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ABSTRACT

Finding the values of model parameters from data is an essential task in science.
While iterative optimization algorithms like BFGS can find solutions to inverse
problems with machine precision for simple problems, their reliance on local in-
formation limits their effectiveness for complex problems involving local minima,
chaos, or zero-gradient regions. This study explores the potential for overcoming
these limitations by jointly optimizing multiple examples. To achieve this, we
employ neural networks to reparameterize the solution space and leverage the
training procedure as an alternative to classical optimization. This approach is as
versatile as traditional optimizers and does not require additional information about
the inverse problems, meaning it can be added to existing general-purpose opti-
mization libraries. We evaluate the effectiveness of this approach by comparing it
to traditional optimization on various inverse problems involving complex physical
systems, such as the incompressible Navier-Stokes equations. Our findings reveal
significant improvements in the accuracy of the obtained solutions.

1 INTRODUCTION

Estimating model parameters by solving inverse problems (Tarantola, 2005) is a central task in
scientific research, from detecting gravitational waves (George and Huerta, 2018) to controlling
plasma flows (Maingi et al., 2019) to searching for neutrinoless double-beta decay (Agostini et al.,
2013; Aalseth et al., 2018). Iterative optimization algorithms, such as limited-memory BFGS (Liu
and Nocedal, 1989) or Gauss-Newton (Gill and Murray, 1978), are often employed for solving
unconstrained parameter estimation problems (Press et al., 2007). These algorithms offer advantages
such as ease of use, broad applicability, quick convergence, and high accuracy, typically limited only
by noise in the observations and floating point precision. However, they face several fundamental
problems that are rooted in the fact that these algorithms rely on local information, i.e., objective
values L(xk) and derivatives close to the current solution estimate xk, such as the gradient ∂L/∂x|xk

and the Hessian matrix ∂2L/∂x2|xk
. Acquiring non-local information can be done in low-dimensional

solution spaces, but the curse of dimensionality prevents this approach for high-dimensional problems.
These limitations lead to poor performance or failure in various problem settings:

• Local optima attract the optimizer in the absence of a counter-acting force. Although using a
large step size or adding momentum to the optimizer can help to traverse small local minima,
local optimizers are fundamentally unable to avoid this issue.

• Flat regions can cause optimizers to become trapped along one or multiple directions.
Higher-order solvers can overcome this issue when the Hessian only vanishes proportionally
with the gradient, but all local optimizers struggle in zero-gradient regions.

• Chaotic regions, characterized by rapidly changing gradients, are extremely hard to optimize.
Iterative optimizers typically decrease their step size to compensate, which prevents the
optimization from progressing on larger scales.

In many practical cases, a set of observations is available, comprising many individual parameter
estimation problems, e.g., when repeating experiments multiple times or collecting data over a time
frame (Carleo et al., 2019; Delaquis et al., 2018; George and Huerta, 2018; Agostini et al., 2013;
Murase et al., 2013) and, even in the absence of many recorded samples, synthetic data can be
generated to supplement the data set. Given such a set of inverse problems, we pose the question:
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Can we find better solutions xi to general inverse problems by optimizing them jointly instead of
individually, without requiring additional information about the problems?

To answer this question, we employ neural networks to formulate a joint optimization problem.
Neural networks as general function approximators are a natural way to enable joint optimization
of multiple a priori independent examples. They have been extensively used in the field of machine
learning (Goodfellow et al., 2016), and a large number of network architectures have been developed,
from multilayer perceptrons (MLPs) (Haykin, 1994) to convolutional networks (CNNs) (Krizhevsky
et al., 2012) to transformers (Vaswani et al., 2017). Overparameterized neural network architectures
typically smoothly interpolate the training data (Belkin et al., 2018; Balestriero et al., 2021), allowing
them to generalize, i.e., make predictions about data the network was not trained on.

It has been shown that this generalization capability or inductive bias benefits the optimization of
individual problems with grid-like solution spaces by implicitly adding a prior to the optimization
based on the network architecture (Ulyanov et al., 2018; Hoyer et al., 2019). However, these effects
have yet to be investigated for general inverse problems or in the context of joint optimization.
We propose using the training process of a neural network as a drop-in component for traditional
optimizers like BFGS without requiring additional data, configuration, or tuning. Instead of making
predictions about new data after training, our objective is to solve only the given problems, i.e.,
the training itself produces the solutions to the inverse problems, and the network is never used for
inference. These solutions can also be combined with an iterative optimizer to improve accuracy.
Unlike related machine learning applications (Kim et al., 2019; Sanchez-Gonzalez et al., 2020;
Stachenfeld et al., 2021; Rasp and Thuerey, 2021; Schnell et al., 2022; Holl et al., 2021; Schenck and
Fox, 2018; Ren et al., 2020; Allen et al., 2022), where a significant goal is accelerating time-intensive
computations, we accept a higher computational demand if the resulting solutions are more accurate.

To quantify the gains in accuracy that can be obtained, we compare this approach to classical
optimization as well as related techniques on four experiments involving difficult inverse problems:
(i) a curve fit with many local minima, (ii) a billiards-inspired rigid body simulation featuring zero-
gradient areas, (iii) a chaotic system governed by the Kuramoto–Sivashinsky equation and (iv) an
incompressible fluid system that is only partially observable. We compare joint optimization to direct
iterative methods and related techniques in each experiment.

2 RELATED WORK

Neural networks have become popular tools to model physical processes, either completely replacing
physics solvers (Kim et al., 2019; Sanchez-Gonzalez et al., 2020; Stachenfeld et al., 2021; Rasp and
Thuerey, 2021) or improving them (Tompson et al., 2017; Um et al., 2020; Kochkov et al., 2021).
This can improve performance since network evaluations and solvers may be run at lower resolution
while maintaining stability and accuracy. Additionally, it automatically yields a differentiable forward
process which can then be used to solve inverse problems (Schenck and Fox, 2018; Ren et al., 2020;
Allen et al., 2022), similar to how style transfer optimizes images (Gatys et al., 2016).

Alternatively, neural networks can be used as regularizers to solve inverse problems on sparse tomog-
raphy data (Li et al., 2020) or employed recurrently for image denoising and super-resolution (Putzky
and Welling, 2017). Recent works have also explored them for predicting solutions to inverse prob-
lems (Holl et al., 2021; Schnell et al., 2022) or aiding in finding solutions (Khalil et al., 2017; Dai
et al., 2021). In these settings, neural networks are trained offline and then used to infer solutions to
new inverse problems, eliminating the iterative optimization process at test time.

Underlying many of these approaches are differentiable simulations required to obtain gradients of
the inverse problem. These can be used in iterative optimization or to train neural networks. Many
recent software packages have demonstrated this use of differentiable simulations, with general
frameworks (Hu et al., 2020; Schoenholz and Cubuk, 2019; Holl et al., 2020) and specialized
simulators (Takahashi et al., 2021; Liang et al., 2019).

Physics-informed neural networks (Raissi et al., 2019) encode solutions to optimization problems
in the network weights themselves. They model a continuous solution to an ODE or PDE and are
trained by formulating a loss function based on the differential equation, and have been explored
for a variety of directions (Yang et al., 2019; Lu et al., 2021; Krishnapriyan et al., 2021). However,
as these approaches rely on loss terms formulated with neural network derivatives, they do not
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apply to general inverse problems. The training process of neural networks themselves can also be
framed as an inverse problem, and employing learning models to aid this optimization is referred to
as meta-learning (Vilalta and Drissi, 2002). However, due to the large differences, meta-learning
algorithms strongly differ from methods employed for inverse problems in physics.

3 REPARAMETERIZING INVERSE PROBLEMS WITH NEURAL NETWORKS

We consider a set of n similar inverse problems where we take similar to mean we can express all of
them using a function F (ξi |xi) conditioned on a problem-specific vector xi with i = 1, ..., n. Each
inverse problem then consists of finding optimal parameters ξ∗i such that a desired or observed output
yi is reproduced, i.e.

ξ∗i = arg minξiL(F (ξi |xi), yi), (1)

where L denotes an error measure, such as the squared L2 norm || · ||22. We assume that F is
differentiable and can be approximately simulated, i.e., the observed output yi may not be reproducible
exactly using F due to hidden information or stochasticity.

A common approach to finding ξ∗i is performing a nonlinear optimization, minimizing L using the
gradients ∂L

∂F
∂F
∂ξi

. In strictly convex optimization, many optimizers guarantee convergence to the
global optimum in these circumstances. However, when considering more complex problems, generic
optimizers often fail to find the global optimum due to local optima, flat regions, or chaotic regions.
Trust region methods (Yuan, 2000) can be used on low-dimensional problems but scale poorly to
higher-dimensional problems. Without further domain-specific knowledge, these methods are limited
to individually optimizing all n inverse problems.

Instead of improving the optimizer itself, we want to investigate whether better solutions can be found
by jointly optimizing all problems. However, without domain-specific knowledge, it is unknown
which parameters of ξi are shared among multiple problems. We therefore first reparameterize the
full solution vectors ξi using a set of functions ξ̂i, setting ξi ≡ ξ̂i(θ) where θ represents a set of
shared parameters. With this change, the original parameters ξi become functions of θ, allowing θ

to be jointly optimized over all problems. Here, the different ξ̂i can be considered transformation
functions mapping θ to the actual solutions ξi, similar to transforming Cartesian to polar coordinates.
Second, we sum the errors of all examples to define the overall objective function L =

∑n
i=1 Li.

For generality, all ξ̂i(θ) should be able to approximate arbitrary functions. We implement them as an
artificial neural network N with weights θ: ξ̂i(θ) ≡ N (xi, yi | θ). Inserting these changes into Eq. 1
yields the reparameterized optimization problem

ξ∗i = ξ̂i(θ
∗) , θ∗ = argminθ

n∑
i=1

L(F (N (xi, yi | θ) |xi), yi). (2)

Net𝑥𝑖 , 𝑦𝑖
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Figure 1: Reparameterized optimiza-
tion

We see that the joint optimization with reparameterization
strongly resembles standard formulations of neural network
training where (xi, yi) is the input to the network and F ◦
L represents the effective loss function. However, from
the viewpoint of optimizing inverse problems, the network
is not primarily a function of (xi, yi) but rather a set of
transformation functions of θ, each corresponding to a fixed
and discrete (xi, yi). Figure 1 shows the computational graph
corresponding to Eq. 2.

While the tasks of optimizing inverse problems and learning
patterns from data may seem unrelated at first, there is a
strong connection between the two. The inductive bias of a chosen network architecture, which
enables generalization, also affects the update direction of classical optimizers under reparameteri-
zation. This can be seen most clearly if we consider gradient descent steps where the updates are
∆ξi = −η ∂Li

∂ξi
with step size η. After reparameterization, the updates are ∆θ = −η

∑
i
∂Li

∂ξi
∂N
∂θ . As

we can see, ∂N
∂θ now contributes a large part to the update direction, allowing for cross-talk between

the different optimization problems.
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Despite the similarities to machine learning, the different use case of this setup leads to differences
in the training procedure. For example, while overfitting is usually seen as undesirable in machine
learning, we want the solutions to our inverse problems to be as accurate as possible, i.e. we want to
”overfit” to the data. Consequently, we do not have to worry about the curvature at θ∗ and will not use
mini-batches for training the reparameterization network.

Supervised training. Our main goal is obtaining an optimization scheme that works exactly like
classical optimizers, only requiring the forward process F , xi in the form of a numerical simulator,
and desired outputs yi. However, if we additionally have a prior on the solution space P (ξ), we can
generate synthetic training data {(xj , yi), ξj} with yj = F (xj , ξj) by sampling ξi ∼ P (ξ). Using
this data set, we can alternatively train N with the supervised objective

L̃ =
∑
j

||N (xj , yj)− ξj ||22. (3)

Since N has the same inputs and outputs, we can use the same network architecture as above
and the solutions to the original inverse problems can be obtained as ξi = N (xi, yi). While this
method requires domain knowledge in the form of the distributions P (x) and P (ξ), it has the distinct
advantage of being independent of the characteristics of F . For example, if F is chaotic, directly
optimizing through F can yield very large and unstable gradients, while the loss landscape of L̃ can
still be smooth. However, we cannot expect the inferred solutions to be highly accurate as the network
is not trained on the inverse problems we want to solve and, thus, has to interpolate. Additionally, this
method is only suited to unimodal problems, i.e. inverse problems with a unique global minimum.
On multimodal problems, the network cannot be prevented from learning an interpolation of possible
solutions, which may result in poor accuracy.

Refinement Obtaining a high accuracy on the inverse problems of interest is generally difficult
when the training set size is limited, which can result in suboptimal solutions. This is especially
problematic when the global minima are narrow and no direct feedback from F is available, as in the
case of supervised training. To ensure that all learned methods have the potential to compete with
gradient-based optimizers like BFGS, we pass the solution estimates for ξ to a secondary refinement
stage where they are used as an initial guess for BFGS. The refinement uses the true gradients of F
to find a nearby minimum of L.

4 EXPERIMENTS

We perform a series of numerical experiments to test the convergence properties of the reparameterized
joint optimization. An overview of the experiments is given in Tab. 1 and experimental details can be
found in Appendix B. An additional experiment is given in Appendix B.6. We run each experiment and
method multiple times, varying the neural network initializations and data sets to obtain statistically
significant results.

To test the capabilities of the algorithms as a black-box extension of generic optimizers, all experi-
ments use off-the-shelf neural network architectures and only require hyperparameter tuning in terms
of decreasing the Adam (Kingma and Ba, 2015) learning rate until stable convergence is reached.
We then compare the reparameterized optimization to BFGS (Liu and Nocedal, 1989), a popular
classical solver for unconstrained optimization problems, and to the neural adjoint method, which
has been shown to outperform various other neural-network-based approaches for solving inverse
problems (Ren et al., 2020).

Table 1: Overview of numerical experiments.

Experiment ∇ = 0 areas Chaotic xi known P (ξ) known

Wave packet localization No No No Yes
Billiards Yes No Yes No
Kuramoto–Sivashinsky No Yes Yes Yes
Incompr. Navier-Stokes No Yes No Yes
Rototic arm (B.6) No No Yes Yes
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Neural adjoint The neural adjoint method relies on an approximation of the forward process
by a surrogate neural network S(xi, ξi | θ). We first train the surrogate on an independent data set
generated from the same distribution as the inverse problems and contains many examples. We use
the same examples as for the supervised approach outlined above but switch the labels to match the
network design, {(xi, ξi), yi}. After training, the weights θ are frozen and BFGS is used to optimize
ξi on the proxy process F̃ (ξi |xi) = S(ξi, xi) +B(ξi) where B denotes a boundary loss term (see
Appendix A). With the loss function L from Eq. 1, this yields the effective objective L(F (ξi |xi), yi)
for solving the inverse problems. Like with the other methods, the result of the surrogate optimization
is then used as a starting point for the refinement stage described above.

4.1 WAVE PACKET LOCALIZATION

First, we consider a 1D curve fit. A noisy signal u(t) containing a wave packet centered at t0 is
measured, resulting in the observed data u(t) = A · sin(t− t0) · exp(−(t− t0)

2/σ2) + ϵ(t) where
ϵ(t) denotes random noise and t = 1, ..., 256. An example waveform is shown in Fig. 2a. For fixed
A and σ, the task is to locate the wave packed, i.e. retrieve t0. This task is difficult for optimization
algorithms because the loss landscape (Fig. 2b) contains many local optima that must be traversed.
This results in alternating gradient directions when traversing the parameter space, with maximum
magnitude near the correct solution.
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Figure 2: Wave packet localization. (a) Example waveform u(t), (b) corresponding loss and gradient
landscape for t0, (c) optimization curves without refinement, (d) refined loss L/n by the number of
examples n, mean and standard deviation over multiple network initializations and data sets.

We generate the inverse problems by sampling random t0 and ϵ(t) from ground truth prior distributions
and simulating the corresponding outputs u(t) = Fϵ(t) | t0). Because the noise distribution ϵ(t) is
not available to any of the optimization methods, a perfect solution with L = 0 is impossible.

Fig. 2c shows the optimization process. Iterative optimizers like BFGS get stuck in local minima
quickly on this task. In most examples, BFGS moves a considerable distance in the first iteration and
then quickly halts. However, due to the oscillating gradient directions, this initial step is likely to
propel the estimate away from the global optimum, leading many solutions to lie further from the
actual optimum than the initial guess.

The neural adjoint method finds better solutions than BFGS for about a third of examples for n = 256
(see Tab. 2). In many cases, the optimization progresses towards the boundary and gets stuck once
the boundary loss B balances the gradients from the surrogate network.

To reparameterize the problem, we create a neural network N that maps the 256 values of the observed
signal u(t) to the unknown value t0. We chose a standard architecture inspired by image classification
networks (Simonyan and Zisserman, 2014) and train it according to Eq. 2. The network consists
of five convolutional layers with ReLU activation functions, batch normalization, and max-pooling
layers, followed by two fully-connected layers. During the optimization, the estimate of t0 repeatedly
moves from minimum to minimum until settling after around 500 iterations. Like BFGS, most
examples do not converge to the global optimum and stop at a local minimum instead. However, the
cross-talk between different examples, induced by the shared parameters θ and the summation of the
individual loss functions, regularizes the movement in t0 space, preventing solutions from moving far
away from the global optimum. Meanwhile, the feedback from the analytic gradients of F ensures
that each example finds a locally optimal solution. Overall, this results in around 80% of examples
finding a better solution than BFGS.
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For supervised training of N , we use the same training data set as for the neural adjoint method. This
approach’s much smoother loss landscape lets all solution estimates progress close to the ground
truth. However, lacking the gradient feedback from the forward process F , the inferred solutions
are slightly off from the actual solution and, since the highest loss values are close to the global
optimum, this raises the overall loss during training even though the solutions are approaching the
global optima. This phenomenon gets resolved with solution refinement using BFGS.

Fig. 2d shows the results for different numbers of inverse problems and training set sizes n. Since
BFGS optimizes each example independently, the data set size has no influence on its performance.
Variances in the mean final loss indicate that the specific selection of inverse problems may be slightly
easier or harder to solve than the average. The neural adjoint method and reparameterized optimization
both perform better than BFGS with the reparameterized optimization producing lower loss values.
However, both do not scale with n in this example. This feature can only be observed with supervised
training whose solution quality noticeably increases with n. This is due to the corresponding increase
in training set size, which allows the model to improve generalization and does not depend on
the number of tested inverse problems. For n ≥ 32, supervised training in combination with the
above-mentioned solution refinement consistently outperforms all other methods.

A detailed description of the network architecture along with additional learning curves, parameter
evolution plots as well as the performance on further data set sizes n can be found in Appendix B.1.

4.2 BILLIARDS

Next, we consider a rigid-body setup inspired by differentiable billiards simulations of previous work
(Hu et al., 2020). The task consists of finding the optimal initial velocity v⃗0 of a cue ball so it hits
another ball, imparting momentum in a non-elastic collision to make the second ball come to rest at a
fixed target location. This setup is portrayed in Fig. 3a and the corresponding loss landscape for a
fixed x velocity in Fig. 3b. A collision only occurs if v⃗0 is large enough and pointed towards the other
ball. Otherwise, the second ball stays motionless, resulting in a constant loss value and ∂L

∂v⃗0
= 0.
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Figure 3: Billiards experiment. (a) Task: the cue ball must hit the other ball so that it comes to rest
at the target, (b) corresponding loss and gradient landscape for vy, (c) optimization curves without
refinement, (d) refined loss L/n by number of examples n, mean and standard deviation over multiple
network initializations and data sets.

This property prevents classical optimizers from converging if they hit such a region in the solution
space. The optimization curves are shown in Fig. 3c. BFGS only converges for those examples where
the cue ball already hits the correct side of the other ball.

For reparameterization, we employ a fully-connected neural network N with three hidden layers
using Sigmoid activation functions and positional encoding. The joint optimization with N drastically
improves the solutions. While for n ≤ 32 only small differences to BFGS can be observed, access to
more inverse problems lets gradients from some problems steer the optimization of others that get
no useful feedback. This results in almost all problems converging to the solution for n ≥ 64 (see
Fig. 3d).

In this experiment, the distribution of the solutions P (v⃗0) is not available as hitting the target precisely
requires a specific velocity v⃗0 that is unknown a-priori. We can, however, generate training data with
varying v⃗0 and observe the final positions of the balls, then train a supervised N as well as a surrogate
network for the neural adjoint method on this data set. However, this is less efficient as most of the
examples in the data set do not result in an optimal collision.
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The neural adjoint method fails to approach the true solutions and instead gets stuck on the training
data boundary in solution space. Likewise, the supervised model cannot accurately extrapolate the
true solution distribution from the sub-par training set.

4.3 KURAMOTO–SIVASHINSKY EQUATION

The Kuramoto–Sivashinsky (KS) equation, originally developed to model the unstable behavior of
flame fronts (Kuramoto, 1978), models a chaotic one-dimensional system, u̇(t) = −∂2u

∂x2−∂4u
∂x4−u·∇u.

We consider a two-parameter inverse problem involving the forced KS equation with altered advection
strength,

u̇(t) = α ·G(x)− ∂2u

∂x2
− ∂4u

∂x4
− β · u · ∇u,

where G(x) is a fixed time-independent forcing term and α, β ∈ R denote the unknown parameters
governing the evolution. Each inverse problem starts from a randomly generated initial state u(t = 0)
and is simulated until t = 25, by which point the system becomes chaotic but is still smooth enough
to allow for gradient-based optimization. We constrain α ∈ [−1, 1], β ∈ [ 12 ,

3
2 ] to keep the system

numerically stable. Fig. 4a shows example trajectories of this setup and the corresponding gradient
landscape of ∂L

∂β ∥α=α∗ for the true value of α is shown in Fig. 4b.

0 20 40
Time

0

5

10

15

20

X

(a)

3 2 1 0

0

200

400

(b)

 / 5

101 102 103

Steps

102

Lo
ss

(c)
BFGS
Reparameterized
Supervised
Neural Adjoint

4 8 32 128
Dataset Size

0

10

20

30

40
(d)

4

2

0

2

4

Figure 4: Kuramoto–Sivashinsky experiment. (a) Example trajectory, (b) corresponding loss and
gradient landscape for β, (c) optimization curves without refinement, (d) refined loss L/n by number
of examples n, mean and standard deviation over multiple network initializations and data sets.

Fig. 4c shows the optimization curves for finding α, β. Despite the complex nature of the loss
landscape, BFGS manages to find the correct solution in about 60% of cases. The reparameterized
optimization, based on a similar network architecture as for the wavepacket experiment but utilizing
2D convolutions, finds the correct solutions in over 80% of cases but, without refinement, the accuracy
stagnates far from machine precision. Refining these solutions with BFGS, as described above, sees
the accuracy of these cases decrease to machine precision in 4 to 17 iterations, less than the 12 to 22
that BFGS requires when initialized from the distribution mean E[P (ξ)].

Supervised training with refinement produces better solutions in 58% of examples, averaged over
the shown n. The unrefined solutions benefit from larger n on this example because of the large
number of possible observed outputs that the KS equation can produce for varying α, β. At n = 2,
all unrefined solutions are worse than BFGS while for n ≥ 64 around 20% of problems find better
solutions. With refinement, these number jump to 50% and 62%.

This property also makes it hard for a surrogate network, required by the neural adjoint method,
to accurately approximate the KS equation, causing the following adjoint optimization to yield
inaccurate results that fail to match BFGS even after refinement.

4.4 INCOMPRESSIBLE NAVIER-STOKES

Incompressible Newtonian fluids are described by the Navier-Stokes equations,

u̇(x⃗, t) = ν∇2u− u · ∇u−∇p s.t. ∇2p = ∇ · v

with ν ≥ 0. As they can result in highly complex dynamics (Batchelor and Batchelor, 1967),
they represent a particularly challenging test case, which is relevant for a variety of real-world
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problems (Pope, 2000). We consider a setup similar to particle imaging velocimetry (Grant, 1997) in
which the velocity in the upper half of a two-dimensional domain with obstacles can be observed.
The velocity is randomly initialized in the whole domain and a localized force is applied near the
bottom of the domain at t = 0. The task is to reconstruct the position x0 and initial velocity v⃗0 of
this force region by observing the initial and final velocity field only in the top half of the domain.
The initial velocity in the bottom half is unknown and cannot be recovered, making a perfect fit
impossible. Fig. 5a,b show an example initial and final state of the system. The final velocity field is
measured at t = 56 by which time fast eddies have dissipated significantly.
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Figure 5: Fluid experiment. (a,b) Example initial and final velocity fields, obstacles in gray. Only the
upper half, y ≥ 50, is observed. (c) Optimization curves without refinement, (d) refined loss L/n by
the number of examples n, mean and standard deviation over multiple network initializations and
data sets.

Fig. 5c shows the optimization curves. On this problem, BFGS converges to some optimum in all
cases, usually within 10 iterations, sometimes requiring up to 40 iterations. However, many examples
get stuck in local optima.

For joint optimization, we reparameterize the solution space using a network architecture similar
to the previous experiment, featuring four 2D convolutional layers and two fully-connected layers.
For all tested n, the reparameterized optimization produces larger mean loss values than BFGS,
especially for small n. This results from about 10% of examples seeing higher than average loss
values. Nonetheless, 66.7% of the inverse problems are solved more accurately than BFGS on average
for n > 4.

The neural adjoint method nearly always converges to solutions within the training set parameter
space, not relying on the boundary loss. With solution refinement, this results in a mean loss that
seems largely independent of n and is slightly lower than the results from direct BFGS optimization.
However, most of this improvement comes from the secondary refinement stage which runs BFGS on
the true F . Without solutions refinement, the neural adjoint method yields inaccurate results, losing
to BFGS in 98.2% of cases.

Supervised training does not suffer from examples getting stuck in a local minimum early on. The
highest-loss solutions, which contribute the most to L, are about an order of magnitude better than
the worst BFGS solutions, leading to a much smaller total loss for n ≥ 16. With solution refinement,
64%, 73% and 72% of examples yield a better solution than BFGS for n = 16, 64, 128, respectively.

5 DISCUSSION

In our experiments, we have focused on relatively small data sets of between 2 and 256 examples to
quantify the worst-case for machine learning methods and observe trends. Using off-the-shelf neural
network architectures and optimizers with no tuning to the specific problem, joint optimization finds
better solutions than BFGS in an average of 69% of tested problems. However, to achieve the best
accuracy, the solution estimates must be passed to a classical optimizer for refinement as training
the network to this level of accuracy would take an inordinate amount of time and large data sets.
Tuning the architectures to the specific examples could lead to further improvements in performance
but would make the approach domain-dependent.

When training data including ground truth solutions are available or can be generated, supervised
learning can sidestep many difficulties that complex loss landscapes pose, such as local minima,

8
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Table 2: Fraction of inverse problems for which neural-network-based methods with refinement find
better or equal solutions than BFGS. Mean over multiple seeds and all n shown in subfigures (d).

Experiment Reparameterized Supervised Neural Adjoint
Better Equal Better Equal Better Equal

Wave packet fit 86.0% 1.8% 65.1% 14.4% 40.2% 47.4%
Billiards 61.7% 9.0% 27.0% 27.2% 1.6% 98.4%
Kuramoto–Sivashinsky 62.3% 0.0% 57.7% 0.0% 23.9% 62.2%
Incompr. Navier-Stokes 64.1% 0.0% 66.2% 0.1% 56.9% 0.1%

alternating gradient directions, or zero-gradient areas. This makes supervised learning another
promising alternative to direct optimization, albeit a more involved one.

The neural adjoint method, on the other hand, yields only very minor improvements over BFGS
optimization in our experiments, despite the surrogate network successfully learning to reproduce the
training data. This is not surprising as the neural adjoint method tries to approximate the original
loss landscape which is often difficult to optimize. Improvements over BFGS must therefore come
from regularization effects and exposure to a larger part of the solution space. The fact that the neural
adjoint method with solution refinement produces similar results almost independent of the number
of data points n shows that the joint optimization has little benefit here. Instead, the refinement stage,
which treats all examples independently, dominates the final solution quality. Note that the neural
adjoint method is purely data-driven and does not require an explicit form for the forward process F ,
making it more widely applicable than the setting considered here.

Tab. 2 summarizes the improvements over classical optimizations for all methods. A corresponding
table without solution refinement can be found in Appendix B. Considering that reparameterized
optimization is the only network-based method that does not require domain-specific information
and nevertheless shows the biggest improvement overall, we believe it is the most attractive variant
among the three learned versions. Inverse problems for which reparameterized training does not
find good solutions are easy to identify by their outlier loss values. In these cases, one could simply
compare the solution to a reference solution obtained via direct optimization, and choose the best
result.

Limitations We have only considered unconstrained optimization problems in this work, enforcing
hard constraints by running bounded parameters through a scaled tanh function which naturally
clamps out-of-bounds values in a differentiable manner.

The improved solutions found by joint optimization come with an increased computational cost
compared to direct optimization. The time it took to train the reparameterization networks was 3x to
6x longer for the first three experiments and 22x for the fluids experiment (see appendix B).

6 CONCLUSIONS AND OUTLOOK

We have investigated the effects of joint optimization of multiple inverse problems by reparameterizing
the solution space using a neural network, showing that joint optimization can often find better
solutions than classical optimization techniques. Since our reparameterization approach does not
require any more information than classical optimizers, it can be used as a drop-in replacement. This
could be achieved by adding a function or option to existing optimization libraries that internally
sets up a standard neural network with the required number of inputs and outputs and runs the
optimization, hiding details of the training process, network architecture, and hyperparameters from
the user while making the gains in optimization accuracy conveniently accessible. To facilitate this,
we will make the full source code publicly available.

From accelerating matrix multiplications (Fawzi et al., 2022) to solving systems of linear equa-
tions (Calı̀ et al., 2023; Sappl et al., 2019), it is becoming increasingly clear that machine learning
methods can be applied to purely numerical problems outside of typical big data settings, and our
results show that this also extends to solving nonlinear inverse problems.

9
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A BASELINES AND NETWORK ARCHITECTURES

This section details the neural network architectures we employ in our experiments, as well as
implementation details of the baselines to which we compare the reparameterized optimization.

Network architectures. We deliberately use generic off-the-shelf neural network architectures. In
all performed experiments, the solution space consists of a finite number of scalars while the initial
and final simulation states often involve spatial data, i.e. grids. For grid data, we use convolutional
layers on multiple resolution levels while fully-connected layers process non-grid data. Applying this
approach to our problems results in the following scenarios:

• Grid to scalars (G2S). We use a standard architecture for classification that largely follows
by VGG (Simonyan and Zisserman, 2014). It consists of multiple convolutional blocks
followed by fully-connected layers. Each convolutional block consists of one or multiple
convolutional layers with kernel size 3d where d denotes the number of grid dimensions.
A batch normalization, activation, and max pooling layer follows each convolutional layer,
reducing the resolution by half at the end of each block. The result is passed to a multilayer
perceptron (MLP) which alternates linear, activation, and batch normalization layers before
the result is outputted by a final linear layer.

• Scalars to scalars (S2S). When no grid data is involved, we simply use MLPs (Goodfellow
et al., 2016) to map inputs to outputs, optionally with positional encoding at the inputs.
The MLP consists of multiple linear layers and activation layers but we do not use batch
normalization layers since our networks are relatively shallow with no more than three
hidden layers.

• Grid to grid (G2G). This case is only needed for the surrogate network required by
the neural adjoint method. Here, we use the popular U-Net (Ronneberger et al., 2015)
architecture with residual connections. Multiple convolutional blocks progressively decrease
the spatial resolution, followed by upsampling convolutional blocks. The downsampling
blocks match the ones described above. The upsampling blocks linearly interpolate the
result to double the resolution before concatenating the corresponding processed input of
the same resolution for the residual connections.

The specific hyperparameter values used for these generic architectures are given in the corresponding
experimental details sections.

BFGS. We use the BFGS Implementation from SciPy (Virtanen et al., 2020) which runs the
optimizer-internal computations on the CPU. All loss and gradient evaluations are bundled and
dispatched to the GPU to be processed in parallel.

Neural adjoint. The neural adjoint method (Ren et al., 2020) employs a neural network Ñ to act
as a surrogate for F . Ñ is then used in place of F in an iterative optimization. Since Ñ cannot be
expected to produce accurate results outside of the region covered by its training data, a boundary loss
term is added to the optimization to prevent the optimizer from leaving that region (Ren et al., 2020).
We formulate this boundary loss in a differentiable manner to make it compatible with higher-order
optimizers. First, we determine the minimum ξjmin and the maximum ξjmax value in the training set
for each parameter j. Then, we formulate the boundary loss as

B(ξ) =
∑
j

SoftPlusγ

(
max(ξj − ξjmax, ξ

j
min − ξj)

ξjmax − ξjmin

)
,

where SoftPlusγ(x) ≡ 1
γ log(1 + eγx).
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B EXPERIMENTAL DETAILS

This section lists additional details about the experiments showcased in the main paper. An overview
of the symbols introduced with the experiments is given in Tab. 3.

Table 3: Physical quantities corresponding to the abstract symbols used in Eqs. 1 and 2 for each
experiment.

Experiment ξ x y

Wave packet fit t0 ϵ(t) u(t)
Billiards v⃗0 Initial ball positions Final ball positions
Kuramoto–Sivashinsky α, β u(x)|t=0 u(x)|t=25

Incompr. Navier-Stokes x0, v⃗0 u(x, y)|t=0 u(x, y)|t=56

Software and hardware. We used PyTorch (Paszke et al., 2019) and ΦFlow (Holl et al., 2020)
to run our experiments. The full source code is part of the supplemental material. The first three
experiments were run on a GeForce RTX 3090. Due to memory requirements, the fluid experiment
was run partly on a Quadro RTX 8000 which allowed 128 simulations to be held in GPU memory.

The corresponding wall-clock run times are shown in Tab. 4. There, parallel BFGS denotes a BFGS
implementation that runs the forward process and backpropagation on the GPU. This is much more
efficient than looping over the individual examples, the way most classical BFGS optimizations are
implemented. For the KS experiment, sequential BFGS solves take 8x longer than the batched solve
for n = 16 and 76x longer for n = 256. Running this on the CPU increases the runtime by an
additional 50-60%. Compared to the sequential CPU approach at n = 256, our method is 18x faster
than BFGS.

Hyperparameter selection. For each network, we select one of the three generic architectures
listed above. Our main objective in choosing the values of the hyperparameters, such as the number
of layers and layer width, is keeping the total number of parameters large enough to fit the problem
easily but low enough to train the network quickly. The only hyperparameter which we tune is the
Adam (Kingma and Ba, 2015) learning rate η. We start with η = 0.01 and progressively reduce it by
a factor of 10 until the loss decreases during the optimization. The exact hyperparameter values are
given in the corresponding experiment section.

Refinement. We apply BFGS refinement as a second stage to reparameterized optimization, super-
vised training, and the neural adjoint method. In all cases, we run a standard BFGS optimization on
the actual L, so the gradients are backpropagated through F . For reparameterized optimization and
the neural adjoint method, we use the parameter estimate with the lowest recorded loss value. As
supervised training makes use of pre-trained network, we use the final parameter estimate ξi as an
initial guess. The full evolution of the parameter estimates over the course of training is shown for all
experiments below.

Tab. 5 lists the fraction of the total loss improvement performed by the network fit. In all experiments,
the network fit stage is responsible for the bulk of the improvement and the refinement stage improves
the loss much less overall. We also observe that, for larger data set sizes, the network fit contributes
even more to the overall improvement while for small data set sizes, the refinement stage is more
important.

Table 4: Training and optimization times for the largest tested data set size n in seconds.

Experiment Parallel BFGS Network fit Refinement Supervised fit Sup. Refinement Surrogate fit Neural Adjoint N.A. Refinement

Wave packet fit 15.1± 1.0 46.9± 0.2 15.0± 0.2 24.0± 0.2 13.8± 0.7 46.5± 0.2 13.1± 0.5 13.8± 1.7
Billiards 21.5± 1.0 115.2± 0.6 25.3± 0.2 8.8± 0.1 20.9± 1.7 12.9± 0.1 16.5± 2.5 21.8± 1.1
Kuramoto–Sivashinsky 152.8± 11.8 638.8± 3.7 109.3± 7.2 11.4± 0.9 122± 64 16.4± 0.8 13.7± 2.3 147± 12
Incompr. Navier-Stokes 1858± 95 29510± 637 1270± 205 212± 7 1390± 333 195.6± 0.1 8.7± 1.2 1451± 63

15



Under review as a conference paper at ICLR 2024

Table 5: Fraction of the total loss decrease achieved by the network fit. The remaining improvement
is made by the refinement stage using BFGS. The given fractions are computed per example and then
averaged.

Experiment n = 4 n = 8 n = 32 n = 128

Wave packet fit 78.5%± 17.8% 89.1%± 8.8% 92.4%± 3.7% 91.7%± 4.5%
Billiards 88.9%± 13.0% 86.8%± 14.0% 92.9%± 11.2% 98.1%± 2.0%
Kuramoto–Sivashinsky 93.4%± 9.8% 96.2%± 5.9% 96.0%± 2.5% 95.9%± 1.1%
Incompr. Navier-Stokes 100.0%± 0.0% 99.4%± 0.5% 96.6%± 3.4% 96.8%± 2.5%

Results. Complementary to Tab. 2 of the main paper, Tab. 6 gives an overview of how many exam-
ples were improved by the various neural-network-based approaches without refinement. Learning
curves, loss and improvement statistics, as well as example parameter trajectories are shown in the
following subsections.

Table 6: Fraction of inverse problems for which neural-network-based methods without refinement
find better or equal solutions than BFGS. Mean over multiple seeds and all n shown in subfigures (d)
of the main paper.

Experiment Reparameterized Supervised Neural Adjoint
Better Equal Better Equal Better Equal

Wave packet fit 80.5% 0.9% 55.9% 2.0% 28.2% 0.8%
Billiards 44.3% 9.0% 14.6% 19.9% 1.6% 29.3%
Kuramoto–Sivashinsky 42.8% 0.0% 14.4% 0.0% 6.4% 0.0%
Incompr. Navier-Stokes 62.5% 0.0% 23.5% 0.0% 1.1% 0.0%

B.1 WAVE PACKET LOCALIZATION

For the wave packet experiment, we first determine the true position t0 of the wave packet by sampling
random values from a uniform distribution between t0 ∈ [26, 230]. Noise ϵ(t) is sampled from a
normal distribution with standard deviation σ = 0.1 for every t = 1, ..., 256 and superimposed on
the signal, as described in the main text. The noise pattern is only used to generate the reference data
and is not available to the optimizers. We run this experiment five times with varying initialization
seeds for both networks and data sets.

Networks. The surrogate network, required by the neural adjoint method, takes t0 and ϵ(t) as input
and outputs an approximation of u(t). Since ϵ(t) and u(t) are one-dimensional grids, we employ
the G2G architecture with two input feature maps of size 256 and one output feature map, totaling
13,073 parameters. The reparameterization network maps the grid u(t) to the estimated scalar t0.
Consequently, we use the G2S architecture described in section A. We use five blocks with one
convolutional layer with 16 feature maps each, reducing the resolution from 256 to 8. The MLP part
consists of two hidden fully-connected layers with sizes 64 and 32. In total, this network contains
13,925 parameters. All networks are trained using Adam with a learning rate of η = 0.001. Fig. 9
shows the absolute the change in the reparameterization network weights that results from training.

Additional results. Fig. 6 shows the resulting loss and improvement over BFGS, both before and
after refinement. The learning curves for four data set sizes n are shown in Fig. 7, and the parameter
evolution of four examples during optimization are shown in Fig. 8.
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Figure 6: Loss and improvement over BFGS before and after refinement for the wave packet
experiment. Colors match figures from the main paper (blue: BFGS, orange: reparameterized, green:
supervised, red: neural adjoint).
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Figure 7: Optimization curves for different data set sizes of the wave packet experiment before
refinement. Curves show the mean over 5 network and data set initialization seeds. Blue: BFGS,
orange: reparameterized, green: supervised, red: neural adjoint.
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Figure 8: Example parameter evolution during optimization of the wave packet experiment with
n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The dashed
gray lines indicate the reference solution from which the example was generated. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.
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Figure 9: Reparameterization network change in the wave packet experiment for different data set
sizes n, measured as the mean absolute difference in weight values before and after fitting the network.
Error bars represent the standard deviation across multiple network initializations. The change is
given per layer where k denotes convolution kernels, m the matrices of fully-connected layers and b
biases.
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B.2 BILLIARDS

For the billiards experiment, we set up a rigid body simulation of spherical balls with radius r = 0.2
moving in the x-y-plane. In each step, the simulator analytically integrates the evolution until the
time of the subsequent collision, allowing us to simulate the dynamics at little computational cost.
Collisions use a fixed elasticity of 0.8 and preserve momentum. Friction is assumed to be proportional
to the speed of the balls. The simulation stops once no more collisions take place and integrates up
to t = ∞ to let all balls come to rest. we sample initial states by randomly placing the second ball
between (1, 0) and (1, 1) while keeping the target fixed at (2, 0.5). The cue ball, located at x = 0
is given a starting initial velocity of v⃗start0 = (1, 0) so it will collide with the second ball in many
cases by default. Starting the optimization with v⃗start0 = 0 would yield ∇Li = 0∀i and prevent any
optimization using F . However, in none of these examples does the ball exactly reach the target.
As the distribution of actual solutions v⃗0 is unknown, the generated training sets for supervised and
surrogate network training must rely on this broader data set, making learning more difficult.

Networks. The surrogate neural network is given a value for the initial velocity v⃗0 and the balls’
positions as input, and it outputs the predicted final position of the ball. We use positional encoding
for the input using sine, cosine functions with four equidistant frequencies. The surrogate network
follows the S2S architecture from section A. It is an MLP with three hidden layers containing 128
neurons, each, and comprises 37,506 parameters in total. The reparameterization network predicts
v⃗0 based on the initial and final ball positions, and we use the same network architecture as for the
surrogate network. All networks are trained using Adam. For the reparameterized optimization, we
use a learning rate of η = 10−4 while all other methods use η = 0.001. Fig. 13 shows the absolute
the change in the reparameterization network weights that results from training.

Additional results. Fig. 10 shows the resulting loss and improvement over BFGS, both before and
after refinement. The learning curves for four data set sizes n are shown in Fig. 11, and the parameter
evolution of four examples during optimization are shown in Fig. 12.
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Figure 10: Loss and improvement over BFGS before and after refinement for the billiards experiment.
Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint.
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Figure 11: Optimization curves for different data set sizes of the billiards experiment before refine-
ment. Envelopes show the standard deviation over 4 network and data set initialization seeds. Blue:
BFGS, orange: reparameterized, green: supervised, red: neural adjoint. BFGS-based optimization
curves stop when all examples have fully converged to an optimum.
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Figure 12: Example parameter evolution during optimization of the billiards experiment with n = 128.
Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The purple crosses
indicate the reference from which the example was generated and is not a valid solution in this
experiment. BFGS-based optimization curves stop when all examples have fully converged to an
optimum.
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Figure 13: Reparameterization network change in the Billiards experiment for different data set sizes
n, measured as the mean absolute difference in weight values before and after fitting the network.
Error bars represent the standard deviation across multiple network initializations. The change is
given per layer where k denotes convolution kernels, m the matrices of fully-connected layers and b
biases.

21



Under review as a conference paper at ICLR 2024

B.3 KURAMOTO–SIVASHINSKY EQUATION

For this experiment, we set up a differentiable simulation of the Kuramoto–Sivashinsky (KS) equation
in one dimension with a resolution of 128. We simulate the linear terms of KS equation in frequency
space and use a Runge-Kutta-2 (Press et al., 2007) scheme for the non-linear term. The initial state is
sampled from random noise in frequency space with smoothing applied to suppress high frequencies.
In each simulation step, we add a forcing of the form G(x) = 0.1 cos(x) − 0.01 cos(x/16) · (1 −
2 sin(x/16) which is controlled by the parameter α as described in the main text.

Networks. The surrogate network maps the initial state u(x, t = 0) and parameters α, β to the final
state u(x, t = 25). Since u is sampled on a grid, we use the G2G architecture from section A with
three input and one output feature map, operating on four resolution levels. The reparameterization
network maps u(x, t = 0) and u(x, t = 25) to α, β and we employ the G2S architecture with four
convolutional layers of widths 32, 32, 64, 64, followed by two hidden fully-connected layers with
64 neurons each. We train both networks using Adam with a learning rate of η = 0.001 for 1000
iterations. Fig. 17 shows the absolute the change in the reparameterization network weights that
results from training.

Additional results. Fig. 14 shows the resulting loss and improvement over BFGS, both before and
after refinement. The learning curves for four data set sizes n are shown in Fig. 15, and the parameter
evolution of four examples during optimization are shown in Fig. 16.
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Figure 14: Loss and improvement over BFGS before and after refinement for the Ku-
ramoto–Sivashinsky experiment. Blue: BFGS, orange: reparameterized, green: supervised, red:
neural adjoint.
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Figure 15: Optimization curves for different data set sizes of the Kuramoto–Sivashinsky experiment
before refinement. Envelopes show the standard deviation over 10 network and data set initialization
seeds. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.
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Figure 16: Example parameter evolution during optimization of the Kuramoto–Sivashinsky experi-
ment with n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint.
The dashed gray lines indicate the reference solution from which the example was generated. BFGS-
based optimization curves stop when all examples have fully converged to an optimum.
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Figure 17: Reparameterization network change in the Kuramoto–Sivashinsky experiment for different
data set sizes n, measured as the mean absolute difference in weight values before and after fitting
the network. Error bars represent the standard deviation across multiple network initializations. The
change is given per layer where k denotes convolution kernels, m the matrices of fully-connected
layers and b biases.
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Figure 18: Distribution of loss values for n = 4 in the Navier-Stokes experiment, with and without
refinement. The first six plots show the loss distribution along the ground truth value of one of the
parameters to be optimized. The right plots show the margin distribution of loss values. The results
of 4 network and data set initialization seeds are accumulated.
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Figure 19: Distribution of loss values for n = 128 in the Navier-Stokes experiment, with and without
refinement. The first six plots show the loss distribution along the ground truth value of one of the
parameters to be optimized. The right plots show the margin distribution of loss values. The results
of 4 network and data set initialization seeds are accumulated.

B.4 INCOMPRESSIBLE NAVIER-STOKES

We simulate an incompressible two-dimensional fluid in a 100 by 100 box with a resolution of
64 by 64, employing a direct numerical solver for incompressible fluids from ΦFlow (Holl et al.,
2020). Specifically, we use the marker-in-cell (MAC) method (Harlow and Welch, 1965; Harlow,
1972) which guarantees stable simulations even for large velocities or time increments. The velocity
vectors are sampled in staggered form at the face centers of grid cells while the marker density is
sampled at the cell centers. The initial velocity v0 is specified at cell centers and resampled to a
staggered grid for the simulation. Our simulation employs a second-order advection scheme (Selle
et al., 2008) to transport the marker and the velocity vectors. We do not simulate explicit diffusion as
the numerical diffusion introduced by the advection scheme on this resolution is sufficient for our
purposes. Incompressibility is achieved via Helmholtz decomposition of the velocity field using a
conjugate gradient solve.

We initialize the whole domain with a velocity field sampled from random noise in frequency space,
resulting in eddies of various sizes. The initial velocity values have a mean of zero and a standard
deviation of 0.5. Then, ground truth values for x0 and v⃗0 are sampled from uniform distributions with
v⃗y0 ≥ 0 never pointing downward. These values are used to initialize a spherical force or wind blast
near the bottom of the domain that moves upwards during the simulation and induces flow around all
obstacles from the pressure computation. The velocity is only observable in the domain’s upper half,
and all optimizers assume a zero-initialization in the unobservable bottom half.
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Figure 20: Loss and improvement over BFGS before and after refinement for the Navier-Stokes
experiment. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint.
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Figure 21: Optimization curves for different data set sizes of the Navier-Stokes experiment before
refinement. Envelopes show the standard deviation over 4 network and data set initialization seeds.
Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. BFGS-based optimiza-
tion curves stop when all examples have fully converged to an optimum.

Networks. The surrogate network approximates the final state u(x, y ≥ 50, t = 56) in the upper
half of the domain from the initial state u(x, y, t = 0) and the parameters x0, v⃗0. As before, we
implement this as G2G (section A) with five input and two output feature maps, totaling 38.290
parameters. The G2S reparameterization network comprises four convolutional layers with 16, 32,
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Figure 22: Example parameter evolution during optimization of the Navier-Stokes experiment with
n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The dashed
gray lines indicate the reference solution from which the example was generated. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.
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Figure 23: Reparameterization network change in the incompressible fluid experiment for different
data set sizes n, measured as the mean absolute difference in weight values before and after fitting
the network. Error bars represent the standard deviation across multiple network initializations. The
change is given per layer where k denotes convolution kernels, m the matrices of fully-connected
layers and b biases.

32, and 32 feature maps, respectively, followed by two fully-connected layers with 64 neurons each,
resulting in 44.723 total parameters. Both networks are trained using Adam with a learning rate of
η = 0.001. Fig. 23 shows the absolute the change in the reparameterization network weights that
results from training.

Additional results. As noted in the main text, the high loss value of the reparameterized opti-
mization is largely due to a fraction of examples with considerably higher loss than the average. A
summary of the individual loss values for n = 4, 128 is given in Figs. 18 and 19, respectively. While
the neural adjoint method produces the highest loss values before refinement, these all get mapped to
relatively small values during the refinement stage. Meanwhile, the reparameterized training finds
better solutions without refinement since it uses feedback from F . However, that also means that
the secondary BFGS optimization cannot improve the estimates by nearly as much since many are
already close to a (local) minimum. This leaves a fraction of examples stranded on sub-optimal
solutions that contribute significantly to the total loss, despite most problems finding better solutions
than BFGS. Fig. 20 shows the resulting loss and improvement over BFGS, both before and after
refinement. The learning curves for four data set sizes n are shown in Fig. 21, and the parameter
evolution of four examples during optimization are shown in Fig. 22.
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Figure 24: Optimization curves for gradient descent (GD), BFGS and reparameterization similar to
subfigures c in Figs. 2-5.

Table 7: Fraction of examples for which gradient descent (GD) outperforms or is equal to BFGS.

Experiment GD better Equal to BFGS

Wave packet fit 18.4% 24.6%
Billiards 0.8% 30.9%
Kuramoto–Sivashinsky 7.0% 0.4%
Incompr. Navier-Stokes 3.9% 0.0%

B.5 GRADIENT DESCENT AS A BASELINE

In the main text, we use BFGS as a baseline as it works well for most optimization problems and is
very stable. However, in the field of machine learning, first-order methods, such as gradient descent
(GD) are more popular since they do not require the Hessian matrix, whose memory requirement
scales quadratically with the number of parameters.

However, to avoid accidental bias in our experiments, we run GD with adaptive step size as an
additional baseline. Example learning curves are shown in Fig. 24 for the four experiments described
in the main text. GD generally performs worse than BFGS in our experiments. Table 7 shows the
fractions of examples in which GD performs better than or equal to BFGS.

Consequently, our method shows a bigger improvement over GD than BFGS, albeit slightly. In
the incompressible fluids experiment with n = 128, for example, the reparameterized and refined
optimization outperforms GD in 88.3% of cases vs 86.0% when compared against BFGS.
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B.6 ADDITIONAL EXPERIMENTS

To compare our method with previous work, we replicate the robotic arm experiment from the neural
adjoint paper (Ren et al., 2020). However, the original paper did not use the functional form of the
forward process, i.e. the true simulation. When using it, the problems presented there become much
easier to solve. The results are shown in Fig. 25. BFGS and gradient descent (GD) manage to reach
machine precision accuracy within a couple of iterations while the network approaches take longer to
fit the data (3c). The refinement stage then optimizes all examples to machine precision accuracy (3d).
While reparameterized fitting successfully solves these experiments, there is no need to use it since
they can be solved perfectly with classical optimizers. This stands in contrast to the inverse problems
shown in the main text which exhibit non-trivial features, such as local optima, zero-gradient regions,
or chaotic behavior. However, this experiment shows, that reparameterized fitting can be applied to
convex optimization problems in the same way.
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Figure 25: Robotic arm experiment from [RPM20]. (a) Task: the arm must be positioned and the
joints rotated to reach the target, (b) corresponding loss and gradient landscape for the first joint
angle (x2), (c) optimization curves without refinement, (d) refined loss L/n by number of examples
n, mean and standard deviation over multiple network initializations and data sets. All solutions
converge to the global optimum with zero loss.
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