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Abstract
The popularity of multiagent reinforcement learn-
ing (MARL) is growing rapidly with the demand
for real-world tasks that require swarm intelli-
gence. However, a noticeable drawback of MARL
is its low sample efficiency, which leads to a huge
amount of interactions with the environment. Sur-
prisingly, few MARL works focus on this practi-
cal problem especially in the parallel environment
setting, which greatly hampers the application of
MARL into the real world. In response to this
gap, in this paper, we propose Multiagent Rein-
forcement Learning with Reset Replay (MARR)
to greatly improve the sample efficiency of MARL
by enabling MARL training at a high replay ratio
in the parallel environment setting for the first
time. To achieve this, first, a reset strategy is in-
troduced for maintaining the network plasticity to
ensure that MARL continually learns with a high
replay ratio. Second, MARR incorporates a data
augmentation technique to boost the sample effi-
ciency further. Extensive experiments in SMAC
and MPE show that MARR significantly improves
the performance of various MARL approaches
with much fewer environment interactions.

1. Introduction
In recent years, multiagent reinforcement learning (MARL)
has achieved significant progress and success in a lot of
multiagent fields that require swarm intelligence for com-
plicated decision-making tasks such as real-time strategy
games (Berner et al., 2019; Vinyals et al., 2019), distributed
energy management (Novati et al., 2021), and urban traf-
fic control (Wu et al., 2020). When applying MARL to
real-world tasks, a fundamental drawback is the low sample
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efficiency that MARL needs a huge amount of interactions
with the environment to learn satisfactory policies of a group
of agents through trial and error. At the same time, as the
interaction with the environment is time-consuming because
of the highly complicated multiagent dynamics, the paral-
lel environment setting is usually enabled to accelerate the
sample collection. In this practical parallel setting where
environment interactions are computationally expensive, the
sample efficiency of MARL is more crucial for successfully
solving tasks as the interaction budget is limited.

However, although sample-efficient MARL algorithms are
highly attractive when applying MARL in realistic tasks,
there are few works studying on this topic. Most of these
previous works utilize the permutation prior in the multia-
gent system to achieve sample efficiency. For example, Ye
et al. (2022) generate extra data by performing permutation
transform for homogeneous agents with the consideration of
the permutation invariance prior. Besides, Yu et al. (2023)
take advantage of the global symmetry in the multiagent
systems, where rotating the global state results in a permu-
tation of the optimal joint policy, to augment data. More
recently, Hao et al. (2023) exploit both the permutation in-
variance and permutation equivariance inductive biases in
multiagent scenarios into the entity-wise network design
to boost the learning of MARL algorithms. Different from
these permutation-based works, in this paper, we achieve
the MARL sample efficiency from a new perspective by
enabling MARL training with a high replay ratio, especially
for the realistic parallel environment setting.

As mentioned above, none of the previous works make ef-
forts to enable the updating of MARL algorithms at a high
replay ratio that repeatedly trains networks many times with
collected experiences per environment interaction (D’Oro
et al., 2023), thus limiting the sample efficiency to a higher
degree. Additionally, most of these works for MARL sam-
ple efficiency are not specially designed for the more practi-
cal parallel environment setting. In response to these gaps,
in this paper, we propose the Multiagent Reinforcement
Learning with Reset Replay (MARR) algorithm to greatly
improve the sample efficiency of MARL algorithms in the
parallel environment setting. To achieve this, MARR con-
sists of three essential elements: the high-replay-ratio train-
ing setting, the Shrink & Perturb reset strategy, and the
random amplitude scale data augmentation technique.
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First, one main difference between parallel sampling and
series sampling is that the sampled experiences of parallel
sampling in the replay buffer are more diverse. This diver-
sity brings a chance to improve the sample efficiency of
MARL algorithms by increasing the data utilization of these
diverse samples. Motivated by this, we set to train MARL
algorithms at a high replay ratio so that the updating of agent
networks is performed many times per environment inter-
action. Second, learning at a high replay ratio would make
agents incur a risk of overfitting to earlier experiences, neg-
atively affecting the rest of the learning process (Nikishin
et al., 2022). To overcome this overfitting phenomenon (Nik-
ishin et al., 2022; Lyle et al., 2023), we introduce a Shrink &
Perturb strategy (Ash & Adams, 2020) to reset each agent’s
network parameters periodically to maintain the network
plasticity for continually learning. Third, as we update the
networks of agents many times per environment interaction,
we integrate the random amplitude scale data augmentation
technique (Laskin et al., 2020) in every sampled batch of ex-
periences to further increase the data efficiency. The novel
combination of these synergistic and efficient elements for
the first time enables MARL training at a higher replay ratio
by an order of magnitude than previous cases in the parallel
environment setting. Additionally, MARR is general enough
and easy to plug into the mainstream off-policy MARL al-
gorithms with only slight modification. Experiments on
both the StarCraft Multi-Agent Challenge and Multiagent
Particle Environment demonstrate that MARR significantly
improves the performance of mainstream off-policy MARL
approaches with much fewer environment interactions.

2. Background
2.1. Markov Games

We use the Markov games as the basic setting, which are an
extended multiagent version of Markov Decision Processes
(Littman, 1994). Markov games are described by a state
transition function, T : S × A1 × ... × AN → P (S),
which defines the probability distribution over all possible
next states, P (S), given the current global state S and the
action Ai produced by the i-th agent. The reward is usually
given based on the global state and actions of all agents
Ri : S × A1 × ... × AN → R. If all agents receive the
same rewards, i.e. R1 = ... = RN , then Markov games
would become fully cooperative (Matignon et al., 2012):
a best-interest action of one agent is also a best-interest
action of other agents. Meanwhile, Markov games can
be partially observable, and then each agent i receives
a local observation oi : O(S, i) → Oi in this setting.
Accordingly, each agent learns a policy πi : Oi → P (Ai),
which maps each agent’s own local observation to a
probability distribution over its action set, to maximize this
agent’s expected discounted cumulative returns, Ji(πi) =

Ea1∼π1,...,aN∼πN ,s∼T [
∑∞

t=0 γ
tri(st, a1,t, ..., aN,t)],

where γ is the discounted factor and is in the range of [0, 1).

2.2. Replay Ratio and Sample Efficiency

Replay ratio, also known as the update-to-data ratio, refers
to the number of updates of an agent’s parameters for each
environment interaction (Chen et al., 2021; D’Oro et al.,
2023). As each interaction with the environment comes at
a cost, it is desired to perform more updates with the ex-
isting experiences before interacting with the environment
again. Therefore, increasing the replay ratio is an appealing
strategy for improving the sample efficiency of deep rein-
forcement learning algorithms (Chen et al., 2021; D’Oro
et al., 2023; Schwarzer et al., 2023). Although researchers in
the field of single-agent reinforcement learning have started
to focus on this topic, there are seldom related works in the
MARL domain trying to improve the replay ratio.

To better quantify the sample efficiency, Ye et al. (2022)
define the expectation of the number of times each data
experience collected in the replay buffer to be sampled to
train the model as

E[Nsampled] =
NRR ·NB

V · TU
, (1)

where NRR is the number of replay ratio that the updating
is performed NRR times when interacting with the envi-
ronment once. NB is the batch size that there are NB data
experiences in a sampled batch for updating. The data acqui-
sition speed V is the number of transition data experiences
being collected at each time step of environment interaction.
And TU is the update interval that the updating is conducted
every TU time steps. Typically, works focusing on training
reinforcement learning agents at a high replay ratio (Chen
et al., 2021) aim to improve NRR while keeping NB , V ,
and TU unchanged to reach a higher sample efficiency indi-
cated by E[Nsampled]. This behaviour is also termed as the
replay ratio scaling (D’Oro et al., 2023). However, simply
increasing the replay ratio NRR will exacerbate the overfit-
ting phenomenon (Nikishin et al., 2022; Lyle et al., 2023;
Sokar et al., 2023; Abbas et al., 2023) to earlier experiences
when training, resulting in losing the network plasticity to
learn good policies in the rest of the learning process. Next,
we introduce this network plasticity loss problem in detail,
which has recently been studied in the field of single-agent
deep reinforcement learning while receiving comparatively
little attention in the MARL domain until now.

2.3. Plasticity Loss in Reinforcement Learning

The study of plasticity has concerned neuroscience for sev-
eral decades (Abbott & Nelson, 2000), but has only re-
cently emerged as a topic of interest in deep learning (Ash
& Adams, 2020) and deep reinforcement learning (Nikishin
et al., 2022). Lyle et al. (2023) define plasticity P to be the
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difference between the baseline b and the expectation of the
final loss obtained by an optimization process after starting
from an initial parameter value θt and optimizing a sampled
loss function l in L.

P(θt) = b− El∼L[l(θ
∗
t )],where θ∗t = OPT (θt, l). (2)

The optimization algorithm OPT : (θt, l)→ θ∗t takes ini-
tial parameters θt and some objective function l and outputs
a new set of parameters θ∗t after the optimization process.
Then the plasticity loss along a K-time training trajectory
(θt)

K
t=0 is defined as the difference P(θt=K)−P(θt=0) and

is independent of the baseline b. The plasticity loss formally
defines the decreasing fitting ability of network parameters
during the learning process and this phenomenon is repeat-
edly observed in the experiments across several studies in
the field of single-agent reinforcement learning (Nikishin
et al., 2023; Sokar et al., 2023; Abbas et al., 2023).

The recently identified tendency of neural networks to lose
their network plasticity to learn and generalize from new
information during training, against which most reinforce-
ment learning methods deploy no countermeasures, has been
the main roadblock in achieving better sample efficiency
through replay ratio scaling (D’Oro et al., 2023). This over-
fitting phenomenon in deep reinforcement learning is also
called primary bias (Nikishin et al., 2022), dormant neuron
(Sokar et al., 2023), and more frequent plasticity loss (Lyle
et al., 2023; Nikishin et al., 2023; Abbas et al., 2023; Ku-
mar et al., 2023). The broad experimental evidence in these
works shows that, with the learning progress continuing, the
fitting ability of the agent network to newly coming expe-
riences decreases especially when the replay ratio is high.
Although there emerges a lot of works in single-agent rein-
forcement learning to address the plasticity loss, especially
at a high replay ratio (D’Oro et al., 2023; Schwarzer et al.,
2023), no work yet studies the plasticity loss phenomenon
in MARL and we are the first work to address this problem
towards successfully training MARL at a high replay ratio.

3. Method
The experience diversity in the parallel setting brings the
benefit of improving MARL sample efficiency by increasing
the data utilization through repeatedly updating with these
diverse samples. Inspired by this, we set MARL algorithms
to learn at a high replay ratio in parallel environments. More
specifically, the updating of agent network parameters is
performed many times by setting a large NRR while inter-
acting with the environment once given the same update
interval TU , data acquisition speed V , and batch size NB .
Surprisingly, despite this idea seeming to be straightforward,
there are seldom MARL works reporting a successful at-
tempt. A lot of practices in both single-agent reinforcement
learning (D’Oro et al., 2023; Abbas et al., 2023) and MARL

demonstrate that, if the replay ratio is increased to a large
number, the learning process becomes unstable and signif-
icantly impedes the quality of the learned agent policies.
In this paper, we propose an algorithm called Multiagent
Reinforcement Learning with Reset Replay (MARR) to ad-
dress this problem to enable successful MARL training in
the parallel environment setting with a high replay ratio.

The description of the proposed MARR algorithm is shown
in Algorithm 1. MARR follows the general workflow of
standard off-policy MARL algorithms but employs two addi-
tional operations. The main additional operation of MARR
is in Line 19, given the network reset interval TR time steps,
MARR performs Shrink & Perturb to inject plasticity into
both the centralized critic network and each agent’s pol-
icy or Q-value network to recover learning ability of these
networks. The second additional operation is in Line 10.
After sampling a transition batch, MARR employs the data
augmentation on the sampled transition batch B to further
increase the diversity of samples. This data augmentation
operation takes full advantage of the NRR updates to force
networks to learn consistencies in the input representations.

Next, we introduce the details of the above techniques inte-
grated into MARR. The first is the Shrink & Perturb strategy.
Learning at a high replay ratio would make the agents incur
a risk of overfitting to earlier experiences, negatively affect-
ing the rest of the learning process (Nikishin et al., 2022).
To overcome this overfitting phenomenon, we introduce the
Shrink & Perturb strategy (Ash & Adams, 2020) to reset
the network parameters of agents periodically to maintain
the network plasticity. This reset strategy was originally
proposed to warm-start neural network training to incorpo-
rate newly arriving data without sacrificing generalization
(Ash & Adams, 2020) and has been recently employed in
the field of single-agent reinforcement learning to prevent
overfitting under a high replay ratio setting (D’Oro et al.,
2023; Schwarzer et al., 2023; Lyle et al., 2023).

The formulation of the Shrink & Perturb strategy in MARR
for the multiagent case is defined as

θit ← αθit + (1− α)θi0, for i = 1, 2, ..., N, (3)

and
ϕt ← αϕt + (1− α)ϕ0, (4)

where θi0 is agent i’s initial policy or Q-value network pa-
rameters and ϕ0 is the initial centralized critic network pa-
rameters. θit and ϕt are the current agent network parameters
and centralized critic network parameters respectively. The
interpolation factor α decides how much the current net-
work parameters are kept. The motivation behind Shrink &
Perturb is that, while current network parameters are trained
to fit the transition experiences in the replay buffer well, it
gradually loses its learning ability for newly coming experi-
ences especially when the replay ratio is high. At the same
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Algorithm 1 Multiagent Reinforcement Learning with Reset Replay (MARR)
1: Initialize each agent’s policy or Q-value network parameters θ1, θ2, ..., θN , the centralized critic network parameters

ϕ, and an empty replay buffer D. Set target network parameters θ̄i ← θi for i = 1, 2, ..., N , and ϕ̄← ϕ. Set network
update interval TU , target network update interval TC , and network reset interval TR.

2: for each time step t do
3: for each parallel environment e do
4: Each agent i takes action ai,t,e ∼ πθi(·|oi,t,e). Step into state st+1,e. Receive reward rt,e and observe oi,t+1,e.
5: Add transition data to the replay buffer: D ← D ∪ {(st,e,ot,e,at,e, rt,e, st+1,e,ot+1,e)}.
6: end for
7: if t mod TU = 0 then
8: for each update time nRR from 1 to NRR do
9: Sample a mini-batch B = {(s,o,at, r, s′,o′)} from D.

10: Perform the random amplitude scale data augmentation as Equation (5) and (6) on sampled transition batch B.
11: Update the parameters of centralized critic ϕ with the augmented transition batch B.
12: Update each agent’s policy or Q-value network parameters θ1, θ2, ..., θN with the augmented transition batch B.
13: end for
14: end if
15: for every TC time steps do
16: Update the target network of centralized critic ϕ̄← ϕ, and target networks of agents θ̄1 ← θ1, ..., θ̄N ← θN .
17: end for
18: for every TR time steps do
19: Perform Shrink & Perturb as Equation (3) and (4) on both the critic ϕ and agent networks θ1, θ2, ..., θN .
20: end for
21: end for

time, the initial network parameters are believed to own the
network plasticity for learning but with little experience or
knowledge. Therefore, we need an approach to combine the
two types of status of network parameters. The Shrink &
Perturb strategy allows interpolation between current net-
work parameters and an initialized parameter vector on each
reset, which could be regarded as injecting the plasticity of
the initial network into the current trained network.

With Shrink & Perturb, we are able to update the policy or
value networks many times (NRR) after an update interval
of a number of time steps (TU ) for environment interactions.
In this high-replay-ratio setting, for every TU time steps,
there are NRR · NB transition experiences sampled with
replacement from the replay buffer for updating. Therefore,
there is a high probability of updating with the same transi-
tion experience in the same or adjacent updating time steps.
To avoid duplicate updates, we introduce the random ampli-
tude scale (Laskin et al., 2020) here to increase the diversity
of sampled experiences. Specifically, given a sampled tran-
sition experience (s,o,at, r, s

′,o′), the formulation of the
random amplitude scale in MARR for the multiagent case is

oi ← oi ∗ z, o′i ← o′i ∗ z, for i = 1, 2, ..., N, (5)

and
s← s ∗ z, s′ ← s′ ∗ z, (6)

where z ∼ U(a, b) is a random value z sampled from an uni-
form distribution over a range [a, b]. Note that the random

amplitude scale augmentation is applied randomly across
the batch experiences but consistent across time, i.e., the
same randomization to current and next input observations
as well as states. The intuition behind it is to randomize the
amplitude of input states while maintaining their intrinsic
information (e.g., sign of inputs) (Laskin et al., 2020). This
data augmentation operation facilitates agents to learn in-
trinsic consistencies in the input representations, especially
at a high replay ratio. For more insights about the random
amplitude scale, please refer to Appendix G.

The novel combination of the two simple yet efficient ex-
tended techniques in the multiagent scenarios for the first
time enables MARL training in the parallel environment
setting with a high replay ratio. Moreover, MARR is gen-
eral and easy to plug into the mainstream off-policy MARL
algorithms with only slight modification as shown in Algo-
rithm 1. Next, we conduct experiments on various tasks of
SMAC and MPE to validate the effectiveness of MARR.

4. Experiment
In this section, we validate MARR1 on both the StarCraft
Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019)
with discrete action space and the Multiagent Particle Envi-
ronment (MPE) (Lowe et al., 2017) with continuous action
space. We show that the replay ratio could be scaled up to

1Code is available at GitHub.
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Figure 1. Results of the base MARL algorithms and their MARR-based variants on different SMAC scenarios.

even 50 in SMAC and 25 in MPE. For all the tasks, we set α
at 0.8 and the reset interval TR at 2000 for Shrink & Perturb,
and set a at 0.8 and b at 1.2 for the random amplitude scale.

4.1. SMAC

First, we evaluate our method in the StarCraft II decen-
tralized micromanagement tasks and use StarCraft Multi-
Agent Challenge environment (Samvelyan et al., 2019) as
our testbed, which has become a commonly-used bench-
mark for evaluating state-of-the-art MARL approaches. At
the beginning of each episode, the enemy units are going to
attack the allies. We train multiple agents to control allied
units respectively to beat the enemy, while a built-in hand-
crafted AI controls the enemy units. Training and evaluation
schedules such as the testing episode number and training
hyper-parameters are kept unchanged. The SMAC environ-
ment is with discrete action space and the used version of
StarCraft II is 4.6.2. We implement MARR based on the
pymarl framework (Samvelyan et al., 2019).

We perform the experiments on 7 tasks i.e., 2s vs 1sc, 2s3z,
3s5z, 10m vs 11m, 5m vs 6m, 3s5z vs 3s6z, and corridor.
These tasks include homogeneous and heterogeneous mul-
tiagent scenarios, as well as symmetrical and asymmetri-
cal multiagent scenarios for a comprehensive evaluation of
MARR. In the 2s vs 1sc map, there are 2 Stalkers against
1 Spine Crawler. For map 2s3z, both sides have 2 Stalkers
and 3 Zealots. For map 3s5z, both sides have 3 Stalkers
and 5 Zealots. In the map of 10m vs 11m, there are 10
allied marines against 11 marine enemies. In the map of
5m vs 6m, there are 5 allied marines against 6 marine ene-
mies. In the map of 3s5z vs 3s6z, there are 3 Stalkers and
5 Zealots against 3 Stalkers and 6 Zealots. In the corridor
map, 6 allied Zealots are against 24 Zerglings.

Here we plug MARR into QMIX (Rashid et al., 2018) and
QPLEX (Wang et al., 2021), two of the most representa-
tive off-policy algorithms in SMAC. Additionally, we plug
MARR into a more recent MARL algorithm ATM (Yang
et al., 2022), which employs a transformer-based working
memory mechanism and action binding to achieve superior
performance especially on the SMAC’s super hard scenarios.
We run these algorithms and their MARR-based variants
with the official codes and configurations released by their
authors. We set the number of parallel environments to
8, which means agents are interacting with 8 parallel envi-
ronments at the same time and the number of environment
interactions is increased by 8 for each time step. For MARR,
we set the replay ratio NRR to 50 (updating networks 50
times after one training episode) while this value in the de-
fault implementation is 1 (updating once after one training
episode). We use the test win rate as the performance metric.
Results of these base algorithms and their MARR-based
versions in SMAC are shown in Figure 1. The x-axis counts
the step number of environment interactions, which is lim-
ited to 1 million. The resulting plots include the median
performance over 6 independent training runs with different
random seeds as well as the shaded 25-75% percentiles.

As we can see, with MARR enabling the MARL training at
a high replay ratio of 50, the performance and learning speed
are dramatically improved when compared with the base
MARL algorithms when the environment interaction budget
is fixed (i.e., 1 million steps). In the scenarios of 2s vs 1sc,
2s3z, 3s5z, 10m vs 11m, and 5m vs 6m, MARR success-
fully boosts all the base algorithms by a large performance
margin. In the more difficult scenarios of 3s5z vs 3s6z and
corridor, MARR can also boost ATM to obtain good perfor-
mance. We also run QMIX, QPLEX, and ATM by 5 million
steps for an intuitive display of how much MARR helps
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Figure 2. Results of the base MARL algorithms and their MARR-based variants on different predator-prey tasks in MPE.

accelerate these MARL algorithms in Appendix A.

4.2. MPE

Next, we evaluate MARR in the Multiagent Particle Envi-
ronment environment (Lowe et al., 2017), which is with con-
tinuous action space. We use a set of classical predator-prey
tasks (Peng et al., 2021) that several slower cooperating cir-
cular agents, each with continuous movement action spaces,
must catch the faster circular prey on a randomly generated
two-dimensional toroidal plane with two large landmarks
blocking the way. If one agent collides with the prey while
at least another one is close enough, a team reward of +10
is given. However, if only one agent collides with the prey
without any other agent being close enough, a negative team
reward of -1 is given. Otherwise, no reward is provided. In
this task, each agent can observe the relative positions of the
other agents, the relative position and velocity of the preys,
and the relative positions of the landmarks. Besides, each
agent has an agent view radius, which restricts the agents
from receiving information about other entities (including
all landmarks, the other agents, and the preys) that are out
of range. We perform the experiments on 3 tasks with dif-
ferent agent numbers i.e., 3a where 3 agents catch 1 prey, 6a
where 6 agents catch 2 preys, and 9a where 9 agents catch
3 preys. We follow the environmental settings and training
configurations the same as Peng et al. (2021).

Here we plug MARR into MADDPG (Lowe et al., 2017)
and FACMAC (Peng et al., 2021), two representative off-
policy MARL algorithms for continuous multiagent action
space. We run these algorithms and their MARR-based
variants with the codebase and configurations from Peng
et al. (2021) and set the number of parallel environments to
4. For MARR, we set the replay ratio NRR to 25 while the
default value is 1. All the results are averaged over 6 inde-
pendent runs with different random seeds and the resulting
plots include the 95% confidence interval. The results of
the standard MARL algorithms and their MARR-based ver-
sions in MPE are shown in Figure 2. As we can see, MARR
greatly improves the sample efficiency of both MADDPG
and FACMAC within fixed environment interactions. We

also note that, in 6a and 9a, MARR fails to boost MADDPG
within the given environment steps. The reason behind this
may be that MADDPG is with difficulty learning in the two
scenarios and MARR cannot guarantee that it always helps
algorithms solve challenging tasks that are hard for the base
algorithm itself. We also run MADDPG and FACMAC for
5 million steps and the results are provided in Appendix B.

In both SMAC and MPE, the promising performance im-
provements of MARR over standard MARL algorithms
given the same number of environment interactions indicate
that MARR is a widely applicable approach to achieve high
sample efficiency for off-policy MARL algorithms. Next,
we conduct the ablation studies and experimental analysis
to validate each essential element ensembled in MARR.

4.3. Parallel Setting versus Series Setting

We first conduct an ablation study to verify the hypothesis
that the parallel setting is more suitable for training at a high
replay ratio than the series setting. We run QMIX at a series
environment setting and a parallel environment setting (8 en-
vironments) with different replay ratios. Both settings have
the same number of environment interactions of 1 million.
The results are shown in Figure 3. ‘Series’ means QMIX
in the series environment setting. ‘Parallel’ means QMIX
in the parallel environment setting with 8 parallel environ-
ments. We could see that, when the replay ratio is too low or
too high, the learning performance decreases significantly.
Only with a proper replay ratio (e.g., NRR = 1 in the series
setting and NRR = 10 in the parallel setting), the algorithm
can achieve relatively good performance. Importantly, we
see the parallel setting supports a higher replay ratio than
the series setting. For example, when the replay ratio is
10, QMIX achieves the highest test win rate in the parallel
setting while failing to learn in the series setting with the
same replay ratio. Although the parallel setting supports a
high NRR, it still fails to train the algorithm with a fixed
number of environment interactions when NRR continually
increases to a much larger value (e.g., NRR is 50 or higher).
This naturally calls for a technique to support higher replay
ratios for sample efficiency and MARR achieves this.
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Figure 3. Comparison of different replay ratios in the series and par-
allel environment settings with 1 million environment interactions.
‘Parallel’ means QMIX in the parallel environment setting with 8
parallel environments. ‘MARR’ means MARR-based QMIX in
the parallel environment setting with 8 parallel environments.

4.4. Experiments of Replay Ratio for MARR

Another interesting ablation study is how MARR performs
at different replay ratios. To answer this question, we run
MARR-based QMIX in 1 million environment interactions
with NRR ranging from 1 to 100. The results are provided
in Figure 3. With increased replay ratios, the performance
of MARR improves until NRR = 50. However, a larger
replay ratio such as NRR = 100 also hurts the performance
of MARR. This may result from overfitting by training with
the same transition data in the replay buffer too many times.
Moreover, we want to point out that the optimal replay ratio
may differ for each scenario although NRR = 50 achieves
the best performance among several replay ratios on the two
tested scenario cases. Meanwhile, we also plot the learning
process of QMIX in each setting with optimal replay ratios,
which is shown in Figure 4. We clearly see that, throughout
the learning process, MARR significantly boosts the perfor-
mance of QMIX in terms of the same interaction steps by
training with NRR at 50.

4.5. Ablation Study for MARR

Then we conduct the ablation study to validate each com-
ponent of MARR, especially the Shrink & Perturb strategy.
We plot the mean test win rate with the 95% confidence in-
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Figure 4. Results of QMIX in the series setting, QMIX in the
parallel setting, and MARR-based QMIX in the parallel setting
with their optimal replay ratios at indicated in Figure 3 respectively.
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Figure 5. Ablation study for each component of MARR. The ‘w/o
S&P’ is MARR without Shrink & Perturb while the ‘w/o RAS’
is MARR without random amplitude scale. If MARR is without
both Shrink & Perturb and random amplitude scale, it degrades to
QMIX. All the methods are running with replay ratio NRR at 50.

terval as the error bar. The results are shown in Figure 5. As
we can see, if MARR is without Shrink & Perturb (MARR
w/o S&P), the performance degenerates significantly in both
tested scenarios. Meanwhile, the random amplitude scale is
helpful to further boost the sample efficiency when Shrink
& Perturb is employed to enable high-replay-ratio train-
ing. However, the random amplitude scale itself contributes
slightly when there lacks of Shrink & Perturb. This compo-
nent ablation study indicates that Shrink & Perturb is the
vital technique to enable MARL training at a high replay
ratio while the random amplitude scale could further boost
the sample efficiency when Shrink & Perturb is employed.

4.6. Experimental Analysis of Network Plasticity
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Figure 6. Measurements of L2 gap between the trained MARR-
based QMIX and QMIX networks to their initial networks respec-
tively. The replay ratio NRR is set to 50 for each method.
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Here we experimentally show how MARR works to main-
tain the network plasticity to newly coming transition ex-
periences. As we hold the assumption that initial network
parameters own the full plasticity to learn from experiences
compared with the trained network parameters (Lyle et al.,
2023), we use the L2 gap between the trained network pa-
rameters and the initial network parameters to measure the
network plasticity as inspired by Kumar et al. (2023).

The proxy measurements of network plasticity of MARR
and QMIX are shown in Figure 6. MARR maintains the
L2 gap to the initial network parameters at a lower level
during the training process when compared with QMIX.
This indicates that MARR maintains the ability to fit newly
coming experiences at a high replay ratio by periodically
injecting plasticity through Shrink & Perturb. Meanwhile,
the network parameters of QMIX are departing from the
initial network parameters fast with training proceeding.

4.7. Comparison with Other Plasticity Techniques
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Figure 7. Results of different methods for maintaining plasticity in
SMAC. The replay ratio for all methods in both scenarios is at 50.

Here we compare MARR with other plasticity techniques.
Kumar et al. (2023) propose L2 Init to maintain network
plasticity by designing an L2 regularization loss function
toward initial parameters in the domain of continual learning.
Another natural baseline is weight decay, which regularizes
the network parameters to prevent overfitting, especially
with a high replay ratio (Schwarzer et al., 2023). We also
incorporate a baseline of multiagent permutation (MAP)
in the global state (Ye et al., 2022) to shuffle the entities
in the agent group and enemy group respectively for data
augmentation. Besides, we use layer normalization as a
baseline. Figure 7 shows the results of different plasticity

techniques and MARR performs best in the tested scenarios.

4.8. Analysis of Running Time

MARR enables parallel MARL training at a high replay ratio
to reduce environment interactions, which shifts the running
time from environment simulation to network parameter
training. This brings benefits to the real-world application of
MARL algorithms by reducing the expensive environment
interactions to collect transition data. Ideally, the running
wall-clock time of MARL could be mainly decomposed as

htot =
Ttot ∗ henv

Penv
+

Ttot ∗NRR ∗ hupt

TU
+ hrst, (7)

where Ttot is the total step number of environment interac-
tions and henv is the running time per environment interac-
tion. Penv is the number of parallel environments and equals
1 in the series environment setting. NRR is the replay ratio,
TU is the updating interval, and hupt is running time per
network updating. The last term hrst is the running time for
rest operations. As indicated by Equation (7), when training
in the parallel environment setting, the first term can be re-
duced. However, the performance also decreases as shown
in Figure 3 where the default NRR = 1 in the series setting
performs poorly in the parallel setting. MARR is able to
compensate for the performance with the same environment
interaction budget by increasing NRR in the second term.
Although this also leads to an increase in the second term,
in realistic scenarios with sophisticated system dynamics to
simulate, the first term dominates htot as henv ≫ hupt. In
this case, MARR could help the MARL algorithms achieve
higher performance with less running wall-clock time.

5. Conclusion
In this paper, we propose MARR to enable MARL training
with a high replay ratio for the first time. First, we intro-
duce the Shrink & Perturb strategy into MARL to maintain
the network plasticity during the high-replay-ratio train-
ing process. Second, we integrate the random amplitude
scale to further boost performance by exploiting the re-
peated updates. The novel combination of these efficient
and synergistic techniques extended for the multiagent case
greatly improves the sample efficiency of the mainstream
off-policy MARL algorithms with only slight modification.
Experiments in both the classical MPE and the challenging
SMAC demonstrate that MARR significantly improves the
performance of mainstream off-policy MARL approaches
with much fewer environment interactions, which is of great
potential for the application of MARL in the real world.

For future work, on the one hand, further understanding and
revealing the underlying mechanism for the plasticity loss in
MARL is important. On the other hand, extending MARR
into offline or continual MARL settings is also promising.
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A. Additional Experimental Results in SMAC
Here we give the performance of QMIX, QPLEX, and ATM with 5 million environment interaction steps to demonstrate
how much MARR helps accelerate these MARL algorithms with discrete action space. The resulting plots include the
median performance over 6 independent training runs with different random seeds as well as the shaded 25-75% percentiles.
Results are shown in Figure 8. As we can see, MARR greatly boosts the performance of all three MARL algorithms with
much fewer environment interactions. Even on the super-hard scenarios 3s5z vs 3s6z and corridor, MARR improves the
performance of ATM by a large margin with 1 million environment interaction steps while ATM has test win rates near 0
with even 5 million environment interaction steps. These extending results further validate that MARR achieves high sample
efficiency for MARL algorithms by enabling training MARL algorithms at a high replay ratio.
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Figure 8. Results on different SMAC scenarios. The number of environment interaction steps for standard QMIX, QPLEX, and ATM is 5
million. The environment interaction steps for MARR-based QMIX, MARR-based QPLEX, and MARR-based ATM are 1 million.

B. Additional Experimental Results in MPE
Here we also give the performance of MADDPG and FACMAC with 5 million environment interaction steps to demonstrate
how much MARR helps accelerate the two off-policy MARL algorithms with continuous action space. The resulting plots
include the averaged performance over 6 independent training runs with different random seeds as well as the shaded 95%
confidence interval. Results of the two algorithms and their MARR-based variants in MPE are shown in Figure 9.

As we can see, MARR greatly boosts the performance of both the MARL algorithms with much fewer environment
interactions. As shown in Figure 9(a), MARR successfully boosts both the MADDPG and FACMAC. The performance of
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Figure 9. Results on different predator-prey tasks in MPE. The environment interaction steps for standard MADDPG and FACMAC are 5
million. The environment interaction steps for MARR-based MADDPG and MARR-based FACMAC are 2 million.

MARR-MADDPG and MARR-FACMAC at the end of 2 million steps is even better than the performance of MADDPG
and FACMAC at the end of 5 million steps. Figure 9(b) and Figure 9(c) show that MARR improves the performance of
FACMAC but fails to boost MADDPG within 2 million environment interaction steps. The reason may be that MADDPG
has difficulty in learning this scenario and MARR-based MADDPG meets the same problem. Nevertheless, MARR shows a
strong ability to accelerate the learning of MARL algorithms with much fewer environment interactions.

C. Hyperparameters in MARR
For all the tasks in both the SMAC and MPE, we set the interpolation factor α at 0.8 and reset interval TR at 2000 for
the Shrink & Perturb, and set a at 0.8 and b at 1.2 for the random amplitude scale. The interpolation factor for Shrink &
Perturb is recommended in the previous single-agent work (D’Oro et al., 2023) and we follow this recommended value. The
hyperparameter values for the random amplitude scale are the default configurations in the original paper (Laskin et al.,
2020). Therefore, we use these default values and do not exhaustively tune these hyperparameters for MARR.

D. Additional Ablation Studies
D.1. Further Comparison of Parallel QMIX and MARR

From Figure 4, we see QMIX in the parallel environment setting with replay ratio NRR at 10 performs well. Here we
conduct an ablation study to see whether the random amplitude scale could further boost and how it compares with MARR.
The results are shown in Figure 10. We see that even though QMIX has the optimal replay ratio and the random amplitude
scale in the parallel setting, MARR still learns much faster than it in the learning process. This further validates the necessity
of the Shrink & Perturb strategy of MARR in the high-replay-ratio MARL training setting.
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Figure 10. Results of QMIX with random amplitude scale (‘Parallel + RAS’) and MARR-based QMIX in the parallel setting.

D.2. Ablation Study for Interpolation Factor of MARR

The core hyperparameter in MARR is the interpolation factor α. Although we follow the recommended interpolation
factor value α = 0.8 in the multiagent version of Shrink & Perturb, we also conduct an ablation study to show how the
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interpolation factor α, which decides how much current network parameters are kept, influences the performance of MARR.
The results of different α for MARR in both 5m vs 6m and 10m vs 11m are shown in Figure 11.
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(c) Test win rate on 10m vs 11m

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
M Steps

0

1000

2000

3000

4000

L2
 G

ap

10m_vs_11m

 = 0.0
 = 0.2
 = 0.4
 = 0.6
 = 0.7
 = 0.8
 = 0.9

(d) L2 gap on 10m vs 11m

Figure 11. Ablation study for the interpolation factor of Shrink & Perturb in MARR.

We can see that, although the smaller α has a closer L2 distance to the initial network parameters, MARR with a small α
value does not perform well. This is because the learned knowledge in the trained network parameters is lost by resetting a
large portion of network parameters to the initial ones. On the other hand, when α = 0.9, the performance of MARR also
decreases as the network plasticity gradually loses as indicated by the increasing L2 gap to the initial network parameters,
which is shown in Figure 11(b) and 11(d). Only with a proper interpolation factor α such as 0.8, the learning progress and
the network plasticity of MARR-based algorithms could be balanced towards the desired sample efficiency.

E. Experiments of Replay Ratio for MARR in Series Setting
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(a) Different replay ratios in series and MARR-series setting on 5m vs 6m
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(b) Different replay ratios in series and MARR-series setting on 10m vs 11m

Figure 12. Comparison of different replay ratios in the series environment setting with 1 million environment interaction steps. ‘Series’
means QMIX in the series environment setting. ‘MARR-Series’ means MARR-based QMIX in the series environment setting.

We also conduct experiments on the replay ratio of MARR in the series setting. In Figure 12, we can see the trend that
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MARR shifts the replay ratio of QMIX to a higher degree in the series setting with higher performance. It indicates that
MARR also has the ability to improve the sample efficiency of MARL algorithms in the series environment setting.

F. How Removing Shrink & Perturb and Random Amplitude Scale Affect Replay Ratio
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Figure 13. How removing Shrink & Perturb and removing Random Amplitude Scale affect the replay ratio in 1 million environment
interaction steps. All settings are running in parallel environments. ‘MARR - Random Amplitude Scale’ means removing the Random
Amplitude Scale. ‘MARR - Shrink & Perturb’ means removing the Shrink & Perturb. We report the median test win rate.

In Figure 13, we can see how removing the Random Amplitude Scale and Shrink & Perturb affects the optimal replay
ratio. When removing the Shrink & Perturb, the optimal replay ratio changes from 50 to 10. When removing the Random
Amplitude Scale, the optimal replay ratio is kept at 50.

G. Ablation Study on Random Amplitude Scale
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(a) RAS ablation study on 5m vs 6m
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(b) RAS ablation study on 10m vs 11m

Figure 14. How intrinsic consistencies affect the performance of MARR. ‘RAS’ means Random Amplitude Scale.

The intrinsic consistencies mean that some intrinsic information is unchanged by random amplitude scaling such as the
sign of inputs along adjacent time steps (Laskin et al., 2020). For example, in SMAC, the agent’s local observation features
include the relative x and relative y to other units. Through the signs of the relative x and relative y, the agent could know
the direction of the allies and enemies (x > 0 and y > 0 mean that the unit is upper right to the agent). This is a kind of
intrinsic information. The intrinsic consistency is ensured by random amplitude scaling under the common setting such as
z ∼ U [0.8, 1.2] on each transition sample (st,ot,a, r, s

′
t+1,o

′
t+1) across the adjacent time steps t and t+ 1.

Here we show how intrinsic consistencies behind the Random Amplitude Scale (RAS) affect the performance of MARR.
Besides MARR with standard RAS, we also implement two variants. The first is RAS without the consistent scale, which
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means the amplitude scale z is different for the current observation and the next observation, as well as different for the
current state and the next state. The second is RAS without the consistent sign, which means |z| is the same for o and o′,
as well as the same for s and s′, but with random signs (+ or −). The results are shown in Figure 14. We can see that
intrinsic consistencies such as the same amplitude among two adjacent steps and the same amplitude sign are important to
the Random Amplitude Scale.

H. MARR for Fully-Decentralized MARL
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(a) MARR-IQL on 5m vs 6m
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Figure 15. Performance of IQL and MARR-based IQL on 5m vs 6m and 10m vs 11m.

In this section, we test whether MARR could be generalized into fully decentralized MARL algorithms. We integrate
MARR into the classical Independent Q-Learning (IQL) and the results are shown in Figure 15. Impressively, MARR could
significantly boost the sample efficiency of IQL, especially in the scenario of 10m vs 11m.

I. Limitations
Our study may have limitations under extensive consideration. One main limitation of MARR is that it is not suitable for the
on-policy MARL algorithms as it utilizes the replay buffer with a high replay ratio. Another potential limitation or challenge
is the data quality when applying the MARR algorithm to realistic multiagent scenarios. As MARR enforces a high relay
ratio to the collected data samples, the data quality becomes important. When applying MARR to practical tasks, if the
environment contains a lot of noise to pollute the collected data, MARR may not deal with this case well. Finally, when
using the random amplitude scale for special cases such as linearly scaled features, it needs caution and further investigation.
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