-connected MPNNs adapted from Kansal et al. (2021). We experiment with two types of
encodings: (1) particle-level (GNNAE-PL), as in the PGAE (Tsan et al., 2021) model, which com-
presses the features per node in the graph but retains the graph structure in the latent space, and (2)
jet-level (GNNAE-JL), which averages the features across each node to form the latent space, as
in the LGAE. Particle-level encodings produce better performance overall for the GNNAE, but the
jet-level provides a more fair comparison with the LGAE, which uses jet-level encoding to achieve
a high level of compression of the features.

4.1 RECONSTRUCTION

We evaluate the performance of the LGAE and GNNAE models, with the different aggregation
schemes discussed, on the reconstruction of the particle and jet features of jets produced by quarks
and gluons, or QCD jets, from the JETNET dataset Kansal et al. (2022). We consider relative trans-
verse momentum prelT = pT

particle/pT
jet and relative angular coordinates ηrel = ηparticle − ηjet

and ϕrel = ϕparticle − ϕjet (mod 2π) as each particle’s features, and total jet mass, pT and η as
jet features. Each input sample x contains 30 particles, each with the three particle features, hence
x ∈ R90.

The reconstructed particle-level feature distributions from each model, along with the target, are
shown in Fig. 2. We observe that the out of the two permutation invariant jet-level compression
models, LGAE-Min-Max outperforms GNNAE-JL, while LGAE-Mix is the best performing overall.

4.2 ANOMALY DETECTION

We test the performance of these models as unsupervised anomaly detection algorithms by pre-
training them solely on QCD jets and then using the Chamfer distance between the input and in-
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Figure 2: The reconstructed particle-level feature (prelT , ηrel, ϕrel) distribution by each model.
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Figure 3: ROC curves and AUC per model trained on QCD jets, for a signal composed of top quark,
W boson, and Z boson jets.

ferenced output as a discriminating variable. We consider top quark, W boson, and Z boson jets as
potential signals and QCD as the “background”.

Receiver operating characteristic (ROC) curves showing the signal efficiencies (εs) versus back-
ground efficiencies (εb) for individual and combined signals are shown in Figure 3. We see that
in general LGAE models have significantly higher signal efficiencies than GNNAEs for all signals
when rejecting εb > 90% of the background (which is the minimum level we typically require in
HEP), and LGAE-Mix consistently performs better than LGAE-Min-Max.

5 CONCLUSION

We develop the Lorentz group autoencoder (LGAE), an autoencoder model equivariant to Lorentz
transformations. We argue that incorporating this key inductive bias of high energy physics (HEP)
data can have a significant impact on the performance, efficiency, and interpretability of machine
learning models in HEP. We apply the LGAE to tasks of compression and reconstruction of input
quantum chromodynamics (QCD) jets, and of identifying out-of-training-distribution anomalous
top quark, W boson, and Z boson jets. We report excellent performance in comparison to a baseline
graph neural network autoencoder (GNNAE) model, with the LGAE outperforming the GNNAE on
several key metrics. The LGAE opens many promising avenues in terms of both performance and
model interpretability, with the exploration of new datasets, higher-order Lorentz group representa-
tions, analysis of the LGAE’s latent space, and analysis of the interplay between reconstruction and
anomaly detection performance all exciting possibilities for future work.
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Leslie Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical sciences.
Rev. Mod. Phys., 91(4):045002, 2019. doi: 10.1103/RevModPhys.91.045002. URL https:
//doi.org/10.1103/RevModPhys.91.045002.

Shiqi Gong, Qi Meng, Jue Zhang, Huilin Qu, Congqiao Li, Sitian Qian, Weitao Du, Zhi-Ming
Ma, and Tie-Yan Liu. An efficient Lorentz equivariant graph neural network for jet tagging.
JHEP, 07:030, 2022. doi: 10.1007/JHEP07(2022)030. URL https://doi.org/10.1007/
JHEP07(2022)030.

Ekaterina Govorkova et al. Autoencoders on field-programmable gate arrays for real-time, un-
supervised new physics detection at 40 MHz at the Large Hadron Collider. Nat. Mach. In-
tell., 4:154, 2022. doi: 10.1038/s42256-022-00441-3. URL https://doi.org/10.1038/
s42256-022-00441-3.

Dan Guest, Kyle Cranmer, and Daniel Whiteson. Deep Learning and its Application to LHC Physics.
Ann. Rev. Nucl. Part. Sci., 68:161, 2018. doi: 10.1146/annurev-nucl-101917-021019. URL
https://doi.org/10.1146/annurev-nucl-101917-021019.

Zichun Hao, Raghav Kansal, Javier Duarte, and Nadezda Chernyavskaya. Lorentz group equivari-
ance autoencoders. Dec 2022a. doi: 10.5281/zenodo.7434838. URL https://doi.org/
10.5281/zenodo.7434838.

Zichun Hao, Raghav Kansal, Javier Duarte, and Nadezda Chernyavskaya. Lorentz group equivariant
autoencoders, 2022b. URL https://arxiv.org/abs/2212.07347.

5

https://doi.org/10.1038/s41467-022-29939-5
https://doi.org/10.1038/s41467-022-29939-5
https://proceedings.mlr.press/v119/bogatskiy20a.html
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1103/RevModPhys.91.045002
https://doi.org/10.1007/JHEP07(2022)030
https://doi.org/10.1007/JHEP07(2022)030
https://doi.org/10.1038/s42256-022-00441-3
https://doi.org/10.1038/s42256-022-00441-3
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.5281/zenodo.7434838
https://doi.org/10.5281/zenodo.7434838
https://arxiv.org/abs/2212.07347


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

HEP ML Community. A living review of machine learning for particle physics, 2021. URL https:
//iml-wg.github.io/HEPML-LivingReview/.

Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago Tomei, Maurizio Pierini,
Mary Touranakou, Jean-Roch Vlimant, and Dimitrios Gunopulos. Particle cloud gen-
eration with message passing generative adversarial networks. In M. Ranzato et al.
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 23858. Cur-
ran Associates, Inc., 2021. URL https://papers.nips.cc/paper/2021/hash/
c8512d142a2d849725f31a9a7a361ab9-Abstract.html.

Raghav Kansal, Javier Duarte, Hao Su, Breno Orzari, Thiago Tomei, Maurizio Pierini, Mary
Touranakou, Jean-Roch Vlimant, and Dimitrios Gunopulos. JETNET dataset, 2022. URL
https://doi.org/10.5281/zenodo.6975118.

Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler. Energy Flow Networks: Deep Sets for
Particle Jets. JHEP, 01:121, 2019. doi: 10.1007/JHEP01(2019)121. URL https://doi.
org/10.1007/JHEP01(2019)121.

Adrian Alan Pol, Victor Berger, Gianluca Cerminara, Cecile Germain, and Maurizio Pierini.
Anomaly Detection With Conditional Variational Autoencoders. In 18th International Con-
ference on Machine Learning and Applications, 2020. URL https://arxiv.org/abs/
2203.128522010.05531.

Huilin Qu and Loukas Gouskos. ParticleNet: Jet Tagging via Particle Clouds. Phys. Rev. D, 101:
056019, 2020. doi: 10.1103/PhysRevD.101.056019. URL https://doi.org/10.1103/
PhysRevD.101.056019.

Alexander Radovic, Mike Williams, David Rousseau, Michael Kagan, Daniele Bonacorsi, Alexan-
der Himmel, Adam Aurisano, Kazuhiro Terao, and Taritree Wongjirad. Machine learning at the
energy and intensity frontiers of particle physics. Nature, 560(7716):41, 2018. doi: 10.1038/
s41586-018-0361-2. URL https://doi.org/10.1038/s41586-018-0361-2.

Savannah Thais, Paolo Calafiura, Grigorios Chachamis, Gage DeZoort, Javier Duarte, Sanmay Gan-
guly, Michael Kagan, Daniel Murnane, Mark S. Neubauer, and Kazuhiro Terao. Graph Neural
Networks in Particle Physics: Implementations, Innovations, and Challenges. In 2022 Snowmass
Summer Study, 3 2022. URL https://arxiv.org/abs/2203.12852.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point
clouds. 2018. URL https://arxiv.org/abs/1802.08219.

Steven Tsan, Raghav Kansal, Anthony Aportela, Daniel Diaz, Javier Duarte, Sukanya Kr-
ishna, Farouk Mokhtar, Jean-Roch Vlimant, and Maurizio Pierini. Particle Graph Autoen-
coders and Differentiable, Learned Energy Mover’s Distance. In 4th Machine Learning and
the Physical Sciences Workshop at the 35th Conference on Neural Information Processing
Systems, 2021. URL https://ml4physicalsciences.github.io/2021/files/
NeurIPS_ML4PS_2021_98.pdf.

6

https://iml-wg.github.io/HEPML-LivingReview/
https://iml-wg.github.io/HEPML-LivingReview/
https://papers.nips.cc/paper/2021/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://papers.nips.cc/paper/2021/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://doi.org/10.5281/zenodo.6975118
https://doi.org/10.1007/JHEP01(2019)121
https://doi.org/10.1007/JHEP01(2019)121
https://arxiv.org/abs/2203.128522010.05531
https://arxiv.org/abs/2203.128522010.05531
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1038/s41586-018-0361-2
https://arxiv.org/abs/2203.12852
https://arxiv.org/abs/1802.08219
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_98.pdf
https://ml4physicalsciences.github.io/2021/files/NeurIPS_ML4PS_2021_98.pdf

	Introduction
	Related Work
	LGAE Architecture
	Results
	Reconstruction
	Anomaly Detection

	Conclusion

