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ABSTRACT

This paper considers the best policy identification (BPI) problem in online Con-
strained Markov Decision Processes (CMDPs). We are interested in algorithms
that are model-free, have low regret, and identify an optimal policy with a high
probability. Existing model-free algorithms for online CMDPs with sublinear
regret and constraint violation do not provide any convergence guarantee to an
optimal policy and provide only average performance guarantees when a policy is
uniformly sampled at random from all previously used policies. In this paper, we
develop a new algorithm, named Pruning-Refinement-Identification (PRI), based
on a fundamental structural property of CMDPs we discover, called limited stochas-
ticity. The property says for a CMDP with N constraints, there exists an optimal
policy with at most N stochastic decisions.
The proposed algorithm first identifies at which step and in which state a stochastic
decision has to be taken and then fine-tunes the distributions of these stochastic
decisions. PRI achieves trio objectives: (i) PRI is a model-free algorithm; and (ii)
it outputs a near-optimal policy with a high probability at the end of learning; and
(iii) in the tabular setting, PRI guarantees Õ(

√
K)1 regret and constraint violation,

which significantly improves the best existing regret bound Õ(K 4
5 ) under a model-

free algorithm, where K is the total number of episodes.

1 INTRODUCTION

In unconstrained reinforcement learning (RL), an agent aims to find the optimal policy that maximizes
the accumulated reward by interacting with a stochastic environment. RL has achieved remarkable
success in multiple areas, including industrial process optimization, robotics, and gaming. (Rajawat
et al., 2023; Abeyruwan et al., 2023; Lindegaard et al., 2023; Liu et al., 2023). However, in many
real-world applications, the learned policy must also satisfy a set of constraints. For example, in
healthcare applications, we need to optimize patient treatment plans while considering constraints
like medication dosage, scheduling of medical procedures, and resource allocation in hospitals. These
constrained versions of RL problems can be formulated as Constrained Markov Decision Processes
(CMDPs) (Altman, 1999).

Learning in CMDPs has become an active research topic recently. Existing solutions include both
model-based (Brantley et al., 2020; Efroni et al., 2020; Singh et al., 2020; Liu et al., 2021; Bura
et al., 2021; Ding et al., 2021; Chen et al., 2022) and model-free algorithms (Wei et al., 2022b; Ghosh
et al., 2022; Wei et al., 2022a). This paper focuses on model-free approaches for CMDPs due to their
computation and memory efficiency. A fundamental drawback of existing model-free algorithms for
best policy identification in online CMDPs is that they provide only average performance guarantees
for a policy uniformly sampled at random from all previously used policies during learning, so they
fail to identify a single optimal or a near-optimal policy.2 Therefore, a natural question arises:

Is it possible to identify an optimal or a near-optimal policy in online CMDPs with the
model-free approach with optimal regret?

1Notation: f(n) = Õ(g(n)) denotes f(n) = O(g(n)logkn) with k > 0. The same applies to Ω̃.
2In this paper, a policy is a mapping from a state at a given step to an action distribution, without any other

additional input information. An algorithm that uses multiple policies, e.g. randomly sampling one policy from
many policies, is explicitly called a mixed policy.
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There are two key challenges to answering this question: (i) CMDP problems are typically represented
as Linear Programming (LP) problems, resulting in stochastic optimal policies. Model-free online
CMDP algorithms often employ the primal-dual approach, utilizing Lagrange multipliers to balance
reward maximization and constraint violation. However, these methods yield "greedy policies" for
fixed Lagrange multipliers, which aren’t necessarily optimal. Consequently, model-free algorithms
such as Triple-Q Wei et al. (2021) offer performance guarantees only in terms of averages over
various greedy policies determined by different Lagrange multipliers, failing to converge to a single
policy. (ii) The best-known regret bound of model-free algorithms for episodic, online CMDPs
is Õ(K 4

5 ) Wei et al. (2022a). It is also known that model-based algorithms can achieve a smaller
and order-wise tight regret Õ(

√
K) Efroni et al. (2020). The open question is whether a model-free

algorithm can reach Õ(
√
K) regret in online CMDPs?

This paper tackles both challenges, providing affirmative responses to both questions. We introduce a
novel algorithm, Pruning-Refinement-Identification (PRI), rooted in a fundamental CMDP property
we unveil—limited stochasticity. This property asserts that for an episodic CMDP with N constraints,
there exists an optimal policy making stochastic decisions in at most N step-dependent states out of
the HS step-dependent states, where H denotes episode length and S represents possible states at
each step.

Based on this insight, PRI consists of three phases. In this first phase (pruning), PRI identifies when
and where stochastic decisions are necessary. This defines a set of greedy policies that together
approximate a “mixed” optimal policy. The subsequent refinement phase involves learning the
weights of these greedy policies. This is done through iterative optimization, utilizing empirical
reward and utility value functions. The process refines value function estimates with each iteration,
aiming to minimize regret. In the final identification phase, PRI learns the occupancy measure,
determining the probability of visiting specific state-action pairs at each step. This information is
used to recover a single policy from the near-optimal mixed policy obtain during the refinement phase.
The main contributions of this paper include:

• PRI is the first model-free PAC RL algorithm for CMDPs, achieving optimal regret and minimal
constraint violation.

• PRI outputs a near-optimal policy with a high probability at the end. The learned policy has
Õ(1/

√
K) optimality gap with probability 1− Õ(K−0.1).

• In the tabular setting, PRI guarantees Õ(
√
K) regret and constraint violation, which significantly

improves the best existing regret bound Õ(K 4
5 ) under a mode-free algorithm, where K is the total

number of episodes. Unlike existing regret bounds, the dominating term in terms of K in the regret
bound does not depend on the sizes of the state space and action space.

2 RELATED WORK

Best policy identification in MDPs. For unconstrained MDPs, existing studies on BPI focus on
(ϵ, δ)-PAC RL algorithms, i.e., algorithms that identify an ϵ-optimal policy with probability at least
1− δ. Such a learning objective has been considered extensively in discounted and episodic tabular
MDPs (Agarwal et al., 2020; Azar et al., 2013; Even-Dar et al., 2006; Domingues et al., 2021; He
et al., 2021; Sidford et al., 2018). A recent work Taupin et al. (2022) also studied BPI in linear MDPs,
which has a sample complexity of O( 1

ϵ2 ). In other words, the best regret result it might get is O(
√
K).

This paper considers BPI for CMDPs using a model-free approach. To the best of our knowledge, it
remains an open question.

Model-based and Model-free algorithms for online CMDPs. As mentioned in the introduction,
most existing results on online CMDPs consider regret minimization. For example, Brantley et al.
(2020); Efroni et al. (2020); Singh et al. (2020) proposed model-based algorithms for episodic tabular
CMDPs. Liu et al. (2021); Bura et al. (2021) proposed efficient algorithms with zero or bounded
constraint violation. For model-free algorithms, Wei et al. (2022b) developed Triple-Q that achieves
sublinear regret and zero constraint violation in episodic tabular CMDPs. Similar results have been
established for linear CMDPs (Ghosh et al., 2022; Ding et al., 2021) and infinite-horizon average
CMDPs (Chen et al., 2022; Wei et al., 2022a). However, these existing model-free algorithms for
online CMDPs does not converge to an optimal or a near-optimal policy. Note that model-free
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Table 1: The Exploration-Exploitation Tradeoff in Episodic CMDPs.

Algorithm Regret Constraint Violation BPI?

Model-based

OPDOP (Ding et al., 2021) Õ(H3
√
S2AK) Õ(H3

√
S2AK) ✗

OptDual-CMDP (Efroni et al., 2020) Õ(H2
√
S3AK) Õ(H2

√
S3AK) ✗

OptPrimalDual-CMDP (Efroni et al., 2020) Õ(H2
√
S3AK) Õ(H2

√
S3AK) ✗

CONRL (Brantley et al., 2020) Õ(H3
√
S3A2K) Õ(H3

√
S3A2K) ✗

OptPess-LP (Liu et al., 2021) Õ(H3
√
S3AK) 0 ✗

OptPess–PrimalDual (Liu et al., 2021) Õ(H3
√
S3AK) O(1) ✗

OPSRL(Bura et al., 2021) Õ(
√
S4H7AK) 0 ✗

Model-free Triple-Q(Wei et al., 2022a) Õ( 1δH
4S

1
2A

1
2K

4
5 ) 0 ✗

PRI Õ(
√
H2K) Õ(

√
H2K) ✓

algorithms have a memory complexity of O(HSA) for maintaining the Q-table while the memory
complexity of model-based algorithms is O(HS2A) for maintaining the transition kernel. Very
recently, Moskovitz et al. (2023) considered BPI for online CMDPs. They formulated the CMDP
problem as a min-max game and the proposed algorithm converges to a near-optimal policy at the last
iteration with optimistic mirror descent. However, the paper does not provide any regret guarantee
when learning the near-optimal policy. There are also algorithms for the average-reward CMDP
problem, including model-based approaches Agarwal et al. (2021; 2022); Zheng & Ratliff (2020) and
model-free approaches Chen et al. (2022); Wei et al. (2022b). These algorithms do not identify the
optimal policy at the end. Table 1 summarizes the recent results on online, episodic CMDPs.

3 PROBLEM FORMULATION

We consider an episodic CMDP, denoted by (S,A, H,P, r, gn, n ∈ [N ]), where S is the state space
(|S| = S), A is the action space (|A| = A), {rh}Hh=1, {gnh}Hh=1, n ∈ [N ] are reward, n-th utility
functions, and P = {Ph(·|x, a)}Hh=1 are the transition kernels. For simplicity, we assume that in each
episode, the agent starts from the same initial state x1 = xini. It is straightforward to generalize the
results to the case when the initial state is sampled with a given distribution but the notation becomes
cumbersome. We also assume that rh : S × A → [0, 1] and gnh : S × A → [0, 1] are deterministic
for notation simplicity. Our results can be easily generalized to random reward/utility signals.

During each episode, the agent interacts with the environment as follows: at each step h, the agent
takes action ah after observing state xh, receives reward rh(xh, ah) and N utility values gnh(xh, ah)
(n ∈ [N ]), and then observes a new state (xh+1), which evolves by following the transition kernel
Ph(·|xh, ah). The episode terminates after H steps.

Given a stochastic policy π, which is a collection of H functions {πh : S ×A → [0, 1]}Hh=1,
the agent takes action a with probability πh(a|x) when being in state x at step h . The reward
value function of policy π, denoted by V π

h (x), is the expected total reward when starting from an

arbitrary state x at step h to the end of the episode: V π
h (x) = Eπ

[∑H
i=h ri(xi, ai)

∣∣∣xh = x
]
, where

the expectation is taken with respect to the policy π and randomness from the transition kernels.
Accordingly, the reward Q-function, denoted by Qπ

h(x, a), is the expected total reward when the
agent starts from an arbitrary action-action pair (x, a) at step h and follows policy π to the end of the
episode: Qπ

h(x, a) = rh(x, a) + Eπ

[∑H
i=h+1 ri(xi, ai)

∣∣∣xh = x, ah = a
]
.

Similarly, we can define the N utility value functions as Wπ,n
h (x) = Eπ

[∑H
i=h g

n
i (xi, ai)

∣∣∣xh = x
]

and utility Q-functions as Cπ,n
h (x, a) = gnh(x, a) + Eπ

[∑H
i=h+1 g

n
i (xi, ai)

∣∣∣xh = x, ah = a
]
.

Given the definitions above, we have

V π
h (x) =

∑
a

πh(a|x)Qπ
h(x, a) Qπ

h(x, a) = rh(x, a) +
∑
x′

Ph(x
′|x, a)V π

h+1(x
′) (1)

Wπ,n
h (x) =

∑
a

πh(a|x)Cπ,n
h (x, a) Cπ,n

h (x, a) = gnh(x, a) +
∑
x′

Ph(x
′|x, a)Wπ,n

h+1(x
′). (2)
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The objective of the CMDP is to find an optimal policy that maximizes the expected total reward
while making sure the n−th expected total utility is no less than ρ(n) for all n ∈ [N ]:

π∗ ∈ argmax
π

V π
1 (xini) s.t. Wπ,n

1 (xini) ≥ ρ(n) ∀n ∈ [N ]. (3)

To avoid triviality, we assume ρ(n) ∈ [0, H]. For simplicity, we use V π
1 to represent V π

1 (xini) and
Wπ,n

1 to represent Wπ,n
1 (xini).

We evaluate an online RL algorithm for CMDP using regret and constraint violation over K episodes:

Regret(K) = KV π∗

1 (xini)− E

[
K∑

k=1

V πk
1 (xini)

]
(4)

Violationn(K) = Kρ(n) − E

[
K∑

k=1

Wπk,n
1 (xini)

]
(5)

where πk is the policy used in episode k.

4 PRI (PRUNING-REFINEMENT-IDENTIFICATION)

Before formally introducing our algorithm, we first present two structural properties of the optimal
solution to the CMDP problem equation 3. These properties have been overlooked in the literature but
serve as the foundation of our proposed algorithm. Consider a CMDP problem with N constraints. It
is well-known that the problem can be formulated as a linear programming (LP) problem Altman
(1999):

max
{qh(x,a)}

∑
h,x,a

qh(x, a)rh(x, a) (6)

s.t.:
∑
h,x,a

qh(x, a)g
(n)
h (x, a) ≥ ρ(n) ∀n ∈ [N ] (7)

∑
a

qh+1(x, a) =
∑
x′,a′

Ph(x|x′, a′)qh(x
′, a′) ∀x ∈ S, h ∈ [H] (8)

∑
a

q1(xini, a) = 1,
∑
a

q1(x, a) = 0, x ̸= xini (9)

qh(x, a) ≥ 0, (10)
where qh(x, a) denotes the probability that state-action pair (x, a) is visited at step h, called the
occupancy measure. Each feasible solution {qh(x, a)}h,x,a to the problem leads to a corresponding
Markov policy: πh(a|x) = qh(x,a)∑

a qh(x,a)
. In this paper, we call probability distribution πh(·|x) decision

at state x at step h. So a policy consists of S ×H decisions. A decision πh(·|x) is called greedy if
πh(a|x) = 1 for some a ∈ A and stochastic otherwise.
Lemma 1 (Limited Stochasticity). If q∗ = {q∗h(x, a)}h,x,a is an optimal solution to the CMDP
problem equation 6-equation 10 and is an extreme point, then there are at most HS +N nonzero
values in q∗. This implies that the optimal policy derived from q∗ includes at most N stochastic
decisions.

The detailed proof can be found in Appendix B. The following corollary, which is a well-known
result, is a direct consequence of the lemma.
Corollary 1. For unconstrained MDP problems, one of the optimal policies is a greedy policy.

Given an occupancy measure q and its induced policy π, we define Dh,x(q) = {a : qh(x, a) > 0} ,
which is the set of actions that will be taken with a nonzero probability in state x at step h under the
policy π induced by q. Note that if πh(·|x) is a greedy decision, then |Dh,x(q)| = 1; and if π(·|x) is
greedy, then |Dh,x(q)| > 1. Let M =

∏
h,x |Dh,x(q)|, and let πm represent the mth greedy policy

(m = 1, · · · ,M ) constructed from ⊗h,xDh,x(q) such that πm
h (a|x) = 1 only if a ∈ Dh,x(q).Note

that according to lemma 1, we have M ≤ 2N . A greedy policy is a policy under which all decisions
are greedy. Next, we will show that a Markov policy is equivalent to a mixed policy of many greedy
policies in the following lemma, whose proof can be found in Appendix B.2.
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Lemma 2 (Decomposition). Given any Markov policy π and its corresponding occupancy measure
q, there exists a set of M greedy policies and a probability distribution {am}m=1,··· ,M such that the
mixed policy, which selects a greedy policy πm at the start of an episode with probability am and
subsequently follows it, has the same occupancy measure q as the original policy π.

Online model-free algorithms for CMDPs, such as Triple-Q Wei et al. (2021), guarantee sublinear
regret and constraint violation on average but have no convergence guarantee. In fact, Triple-Q
continues to adjust the dual variable (virtual queue) based on constraint violation, and when the dual
variable is fixed (within a frame), the algorithm reduces to the traditional Q-learning. As suggested in
the paper Wei et al. (2021), we can only recover a near-optimal policy by remembering all previous
policies and then uniformly sampling one from them for each episode, i.e., a mixed policy of K
policies. Therefore, this near-optimal policy is a mixture of many, many greedy policies. More
importantly, it is near-optimal only when averaging over a large number of episodes and may be far
from optimal in each episode.

Hence, unlike unconstrained MDPs where Q-learning converges to the optimal policy, finding a
model-free algorithm that converges to the optimal policy or a near-optimal policy in CMDPs is
highly nontrivial and remains to be an open problem. Lemma 1 (limited stochasticity), however,
suggests that when the number of constraints, N, is relatively small, solving an unknown CMDP may
not differ significantly from solving an unknown MDP. This is because the majority of the decisions,
specifically HS − N out of the HS decisions, are greedy and can be learned using traditional
algorithms like Q-learning if we can first identify where the stochastic decisions need to be taken.
Lemma 2 further suggests that an optimal policy can be decomposed into M greedy policies if all
decision types are correctly identified, so we may recover an optimal or a near-optimal policy by
evaluating the M greedy policies.

We will first consider the case where the LP has a unique optimal solution. Leveraging these two
observations from Lemma 1 and 2, we propose a novel three-phase algorithm (Algorithm 1), including
policy pruning, policy refinement, and policy identification, called PRI.

The algorithm is presented in Algorithm 1, which includes
√
K + 2K episodes,

√
K episodes for

pruning, K episodes for refinement and K episodes for identification. In the first phase (policy
pruning), we run Triple-Q for

√
K episodes, we denote {πk,h}Hh=1 as the policy used by Triple-Q in

the kth episode, and it is a greedy policy.

Remark: For fixed (h, x, a) in the policy pruning phase, we use Ñh(x, a) to count the number
of episodes in which the greedy policy we follow is πh(a|x) = 1, which is the number of greedy
policies (among the

√
K greedy policies) that would take action a if the agent visits state x at step h.

Because of the sub-linear regret and zero violation guaranteed by Triple-Q, we expect that Nh(x,a)√
K

is
close to zero if π∗

h(a|x) = 0 and is a non-negligible positive value if otherwise. Therefore, with a
high probability, D̃h,x = Dh,x(q

∗), where D̃h,x is gradually updated in Algorithm 1 (Lines 8-10).

After the first phase, PRI obtains M greedy policies. In the second phase, PRI learns the weights
{αm} so that a mixed policy that chooses policy πm with probability αm is statistically identical to
the optimal policy. This is achieved by learning the reward and utility value functions of the greedy
policies and then solving an approximated version of the CMDP (Decomposition-Opt equation 11).

At each round of the second phase (policy refinement), the following optimization with M optimiza-
tion variables is solved.

Decomposition-Opt: max
{am}M

m=1

M∑
m=1

αmV̄ πm

1

s.t.:

∣∣∣∣∣
M∑

m=1

αmW̄πm,n
1 − ρ(n)

∣∣∣∣∣ ≤
√

H2 log ((t− 1)ϵ′K)

ϵ′(t− 1)
√
K

∀n,∑
m

αm = 1, αm ≥ ϵ′ ∀m.

(11)
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Algorithm 1 PRI

1: Phase 1: Policy Pruning
2: Initialize Ñh(x, a) = 0 for all h, x and a. Other initialization is the same as in Triple-Q.
3: for k = 1, · · · ,

√
K do

4: For all (h, x, a), Ñh(x, a)← Ñh(x, a) + πk,h(a|x).
5: Execute Triple-Q for one episode.
6: for all (h, x) do
7: Initialize D̃h,x = ∅
8: for all a ∈ A do
9: D̃h,x ← D̃h,x

⋃
{a} if Ñh(x,a)√

K
≥ ϵ

2 .

10: Obtain M greedy policies from {D̃h,x}h,x where M =
∏

h,x |D̃h,x|.
11: Phase 2: Policy Refinement
12: if M = 1 then
13: Output the greedy policy.
14: else
15: Set V̂ πm

1 = 0, Ŵπm,n
1 = 0, and am = 1

M for all n and m.

16: for round t = 1, · · · ,
√
K do

17: for m = 1, · · · ,M do
18: for k = 1, · · · , αm

√
K do

19: Execute greedy policy πm for one episode.
20: if k ≤ ϵ′

√
K then

21: Set V̂ πm

1 ← V̂ πm

1 + V πm

k,1 and Ŵπm,n
1 ← Ŵπm,n

1 +Wπm,n
k,1 for all n, where

V πm

k,1 and Wπm,n
k,1 are the total reward and utility of type n received in the kth episode.

22: Set V̄ πm

1 =
V̂ πm

1

tϵ′
√
K

and W̄πm,n
1 =

Ŵπm,n
1

tϵ′
√
K

for all n.

23: Update {αm} by solving Decomposition-Opt equation 11.
24: Phase 3: Policy Identification
25: Initialize Nh(x, a) = 0 for all h, x and a.

26: for t = 1, · · · ,
√
K do

27: for m = 1, · · · ,M do
28: for k = 1, · · · , αm

√
K do

29: for h = 1, · · · , H do
30: Take action ah given by policy πm, i.e. πm(ah|xh) = 1.
31: Nh(xh, ah)← Nh(xh, ah) + 1.

32: For all (h, x, a), set π̃h(a|x) = Nh(x,a)∑
ã∈A Nh(ã,x)

.

33: Output policy π̃.

After learning sufficiently accurate {αm} in the second phase, PRI learns the occupancy measure
under the mixed policy defined by {αm} and constructs a Markov policy π̃ based on the learned
occupancy measure.

In the next section, we will show that PRI guarantees O(
√
K) regret and constraint violation and

outputs a near-optimal policy π̃ with a high probability. An informal statement of the main results is
presented below. The formal statements of the theorems and the proofs will be presented in the next
section.

Main Results: Assume the LP defined by equation 6-equation 10 has a unique solution. With a high
probability, PRI yields policy π̃ such that

• {(h, x, a) : π̃h(a|x) > 0} = {(h, x, a) : π∗
h(a|x) > 0},

• PRI guarantees O(
√
K) regret and constraint violation over the

√
K + 2K. episodes, and

• |π̃h(a|x)− π∗
h(a|x)| = O(1/

√
K) for all (h, x, a), and π̃h(a|x) = π∗

h(a|x) if π∗
h(a|x) ∈ {0, 1}.

6
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Remark: If the LP has more than one solution, we will introduce a multi-solution pruning algorithm
to the policy pruning phase of PRI to resolve the issue. The algorithm and the analysis can be found
in Section 6.

5 MAIN RESULTS

In this section, we provide our main results assuming that the LP associated with the CMDP problem
has a unique solution. This assumption can be relaxed and the results can be found in Section 6. Letπ∗

be the unique optimal policy and {qπ∗

h (x, a)} is the corresponding occupancy measure. Furthermore,
let {πm} (m = 1, · · · ,M ) be the set of greedy policies associated with the optimal policy as defined
in Lemma 2, and {a∗m} the associated weights. We also make the following additional assumptions.

Assumption 1. The ϵ and ϵ′ used in PRI satisfy qπ
∗

h (x, a) ≥ ϵ for any (h, x, a) such that π∗
h(a|x) > 0,

and minm a∗m ≥ ϵ′ > 0.

Assumption 2. There exist two positive constants cv and cw such that given a feasible occupancy
measure qπ to the LP and the corresponding reward value function and utility value function V π

and Wπ,n, we have either V π∗

1 − V π
1 ≥ cv||qπ

∗ − qπ||1 or for some n ∈ [N ],Wπ∗,n
1 −Wπ,n

1 ≥
cw||qπ

∗ − qπ||1, where ∥ · ∥1 is the L1-norm.

Recall a feasible occupancy measure defines a unique Markov policy. The assumption above states
that when a policy’s occupancy measure is different from that of the unique optimal policy, then
either the reward value function or one of the utility reward functions should also be different from
that under the optimal policy.
Assumption 3. Under any greedy policy π, for all x and h, we have Pr (xh = x) =∑

x′,a′ qπh−1(x
′, a′)Ph(x|x′, a′) > pmin.

This assumption above says all states should be visited with a non-negligible probability under any
greedy policy. It is worth noting that this assumption can be removed if we apply the extension
version of PRI, which is stated in section 6. To prove our main result, we first recall the regret and
constraint violation guaranteed under Triple-Q Wei et al. (2022a) in the following lemma.

Lemma 3. For sufficiently large K, over K episodes, Triple-Q guarantees Õ(K0.8) regret and zero
constraint violation, and furthermore,

Pr

(
Kρ(n) −

K∑
k=1

Wπk,n
1 ≤ 0

)
= 1−O

(
1

K2

)
. (12)

Noting that we use Triple-Q in the pruning phase, the assumptions for Triple-Q like Slater’s condition
are still required. A brief review can be found in the Appendix A. We remark that PRI can be viewed
as a “meta-algorithm” that builds on any model-free CMDP algorithm with sublinear regret and
constraint violation. In the following theorem, we show that PRI can correctly classify stochastic and
greedy decisions with a high probability after the pruning phase.

Theorem 1 (Pruning). Let D∗ = {(h, x, a) : π∗
h(a|x) > 0} and D̃ =

{
(h, x, a) : Ñh(x,a)√

K
≥ ϵ

2

}
.

Under Assumptions 1 and 3, after policy pruning, we have

Pr
(
D̃h,x = Dh,x(q

∗), ∀(h, x)
)
= 1− Õ

(
K−0.1

)
. (13)

The detailed proof is deferred to Appendix C. Note that since the pruning phase includes
√
K

episodes, the regret and constraint violation are both bounded by H
√
K.

The following theorem shows that the regret and constraint violation during the refinement phase are
both Õ(

√
K). Note that Õ(

√
K) regret and constraint violation imply that the learned mixed policy

is close to optimal. The proof can be found in Appendix D.

Theorem 2 (Refinement). Assume D̃ = D∗ after policy pruning. Under Assumption 1 to 3, with
probability 1− Õ( 1√

K
), the regret and constraint violation during the policy refinement phase are

both Õ(H
√
K).

7
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The refinement phase learns a near optimal mixed policy, which is a combination of M greedy
policies for M ≤ 2N . In the following theorem we show that the identification phase is to find a
single near-optimal policy by using the occupancy measure of the mixed policy. The proof can be
found in Appendix E.

Theorem 3 (Identification). Assume D̃ = D∗ after policy pruning. Under Assumption 1 to 3,
with probability 1 − Õ( 1

K ), the regret and constraint violation during the policy identification
phase are both O(

√
K). Furthermore, |π̃h(a|x) − π∗

h(a|x)| = O( 1√
K
) if 0 < π∗

h(a|x) < 1 and
π̃h(a|x) = π∗

h(a|x)| if π∗
h(a|x) ∈ {0, 1}.

By summarizing the results from the three theorems above, we have the regret and the constraint
violation over the

√
K + 2K episodes are Õ(H

√
K) with probability 1− Õ( 1

K0.1 ). Consider the
regret, the pruning phase includes

√
K episodes, resulting in at most H

√
K regret. Theorem 2 and

Theorem 3 show that the regret in the refinement and identification phases are both Õ(H
√
K). Note

that the order-wise bounds are independent of S and A, unlike those in the literature. However, there
is an implicit dependence on S and A as the results hold only when K is sufficiently large and how
large K needs to be depends on S and A.

6 EXTENSION TO CMDPS WITH MULTIPLE OPTIMAL SOLUTIONS

In this section, we consider the case where the optimal policy is not unique so the LP has multiple
optimal solutions. Here, the RL agent’s objective is to learn one of these optimal policies. According
to Lemma 1, an optimal solution associated with an extreme point of the LP involves no more than
HS +N stochastic decisions. Additionally, any optimal policy can be viewed as a combination of
the optimal policies associated with the extreme points. We define the set of optimal policies as Π∗

and the subset associated with extreme points as Π∗,e. We expand our assumptions to the case of
multiple solutions as follows.
Assumption 4. The ϵ used PRI satisfies min(h,x,a):πh(a|x) ̸=0 q

π
h(x, a) ≥ ϵ ∀π ∈ Π∗,e.

Assumption 5. Given any occupancy measure q′ and the induced Markov policy π′, there exists an
optimal policy π∗ ∈ Π∗ such that V π∗

1 − V π′

1 ≥ cv||qπ
∗ − q′||1 or for some n,Wπ∗,n

1 −Wπ′,n
1 ≥

cw||qπ
∗ − q′||1, where cv and cw are two positive constants.

Note that if π′ is an optimal policy, then the assumption holds trivially with π∗ = π′. Under
Assumptions 3-5, the following theorem shows that a unique optimal policy is identified after
Multi-Solution Pruning. The algorithm result in at most H2SAK0.25 regret and constraint violation.
Theorem 4. Under Assumption 4 and 5, with probability 1−O(1/K0.02), for sufficiently large K,
multi-solution pruning outputs a unique optimal policy with at most N stochastic decisions. The
regret and constraint violation during multi-solution pruning are bounded by H2SAK0.25 with
probability one.

More discussions and the detailed proof are deferred to Appendix F.1 due to the page limit. We note
that adding this multi-solution pruning to PRI only increases the regret and constraint violation by
HSAK0.25 which is order-wise smaller than Õ(H

√
K) in terms of K. Therefore, the regret and

constraint violation remains to be Õ(H
√
K) for sufficiently large K. The learned policy is a near

optimal policy with Õ(1/
√
K) gap with probability 1− Õ(K−0.02).

7 EXPERIMENTS

Synthetic CMDP

This section presents numerical evaluations of the proposed algorithm. We first evaluated our
algorithm for a synthetic CMDP with a single constraint. The transition kernels, rewards, and utilities
are chosen such that the problem has a unique optimal solution and satisfies Assumption 3. The
objective is to maximize the cumulative reward while guaranteeing that the cumulative utility is at
least 2. Comparison between Triple-Q and PRI can be found in Figure 1. Experiment details can be
found in the Appendix H.1.
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We can observe that PRI converges significantly faster than Triple-Q. Remarkably, both regret and
constraint violation level off at the beginning of policy refinement after approximately 110, 000
episodes. However, the regret of Triple-Q continues to increase sublinearly. PRI significantly
outperforms Triple-Q on regret. At the end of the 1, 100, 000 episodes, Triple-Q has a regret of
2.05× 105 and constraint violation of −3.86× 104. In contrast, the regret and constraint violation
under PRI are −1.73× 103 and 1.06× 104, respectively. Thus, the regret is significantly lower than
Triple-Q. Since the full CMDP model is given, we can obtain the optimal solution by using the linear
programming approach. The cumulative reward and cumulative utility we get for our learned policy
are 1.57301, and 2.00008, which are very close to the optimal solution 1.57306 and 2.

(a) Regret (b) Constraint Violation

Figure 1: Results for a synthetic CMDP with a unique solution, the shaded region represents the 95%
confidence interval.

Grid-world

In our second experiment, which is a grid-world environment (refer to Appendix H.2 for details),
we compared Triple-Q with PRI, and the results are shown in Figure 2. This problem has multiple
optimal policies. Therefore, we used the extended PRI with multi-solution-pruning. PRI consists of
200, 000 episodes for the initial phase, followed by 200, 000 episodes for each multi-solution pruning
phase. Both policy refinement and policy identification phases include 5, 000, 000 episodes each. For
reference, we ran Triple-Q for the same number of episodes. The outcomes concerning regret and
constraint violation are visualized in Figure 2a and 2b. We can observe that Triple-Q has a regret of
3.19× 106 and a constraint violation of −5.26× 105, whereas PRI achieves 1.54× 105 regret and
2.98× 103 constraint violation, indicating substantially lower regret with PRI.

(a) Regret (b) Constraint Violation

Figure 2: Results for the grid world environment, the shaded region represents the 95% confidence
interval.

8 CONCLUSIONS

In this paper, we developed a model-free, regret-optimal algorithm for online CMDPs, called PRI.
The algorithm is based on a fundamental observation that for a CMDP with N constraints, there exists
an optimal policy that includes at most N stochastic decisions. In the tabular setting, PRI guarantees
Õ(
√
K) regret and constraint violation and the bounds are independent of the size of state and action

spaces for sufficiently large K. The same result holds when the violation cannot be canceled across
episodes with minor modifications of the algorithm. The details can be found in Appendix G.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Saminda Wishwajith Abeyruwan, Laura Graesser, David B D’Ambrosio, Avi Singh, Anish Shankar,
Alex Bewley, Deepali Jain, Krzysztof Marcin Choromanski, and Pannag R Sanketi. i-sim2real:
Reinforcement learning of robotic policies in tight human-robot interaction loops. In Conference
on Robot Learning, pp. 212–224. PMLR, 2023.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity
and representation learning of low rank mdps. In Advances Neural Information Processing Systems
(NeurIPS), pp. 20095–20107. Curran Associates Inc., 2020.

Mridul Agarwal, Qinbo Bai, and Vaneet Aggarwal. Markov decision processes with long-term
average constraints. arXiv preprint arXiv:2106.06680, 2021.

Mridul Agarwal, Qinbo Bai, and Vaneet Aggarwal. Regret guarantees for model-based reinforcement
learning with long-term average constraints. In Uncertainty in Artificial Intelligence, pp. 22–31.
PMLR, 2022.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen. Minimax pac bounds on the
sample complexity of reinforcement learning with a generative model. Mach. Learn., 91(3):
325–349, June 2013.

Kianté Brantley, Miro Dudik, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs
Slivkins, and Wen Sun. Constrained episodic reinforcement learning in concave-convex and
knapsack settings. In Advances Neural Information Processing Systems (NeurIPS), volume 33, pp.
16315–16326. Curran Associates, Inc., 2020.

Archana Bura, Aria HasanzadeZonuzy, Dileep Kalathil, Srinivas Shakkottai, and Jean-Francois
Chamberland. Safe exploration for constrained reinforcement learning with provable guarantees.
arXiv preprint arXiv:2112.00885, 2021.

Liyu Chen, Rahul Jain, and Haipeng Luo. Learning infinite-horizon average-reward markov decision
process with constraints. In Int. Conf. Machine Learning (ICML), pp. 3246–3270. PMLR, 2022.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
efficient safe exploration via primal-dual policy optimization. In Int. Conf. Artificial Intelligence
and Statistics (AISTATS), volume 130, pp. 3304–3312. PMLR, 2021.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kaufmann, and Michal Valko. Episodic rein-
forcement learning in finite mdps: Minimax lower bounds revisited. In Algorithmic Learning
Theory, pp. 578–598. PMLR, 2021.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained MDPs.
arXiv preprint arXiv:2003.02189, 2020.

Eyal Even-Dar, Shie Mannor, Yishay Mansour, and Sridhar Mahadevan. Action elimination and
stopping conditions for the multi-armed bandit and reinforcement learning problems. Journal of
machine learning research, 7(6), 2006.

Arnob Ghosh, Xingyu Zhou, and Ness Shroff. Provably efficient model-free constrained rl with linear
function approximation. In NeurIPS, 2022.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement learning for
discounted mdps. Advances in Neural Information Processing Systems, 34:22288–22300, 2021.

Marius Lindegaard, Hjalmar Jacob Vinje, and Odin Aleksander Severinsen. Intrinsic rewards
from self-organizing feature maps for exploration in reinforcement learning. arXiv preprint
arXiv:2302.04125, 2023.

Pengsen Liu, Jizhe Zhou, and Jiancheng Lv. Exploring the first-move balance point of go-moku
based on reinforcement learning and monte carlo tree search. Knowledge-Based Systems, 261:
110207, 2023.

10



Under review as a conference paper at ICLR 2024

Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Learning policies with
zero or bounded constraint violation for constrained MDPs. In Advances Neural Information
Processing Systems (NeurIPS), volume 34, 2021.

Ted Moskovitz, Brendan O’Donoghue, Vivek Veeriah, Sebastian Flennerhag, Satinder Singh, and
Tom Zahavy. Reload: Reinforcement learning with optimistic ascent-descent for last-iterate
convergence in constrained mdps. arXiv preprint arXiv:2302.01275, 2023.

Anand Singh Rajawat, SB Goyal, Chetan Chauhan, Pradeep Bedi, Mukesh Prasad, and Tony Jan. Cog-
nitive adaptive systems for industrial internet of things using reinforcement algorithm. Electronics,
12(1):217, 2023.

Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample
complexities for solving markov decision processes with a generative model. Advances in Neural
Information Processing Systems, 31, 2018.

Rahul Singh, Abhishek Gupta, and Ness B Shroff. Learning in markov decision processes under
constraints. arXiv preprint arXiv:2002.12435, 2020.

Jerome Taupin, Yassir Jedra, and Alexandre Proutiere. Best policy identification in linear mdps.
arXiv preprint arXiv:2208.05633, 2022.

Honghao Wei, Xin Liu, and Lei Ying. A provably-efficient model-free algorithm for constrained
markov decision processes. arXiv preprint arXiv:2106.01577, 2021.

Honghao Wei, Xin Liu, and Lei Ying. Triple-Q: a model-free algorithm for constrained reinforcement
learning with sublinear regret and zero constraint violation. In Int. Conf. Artificial Intelligence and
Statistics (AISTATS), 2022a.

Honghao Wei, Xin Liu, and Lei Ying. A provably-efficient model-free algorithm for infinite-horizon
average-reward constrained markov decision processes. In AAAI Conf. Artificial Intelligence,
February 2022b.

Liyuan Zheng and Lillian Ratliff. Constrained upper confidence reinforcement learning. In Learning
for Dynamics and Control, pp. 620–629. PMLR, 2020.

11


	Introduction
	Related Work
	Problem Formulation
	PRI (Pruning-Refinement-Identification)
	Main Results
	Extension to CMDPs with Multiple Optimal Solutions
	Experiments
	Conclusions

