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Abstract

Automatic code summarization, which aims to001
describe the source code in natural language,002
has become an essential task in software main-003
tenance. Our fellow researchers have at-004
tempted to achieve such a purpose through var-005
ious machine learning-based approaches. One006
key challenge keeping these approaches from007
being practical lies in the lacking of retaining008
the semantic structure of source code, which009
has unfortunately been overlooked by the state-010
of-the-art. Existing approaches resort to repre-011
senting the syntax structure of code by model-012
ing the Abstract Syntax Trees (ASTs). How-013
ever, the hierarchical structures of ASTs have014
not been well explored. In this paper, we015
propose CODESCRIBE to model the hierarchi-016
cal syntax structure of code by introducing017
a novel triplet position for code summariza-018
tion. Specifically, CODESCRIBE leverages the019
graph neural network and Transformer to pre-020
serve the structural and sequential information021
of code, respectively. In addition, we propose022
a pointer-generator network that pays attention023
to both the structure and sequential tokens of024
code for a better summary generation. Experi-025
ments on two real-world datasets in Java and026
Python demonstrate the effectiveness of our027
proposed approach when compared with sev-028
eral state-of-the-art baselines1.029

1 Introduction030

Code documentation in the form of code comments031

has been an integral component of software de-032

velopment, benefiting software maintenance (Iyer033

et al., 2016a), code categorization (Nguyen and034

Nguyen, 2017) and retrieval (Gu et al., 2018). How-035

ever, few real-world software projects are well-036

documented with high-quality comments. Many037

projects are either inadequately documented due038

to missing important code comments or inconsis-039

tently documented due to different naming conven-040

1The source code of CODESCRIBE is available at https:
//github.com/anonymousrepoxxx/CODESCRIBE

tions by developers, e.g., when programming in 041

legacy code bases, resulting in high maintenance 042

costs (de Souza et al., 2005; Kajko-Mattsson, 2005). 043

Therefore, automatic code summarization, which 044

aims to generate natural language texts (i.e., a short 045

paragraph) to describe a code fragment by extract- 046

ing its semantics, becomes critically important for 047

program understanding and software maintenance. 048

Recently, various works have been proposed for 049

code summarization based on the encoder-decoder 050

paradigm, which first encodes the code into a dis- 051

tributed vector, and then decodes it into natural- 052

language summary. Similarly, several works (Iyer 053

et al., 2016a; Allamanis et al., 2016) proposed to 054

tokenize the source code into sequential tokens, 055

and design RNN and CNN to represent them. One 056

limitation of these approaches is that they only con- 057

sider the sequential lexical information of code. To 058

represent the syntax of code, several structural neu- 059

ral networks are designed to represent the Abstract 060

Syntax Trees (AST) of code, e.g., TreeLSTM (Wan 061

et al., 2018), TBCNN (Mou et al., 2016), and Graph 062

Neural Networks (GNNs) (LeClair et al., 2020). To 063

further improve the efficiency on AST representa- 064

tion, various works (Hu et al., 2018a; Alon et al., 065

2018) proposed to linearize the ASTs into a se- 066

quence of nodes or paths. 067

Despite much progress on code summarization, 068

there are still some limitations in code comprehen- 069

sion for generating high-quality comments. Partic- 070

ularly, when linearizing the ASTs of code into se- 071

quential nodes or paths, the relationships between 072

connected nodes are generally discarded. Although 073

the GNN-based approaches can well preserve the 074

syntax structure of code, they are insensitive to 075

the order of nodes in AST. For example, given 076

the expressions a=b/c and a=c/b, current ap- 077

proaches cannot capture the orders of variables b 078

and c. However, these orders are critical to accu- 079

rately preserve the semantics of code. 080

To address the aforementioned limitation, this 081
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Module(body=[Assign(
  targets=[Name(
    id='a',
    ctx=Store())],
  value=BinOp(
    left=Name(
      id='b',
      ctx=Load()),
    op=Div(),
    right=Name(
      id='c',
      ctx=Load())))])
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Load Load
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{0,0,0}

{1,0,0}
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{4,1,0} {4,3,0}

{3,0,-1}

{4,1,-1} {4,3,-1}

Figure 1: The AST of Python code snippet “a = b / c”. The left is the text form of AST, the middle shows the
tree structure of AST, and the right specifies triplet positions for all nodes of AST structure.

paper proposes to model the hierarchical syntax082

structure of code using triplet position, inspired by083

the positional encoding used in sequence model-084

ing (Gehring et al., 2017; Vaswani et al., 2017), and085

incorporates the triplet position into current GNNs086

for better code summarization. The triplet position087

records the depth, width position of its parent, and088

width position among its siblings for each node.089

To utilize the triplet position in AST, this pa-090

per proposes CODESCRIBE, an encoder-decoder-091

based neural network for source code summariza-092

tion. Specially, we initialize the embedding of each093

AST node by incorporating the triplet positional094

embeddings, and then feed them into an improved095

GNN, i.e., GraphSAGE (Hamilton et al., 2017)096

to represent the syntax of code. In addition, we097

also account for the sequential information of code098

by using a Transformer encoder (Vaswani et al.,099

2017). In such a case, the decoding process is100

performed over the learned structural features of101

AST and sequential features of code tokens with102

two multi-head attention modules. To generate103

summaries with higher quality, we further design104

a pointer-generator network based on multi-head105

attention (Vaswani et al., 2017), which allows the106

summary tokens to be generated from the vocabu-107

lary or copied from the input source code tokens108

and ASTs. To validate the effectiveness of our pro-109

posed CODESCRIBE, we conduct experiments on110

two real-world datasets in Java and Python.111

Overall, the contributions of this paper are two-112

fold: (1) It is the first time that we put forward a113

simple yet effective approach of triplet position to114

preserve the hierarchical syntax structure of source115

code accurately. We also incorporate the triplet po-116

sition into an adapted GNN (i.e., GraphSAGE) for117

source code summarization. (2) We conduct com-118

prehensive experiments on two real-world datasets119

in Java and Python to evaluate the effectiveness120

of our proposed CODESCRIBE. Experimental re-121

sults demonstrate the superiority of CODESCRIBE 122

when comparing with several state-of-the-art base- 123

lines. For example, we get 3.70/5.10/4.77% abso- 124

lute gain on BLEU/METEOR/ROUGE-L metrics 125

on the Java dataset, when comparing with the most 126

recent mAST+GCN (Choi et al., 2021). 127

2 Hierarchical Syntax in Triplet Position 128

Recent studies have showed promising results by 129

using AST context for tasks based on code repre- 130

sentation learning (Yao et al., 2019; Zhang et al., 131

2019; Choi et al., 2021). Therefore, our work also 132

relies on AST information besides source code to- 133

kens. As a type of intermediate representation, 134

AST represents the hierarchical syntactic structure 135

for source code, which is an ordered tree with la- 136

beled nodes (cf. Figure 1). In this work, we divide 137

the nodes into two categories: (1) function node 138

that controls the structure of AST and function re- 139

alization, e.g., Module and Assign in Figure 1, 140

and (2) attribute node that provides the value or 141

name of its parent function node, which is always 142

visualized as leaf node, such as ‘a’ and ‘b’ in dot- 143

ted boxes of Figure 1. 144

Due to the strict construction rules of AST, po- 145

sitions are crucial for AST nodes. For example in 146

Figure 1, the node BinOp has two children with 147

the same label Name. If the positions of the two 148

siblings are swapped, the source code will become 149

a=c/b, which is totally different from the intent 150

of the code a=b/c. However, GNNs are insensi- 151

tive to the positions of neighbouring nodes when 152

encoding such tree structures. Based on this obser- 153

vation, we specify triplet positions for AST nodes 154

to retain accurate structural information in AST 155

learning. The triplet position of a node includes: 156

(1) the depth of the node in the AST, (2) the width 157

position of its parent node in the layer, and (3) the 158

node’s width position among its siblings, which 159

can also distinguish function node from attribute 160
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Figure 2: The architecture of CODESCRIBE model.
Att., Res., and Norm. denote attention, residual con-
nection, and layer normalization, respectively.

node. That is, the width position of a function node161

is a non-negative integer starting from 0, while the162

width position of an attribute node is a negative in-163

teger counting from -1. Note that, width positions164

are estimated in a breadth traversal from left to165

right. With such triplet indices specified, all nodes166

can be marked with unique positions in a given167

AST.168

Taking a Python code snippet a=b/c as an169

example, Figure 1 illustrates its AST structure170

with triplet positions of nodes. Specifically, by171

traversing the tree, we can represent the function172

node (Name,{2,0,0}) as the first child node173

of node (Assign,{1,0,0}): the depth posi-174

tion 2 means the third level (counting from the175

top to bottom starting with 0; the second width176

position 0 means that the parent node Assign177

is the first function node at this level (counting178

from the left to right); and the third position 0179

indicates that the node is the first (counting from180

left to right) among its siblings (i.e., all children181

nodes of node Assign). Another example is182

the node (‘a’,{3,0,-1}). The difference lies183

in the third position that represents it is an at-184

tribute node and it is the first among the siblings.185

In particular, we set the position of root node186

Module to {0,0,0} as it has no parent node.187

This triplet positioning is very precise and unique, 188

allowing to track and discriminate among the Name 189

nodes which also include (Name,{3,1,0}) and 190

(Name,{3,1,2}). 191

3 CODESCRIBE Approach 192

3.1 Notations and Framework Overview 193

Given a code snippet with lc tokens 194

Tc = (c1, c2, . . . , clc) and sequential positions 195

Pc = (1, 2, . . . , lc), and its AST with ln nodes 196

Tn = (n1, n2, . . . , nln) and triplet positions Pn = 197

({x1, y1, z1}, {x2, y2, z2}, . . . , {xln , yln , zln}), 198

CODESCRIBE predicts the next summary 199

token sm based on the existing tokens 200

Ts = (</s>, s1, s2, . . . , sm−1, . . .) with the 201

sequential positions Ps = (1, 2, . . . , ls), where 202

</s> is a special starting tag for summary input. 203

Note that Ts is padded to a maximum length of ls 204

with special padding tags (e.g., <pad>s). 205

Figure 2 illustrates the architecture of CODE- 206

SCRIBE model, which is mainly composed of four 207

modules: source code encoder, AST encoder, sum- 208

mary decoder and multi-source pointer-generator 209

network (MPG) for output. As shown in Figure 2, 210

the source code, AST, and summary tokens are 211

firstly mapped into embedding vectors E0
c ∈ Rlc×d, 212

E0
n ∈ Rln×d, and E0

s ∈ Rls×d where d is the em- 213

bedding size. In the encoding process, the em- 214

bedded code and AST are fed into Transformer 215

encoder (Vaswani et al., 2017) and GNN layers 216

respectively for learning the source code represen- 217

tation E′c ∈ Rlc×d and the AST representation 218

E′n ∈ Rln×d. Then, the decoding process is per- 219

formed to yield the decoded vector e′s ∈ Rd for 220

the predicted summary token by fusing the learned 221

source code and AST features (i.e., E′c and E′n) as 222

an initial state for decoding E0
s. At the decoding 223

stage, we build MPG stacked on the decoder and 224

encoders to predict the next summary token sm 225

by selecting from summary vocabulary or copying 226

from the input source code and AST tokens. The 227

detailed process will be further described in the 228

following sub-sections. 229

3.2 Initial Embeddings 230

Before feeding code tokens, AST nodes, and sum- 231

mary tokens into neural networks, it is essential to 232

embed them into dense numerical vectors. In this 233

work, the source code tokens Tc, AST nodes Tn, 234

and summary tokens Ts are all embedded into nu- 235

meric vectors with their related positions Pc, Pn, 236
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and Ps by employing learnable positional embed-237

dings (Gehring et al., 2017). In particular for AST,238

we take each triplet position as an individual tuple,239

and directly map each tuple into a positional em-240

bedding. The embedding processes are formulated241

as follows:242

E0
c = CNEmb(Tc) ∗

√
d+ CPEmb(Pc) ,

E0
n = CNEmb(Tn) ∗

√
d+ NPEmb(Pn) ,

E0
s = SEmb(Ts) ∗

√
d+ SPEmb(Ps) ,

(1)243

where CNEmb denotes the shared embedding oper-244

ation for source code tokens and AST nodes; SEmb245

means the token embedding operation for summary246

text; CPEmb, NPEmb, and SPEmb are the corre-247

sponding positional embedding operations.248

3.3 Code Representation249

Source Code Encoder. As shown in Figure 2,250

the code encoder is composed of two identical lay-251

ers. And each layer consists of two sub-layers:252

multi-head attention mechanism and fully con-253

nected position-wise feed-forward network (FFN).254

In addition, residual connection (He et al., 2016)255

and layer normalization (Ba et al., 2016) are per-256

formed in the two sub-layers for the sake of vanish-257

ing gradient problem in multi-layer processing and258

high offset of vectors in residual connection. For259

the k-th layer, the process can be formulated as:260

Hk
c = LayerNorm(Ek−1

c + Att(Ek−1
c ,Ek−1

c ,Ek−1
c )) ,

Ek
c = LayerNorm(Hk

c + FFN(Hk
c )) ,

(2)261

where Ek−1
c ∈ Rlc×d is the output vectors from262

the (k−1)-th layer ; LayerNorm denotes layer nor-263

malization; and Att means the multi-head atten-264

tion (Vaswani et al., 2017) that takes query, key,265

and value vectors as inputs.266

AST Encoder. Considering that AST is a kind267

of graph, it can be learned by GNNs. Since Graph-268

SAGE (Hamilton et al., 2017) shows high effi-269

ciency and performance dealing with graphs, we270

introduce the idea of GraphSAGE and improve it271

by adding residual connection for AST encoding,272

as shown in Figure 2. The encoding layer processes273

the AST by firstly aggregating the neighbors of the274

nodes with edge information and then updating the275

nodes with their aggregated neighborhood infor-276

mation. For a node i and its neighbors in the k-th277

layer, the process can be formulated as follows:278

hk
i = W1 · ek−1

i +W2 · Aggr({ek−1
j ,∀j ∈ N(i)}) , (3)279

where ek−1i ∈ Rd means the vector representation 280

of i-th node from the (k−1)-th layer; N(i) is the 281

neighbors of the node i; ek−1j ∈ Rd denotes the 282

j-th neighbor vector for node i; W1,W2 ∈ Rd×d 283

are learnable weight matrices; Aggr represents ag- 284

gregation function. 285

After updating the node information, the node 286

vectors are put together into a ReLU activation for 287

non-linear transformation: 288

Hk
n = ReLU([hk

1 ,h
k
2 , . . . ,h

k
i , . . .]) . (4) 289

With the increase of the number of layers, a node 290

aggregates the neighborhood information from a 291

deeper depth. In order to achieve strong capability 292

of aggregation, the AST encoder is composed of 293

six layers. And to mitigate gradient vanishing and 294

high offset caused by multi-layer processing, we 295

adopt residual connection (He et al., 2016) and 296

layer normalization (Ba et al., 2016) in each layer 297

for improvement, which is formulated as follows: 298

Ek
n = LayerNorm(Hk

n +Ek−1
n ) . (5) 299

Note that, Ek−1
n ∈ Rln×d in this formula denotes 300

the output vectors of nodes from the (k−1)-th layer. 301

3.4 Summary Decoder 302

The decoder of CODESCRIBE is designed with six 303

stacks of modified Transformer decoding blocks. 304

Given the existing summary tokens, the k-th decod- 305

ing block firstly encodes them by masked multi- 306

head attention with residual connection and layer 307

normalization, which is formalized as: 308

Hk
s = LayerNorm(Ek−1

s + MaskAtt(Ek−1
s ,Ek−1

s ,Ek−1
s )) ,

(6) 309

where Ek−1
s ∈ Rls×d is the output vectors from the 310

(k−1)-th layer and MaskAtt denotes the masked 311

multi-head attention (Vaswani et al., 2017). 312

After that, we expand the Transformer block by 313

leveraging two multi-head attention modules to in- 314

teract with the two encoders for summary decoding. 315

One multi-head attention module is performed over 316

the AST features to get the first-stage decoded in- 317

formation, which will then be fed into the other 318

over the learned source code for the second-stage 319

decoding. Then the decoded summary vectors are 320

put into FFN for non-linear transformation. The 321

process can be formalized as follows: 322

Hk
s,n = LayerNorm(Hk

s + Att(Hk
s ,E

′
n,E

′
n)) ,

Hk
s,c = LayerNorm(Hk

s,n + Att(Hk
s,n,E

′
c,E

′
c)) ,

Ek
s = LayerNorm(Hk

s,c + FFN(Hk
s,c)) ,

(7) 323
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where E′n and E′c are the learned features of AST324

nodes and code tokens, respectively.325

3.5 Multi-Source Pointer-Generator Network326

We present a multi-source pointer-generator net-327

work (MPG) on top of the decoder and encoders to328

yield the final probability distribution of the next329

summary token. Considering that tokens such as330

function names and variable names appear both in331

code and summary text (Ahmad et al., 2020), MPG332

is designed to allow CODESCRIBE to generate sum-333

mary tokens both from the summary vocabulary334

and from the AST and source code.335

Taking the m-th output token as an example, to336

get the first probability distribution pv, a Linear337

sub-layer with Softmax is applied over the decoded338

summary token vector e′s ∈ Rd, as follows:339

pv = Softmax(Linear(e′s)) . (8)340

For a token w, pv(w) = 0 if w is an out-of-341

vocabulary word to the summary vocabulary.342

As for the distributions pc and pn, we only de-343

scribe pc since the two have the similar calcula-344

tion process. In detail, our model applies an ad-345

ditional multi-head attention layer stacked on the346

last code encoding block and summary decoding347

block. It takes the decoded summary token vector348

e′s ∈ Rd as query and the encoded code informa-349

tion E′c ∈ Rlc×d as key and value:350

δc = Att(e′s,E
′
c,E

′
c) ,

αc = Softmax(Mean(a1,a2, . . . ,ai, . . .)) ,

ai = Softmax

(
e′sW

Q
i (E′cW

K
i )T√

d

)
(E′cW

V
i ) ,

(9)351

where WQ
i ,W

K
i , and WV

i are learnable param-352

eters. The context vector δc ∈ Rd will be353

used for the final distribution. Through the func-354

tion Mean and Softmax, the attention vectors355

(a1,a2, . . . ,ai, . . .) of all heads are averaged as356

αc ∈ Rlc . For the token w, its probability pc(w)357

is formulated as follows:358

pc(w) =
∑

i:wi=w αci , (10)359

where wi means the i-th token in the source code.360

Similarly, we can get δn and pn corresponding361

to the AST. After that, the final probability ps(w)362

of the token w is defined as a mixture of the three363

probabilities:364

ps(w) = λv · pv(w) + λc · pc(w) + λn · pn(w) ,

[λv, λc, λn] = Softmax(Linear([e′s, δc, δn])) ,
(11)365

where λv, λc, and λn are the weight values for 366

pv(w), pc(w), and pn(w). The higher the prob- 367

ability ps(w) is, the more likely the token w is 368

considered as the next summary token. 369

4 Experiments 370

We conduct experiments to answer the following 371

research questions: (1) How effective is CODE- 372

SCRIBE compared with the state-of-the-art base- 373

lines? (2) How effective is the structure design of 374

CODESCRIBE? (3) What is the impact of model 375

size on the performance of CODESCRIBE? We 376

also perform a qualitative analysis of two detailed 377

examples. 378

4.1 Datasets 379

The experiments are conducted based on two bench- 380

marks: (1) Java dataset (Hu et al., 2018a) and 381

(2) Python dataset (Wan et al., 2018). The two 382

datasets are split into train/valid/test sets with 383

69,708/8,714/8,714 and 55,538/18,505/18,502, re- 384

spectively. In the experiments, we follow the divi- 385

sions for the fairness of the results. 386

In the data preprocessing, NLTK package (Loper 387

and Bird, 2002) is utilized for the tokenization of 388

source code and summary text. And we apply 389

javalang 2 and ast 3 packages to parsing Java and 390

Python code into ASTs. In addition, the tokens in 391

forms of “CammelCase”, “snake_case”, and “con- 392

catenatecase” are split into sub-tokens as “Cammel 393

Case”, “snake case”, and “concatenate case”. 394

4.2 Implementation Details 395

We leverage PyTorch 1.9 for CODESCRIBE imple- 396

mentation. The model runs under the development 397

environment of Python 3.9 with NVIDIA 2080 Ti 398

GPUs and CUDA 10.2 supported. 399

We follow the previous works (Ahmad et al., 400

2020; Choi et al., 2021) and set both the embed- 401

ding size of code tokens, AST nodes, and summary 402

tokens to 512, and the number of attention headers 403

to 8. As described in Section 3, the numbers of lay- 404

ers of code encoder, AST encoder, and summary 405

decoder are 2, 6, and 6, respectively. 406

The model is trained with Adam opti- 407

mizer (Kingma and Ba, 2014). We initialize the 408

learning rate as 5e−4 that will be decreased by 409

5% after each training epoch until to 2.5e−5. The 410

2https://github.com/c2nes/javalang
3https://github.com/python/cpython/

blob/master/Lib/ast.py

5

https://github.com/c2nes/javalang
https://github.com/python/cpython/blob/master/Lib/ast.py
https://github.com/python/cpython/blob/master/Lib/ast.py


Model Java Python
BLEU(%) METEOR(%) ROUGE-L(%) BLEU(%) METEOR(%) ROUGE-L(%)

CODE-NN (Iyer et al., 2016b) 27.60 12.61 41.10 17.36 09.29 37.81
Tree2Seq (Eriguchi et al., 2016) 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq (Wan et al., 2018) 38.22 22.75 51.91 19.28 09.75 39.34
DeepCom (Hu et al., 2018a) 39.75 23.06 52.67 20.78 09.98 37.35
API+CODE (Hu et al., 2018b) 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model (Wei et al., 2019) 42.39 25.77 53.61 21.80 11.14 39.45
CopyTrans (Ahmad et al., 2020) 44.58 26.43 54.76 32.52 19.77 46.73
mAST+GCN (Choi et al., 2021) 45.49 27.17 54.82 32.82 20.12 46.81

CODESCRIBE 49.19 32.27 59.59 35.11 23.48 50.46

Table 1: Comparison with the baselines on the Java and Python datasets.

dropout rate is set to 0.2. We set the batch size411

to 96 and 160 for the Java and Python datasets, re-412

spectively. The training process will terminate after413

100 epochs or stop early if the performance does414

not improve for 10 epochs. In addition, we lever-415

age beam search (Koehn, 2004) during the model416

inference and set the beam width to 5.417

4.3 Baselines418

We introduce eight state-of-the-art works as base-419

lines for comparison, including six RNN-based420

models and two Transformer-based models.421

RNN-based Models. Among these baselines,422

CODE-NN (Iyer et al., 2016b), API+CODE (Hu423

et al., 2018b), and Dual Model (Wei et al.,424

2019) learn source code for summarization.425

Tree2Seq (Eriguchi et al., 2016) and DeepCom (Hu426

et al., 2018a) generate summaries from AST fea-427

tures. RL+Hybrid2Seq (Wan et al., 2018) combines428

source code and AST based on LSTM.429

Transformer-based Models. The two baselines430

include CopyTrans (Ahmad et al., 2020) and431

mAST+GCN (Choi et al., 2021), both of which432

leverage Transformer for code summary genera-433

tion. The main difference is that CopyTrans learns434

sequential source code, and mAST+GCN is built435

based on AST.436

For the model evaluation, three metrics are437

introduced: BLEU (Papineni et al., 2002),438

METEOR (Banerjee and Lavie, 2005), and439

ROUGE (Lin, 2004).440

4.4 Comparison with the Baselines (RQ1)441

We first evaluate the performance of CODESCRIBE442

by comparing it with eight state-of-the-art base-443

lines. The results of baselines are all from Choi444

et al. (2021) and are shown in Table 1.445

The overall results in Table 1 illustrate that446

the recent Transformer-based models (Ahmad447

et al., 2020; Choi et al., 2021) are superior to 448

the previous works based on RNNs (Iyer et al., 449

2016b; Eriguchi et al., 2016; Wan et al., 2018; 450

Hu et al., 2018a,b; Wei et al., 2019). Although 451

the two models CopyTrans and mAST+GCN have 452

high performance in code summarization, our 453

approach CODESCRIBE performs much better 454

than them both on the two datasets. Intuitively, 455

CODESCRIBE improves the performance (i.e., 456

BLEU/METEOR/ROUGE-L) by 4.46/5.84/4.83% 457

on the Java dataset and 2.59/3.71/3.73% on the 458

Python dataset compared to CopyTrans. In compar- 459

ison with mAST+GCN, the performance of CODE- 460

SCRIBE improves by 3.70/5.10/4.77% on the Java 461

dataset and 2.29/3.36/3.65% on the Python dataset. 462

The comparison demonstrates the outperfor- 463

mance of CODESCRIBE. It indicates that: (1) 464

Transformer-like models are more effective than 465

RNN-based models in code summarization task; 466

(2) AST information contributes significantly to 467

code comprehension; and (3) by incorporating both 468

AST and source code into CODESCRIBE based on 469

GraphSAGE and Transformer, the performance can 470

be greatly improved due to its more comprehensive 471

learning capacity for code and better decoding for 472

summary generation. 473

4.5 Ablation Study (RQ2) 474

This section validates the effectiveness of CODE- 475

SCRIBE’s structure to by performing an ablation 476

study. To this end, we firstly design five models 477

for comparison that remove one of important com- 478

ponents in CODESCRIBE including: (1) the AST 479

encoder (R-AST), (2) the source code encoder (R- 480

Code), (3) the triplet positions (R-ASTPos), (4) 481

the MPG (R-Copy), and (5) the residual connec- 482

tion in the AST encoder (R-ASTRes). We fur- 483

ther investigate the rationality of CODESCRIBE’s 484

structure through the comparison with five variants: 485

(1) V-Copy that replaces MPG with the copying 486
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mechanism (See et al., 2017) used in Ahmad et al.487

(2020), (2) V-GCN that replaces GraphSAGE with488

GCN (Kipf and Welling, 2016), (3) V-GAT that489

replaces GraphSAGE with GAT (Kipf and Welling,490

2016), (4) V-Emb that replaces the shared embed-491

ding layer for code tokens and AST nodes with two492

independent embedding layers, and (5) V-Dec that493

reverses the decoding order for the source code and494

AST features.495

Model BLEU(%) METEOR(%) ROUGE-L(%)

R-AST 46.45 29.37 56.42
R-Code 47.06 30.06 57.03
R-ASTPos 48.53 31.62 58.84
R-Copy 48.64 31.71 58.68
R-ASTRes 13.03 2.59 5.89

V-Copy 48.59 31.82 58.73
V-GCN 48.84 31.96 58.95
V-GAT 48.84 32.03 59.23
V-Emb 49.05 31.93 58.95
V-Dec 48.99 32.11 59.31

CODESCRIBE 49.19 32.27 59.59

Table 2: Ablation study on the Java dataset.

As shown in Table 2, the performance of CODE-496

SCRIBE is affected if the components are removed.497

The results of R-AST and R-Code show that the498

two encoders are the most significant learning com-499

ponents to the framework. Moreover, the AST500

encoder is more important than the code encoder501

as R-Code performs better than R-AST. It further502

demonstrates that AST contains richer structural503

features than source code that is beneficial to sum-504

mary generation. The performances of R-ASTPos505

and R-Copy indicate that the triplet positions for506

nodes and copying mechanism (MPG) we proposed507

are effective for CODESCRIBE in code summariza-508

tion. In addition, we find that R-ASTRes suffers509

from under-fitting on the Java dataset, which indi-510

cates that the residual connection in AST encoder511

has a powerful influence on CODESCRIBE.512

As illustrated in Table 2, CODESCRIBE im-513

proves the performance by 0.26/0.22/0.30% on the514

Java dataset compared with V-Copy. It indicates515

that our proposed MPG is more effective than the516

copying mechanism in Ahmad et al. (2020). As517

for the GNN module in AST encoding, it can be518

observed that CODESCRIBE still has the higher519

performance than V-GCN and V-GAT. This demon-520

strates the superiority of GrahpSAGE for the ar-521

chitecture of CODESCRIBE compared to GCN and522

GAT. Compared with V-Emb, it shows that the523

shared embedding layer works better than two sep-524

arated embedding layers for AST and source code.525

The result of V-Dec turns out that the performance 526

will not be affected sinificantly if the order of de- 527

coding over AST and code features is reversed. 528

The results on the Python dataset are presented in 529

Table 7 in Appendix A. 530

4.6 Study on the Model Size (RQ3) 531

This section studies the performance of CODE- 532

SCRIBE with the change of model size. To that end, 533

we modify the number of layers of the encoders 534

and the decoder respectively for observation. 535

AST Model BLEU(%) METEOR(%) ROUGE-L(%)Layers Size(×106)

2 38.89 48.68 31.76 58.77
4 39.94 48.76 31.99 59.10
6 40.99 49.19 32.27 59.59
8 42.05 49.11 32.20 59.49
10 43.10 48.97 32.12 59.23
12 44.15 48.84 32.06 59.10

Table 3: Performance of CODESCRIBE with different
numbers of AST encoding layers on the Java dataset.

Code Model BLEU(%) METEOR(%) ROUGE-L(%)Layers Size(×106)

2 40.99 49.19 32.27 59.59
4 47.30 48.80 32.15 59.32
6 53.60 48.92 32.10 59.30
8 59.91 48.73 31.95 58.95
10 66.21 49.11 31.97 59.09
12 72.52 48.36 31.59 58.59

Table 4: Performance of CODESCRIBE with different
numbers of code encoding layers on the Java dataset.

Summary Model BLEU(%) METEOR(%) ROUGE-L(%)Layers Size(×106)

2 19.97 47.99 31.21 58.50
4 30.48 48.80 32.02 59.32
6 40.99 49.19 32.27 59.59
8 51.51 49.16 32.20 59.33
10 62.02 49.16 32.33 59.56
12 72.53 49.24 32.31 59.41

Table 5: Performance of CODESCRIBE with different
numbers of decoding layers on the Java dataset.

Table 3 presents the performance of CODE- 536

SCRIBE when the number of AST encoding layers 537

varies from 2 to 12. The results show that the per- 538

formance improves as the number of AST encoding 539

layers increases from 2 to 6. With the increase of 540

the number from 6 to 12, the performance does not 541

improve any more and is even impacted slightly. 542

As illustrated in Table 4, CODESCRIBE has the best 543

performance with 2 code encoding layers. With the 544

number of code layers growing from 4 to 12, there 545

is a trend of gradual decrease of the performance. 546

For the model size concerned with summary decod- 547

ing layers, as shown in Table 5, the performance 548

is getting better when the number of layers ranges 549
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Java Python

Code

public void addMessage(String message){
messages.addLast(message);
if (messages.size() > MAX_HISTORY) {
messages.removeFirst();

}
pointer=messages.size();

}

@_get_client
def image_create(client, values,

v1_mode=False):↪→
return client.image_create(values=values,

v1_mode=v1_mode)↪→

Summary

Gold: add a message to the history
R-AST: add a message to the end of the list
R-Copy: add a message to the history .
V-GCN: add a message to the list
V-Dec: add a message to the list
CODESCRIBE: add a message to the history .

Gold: create an image from the value dictionary .
R-AST: create an image cli example : .
R-Copy: create an image mode that can exist from the give value .
V-GCN: create an image from a v <number> image .
V-Dec: create an image object .
CODESCRIBE: create an image from the value dictionary .

Table 6: Qualitative examples on the Java and Python datasets.

from 2 to 6, and can not be improved as the number550

continues to increase. The overall results show that551

it the performance of CODESCRIBE will not be552

improved if the encoders and the decoder become553

too deep (i.e. with more layers), especially for the554

source code encoder. More experimental results555

are provided in Table 8 - 11 in Appendix B.556

4.7 Case Study557

Table 6 shows the qualitative examples of R-AST,558

R-Copy, V-GCN, V-Dec, and CODESCRIBE. From559

the table, it can be observed that CODESCRIBE560

with the whole architecture generates better code561

summaries compared with the four variants. In the562

case on the Java dataset, only R-Copy and CODE-563

SCRIBE get the right intent of the code. The other564

variants miss out the key word “history”. In the565

case on the Python dataset, CODESCRIBE gener-566

ates the most accurate summary compared to the567

other variants. In contrast, although the four vari-568

ants output the first half of the summary (i.e., “cre-569

ate an image”), the rest information “from the value570

dictionary .” can not be generated correctly. More571

qualitative examples are referred to Table 12 and 13572

in Appendix C.573

5 Related Work574

With the development of deep learning, most works575

have considered code summarization as a sequence576

generation task. In many of the recent approaches,577

source code snippets are modeled as plain texts578

based on RNNs (Iyer et al., 2016b; Hu et al., 2018b;579

Wei et al., 2019; Ye et al., 2020). Most recently,580

Ahmad et al. (2020) applied Transformer to en-581

coding the source code sequence to improve the582

summarization performance.583

Since considering source code as plain text ig-584

nores the structural information in code, recent585

works have explored the AST of code and modeled586

the tree-based structure for code summarization.587

Typically, some approaches (Hu et al., 2018a; Alon 588

et al., 2018) converted the AST to node sequence(s) 589

and used LSTMs for learning. Others leveraged 590

Tree-LSTM (Shido et al., 2019) or GNNs (Liu et al., 591

2020) to capture the structural features of code. The 592

latest work (Choi et al., 2021) performed graph 593

convolutional network (GCN) (Kipf and Welling, 594

2016) before Transformer framework to learn AST 595

representation for summary generation. 596

To represent the code comprehensively, more 597

and more works pay attention to both the source 598

code and the AST for code summarization. For ex- 599

ample, Hu et al. (2020) integrated both AST node 600

sequence and source code into a hybrid learning 601

framework based on GRUs. Wei et al. (2020) and 602

Zhang et al. (2020) both utilized the information 603

retrieval techniques to improve the quality of code 604

comments that are generated from the code snip- 605

pets and ASTs. The rest methods (Wan et al., 2018; 606

LeClair et al., 2020; Wang et al., 2020) learned the 607

source code based on RNNs and modeled the tree 608

structure of code using AST-based LSTM or GCNs. 609

Different from all these works, we combine Graph- 610

SAGE and Transformer to both learn the AST and 611

source code. 612

6 Conclusion 613

This paper has presented CODESCRIBE, an 614

encoder-decoder-based neural network for source 615

code summarization. CODESCRIBE designs a 616

triplet position to model the hierarchical syntax 617

structure of code, which is then incorporated into 618

Transformer and GNNs for better representation 619

of lexical and syntax information of code, respec- 620

tively. The performance of CODESCRIBE is further 621

enhanced by the introduced multi-source pointer 622

generator in decoding. Experiments on two bench- 623

marks reveal that the summaries generated by 624

CODESCRIBE are of higher quality compared to 625

recent state-of-the-art works. 626
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A Results of Ablation Study 802

Table 7 shows the results of ablation study on the 803

Python dataset. It can be observed that CODE- 804

SCRIBE has the best performance in contrast 805

with all the variants except V-Dec. Although 806

there is no under-fitting for R-ASTRes on the 807

Python dataset, we can find that the performance 808

(i.e., BLEU/METEOR/ROUGE-L) is reduced by 809

1.02/0.89/1.51 if the residual connection in AST 810

encoder is excluded. So it also demonstrates the 811

effectiveness of this component to the AST encoder. 812

In addition, the result of V-Dec still confirms the 813

conclusion that the order of decoding over AST and 814

source code features won’t impact the performance 815

of CODESCRIBE. 816

Model BLEU(%) METEOR(%) ROUGE-L(%)

R-AST 32.97 21.24 47.70
R-Code 33.54 21.91 48.61
R-ASTPos 34.50 22.91 49.79
R-Copy 34.55 23.16 49.88
R-ASTRes 34.09 22.59 48.95

V-Copy 34.85 23.26 50.16
V-GCN 34.73 23.24 50.11
V-GAT 34.88 23.27 50.25
V-Emb 34.55 22.80 49.16
V-Dec 35.04 23.41 50.40

CODESCRIBE 35.11 23.48 50.46

Table 7: Ablation study on the Python dataset.

B Results of Study on the Model Size 817

The additional results of study on the model size on 818

the Python dataset are described in the Table 8, 9, 819

and 10. The performances show the similar change 820

trends with that on the Java dataset. For exam- 821

ple, Table 9 shows that the performance of CODE- 822

SCRIBE does not improve with the number increas- 823

ing from 2 to 12. 824
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AST Model BLEU(%) METEOR(%) ROUGE-L(%)Layers Size(×106)

2 38.89 34.81 23.27 50.12
4 39.94 34.76 23.26 50.25
6 40.99 35.11 23.48 50.46
8 42.05 35.02 23.38 50.34
10 43.10 34.88 23.35 50.22
12 44.15 34.97 23.26 50.14

Table 8: Performance of CODESCRIBE with different
numbers of AST encoding layers on the Python dataset.

Code Model BLEU(%) METEOR(%) ROUGE-L(%)Layers Size(×106)

2 40.99 35.11 23.48 50.46
4 47.30 34.99 23.43 50.37
6 53.60 34.86 23.32 50.33
8 59.91 35.08 23.58 50.61
10 66.21 35.16 23.41 50.18
12 72.52 34.94 23.21 49.87

Table 9: Performance of CODESCRIBE with different
numbers of code encoding layers on the Python dataset.

Summary Model BLEU(%) METEOR(%) ROUGE-L(%)Layers Size(×106)

2 19.97 34.16 22.92 49.70
4 30.48 34.75 23.32 50.29
6 40.99 35.11 23.48 50.46
8 51.51 34.90 23.43 50.37

10 62.02 35.08 23.49 50.56
12 72.53 35.19 23.59 50.58

Table 10: Performance of CODESCRIBE with different
numbers of summary decoding layers on the Python
dataset.

We further provide the results of CODESCRIBE825

by varying the embedding size from 128 to 1024826

with the interval of 128. As depicted in Table 11,827

CODESCRIBE has the worst performance with the828

embedding size 128, and performs much better829

when the size becomes 256. Then the performance830

improves steadily as the embedding size increases831

until to 512. After that, although CODESCRIBE832

can be boosted with the growth of embedding size833

(from 512 to 1024), the improvement is not so ob-834

vious. These observations suggest that expanding835

the embedding size properly is indeed effective to836

CODESCRIBE. However, excessive expansion will837

not help much for the improvement.838

C Qualitative Examples839

Table 12 and 13 provide qualitative examples of840

R-AST, R-Copy, V-GCN, V-Dec, and our CODE-841

SCRIBE on the Java and Python datasets for case842

study. The overall results show that CODESCRIBE843

generates better summaries for the given code snip-844

pets. For instance, in the first case in Table 12, only845

R-Copy and CODESCRIBE get the right intent of846

the code. In the third case in Table 12, only CODE-847

SCRIBE grasps the key information, i.e., “status 848

panel”. In the first case in Table 13, CODESCRIBE 849

generates the most accurate summary compared to 850

the other variants, which is the same in the second 851

case. 852
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Emb. Model Java Python
Size Size(×106) S-BLEU(%) METEOR(%) ROUGE-L(%) S-BLEU(%) METEOR(%) ROUGE-L(%)

128 2.58 33.55 22.31 47.89 26.83 18.53 43.68
256 10.27 44.24 28.62 55.36 32.19 21.50 47.54
384 23.08 48.16 31.56 58.67 34.34 22.99 49.73
512 40.99 49.19 32.27 59.59 35.11 23.48 50.46
640 64.02 49.17 32.29 59.45 35.31 23.62 50.59
768 92.16 49.20 32.32 59.28 35.35 23.69 50.59
896 125.41 49.19 32.26 59.34 35.55 23.75 50.56
1024 163.78 49.32 32.29 59.35 35.20 23.56 50.29

Table 11: Performance of CODESCRIBE with different embedding sizes on the Java and Python datasets.

Code

public void addMessage(String message){
messages.addLast(message);
if (messages.size() > MAX_HISTORY) {
messages.removeFirst();

}
pointer=messages.size();

}

Summary

Gold: add a message to the history
R-AST: add a message to the end of the list
R-Copy: add a message to the history .
V-GCN: add a message to the list
V-Dec: add a message to the list
CODESCRIBE: add a message to the history .

Code

public void hspan(double start,double end,Paint color,String legend){
LegendText legendText=new LegendText(color,legend);
comments.add(legendText);
plotElements.add(new HSpan(start,end,color,legendText));

}

Summary

Gold: draw a horizontal span into the graph and optionally add a legend .
R-AST: plot request data a a vertical and optionally add a legend .
R-Copy: draw a vertical span into the graph and optionally add a legend .
V-GCN: draw the current legend .
V-Dec: plot request data a a line , use the color and the line width specify .
CODESCRIBE: draw a vertical span into the graph and optionally add a legend .

Code

public CStatusPanel(final BackEndDebuggerProvider debuggerProvider){
super(new BorderLayout());
Preconditions.checkNotNull(debuggerProvider,"IE1094: Debugger provider argument can not be

null");↪→
m_label.setForeground(Color.BLACK);
add(m_label);
m_synchronizer=new CStatusLabelSynchronizer(m_label,debuggerProvider);

}

Summary

Gold: create a new status panel .
R-AST: create a new panel .
R-Copy: create a new panel object .
V-GCN: create a new debugger panel .
V-Dec: create a new panel object .
CODESCRIBE: create a new status panel object .

Code

private Spannable highlightHashtags(Spannable text){
if (text == null) {
return null;

}
final Matcher matcher=PATTERN_HASHTAGS.matcher(text);
while (matcher.find()) {
final int start=matcher.start(1);
final int end=matcher.end(1);
text.setSpan(new

ForegroundColorSpan(mHighlightColor),start,end,Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);↪→
text.setSpan(new

StyleSpan(android.graphics.Typeface.BOLD),start,end,Spanned.SPAN_EXCLUSIVE_EXCLUSIVE);↪→
}
return text;

}

Summary

Gold: highlight all the hash tag in the pass text .
R-AST: highlight all the text in the pass text .
R-Copy: highlight all the hash text in the pass text .
V-GCN: highlight all the span of the text .
V-Dec: highlight all the occurrence of a match tag in the pass text .
CODESCRIBE: highlight all the hash line in the pass text .

Table 12: Qualitative examples on the Java dataset.
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Code
@_get_client
def image_create(client, values, v1_mode=False):
return client.image_create(values=values, v1_mode=v1_mode)

Summary

Gold: create an image from the value dictionary .
R-AST: create an image cli example : .
R-Copy: create an image mode that can exist from the give value .
V-GCN: create an image from a v <number> image .
V-Dec: create an image object .
CODESCRIBE: create an image from the value dictionary .

Code
def test_help_command_should_exit_status_ok_when_no_cmd_is_specified(script):
result = script.pip('help')
assert (result.returncode == SUCCESS)

Summary

Gold: test help command for no command .
R-AST: test help command for exist command .
R-Copy: test help command for exist command .
V-GCN: test help command for exist command .
V-Dec: test help command for exist command .
CODESCRIBE: test help command for no command .

Code

def all_editable_exts():
exts = []
for (language, extensions) in sourcecode.ALL_LANGUAGES.items():
exts.extend(list(extensions))

return [('.' + ext) for ext in exts])

Summary

Gold: return a list of all editable extension .
R-AST: return a list of all python extension .
R-Copy: return a list of tuples extension for all editable s .
V-GCN: return a list of all file extension that be editable by the extension .
V-Dec: return a list of all available extension .
CODESCRIBE: return a list of all editable s extension .

Code

def update_featured_activity_references(featured_activity_references):
for activity_reference in featured_activity_references:
activity_reference.validate()

activity_hashes = [reference.get_hash() for reference in featured_activity_references]
if (len(activity_hashes) != len(set(activity_hashes))):
raise Exception('The activity reference list should not have duplicates.')

featured_model_instance =
activity_models.ActivityReferencesModel.get_or_create(activity_models. \↪→

ACTIVITY_REFERENCE_LIST_FEATURED)
featured_model_instance.activity_references = [reference.to_dict() for reference in

featured_activity_references]↪→
featured_model_instance.put()

Summary

Gold: update the current list of feature activity reference .
R-AST: add the specify activity reference to the list of feature activity reference .
R-Copy: update the specify activity reference from the list of feature activity reference .
V-GCN: update the specify activity reference from the list of feature activity reference .
V-Dec: update the specify activity reference from the list of feature activity reference .
CODESCRIBE: update the list of feature activity reference .

Table 13: Qualitative examples on the Python dataset.
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