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Abstract— Physical interaction with textiles, such as assistive
dressing or household tasks, requires advanced dexterous skills.
The complexity of textile behavior during contact interactions
is influenced by the material properties of the yarn and by
the textile’s construction technique, which are often unknown
in real-world settings. Moreover, identification of physical
properties of textiles through sensing commonly available on
robotic platforms remains an open problem. To address this,
we introduce Elastic Context (EC), a method to encode the
elasticity of textiles using stress-strain curves adapted from
textile engineering for robotic applications. We employ EC to
learn a data-driven model of textiles that captures the variations
of elastic force responses of textiles in contact-rich scenarios.
Moreover, we examine the effect of EC dimension on accurate
force modeling of real-world non-linear elastic responses during
contact interactions.

I. INTRODUCTION AND BACKGROUND

Manipulation of deformable objects such as textiles is
common in medical robotics [1], human-robot interaction [2],
automation of household tasks [3], assistive dressing [4],
[5]. In such robotic tasks, physical properties of textiles
such as elasticity, surface friction, and flexibility play a
fundamental role on the interaction dynamics involved in
the manipulation. An example of how elasticity influences
a pulling interaction is shown in Fig. 1. However, textile
objects are challenging to manipulate due to complex dynam-
ics and often unknown physical properties such as elasticity,
friction, density distribution [6]. Moreover, these properties
are difficult to estimate in online robotics manipulation
scenarios [7].

We address the problem of encoding the elastic properties
of textile objects and learning data-driven models of contact
interactions that generalize to variations of elastic properties.
In particular, these interactions might come either from robot
actions, such as stretching or shearing the object, or they
could be due to collisions with external objects, like the
body of a person in an assistive dressing scenario. In both
cases, we can reason about the interaction dynamics by
identifying three different stages. In the first stage (free
manipulation), no stress is involved during the manipulation
as the deformable nature of the textile makes it compliant
with the robot’s movement or external objects. In the second
phase (stress manipulation), the textile starts to induce forces
on the end-effector and its elastic properties become relevant
to characterize the interaction dynamics of the manipulation.
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Fig. 1: The role of elasticity in the manipulation of different
textile samples, exhibiting different behaviors under the same
pulling force.

Finally, after a certain force known as rupture force, the
textile breaks. Often in robotic tasks, objects are manipulated
within the free manipulation phase. Nevertheless, precise
modeling of the stress manipulation phase can be useful for
applications requiring a constraint over the forces exerted on
the deformable object or to assure that a specific action is
correctly performed [2], [6]. Modeling the elastic behavior
of textiles has been addressed in two rather distant com-
munities: textile engineering [8] and computer graphics [9],
[10]. The analytical models from these communities are
computationally expensive and commonly not applicable
in real-time robotic manipulation. Moreover, such models
build on parameters measured with high-precision devices
under controlled experiments [11], [12]. Today, there are no
commonly adopted and annotated datasets for which these
parameters are provided, requiring thus alternative strategies
to encode elastic properties of textiles.

Our previous work introduced a taxonomy considering
the yarn material and the fabric construction technique to
understand textile properties [13]. To meet this goal, it relied
on physical interactions (pulling and twisting) and force-
torque measurements. We build upon this work and encode
elastic behaviors of textiles through Elastic Context (EC).
To formulate the Elastic Context (EC) we draw inspiration
from industrial techniques to characterize textiles, namely
the stress-strain curve [14]. These curves can be obtained by
recording the forces perceived by a robot when manipulating
different textiles.



We experimentally evaluate the EC on synthetic data
obtained in the PyBullet simulator [15], demonstrating the
ability of our approach to encode the complex elastic re-
sponse of a wide range of textile. Furthermore, with force
measurements collected on two Franka-Emika Panda robots
interacting with textiles and an external rigid object, we show
that increasing the dimensionality of the EC plays an impor-
tant role in accurately modeling the complex elastic response
of textiles when an interactive scenario is considered.

II. ELASTIC CONTEXT FOR DATA-DRIVEN MODELS

To capture the diverse range of potential elastic responses
of textiles during contact interactions, we utilize a context-
informed dynamics model that incorporates our proposed
encoding of textile’s elastic properties, which we refer to
as the Elastic Context (EC).

A. Elastic Context

A potential measure of a material’s elasticity is the elastic
modulus, which evaluates the material’s resistance to de-
formation under stress [16]. Its value can be derived by
measuring the slope of the stress-strain curve corresponding
to a specific material or textile sample. The stress σ is
defined as the deformation force F [N] acting on the cross-
sectional area A [m2] of the sample, while the strain ε

corresponds to the percentage of displacement ∆l of the
sample with respect to its original length l0. Using these
quantities, the elastic modulus is calculated as e = σ/ε .

Fig. 2 presents stress-strain curves for two real-world tex-
tile samples. The values were obtained from force-feedback
readings of the dual-arm robotic setup shown in Fig. 3.
The robots were pulling the samples with l0 = 0.18 m and
A = 0.18 × 10−3 m2 until a stress σmax = 30 KPa was
reached. Fig. 2 indicates how encoding elastic properties
of textile with the elastic modulus can only describe small
displacements and linear behaviors. We observe that a linear
approximation can accurately describe the rigid sample (blue
line) but loses accuracy for the elastic sample (red line),
which increases its rigidity with increasing stress.

To overcome the limitation of the elastic modulus, we
define EC as the combination of elastic modules of a given
textile evaluated at nEC equidistant points between 0 and
σmax on the stress-strain curve, where nEC determines the
dimension of the EC. We thus represent the EC as a vector
EC = [e1, ...,enEC ] ∈ RnEC , where ei = σi/εi is the elastic
modulus evaluated from the textile stress-strain curve at
the corresponding stress σi. Since both stress and strain
measurements are normalized by the size of the sample, the
EC is a consistent definition of elasticity that is comparable
between textiles of different sizes as long as σmax is fixed.

B. Context Informed Dynamics Model

We propose to leverage the EC along a data-driven dy-
namic model of the force response of the textile during a
contact interaction. We assume the contact interaction to
happen between the textile and an external rigid object, and
we aim at predicting the force response of the textile from the

Fig. 2: Stress-strain curves of a rigid (blue) and an elastic
(red) textile sample: with nEC = 1 we recover the elastic
modulus, describing a linear elastic behavior that accurately
represents the rigid sample (blue) but not the elastic one
(red); with a higher-dimensional EC (nEC = 10), we are
able to better describe the non-linear behavior of the elastic
sample.

moment of first contact with the rigid object. In particular, at
time t, a dual arm robotic manipulator grasping the textile,
which is in contact with an external object, applies an action
at = ∆xt

gripper ∈ R3, resulting in new positions xt+1
gripper of the

gripper and a textile specific force F t+1
k perceived at the end-

effectors. Our goal is to learn a model that leverages the EC
to predict F t+1

k , given the action at performed by the end-
effector.

For the simulation experiments, we model the force dy-
namics through a Graph Neural Network [17], [18] as we
can easily access the ground truth graph representing the
textile. We can thus formulate the problem of learning the
force dynamics of textiles as learning the parameters θ of
a Graph Neural Network (GNN) Λθ . We employ a standard
message-passing architecture for the GNN model Λθ [19].
Specifically, let Gk = (Vk,Ek) be a graph representing a
textile sample k ∈ K, where V is the set of nodes, E
the set of edges and K is the set of all possible elastic
samples. We define the features of each node v ∈ Vk by
their position xt

v ∈ R3 in the Euclidean space at time step
t. The edges e ∈ Ek instead describe the elastic relation
between two connected nodes. We propose to define the
features of the edges as ECk ∈RnEC evaluated for the specific
elastic textile k. EC is therefore a feature shared among
all the edges encoding the elastic property of the textile
into Gk. Thus, the input graph is composed by the node’s
features, the action concatendated to the features of the
grasped nodes, and the edge features, represented by the EC.
The output of the model is the prediction of F t+1

k , which
can be useful for applications requiring a constraint over the
forces exerted on the deformable object, e.g., robotic dressing
or bathing assistance. The overall model Λ can be learned
using a dataset D = {(Gt

k,F
t+1
k ,at

k,ECk)}∀k∈K , optimising
the parameters θ using a supervised loss on the prediction of



the nodes position and the force exerted at the grasp-nodes:

L = ED

[
d(Λθ (Gt

k,a
t
k,ECk), F t+1

k

]
, (1)

where d is a measure of the distance between the prediction
and the ground-truth of graphs and forces. In our case, d is
implemented as the sum of Mean-Squared Error (MSE) of
the graph’s position and of the force.

For the real-world experiments we rely on a dataset
D = {(F t+1

k ,at
k,ECk)}k∈K which does not use the ground

truth graph Gt
k as it is not easily accessible in the real world.

We leave the collection of the real-world ground-truth graphs
Gt

k for future work, which could be performed leveraging
recent approaches for state estimation and dynamics pre-
diction for cloth [20]–[22]. As we do not have graphs,
for modeling the force dynamics we resort to a standard
Multi-layer Perception (MLP) which receives as input the
concatenation of the action and the EC, and outputs the the
prediction of F t+1

k . The MLP is trained as the GNN with a
MSE loss evaluated between the model predictions and the
ground truth forces.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the EC in
modeling linear and non-linear dynamics of textile objects
for robotic manipulation tasks. In particular, we show using
simulation that EC with GNNs leads to more accurate force-
feedback predictions of unseen elastic textiles. Furthermore,
we analyze the role of the dimensionality of EC both in
simulation and real-world scenarios, highlighting the impor-
tance of increasing the EC dimension (nEC) in presence of
non-linear force dynamics.

A. Experimental Setup

Task: We evaluate the performance of EC in predicting
forces perceived by a robot when manipulating unseen elastic
samples. To this end, we devised a two-stage simplified assis-
tive dressing task. In the first stage, a dual-arm robot is tasked
to stretch a textile up to a maximum stress σmax = 3×104

Pa, corresponding to a Fmax = σmax ×A0 [N] force perceived
at the end-effector for a textile with cross-sectional area A0
[m2]. The forces recorded during this interaction are used to
recover the EC, following the procedure defined in Section
II. In the second stage, the same dual-arm robot is tasked
with pulling the sample over a sphere, resembling the head
of a person, up to a cumulative gripper displacement of amax
[cm] from the instant the textile starts to induce force on the
end-effector.

The goal of our model is to perform a force-forecasting
task, which consists of predicting the force response of the
textile from the moment of contact with the object until
the goal displacement is reached. An overview of the setup
is presented in Fig. 3. We reproduced the aforementioned
scenario both in the real world and in the PyBullet simula-
tor [15], [23]. To manipulate the textile in the real-world
setting we used two Franka-Emika Panda equipped with
Optoforce Force/Torque sensors, while in the simulation we
only used free-floating end-effectors and their force sensors.

Fig. 3: Simulated (left) and real-world (right) environments
to instantiate the simplified assistive dressing task: the y-
axis corresponds to the pulling direction used to collect the
context, while the z-axis is related to the task execution.

Data Collection: The simulation dataset
DSIM = {(Gt

k,F
t+1
k ,at

k,ECk)}k∈K was collected performing
the aforementioned task where we varied for each execution
the elastic properties k ∈ K of the simulated textile. K =
[20, 119] was defined empirically by selecting the elasticity
object parameter to avoid unstable behaviors of the mesh
during the collision with the sphere. We uniformly sampled
k with a step size of 1 while keeping the bending and
damping properties fixed to 0.1 and 1.5 respectively,
obtaining a total of 100 different elastic samples.

For the real-world experiments, where the ground truth
elastic properties of the textile are not easily accessible,
we collected a dataset DRW = {(F t+1

k ,at
k,ECk)}k∈K defining

K according to a proxy categorization of textile properties
represented by the taxonomy proposed in [13]. We chose
40 different combinations of yarn material to maximize
the variance of the elastic responses, while keeping the
construction technique fixed to knitted as the one leading
to more elastic behaviors.

B. Elastic Context Evaluation

We start by evaluating the role of the Elastic Context in
the simulation environment as the ground truth properties of
the simulated textile model are easily accessible, allowing
us to compare against an oracle baseline. We carry out the
evaluation on the force-forecasting task, where we compare
the force predictions of our proposed GNN informed with
the EC to a baseline GNN that has no access to the EC
information, and to an Oracle model that knows the ground
truth properties of the textile. Furthermore, we evaluate the
effect the dimension of the EC has on simulated force
dynamics, where we considered nEC = {1,2,5}.

Table I presents the test MSE of the force predictions
evaluated on 20 unseen elastic samples. The results shows
that the baseline model performs worse than the GNNs that
have access to elastic information. Moreover, the models
that levarage the EC have comparable performances to the
oracle, supporting our hypothesis that EC enables the models
to leverage elastic information. These findings are further
confirmed by the qualitative results of the force forecasting
prediction visualized in Fig. 4. The baseline model (Fig, 4a)



NO EC: all collapse to the mean

(a) Baseline

EC: more accurate predictions

(b) GNN + EC (nEC = 1)

Fig. 4: Force-forecasting predictions of the baseline model (a) and the GNNs + EC with dimension nEC = 1 model (b)
evaluated on 5 test elastic samples. The results show that the GNN + EC model generalizes to unseen elastic textiles,
leveraging the information provided by the EC.

predicts the same force evolution for all test samples,
while the GNN with EC nEC = 1 (Fig, 4b) successfully
covers a larger spectrum of the test set, improving the
accuracy of the predictions of different elastic behaviors.
These results highlight the relevance of encoding elastic
behavior of textiles, such as the EC, especially for real-world
applications requiring a constraint over the forces exerted
on the deformable object (e.g., assistive dressing or bathing
assistance). We further observe from Table I that increasing
the dimension of the EC does not lead to improvements in
the model performance, suggesting that nEC = 1 is enough
to describe the variety of simulated elastic behaviors that
assume a linear force dynamics.

TABLE I: Mean and standard deviation of the MSE of the
force-forecasting task rollout evaluated on 20 different test
samples.

Model FORCE error [N]

Oracle 0.207± 0.239
Baseline 3.169± 2.434

GNN nEC = 1 0.269± 0.301
GNN nEC = 2 0.235± 0.108
GNN nEC = 5 0.246± 0.247

C. Real-world Evaluation

In this section we showcase the relevance of increasing
the dimensionality of EC in the presence of non-linear
real-world force dynamics. To fulfill this goal, we trained
different variants of the dynamic model by varying the
dimensionality of the EC in the range nEC ∈ [0,5]. Fig. 5
presents the force prediction MSE of each model on 8 test
elastic samples averaged over 6 randomly-selected seeds,
where the test samples were randomly selected from the
dataset for each seed. Contrarily to what was observed for the
simulation experiments, these results show that increasing the
dimensionality of the EC leads to more accurate predictions
of real-world non-linear force profiles with the respect to
the models trained with an EC with dimension equal to

Fig. 5: Role of the EC dimension in real world

1 (dashed line). This outcome highlights the gap between
simulated and real-world force dynamics. An interesting
future research direction is to explore how this gap hinders
the model performance when trained using simulated data
and then directly applied to real-world textiles.

IV. CONCLUSIONS

In this work, we presented and evaluated Elastic Context
(EC), an approach to encode elasticity in data-driven models
of textiles. We have shown the role of the EC in a force
forecasting prediction task on both simulated and real world
data. The EC can be easily employed in real-world robotic
platforms, providing a simple way to understand elastic prop-
erties of textiles in scenarios where no labels are provided.
Such understanding can be of great importance in assistive
robotics and human-robot interaction scenarios, where the
manipulation of textile and other deformable objects is
considered. In fact, the proposed approach has potential
applications in manipulation tasks enabling planning through
contacts. Additionally, the work may benefit from the use of
tactile sensing and sensor fusion techniques to improve the
accuracy of the learned models.
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