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ABSTRACT

From CNNs to attention mechanisms, encoding inductive biases into neural net-
works has been a fruitful source of improvement in machine learning. Auxiliary
losses are a general way of encoding biases in order to help networks learn better
representations by adding extra terms to the loss function. However, since they are
minimized on the training data, they suffer from the same generalization gap as
regular task losses. Moreover, by changing the loss function, the network is opti-
mizing a different objective than the one we care about. In this work we solve both
problems: first, we take inspiration from transductive learning and note that, after
receiving an input but before making a prediction, we can fine-tune our models on
any unsupervised objective. We call this process tailoring, because we customize
the model to each input. Second, we formulate a nested optimization (similar to
those in meta-learning) and train our models to perform well on the task loss after
adapting to the tailoring loss. The advantages of tailoring and meta-tailoring are
discussed theoretically and demonstrated empirically on several diverse examples:
encoding inductive conservation laws from physics, increasing robustness to ad-
versarial examples, meta-tailoring with contrastive losses to improve theoretical
generalization guarantees, and increasing performance in model-based RL.

1 INTRODUCTION

The key to successful generalization in machine learning is the encoding of useful inductive biases.
A variety of mechanisms, from parameter tying to data augmentation, have proven useful but there is
no systematic strategy for designing and implementing these biases.

Auxiliary losses are a paradigm for encoding a wide variety of biases, constraints and objectives,
helping networks learn better representations and generalize more broadly. They add an extra term
to the task loss and minimize it over the training data or, in semi-supervised learning, on an extra
set of unlabeled data. However, they have two major difficulties:

1. Auxiliary losses are only minimized at training time, but not for the query points. This
causes a generalization gap between training and testing, in addition to that of the task loss.

2. By minimizing the sum of the task loss plus the auxiliary loss, we are optimizing a different
objective than the one we care about (only the task loss).

In this work we propose a solution to each problem:

1. We use ideas from transductive learning to minimize the auxiliary loss at the query by
running an optimization at prediction time, eliminating the generalization gap for the
auxiliary loss. We call this process tailoring, because we customize the model to each query.

2. We use ideas from meta-learning to learn a model that performs well on the task loss
assuming that we will be optimizing the auxiliary loss. This meta-tailoring effectively trains
the model to leverage the unsupervised tailoring loss to minimize the task loss.

Tailoring a predictor In classical inductive supervised learning, an algorithm consumes a training
dataset of input-output pairs, ((xi, yi))

n
i=1, and produces a set of parameters θ̂ by minimizing a super-

vised loss
∑n
i=1 Lsup(fθ(xi), yi) and, optionally, an unsupervised auxiliary loss

∑n
i=1 Lunsup(θ, xi).

These parameters specify a hypothesis fθ̂(·) that, given a new input x, generates an output ŷ = fθ̂(x).
This problem setting misses a substantial opportunity: before the learning algorithm sees the query
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Figure 1: Comparison of several learning settings with offline computation in the orange boxes
and online computation in the green boxes, with tailoring in blue. For meta-tailoring training,
τ(θ,Ltailor, x) = arg minθ′≈θ Ltailor(x, θ′) represents the tailoring process resulting in θx. Although
tailoring and meta-tailoring are best understood in supervised learning, they can also be applied in
reinforcement learning, as shown in section 5.3.

point x, it has distilled the data down to a set of parameters, which are frozen during inference, and
so it cannot use new information about the particular x that it will be asked to make a prediction for.

Vapnik recognized an opportunity to make more accurate predictions when the query point is known,
in a framework that is now known as transductive learning (Vapnik, 1995; Chapelle et al., 2000). In
transductive learning, a single algorithm consumes both labeled data, ((xi, yi))

n
i=1, and a set of input

points for which predictions are desired, (x(j))j , and produces predicted outputs (ŷ(j))j for each of
the queries, as illustrated in the top row of figure 1. In general, however, we do not know queries a
priori, and instead we want an inductive rule that makes predictions on-line, as queries arrive. To
obtain a prediction function from a transductive system, we would need to encapsulate the entire
learning procedure inside the prediction function. This strategy would achieve our objective of taking
x into account at prediction time, but would be computationally much too slow.

We observe that this strategy for combining induction and transduction would perform very similar
computations for each prediction, sharing the same training data and objective. We can use ideas
from meta-learning to find a shared “meta-hypothesis” that can then be efficiently adapted to each
query (treating each prediction as a task). As shown in the third row of figure 1, we first run
regular supervised learning to obtain parameters θ̂; then, given a query input x, we fine-tune θ̂ on
an unsupervised loss (Ltailor) to obtain customized parameters θx and use them to make the final
prediction: fθx(x). We call this process tailoring, because we adapt the model to each particular
input for a customized fit. Notice that tailoring optimizes the loss at the query point, eliminating the
generalization gap on the auxiliary loss.

Meta-tailoring Since we will be applying tailoring at prediction time, it is natural to anticipate
this adaptation during training, resulting in a two-layer optimization similar to those used for meta-
learning. Because of this similarity, we call this process, illustrated in the bottom row of figure 1,
meta-tailoring. Now, rather than letting θ̂ be the direct minimizer of the supervised loss, we set it to

θ̂ ∈ arg min
θ

n∑
i=1

Lsup(fτ(θ,Ltailor,xi)(xi), yi).

Notice that by optimizing this nested objective, the outer process is now optimizing the only objective
we care about, Lsup, instead of a proxy combination of Lsup and Lunsup. At the same time, we are
learning to leverage the unsupervised tailoring losses in the inner optimization to affect the model
before making the final prediction, both during training and at prediction time.
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In many settings, we wish to make predictions for a large number of query points in a (mini-)batch,
but because tailoring adapts to every point, we must take extra care to be sure it can run efficiently in
parallel. Inspired by conditional normalization (Dumoulin et al., 2016) we propose adding element-
wise affine transformations and only adapting these parameters in the inner optimization. This allows
us totailor outputs for multiple inputs in parallel, without inputs affecting each other’s computations.
We prove theoretically, in section 4, and provide experimental evidence, in section 5.1, that
optimizing these parameters alone has enough capacity to minimize a large class of tailoring losses.

Losses for tailoring Tailoring can be used any time we are making a prediction and have an
unsupervised loss that can be minimized on the current input; although we mostly focus on supervised
learning, tailoring can also be applied to reinforcement learning, as shown in section 5.3. There are
many types of tailoring losses that may be useful; here we enumerate three broad classes.

Losses imposing priors and constraints satisfied by the correct predictions, such as conservation of
momentum and energy when learning a physics model, symmetry under specific transformations, or
cycle-consistency when learning to translate between two languages. We show that tailoring a loss
of this type improves predictive losses in section 5.1, where we model a planetary system. We can
also leverage soft priors; for instance, in section 5.3 we show how encouraging action-conditional
predictions to be likely under an action-unconditional model can improve model-based RL.

Losses that help learn better representations, such as the contrastive losses Hadsell et al. (2006)
explored in semi-supervised learning, or learning to predict one part of the input from another
part,such as depth from RGB (Mirowski et al., 2016). In section 3.1 we show how tailoring with a
contrastive loss improves supervised prediction performance.

Losses informed by theoretical guarantees. The guarantees of many theorems depend on unsuper-
vised quantities, such as smoothness or distance to the prediction boundary. By optimizing such quanti-
ties on the query, or on the surrounding area, we can get better guaranteed performance. In section 5.2,
we show this on adversarial examples, where smooth predictions around the test point are critical.

Contributions In summary, our contributions are the following:
1. Introducing tailoring, a new framework for encoding inductive biases by minimizing unsuper-

vised losses at prediction time, with theoretical guarantees and broad potential applications.
2. Formulating meta-tailoring, which adjusts the outer objective to optimize only the task loss,

and developing a new algorithm, CNGRAD, for efficient meta-tailoring.
3. Demonstrating tailoring in four domains: encoding conservation laws in a physics prediction

problem, increasing resistance to adversarial examples by increasing local smoothness
at prediction time, making model-based reinforcement learning more data-efficient, and
improving theoretical guarantees of prediction quality by tailoring with a contrastive loss.

2 RELATED WORK

There are other learning frameworks that perform optimization at prediction time, such as
energy-based models (Ackley et al., 1985; Hinton, 2002; LeCun et al., 2006) or models that embed
optimization layers in neural networks, whose outputs are the solution of an optimization problem
defined by the previous layer (Amos & Kolter, 2017; Tschiatschek et al., 2018). In contrast to these
lines of work, we optimize the parameters of the model, not the hidden activations or the output.

Meta-learning (Schmidhuber, 1987; Bengio et al., 1995; Thrun & Pratt, 1998) has the same two-level
optimization structure as our work, but focuses on multiple prediction tasks, each of which has its
own separate training data. Most optimization-based meta-learning algorithms can be converted to the
meta-tailoring setting. There is a particularly clear connection to MAML (Finn et al., 2017), when we
let the tailoring method be a step of gradient descent: τ(θ̂,Ltailor, x) = θ̂ − λ∇θ̂L

tailor(x, θ̂). There
are other optimization-based approaches to meta-learning whose adaptations can be batched (Zintgraf
et al., 2018; Rakelly et al., 2019; Alet et al., 2019). In particular, FiLM networks (Perez et al., 2018),
which predict customized conditional normalization layers, have been used in meta-learning (Zintgraf
et al., 2018; Requeima et al., 2019). By optimizing the conditional normalization layers themselves,
our method CNGRAD is simpler, while remaining provably sufficiently expressive. More importantly,
we can add to a trained model CNGRAD layers with weights initialized to the identity and adapt
them to perform tailoring or fine-tune the model with a meta-tailoring objective.
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Tailoring is inspired by transductive learning. However, transductive methods, because they operate
on a batch of unlabeled points, are able to make use of the underlying distributional properties of
those points. On the other hand, tailoring does not need to receive the queries before doing the
bulk of the computation.Within transductive learning, local learning (Bottou & Vapnik, 1992) has
input-dependent parameters, but it uses similarity in raw input space to select a few data-points instead
of reusing the prior learned across the whole data. Some methods (Garcia & Bruna, 2017; Liu et al.,
2018) in meta-learning propagate predictions along the test samples in a classic transductive fashion.

Optimization processes similar to tailoring and meta-tailoring have been proposed before, to adapt
to different types of variations between training and testing. Sun et al. (2019) propose to adapt
to a change of distribution with few samples by unsupervised fine-tuning at test-time, applying it
with a loss of predicting whether the input has been rotated. Other methods in the meta-learning
setting exploit test samples of a new task by minimizing either entropy (Dhillon et al., 2020) or
a learned loss (Antoniou & Storkey, 2019) in the inner optimization. Finally, Wang et al. (2019)
uses entropy in the inner optimization to adapt to large scale variations in image segmentation. In
contrast, we propose (meta-)tailoring as a general effective way to impose inductive biases in the
classic machine learning setting. We also unify tailoring and meta-tailoring with arbitrary losses
under one paradigm, theoretically and empirically showing the advantage of each modification to
classic inductive learning. Appendix F shows experimental results analyzing why using prior work
on adapting to the test distribution performs worse than tailoring (which, in turn, performs worse than
meta-tailoring) in the classic ML setting where test and training come from the same distribution.

3 THEORETICAL MOTIVATIONS OF META-TAILORING

In this section, we study potential advantages of meta-tailoring from the theoretical viewpoint,
formalizing the intuitions conveyed in the introduction. By acting symmetrically during training and
prediction time, meta-tailoring allows us to closely relate its training and expected losses, whereas
tailoring in general may make them less related.

3.1 META-TAILORING WITH A CONTRASTIVE TAILORING LOSS

Contrastive learning (Hadsell et al., 2006) has seen significant successes recently in problems of semi-
supervised learning from images (Oord et al., 2018; He et al., 2019; Chen et al., 2020). The main idea
is to create multiple versions of each training image, and learn a representation in which variations
of the same image are very close and variations of different images are far apart. Typical variations
involve cropping, color distortions and rotation. We show theoretically that, under reasonable
conditions, meta-tailoring using a particular contrastive loss Lcont as Ltailor = Lcont helps us improve
generalization errors in expectation compared with performing classical inductive learning.

When using meta-tailoring, we define θx,S to be the θx obtained with a training dataset S =
((xi, yi))

n
i=1 and tailoring with the contrastive loss at the prediction point x. Theorem 1 pro-

vides an upper bound on the expected supervised loss Ex,y[Lsup(fθx,S (x), y)] in terms of the
expected contrastive loss Ex[Lcont(x, θx,S)] (which is defined and analyzed in more detail in
Appendix B), the empirical supervised loss 1

n

∑n
i=1 Lsup(fθxi,S (xi), yi) of the meta-tailoring al-

gorithm, and the uniform stability ζ of the meta-tailoring algorithm. As a complement, in-
stead of using the uniform stability ζ, Theorem 6 (detailed in appendix C) provides a similar
bound with the Rademacher complexity (Bartlett & Mendelson, 2002) Rn(Lsup ◦ F) of the set
Lsup ◦ F = {(x, y) 7→ Lsup(fθx(x), y) : (x 7→ fθx(x)) ∈ F}. All proofs in this paper are deferred
to Appendix C.
Definition 1. Let S = ((xi, yi))

n
i=1 and S′ = ((x′i, y

′
i))

n
i=1 be any two training datasets that

differ by a single point. Then, a meta-tailoring algorithm S 7→ fθx,S (x) is uniformly ζ-stable if
∀(x, y) ∈ X × Y, |Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ ζ

n .

Theorem 1. Let S 7→ fθx,S (x) be a uniformly ζ-stable meta-tailoring algorithm. Then, for any
δ > 0, with probability at least 1 − δ over an i.i.d. draw of n i.i.d. samples S = ((xi, yi))

n
i=1,

the following holds: for any κ ∈ [0, 1], Ex,y[Lsup(fθx,S (x), y)] ≤ κEx
[
Lcont(x, θx,S)

]
+ (1− κ)J ,

where J = 1
n

∑n
i=1 Lsup(fθxi,S

(xi), yi) + ζ
n + (2ζ + c)

√
(ln(1/δ))/(2n), and c is the upper bound

on the per-sample loss as Lsup(fθ(x), y) ≤ c.

In the case of regular inductive learning we get a bound of the exact same form, except that we
have a single θ instead of a θx tailored to each input x. These differences are marked in bold
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green in Definition 1 and Theorem 1. This theorem illustrates the effect of meta-tailoring on
contrastive learning, with its potential reduction of the expected contrastive loss Ex[Lcont(x, θx,S)].
In classic induction, we may aim to minimize the empirical contrastive loss 1

n̄

∑n̄
i=1 Lcont(xi, θ)

with n̄ potentially unlabeled training samples (in addition to the empirical supervised loss), which
incurs the additional generalization error of Ex[Lcont(x, θx,S)] − 1

n̄

∑n̄
i=1 Lcont(xi, θ). In contrast,

the meta-tailoring can avoid this extra generalization error by directly minimizing Ex[Lcont(x, θx,S)].

In the case where Ex[Lcont(x, θx,S)] is left large (e.g., due to large computational cost at prediction
time), Theorem 1 still illustrates competitive generalization bounds of meta-tailoring with small
κ, when compared to classical induction. For example, with κ = 0, it provides standard types
of generalization bounds with the uniform stability for meta-tailoring algorithms. Even in this
case, the bounds are not equivalent to those of classic induction, and there are potential benefits of
meta-tailoring, which are discussed in the following section with a more general setting.

3.2 META-TAILORING WITH GENERAL TAILORING LOSSES

The benefits of meta-tailoring go beyond contrastive learning: the following remark provides the gen-
eralization bounds for meta-tailoring with any tailoring loss Ltailor(x, θ) and an arbitrary supervised
loss Lsup(fθ(x), y).

Remark 1. For any function ϕ such that Ex,y[Lsup(fθ(x), y)] ≤ Ex[ϕ(Ltailor(x, θ))], Theorems 1
and 6 hold with the map Lcont being replaced by the function ϕ ◦ Ltailor.

Remark 1 shows the benefits of meta-tailoring through its effects on three factors: the expected
unlabeled loss Ex[ϕ(Ltailor(x, θx,S))], uniform stability ζ , and Rademacher complexityRn(Lsup ◦F).

It is important to note that meta-tailoring can directly minimize the expected unlabeled loss
Ex[ϕ(Ltailor(x, θx,S))], whereas classic induction can only minimize its empirical version, which
results in the additional generalization error on the difference between the expected unlabeled loss
and its empirical version. For example, if ϕ is monotonically increasing and Ltailor(x, θ) represents
the physical constraints at each input x (as in the application in section 5.1), then classic induction
requires the physical constraints of neural networks at the training points to generalize to the phys-
ical constraints at unseen (e.g., testing) points. Meta-tailoring avoids this requirement by directly
minimizing violations of the physical constraints at each point at prediction time.

Another potential benefit of meta-tailoring can be understood through the improvement in the
parameter stability ζθ defined such that ∀(x, y) ∈ X ×Y, ‖θx,S− θx,S′‖ ≤ ζθ

n , for all S, S′ differing
by a single point. In the case of the meta-tailoring method of θx,S = θ̂S − λ∇Ltailor(x, θ̂S), we
can obtain an improvement on the parameter stability ζθ if ∇Ltailor(x, θ̂S) can pull θ̂S and θ̂S′

closer so that ‖θx,S − θx,S′‖ < ‖θ̂S − θ̂S′‖, which is ensured, for example, if ‖ · ‖ = ‖ · ‖2 and
cos(v1, v2)‖v1‖‖v2‖ >

1
2 where cos(v1, v2) is the cosine similarity of v1 and v2, with v1 = θ̂S − θ̂S′ ,

v2 = λ(∇Ltailor(x, θ̂S) − ∇Ltailor(x, θ̂S′)) and v2 6= 0. Here, the uniform stability ζ and the
parameter stability ζθ are closely related as ζ ≤ Cζθ, where C is the upper bound on the Lipschitz
constants of the maps θ 7→ Lsup(fθ(x), y) over all (x, y) ∈ X × Y under the norm ‖ · ‖, since
|Lsup(fθx,S (x), y)− Lsup(fθx,S′ (x), y)| ≤ C‖θx,S − θx,S′‖ ≤ Cζθ

n .

4 CNGRAD: A SIMPLE ALGORITHM FOR EXPRESSIVE, EFFICIENT TAILORING

In the previous sections, we have discussed the principal motivation and theoretical advantages of
(meta-)tailoring. However, there is a remaining issue for efficient GPU computations: whereas one
can efficiently parallelize the evaluation of a single model over a batch across inputs, it is challenging
to efficiently parallelize the evaluation of multiple tailored models over a batch. To overcome this
issue, by building on CAVIA (Zintgraf et al., 2018) and WarpGrad (Flennerhag et al., 2019), we
propose CNGRAD which adapts only conditional normalization parameters and enables efficient
GPU computations for (meta-)tailoring. CNGRAD can also be used in regular meta-learning; details
and pseudo-codes of both versions can be found in appendix D.

As is done in batch-norm (Ioffe & Szegedy, 2015) after element-wise normalization, we can imple-
ment an element-wise affine transformation with parameters (γ, β), scaling and shifting the output
h

(l)
k (x) of each k-th node at l-th hidden layer independently: γ(l)

k h
(l)
k (x) + β

(l)
k . In conditional
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normalization, Dumoulin et al. (2016) train a collection of (γ, β) in a multi-task fashion to learn
different tasks with a single network. We propose to bring this concept to the meta-learning and
(meta-)tailoring settings and adapt the affine parameters (γ, β) to each query . For meta-tailoring,
the inner optimization minimizes the tailoring loss at an input x by adjusting the affine parameters
and the outer optimization adapts the rest of the network. Similar to MAML (Finn et al., 2017),
we implement a first-order version, which does not backpropagate through the optimization, and a
second-order version, which does. We can efficiently parallelize computations of multiple tailored
models over a (mini-)batch in a GPU in the same way as that in a classic induction model, because
the adapted parameters only require element-wise multiplications and additions.

CNGRAD is widely applicable, since we can add these adaptable affine parameters to any hidden
layer.While we are only changing a tiny portion of the network, we prove below that, under realistic
assumptions, we can minimize the inner tailoring loss using only the affine parameters. However, it
is worth noting that we still need the entire network to minimize the outer meta-objective.

To analyze properties of the adaptable affine parameters, let us decompose θ into θ = (w, γ, β),
where the w contains all the weight parameters (including bias terms), and the (γ, β) contains
all the affine parameters. Given arbitrary coefficients η1, . . . , ηng ∈ R and an arbitrary function
(fθ(x), x) 7→ `tailor(fθ(x), x), let Ltailor(x, θ) =

∑ng
i=1 ηi`tailor(fθ(g

(i)(x)), x), where g(1), . . . , g(ng)

are arbitrary input augmentation functions at prediction time. Note that ng is typically small (ng � n)
in meta-tailoring; e.g., ng = 1 in the method in Section 5.1 regardless of the size of the dataset n.

Corollary 1 states that for any given ŵ, if we add any non-degenerate Gaussian noise δ as ŵ + δ with
zero mean and any variance on δ, the global minimum value with respect to all parameters (w, γ, β)
can be achieved by optimizing only the affine parameters (γ, β), with probability one.
Assumption 1. (Common activation) The activation function σ(x) is real analytic, monotonically
increasing, and the limits exist as: limx→−∞ σ(x) = σ− > −∞ and limx→+∞ σ(x) = σ+ ≤ +∞.
Theorem 2. For any x ∈ X that satisfies ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j), and for
any fully-connected neural network with a single output unit, at least ng neurons per hidden layer,
and activation functions that satisfy Assumption 1, the following holds: infw,γ,β Ltailor(x,w, γ, β) =
infγ,β Ltailor(x, w̄, γ, β) for any w̄ /∈ W where Lebesgue measure ofW ⊂ Rd is zero.
Corollary 1. Under the assumptions of Theorem 2, for any ŵ ∈ Rd, with probability one over
randomly sampled δ ∈ Rd accordingly to any non-degenerate Gaussian distribution, the following
holds: infw,γ,β Ltailor(x,w, γ, β) = infγ,β Ltailor(x, ŵ + δ, γ, β) for any x ∈ X .

The assumption and condition in theorem 2 are satisfied in practice(see Appendix A for more
details). Therefore, CNGRAD is a practical and computationally efficient method to implement
(meta-)tailoring.

5 EXPERIMENTS

5.1 TAILORING TO IMPOSE SYMMETRIES AND CONSTRAINTS AT PREDICTION TIME

Constructing inductive biases that exploit invariances and symmetries is an established strategy for
boosting performance in machine learning. During training, we often regularize our networks to
satisfy certain criteria; however, this does not guarantee that these criteria will be satisfied outside
the training dataset (Suh & Tedrake, 2020). Another option is to construct ad hoc neural network
architectures to exploit constraints for important problems, such as using Hamiltonian neural net-
works (Greydanus et al., 2019) to impose energy (but not momentum) conservation. Tailoring provides
a general solution to this problem by adapting the model at prediction time to satisfy the criteria. In
meta-tailoring, we also train the system to make good predictions after satisfying the constraint.

We demonstrate this use of tailoring by enforcing physical conservation laws to more accurately
predict the evolution of a 5-body planetary system governed by gravitational forces. This prediction
problem is challenging, as m-body systems become chaotic for m > 2. We generate a supervised-
learning dataset with positions, velocities and masses of all 5 bodies as inputs and the changes in
position and velocity at the next time-step as targets. Appendix E describes the dataset in greater detail.

To predict the data, we use a 3-layer feed-forward network and apply a tailoring loss based on the
laws of conservation of energy and momentum. More concretely, we take the original predictions and
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Method loss relative

Inductive learning .041 -
Opt. output(50 st.) .041 (0.7 ± 0.1)%
6400-spl. TTT(50st.) .040 (3.6 ± 0.2)%

Tailoring(1 step) .040 (1.9 ± 0.2)%
Tailoring(5 st.) .039 (6.3 ± 0.3)%
Tailoring(10 st.) .038 (7.5 ± 0.1)%
Meta-tailoring(0 st.) .030 (26.3 ± 3.3)%
Meta-tailoring(1 st.) .029 (29.9 ± 3.0)%
Meta-tailoring(5 st.) .027 (35.3 ± 2.6)%
Meta-tailoring(10 st.) .026 (36.0 ± 2.6)%

Table 1: Test MSE loss for different methods; the
second column shows the relative improvement
over basic inductive supervised learning. The test-
time training (TTT) baseline uses a full batch of
6400 test samples to adapt, not allowed in regular
SL. With a few gradient steps, tailoring signifi-
cantly over-performs all baselines. Meta-tailoring
improves even further, with 35% improvement.

Figure 2: Optimization at prediction time on the
planet data; each path going from right to left as
we minimize the physics tailoring loss. We use
a small step size to illustrate the path. Tailoring
and the two baselines share only differ in their
test-time computations, thus sharing their starts.
Meta-tailoring has a lower starting loss, faster op-
timization, and no overfitting to the tailoring loss.

adapt our model using the L1 loss between the initial and final energy and momentum of the whole
system. Ensuring this conservation can improve predictions, but notice that minimizing the tailoring
loss alone does not guarantee good predictions: predicting that the output equals the input conserves
energy and momentum perfectly, but is not correct.

Tailoring adapts some parameters in the network in order to improve the tailoring loss. An alternative
for enforcing conservation would be to adapt the output y value directly. Table 1 compares the
predictive accuracy of inductive learning to direct output optimization as well as tailoring and meta-
tailoring, using varying numbers of gradient steps. We observe that tailoring is more effective than
adapting the output, as the parameters provide a prior on what changes are more natural. For meta-
tailoring, we try both first-order and second-order versions of CNGRAD: the first-order version gave
slightly better results, possibly because it was trained with a higher tailor learning rate (10−3) with
which the second-order version meta-training was unstable (we thus used 10−4). More details can be
found in Appendix E. Interestingly, meta-tailoring without any query-time tailoring steps already
performs much better than the original model, even though both models have almost the same number
of parameters and can overfit the dataset.We conjecture meta-tailoring training is adding an inductive
bias that guides optimization towards learning a more generalizable model, even without tailoring at
test time. Finally, plot 2 shows the prediction-time optimization paths for different methods.

5.2 TAILORING FOR ROBUSTNESS AGAINST ADVERSARIAL EXAMPLES

Despite their successes, neural networks remain susceptible to the problem of adversarial exam-
ples (Biggio et al., 2013; Szegedy et al., 2013): targeted small perturbations of an input can cause the
network to mis-classify it. One approach is to make the prediction function smooth via adversarial
training (Madry et al., 2017); however, this only ensures smoothness in the training points and
constraining our model to be smooth everywhere makes it lose capacity. This is a perfect opportunity
for applying (meta-)tailoring, since we can ask for smoothness a posteriori, only on the specific query.

We apply meta-tailoring to robustly classifying CIFAR-10 (Krizhevsky et al., 2009) and Ima-
geNet (Deng et al., 2009) images, tailoring predictions so that they are locally smooth. We meta-tailor
our classifier using (the first-order version of) CNGRAD and a tailoring loss that enforces smoothness
on the entire vector of features of the penultimate layer in the neural network (denoted gθ(x)):

Ltailor(x, θ) = E[cos_dist(gθ(x), gθ(x+ δ))], δ ∼ N(0, ν2), (1)

where cos_dist(v1, v2) is the cosine distance between vectors v1 and v2. This loss is inspired by Ilyas
et al. (2019), who argue that adversarial examples are caused by features which are predictive, but
non-robust to perturbations. In that way, our loss adjusts the model to ensure features are locally
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σ Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ACR

0.25 (Inductive) RandSmooth 0.67 0.49 0.00 0.00 0.00 0.00 0.00 0.470
Meta-tailored 0.72 0.55 0.00 0.00 0.00 0.00 0.00 0.494

0.50 (Inductive) RandSmooth 0.57 0.46 0.37 0.29 0.00 0.00 0.00 0.720
Meta-tailored 0.66 0.54 0.42 0.31 0.00 0.00 0.00 0.819

1.00 (Inductive) RandSmooth 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.863
Meta-tailored 0.52 0.45 0.36 0.31 0.24 0.20 0.15 1.032

Figure 3: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the ImageNet dataset. Meta-tailoring improves the Average Certification Radius by
5.1%, 13.8%, 19.6% respectively. Results for Cohen et al. (2019) are taken from Zhai et al. (2020).

robust at the input query before making a prediction. To keep inference fast, we approximate this loss
with a single sample, but it could be improved with more samples or more sophisticated methods.

We build on the work of Cohen et al. (2019), who developed a method for certifying the robustness
of a model via randomized smoothing. It samples several points from a Gaussian N(x, σ2) around
the query and, if there is enough agreement in classification, it provides a certificate that the example
cannot be adversarially modified by a small perturbation to have a different class. We show that meta-
tailoring improves the original randomized smoothing method, testing for σ = 0.25, 0.5, 1.0. For
simplicity, we use ν = 0.1 for all experiments. We initialized with the weights of Cohen et al. (2019)
to speed up training in all ImageNet experiments and to avoid training divergence for CIFAR-10,
σ = 1 (this divergence had already been noted by Zhai et al. (2020)). Note that we could leverage
these pre-trained weights because of CNGRADcan start from a pre-trained model by initializing the
extra affine layers to the identity. Finally, we use σ′ =

√
σ2 − ν2 ≈ 0.23, 0.49, 0.995 so that the

points used in our tailoring loss come from N(x, σ2).

In table 3, we show results on Imagenet where we improve the average certification radius by
5.1%, 13.8%, 19.6% respectively. In table 6, in the appendix, we show results on CIFAR-10 where
we improve the average certification radius by 8.6%, 10.4%, 19.2%. We chose to meta-tailor this
randomized smoothing method because it represents a strong standard in certified adversarial
defenses, but it is important to note that there have been advances on this method that sometimes
achieve better results than those we present here (Zhai et al., 2020; Salman et al., 2019), see
appendix H. However, it is likely that these methods could also be improved through meta-tailoring.

These experiments only scratch the surface of what tailoring allows for adversarial defenses: usually,
the adversary looks at the model and gets to pick a particularly bad perturbation x+ δ. With tailoring,
the model responds, by changing to weights θx+δ. This leads to a game, where both weights and
inputs are perturbed, similar to: max|δ|<εx min|∆|<εθ Lsup (fθ+∆(x+ δ), y) . However, since we
don’t get to observe y; we optimize the weight perturbation by minimizing Ltailor instead.

5.3 TAILORING TO IMPROVE THE PERFORMANCE OF MODEL-BASED RL
In model-based reinforcement learning (MBRL) we consider a Markov decision process (MDP) with
state-space S , action-space A and unknown transition distribution p(s′|s, a). Here, we assume access
to a known reward function r(s, a), although this assumption could be relaxed. In MBRL we learn a
deterministic transition model Tθ(s, a)→ s′ from past experience and use it to either learn a policy
or (as done here) to plan good actions by maximizing the reward over some planning horizon H:

a∗t...t+H = arg max
at...t+H−1

H∑
h=1

r (ŝt+h) = arg max
at...t+H−1

H∑
h=1

r (Tθ (st, at...t+h−1))

where Tθ (st, at...t+h−1) = Tθ (. . . Tθ (Tθ (st, at) , at+1) , . . . , at+h−1), i.e. applying Tθ h times.
We also often apply receding-horizon control, where we plan with horizon H , but then only apply
the first action at, observe the next state at+1 and re-plan again. However, in this setting we are
optimizing the output of the transition model with respect to (part of) the input: the actions. Similar
to adversarial examples in the previous section, this often results in the action optimisation finding
regions of the input-space where the model makes overly-optimistic predictions. In order to improve
performance it has been previously proposed to regularize the confidence of the models (Ha &
Schmidhuber, 2018), to make them uncertainty-aware by learning an ensemble of models (Nagabandi
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et al., 2020), or to make pessimistic predictions (Kidambi et al., 2020), among many other approaches.
Similar to the adversarial examples experiments, meta-tailoring opens new simple ways of making
transition models more robust.

Figure 4: Meta-tailoring improves the performance
of MBRL in dclaw, a complex manipulation prob-
lem, especially for low-data regimes where the
transition model is imperfect and the prior is thus
useful. We plot one confidence interval for the me-
dian reward bootstrapped from 16 different runs
per configuration. Further increasing the tailoring
learning rate results in (meta-)training instabilities
because the inner loop is highly variable.

In this section, we explain a simple way of using
meta-tailoring to improve transition models in
MBRL. In particular, we can learn an action-
independent model M(st)→ p (st+1) that out-
puts a probability distribution for the next state
given the current state, independently of the ac-
tion at. This model presents a trade-off with
respect to the original model T (s, a): on the
one hand, it is intrinsically uncertain since it
lacks part of the information (the actions); we
thus output a probability distribution in the form
of a mixture of Gaussians to model this uncer-
tainty. On the other hand, it has the advantage of
not being “hackable" by the action-selection pro-
cess, making the planner unable to find overly
confident regions.

More concretely, we first train an action-
independent prediction model to maximize the
log-likelihood M(st) (st+1). Then, when mak-
ing predictions with Tθ(st, at) we use the
action-independent log-likelihood of the action-
dependent predictions as the tailoring loss:
−M(st) (Tθ(st, at)), with a minus sign be-
cause we want to maximize the log-likelihood.
From this we obtain tailored parameters θ(st,at)

and use them to make the final prediction. In meta-tailoring fashion we train these final predictions to
be close to the truth Tθ(st,at)(st, at) ≈ st+1. In practice, we use the first-order version of CNGRAD.

We use this idea and build on PDDM (Nagabandi et al., 2020), which recently showed great results in
model-based reinforcement learning for robotic manipulation problems. Since they use an ensemble
of deep networks Ti(st, at) (to make robust predictions), we independently meta-tailor each network
to leverage a single action-independent learned prior M(st), leaving the rest of PDDM the same. In
figure 4, we observe that meta-tailoring improves the performance of the overall predictive model,
especially during early parts of training when the action-conditioned model has not become accurate.
As expected, once the action-conditioned model is good enough (to get positive reward) meta-tailoring
is not as useful as we do not need the action-independent prior anymore. For more experimental
details, see appendix I.

6 CONCLUSION

We have presented tailoring, a simple way of embedding a powerful class of inductive biases into
models, by minimizing unsupervised objectives at prediction time. We have leveraged the generality
of auxiliary losses and improved them in two key ways: first, we eliminate the generalization gap
on the auxiliary loss by optimizing it on the query point instead of on a training set; second, we
change the optimization to minimize only the task loss in the outer optimization, and the tailoring loss
in the inner optimization. This results in the whole network optimizing the only objective we care
about, instead of a proxy loss. Finally, we have formalized these intuitions by proving the benefits of
meta-tailoring under mild assumptions.

The framework is broadly applicable, as one can vary the model, the unsupervised loss and the
task loss. We have shown its applicability in three diverse domains: physics prediction time-series,
contrastive learning, and adversarial robustness. We also provide a simple algorithm,CNGRAD,
to make meta-tailoring practical with little additional code. Currently, most unsupervised or
self-supervised objectives are optimized in task-agnostic ways; instead, meta-tailoring provides a
generic way to make them especially useful for particular applications. It does so by learning how
to best leverage the unsupervised loss to perform well on the final task we care about.
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A ON THE CONDITIONS IN THEOREM 2 AND COROLLARY 1

Assumption 1 is satisfied by using common activation functions such as sigmoid and hyperbolic
tangent, as well as softplus, which is defined as σα(x) = ln(1+exp(αx))/α and satisfies Assumption
1 with any hyperparameter α ∈ R>0. The softplus activation function can approximate the ReLU
function to any desired accuracy: i.e., σα(x)→ relu(x) as α→∞, where relu represents the ReLU
function.

In Theorem 2 and Corollary 1, the condition ‖g(i)(x)‖22 − g(i)(x)>g(j)(x) > 0 (for all i 6= j) can be
easily satisfied, for example, by choosing g(1), . . . , g(ng) to produce normalized and distinguishable
argumented inputs for each prediction point x at prediction time. To see this, with normalization
‖g(i)(x)‖22 = ‖g(j)(x)‖22, the condition is satisfied if ‖g(i)(x) − g(j)(x)‖22 > 0 for i 6= j since
1
2‖g

(i)(x)− g(j)(x)‖22 = ‖g(i)(x)‖22 − g(i)(x)>g(j)(x).

In general, the normalization is not necessary for the condition to hold; e.g., orthogonality on g(i)(x)
and g(j)(x) along with g(i)(x) 6= 0 satisfies it without the normalization.

B UNDERSTANDING THE EXPECTED META-TAILORING CONTRASTIVE LOSS

To analyze meta-tailoring for contrastive learning, we focus on the binary classification loss of the
form Lsup(fθ(x), y) = `cont(fθ(x)y − fθ(x)y′=¬y) where `cont is convex and `cont(0) = 1. With this,
the objective function θ 7→ Lsup(fθ(x), y) is still non-convex in general. For example, the standard
hinge loss `cont(z) = max{0, 1− z} and the logistic loss `cont(z) = s log2(1 + exp(z)) satisfy this
condition.

We first define the meta-tailoring contrastive loss Lcont(x, θ) in detail. In meta-tailoring contrastive
learning, we choose the probability measure of positive example x+ ∼ µx+(x) and the probability
measure of negative example x−, y− ∼ µx−,y−(x), both of which are tailored for each input point
x at prediction time. These choices induce the marginal distributions for the negative examples
y− ∼ µy−(x) and x− ∼ µx−(x), as well as the unknown probability of y− = y defined by
ρy(µy−(x)) = Ey−∼µy− (x)(1{y− = y}). Define the lower and upper bound on the probability of
y− = y as ρ(x) ≤ ρy(µy−(x)) ≤ ρ̄(x) ∈ [0, 1).

Then, the first pre-meta-tailoring contrastive loss can be defined by

Lx
+,x−

cont (x, θ) = Ex+∼µx+ (x),

x−∼µx− (x)

[`cont(hθ (x)>(hθ (x+)− hθ (x−)))],

where hθ (x) ∈ RmH+1 represents the output of the last hidden layer, including a constant neuron
corresponding the bias term of the last output layer (if there is no bias term, hθ (x) ∈ RmH ). For
every z ∈ R2×(mH+1), define ψx,y,y−(z) = `cont((zy − zy−)hθ (x)), where zy ∈ R1×mH is the y-th
row vector of z. We define the second pre-meta-tailoring contrastive loss by

Lx
+,x−,y−

cont (x, θ) = max
y

Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,1,2([u+
h , u

−
h ]>)],

where u+
h = Ex+∼µx+ (x)[hθ (x+)] and u−h = Ex−∼µx− (x)[hθ (x−)]. Here, we decompose θ as θ =

(θ(1:H), θ(H+1)), where θ(H+1) = [W (H+1), b(H+1)] ∈ Rmy×(mH+1) represents the parameters at
the last output layer, and θ(1:H) represents all others.

Then, the meta-tailoring contrastive loss is defined by

Lcont(x, θ) =
1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)
.

Theorem 3 states that for any θ(1:H), the convex optimization of Lx
+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ)

over θ(H+1) can achieve the value of Lx
+,x−

cont (x, θ) without the value of Lx
+,x−,y−

cont (x, θ), allowing
us to focus on the first term Lx

+,x−

cont (x, θ), for some choice of µx−,y−(x) and µx+(x).
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Theorem 3. For any θ(1:H), µx−,y−(x) and µx+(x), the function θ(H+1) 7→ Lx
+,x−

cont (x, θ) +

Lx
+,x−,y−

cont (x, θ) is convex. Moreover, there exists µx−,y−(x) and µx+(x) such that, for any θ(1:H)

and any θ̄(H+1),

inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−

cont (x, θ) + Lx
+,x−,y−

cont (x, θ) ≤ Lx
+,x−

cont (x, θ(1:H), θ̄(H+1)).

C PROOFS

In order to have concise proofs, we introduce additional notations while keeping track of dependent
variables more explicitly. Since hθ only depends on θ(1:H), let us write hθ(1:H) = hθ. Similarly,
Lcont(x, θ

(1:H)) = Lcont(x, θ). Let θ(x) = θx and θ(x, S) = θx,S . Define L = Lsup.

C.1 PROOF OF THEOREM 2

Proof of Theorem 2. The output of fully-connected neural networks for an input x with a parameter
vector θ = (w, γ, β) can be represented by fθ(x) = W (H+1)h(H)(x) + b(H+1) where W (H+1) ∈
R1×mH and b(H+1) ∈ R are the weight matrix and the bias term respectively at the last layer, and
h(H)(x) ∈ RmH represents the output of the last hidden layer. Here, ml represents the number of
neurons at the l-th layer, and h(l)(x) = γ(l)(σ(W (l)h(l−1)(x)+b(l)))−β(l) ∈ Rml for l = 1, . . . ,H ,
with trainable parameters γ(l), β(l) ∈ Rml , where h(0)(x) = x. Let z(l)(x) = σ(W (l)h(l−1)(x) +
b(l)).

Then, by rearranging the definition of the output of the neural networks,

fθ(x) = W (H+1)h(H)(x) + b(H+1)

=

(
mH∑
k=1

W
(H+1)
k γ

(H)
k z(H)(x)k +W

(H+1)
k β

(H)
k

)
+ b(H+1)

= [W (H+1) ◦ z(H)(x)>,W (H+1)]

[
γ(H)

β(H)

]
+ b(H+1).

Thus, we can write  fθ(g
(1)(x))
...

fθ(g
(ng)(x))

 = Mw

[
γ(H)

β(H)

]
+ b(H+1)1ng ∈ Rng , (2)

where

Mw =

W
(H+1) ◦ z(H)(g(1)(x))>,W (H+1)

...
W (H+1) ◦ z(H)(g(ng)(x))>,W (H+1)

 ∈ Rng×2mH ,

and 1ng = [1, 1, . . . , 1]> ∈ Rng .

Using the above equality, we show an exitance of a (γ, β) such that Ltailor(x, w̄, γ, β) =
infw,γ,β Ltailor(x, θ) for any x ∈ X ⊆ Rmx and any w̄ /∈ W where Lebesgue measure ofW ⊂ Rd is
zero. To do so, we first fix γ(l)

k = 1 and β(l)
k = 0 for l = 1, . . . ,H − 1, with which h(l)(x) = z(l)(x)

for l = 1, . . . ,H − 1.

Define ϕ(w) = det(MwM
>
w ), which is analytic since σ is analytic. Furthermore, we have that

{w ∈ Rd : Mw has rank less than ng} = {w ∈ Rd : ϕ(w) = 0}, since the rank of Mw and the rank
of the Gram matrix are equal. Since ϕ is analytic, if ϕ is not identically zero (ϕ 6= 0), the Lebesgue
measure of its zero set {w ∈ Rd : ϕ(w) = 0} is zero (Mityagin, 2015). Therefore, if ϕ(w) 6= 0 for
some w ∈ Rd, the Lebesgue measure of the set {w ∈ Rd : Mw has rank less than ng} is zero.

Accordingly, we now constructs a w ∈ Rd such that ϕ(w) 6= 0. Set W (H+1) = 1>mH . Then,

Mw = [M̄w,1ng,mH ] ∈ Rng×mH .
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where

M̄w =

 z(H)(g(1)(x))>

...
z(H)(g(ng)(x)(x))>

 ∈ Rng×mH

and 1ng,mH ∈ Rng×mH with (1ng,mH )ij = 1 for all i, j. For l = 1, . . . ,H , define

G(l) =

 z
(l)(g(1)(x))>

...
z(l)(g(ng)(x))>

 ∈ Rng×ml .

Then, for l = 1, . . . ,H ,
G(l) = σ(G(l−1)(W (l))> + 1ng (b(l))>),

where σ is applied element-wise (by overloading of the notation σ), and

(M̄w)ik = (G(H))ik.

From the assumption g(x), there exists c > 0 such that ‖g(i)(x)‖22 − 〈g(i)(x), g(j)(x)〉 > c for
all i 6= j. From Assumption 1, there exists c′ such that σ+ − σ− > c′. Using these constants,
set W (1)

i = α(1)g(i)(x)> and b(1)
i = cα(1)/2 − α(1)‖g(i)(x)‖22 for i = 1, . . . , ng, where W (1)

i

represents the i-th row of W (1). Moreover, set W (l)
1:ng,1:ng

= α(l)Ing and b(l)k = c′α(l)/2− α(l)σ+

for all k and l = 2, . . . ,H , where W (l)
1:ng,1:ng

is the fist ng × ng block matrix of W (1) and Ing is the
ng × ng identity matrix. Set all other weights and bias to be zero. Then, for any i ∈ {1, . . . , ng},

(G(1))ii = σ(cα(1)/2),

and for any k ∈ {1, . . . , ng} with k 6= i,

(G(1))ik = σ(α(1)(〈g(i)(x), g(k)(x)〉 − ‖g(k)(x)‖22 + c/2)) ≤ σ(−cα(1)/2).

Since σ(cα(1)/2)→ σ+ and σ(−cα(1)/2)→ σ− as α(1) →∞, with α(1) sufficiently large, we have
that σ(cα(1)/2)− σ+ + c′/2 ≥ c(2)

1 and σ(−cα(1)/2)− σ+ + c′/2 ≤ −c(2)
2 for some c(2)

1 , c
(2)
2 > 0.

Note that c(2)
1 and c(2)

2 depends only on α(1) and does not depend on any of α(2), . . . , α(H). Therefore,
with α(1) sufficiently large,

(G(2))ii = σ(α(2)(σ(cα(1)/2)− σ+ + c′/2)) ≥ σ(α(2)c
(2)
1 ),

and
(G(2))ik ≤ σ(α(2)(σ(−cα(1)/2)− σ+ + c′/2)) ≤ σ(−α(2)c

(2)
2 ).

Repeating this process with Assumption 1, we have that with α(1), . . . , α(H−1) sufficiently large,

(G(H))ii ≥ σ(α(H)c
(H)
1 ),

and
(G(H))ik ≤ σ(−α(H)c

(H)
2 ).

Here, (G(H))ii → σ+ and (G(H))ik → σ− as α(H) → ∞. Therefore, with α(1), . . . , α(H) suffi-
ciently large, for any i ∈ {1, . . . , ng},∣∣(M̄w)ii − σ−

∣∣ >∑
k 6=i

∣∣(M̄w)ik − σ−
∣∣ . (3)

The inequality equation 3 means that the matrix M̄ ′w = [(M̄w)ij − σ−]1≤i,j≤ng ∈ Rng×ng is strictly
diagonally dominant and hence is nonsingular with rank ng . This implies that the matrix [M̄ ′w,1ng ] ∈
Rng×(ng+1) has rank ng. This then then implies that the matrix M̃w = [[(M̄w)ij ]1≤i,j≤ng ,1ng ] ∈
Rng×(ng+1) has rank ng, since the elementary matrix operations preserve the matrix rank. Since
the set of all columns of Mw contains all columns of M̃w, this implies that Mw has rank ng and
ϕ(w) 6= 0 for this constructed particular w.
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Therefore, the Lebesgue measure of the set W = {w ∈ Rd : ϕ(w) = 0} is zero. If w /∈ W ,
{(fw̄,γ̄,β̄(g(1)(x)), . . . , fw̄,γ̄,β̄(g(ng)(x)) ∈ Rng : γ̄(l), β̄(l) ∈ Rml} = Rng , since Mw has rank ng
in equation 2 for some γ̄(l), β̄(l) for l = 1, . . . ,H − 1 as shown above. Thus, for any w̄ /∈ W and for
any (w, γ, β), there exists (γ̄, β̄) such that

(fw,γ,β(g(1)(x)), . . . , fw,γ,β(g(ng)(x)) = (fw̄,γ̄,β̄(g(1)(x)), . . . , fw̄,γ̄,β̄(g(ng)(x))

which implies the desired statement.

C.2 PROOF OF COROLLARY 1

Proof of Corollary 1. Since non-degenerate Gaussian measure with any mean and variance is ab-
solutely continuous with respect to Lebesgue measure, Theorem 2 implies the statement of this
corollary.

C.3 PROOF OF THEOREM 1

The following lemma provides an upper bound on the expected loss via expected meta-tailoring
contrastive loss.

Lemma 4. For every θ,

Ex,y[L(fθ(x), y)] ≤ Ex
[

1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)]

Proof of Lemma 4. Using the notation ρ = ρy(µy−(x)),

Ex,y[L(fθ(x), y)]

= Ex,y
[

1

1− ρ
((1− ρ)L(fθ(x), y)± ρ)

]
= Ex,y

[
1

1− ρ
(
(1− ρ)`cont(fθ(x)y − fθ(x)y− 6=y) + ρ`cont(fθ(x)y − fθ(x)y−=y)− ρ

)]
= Ex,y

[
1

1− ρ

(
Ey−∼µy− (x)[`cont(fθ(x)y − fθ(x)y−)]− ρ

)]
= Ex,y

[
1

1− ρ

(
Ey−∼µy− (x)[ψx,y,y−(θ(H+1))]− ρ

)]
≤ Ex,y

[
1

1− ρ

(
ψx,1,2([u+

h , u
−
h ]>) + Lx

+,x−,y−

cont (x, θ)− ρ
)]

≤ Ex,y
[

1

1− ρ

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ
)]

where the third line follows from the definition of L(fθ(x), y) and `cont(fθ(x)y − fθ(x)y′=y) =
`cont(0) = 1, the forth line follows from the definition of ρ and the expectation Ey−∼µy− (x), the

fifth line follows from fθ(x)y = θ
(H+1)
y hθ(1:H)(x) and fθ(x)y− = θ

(H+1)
y− hθ(1:H)(x), the sixth line

follows from the definition of Lx
+,x−,y−

cont . The last line follows from the convexity of `cont and
Jensen’s inequality: i.e.,

ψx,1,2([u+
h , u

−
h ]>)

= `cont(Ex+∼µx+ (x)Ex−∼µx− (x)[(hθ(1:H)(x+)− hθ(1:H)(x−))>hθ(1:H)(x)])

≤ Ex+∼µx+ (x)Ex−∼µx− (x)`cont((hθ(1:H)(x+)− hθ(1:H)(x−))>hθ(1:H)(x)).
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Therefore,

Ex,y[L(fθ(x), y)]

≤ Ex,y
[

1

1− ρy(µy−(x))

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρy(µy−(x))
)]

≤ Ex
[

1

1− ρ̄(x)

(
Lx

+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ)− ρ(x)
)]

where we used ρ(x) ≤ ρy(µy−(x)) ≤ ρ̄(x) ∈ [0, 1).

Lemma 5. Let S 7→ fθ(x,S)(x) be an uniformly ζ-stable tailoring algorithm. Then, for any δ > 0,
with probability at least 1− δ over an i.i.d. draw of n i.i.d. samples S = ((xi, yi))

n
i=1, the following

holds:

Ex,y[L(fθ(x,S)(x), y)] ≤ 1

n

n∑
i=1

L(fθ(xi,S)(xi), yi) +
ζ

n
+ (2ζ + c)

√
ln(1/δ)

2n
.

Proof of Lemma 5. Define ϕ1(S) = Ex,y[L(fθ(x,S)(x), y)] and ϕ2(S) =
1
n

∑n
i=1 L(fθ(xi,S)(xi), yi), and ϕ(S) = ϕ1(S) − ϕ2(S). To apply McDiarmid’s inequality

to ϕ(S), we compute an upper bound on |ϕ(S) − ϕ(S′)| where S and S′ be two training datasets
differing by exactly one point of an arbitrary index i0; i.e., Si = S′i for all i 6= i0 and Si0 6= S′i0 ,
where S′ = ((x′i, y

′
i))

n
i=1. Let ζ̃ = ζ

n Then,

|ϕ(S)− ϕ(S′)| ≤ |ϕ1(S)− ϕ1(S′)|+ |ϕ2(S)− ϕ2(S′)|.

For the first term, using the ζ-stability,

|ϕ1(S)− ϕ1(S′)| ≤ Ex,y[|L(fθ(x,S)(x), y)− L(fθ(x,S′)(x), y)|]
≤ ζ̃.

For the second term, using ζ-stability and the upper bound c on per-sample loss,

|ϕ2(S)− ϕ2(S′)| ≤ 1

n

∑
i6=i0

|L(fθ(xi,S)(xi), yi)− L(fθ(xi,S′)(xi), yi)|+
c

n

≤ (n− 1)ζ̃

n
+
c

n
≤ ζ̃ +

c

n
.

Therefore, |ϕ(S)− ϕ(S′)| ≤ 2ζ̃ + c
n . By McDiarmid’s inequality, for any δ > 0, with probability at

least 1− δ,

ϕ(S) ≤ ES [ϕ(S)] + (2ζ + c)

√
ln(1/δ)

2n
.

The reset of the proof bounds the first term ES [ϕ(S)]. By the linearity of expectation,

ES [ϕ(S)] = ES [ϕ1(S)]− ES [ϕ1(S)].

For the first term,
ES [ϕ1(S)] = ES,x,y[L(fθ(x,S)(x), y)].

For the second term, using the linearity of expectation,

ES [ϕ2(S)] = ES

[
1

n

n∑
i=1

L(fθ(xi,S)(xi), yi)

]

=
1

n

n∑
i=1

ES [L(fθ(xi,S)(xi), yi)]

=
1

n

n∑
i=1

ES,x,y[L(fθ(x,Six,y)(x), y)],
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where Si is a sample of n points such that (Six,y)j = Sj for j 6= i and (Six,y)i = (x, y). By
combining these, using the linearity of expectation and ζ-stability,

ES [ϕ(S)] =
1

n

n∑
i=1

ES,x,y[L(fθ(x,S)(x), y)− L(fθ(x,Six,y)(x), y)]

≤ 1

n

n∑
i=1

ES,x,y[|L(fθ(x,S)(x), y)− L(fθ(x,Six,y)(x), y)|]

≤ 1

n

n∑
i=1

ζ̃ = ζ̃.

Therefore, ES [ϕ(S)] ≤ ζ̃.

Proof of Theorem 1. For any θ and κ ∈ [0, 1],

Ex,y[L(fθ(x), y)] = κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 4 for the first term and Lemma 5 yields the desired statement.

C.4 STATEMENT AND PROOF OF THEOREM 6

Theorem 6. Let F be an arbitrary set of maps x 7→ fθx(x). Then, for any δ > 0, with probability at
least 1−δ over an i.i.d. draw of n i.i.d. samples ((xi, yi))

n
i=1, the following holds: for all maps (x 7→

fθx(x)) ∈ F and any κ ∈ [0, 1], we have that Ex,y[Lsup(fθx(x), y)] ≤ κEx [Lcont(x, θx)]+(1−κ)J ′,
where J ′ = 1

n

∑n
i=1 Lsup(fθxi (xi), yi) + 2Rn(Lsup ◦ F) + c

√
(ln(1/δ))/(2n).

The following lemma is used along with Lemma 4 to prove the statement of this theorem.

Lemma 7. Let F be an arbitrary set of maps x 7→ fθx(x). For any δ > 0, with probability at
least 1 − δ over an i.i.d. draw of n i.i.d. samples ((xi, yi))

n
i=1, the following holds: for all maps

(x 7→ fθx(x)) ∈ F ,

Ex,y[L(fθx(x), y)] ≤ 1

n

n∑
i=1

L(fθxi (xi), yi) + 2Rn(L ◦ F) + c

√
ln(1/δ)

2n
.

Proof of Lemma 7. Let S = ((xi, yi))
n
i=1 and S′ = ((x′i, y

′
i))

n
i=1. Define

ϕ(S) = sup
(x 7→fθx (x))∈F

Ex,y[L(fθx(x), y)]− 1

n

n∑
i=1

L(fθxi (xi), yi).

To apply McDiarmid’s inequality to ϕ(S), we compute an upper bound on |ϕ(S)− ϕ(S′)| where S
and S′ be two training datasets differing by exactly one point of an arbitrary index i0; i.e., Si = S′i
for all i 6= i0 and Si0 6= S′i0 . Then,

ϕ(S′)− ϕ(S) ≤ sup
(x 7→fθx (x))∈F

L(fθ(xi0 )(xi0), yi0)− L(fθ(x′i0 )(x
′
i0

), y′i0)

n
≤ c

n
.

Similarly, ϕ(S)− ϕ(S′) ≤ c
n . Thus, by McDiarmid’s inequality, for any δ > 0, with probability at

least 1− δ,

ϕ(S) ≤ ES [ϕ(S)] + c

√
ln(1/δ)

2n
.
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Moreover, with f(x) = fθx(x),

ES [ϕ(S)] = ES

[
sup
f∈F

ES′
[

1

n

n∑
i=1

L(fθ(x′i)(x
′
i), y

′
i)

]
− 1

n

n∑
i=1

L(fθxi (xi), yi)

]

≤ ES,S′
[

sup
f∈F

1

n

n∑
i=1

(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi)

]

≤ Eξ,S,S′
[

sup
f∈F

1

n

n∑
i=1

ξi(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi))

]

≤ 2Eξ,S

[
sup
f∈F

1

n

n∑
i=1

ξiL(fθxi (xi), yi))

]
where the fist line follows the definitions of each term, the second line uses the Jensen’s in-
equality and the convexity of the supremum, and the third line follows that for each ξi ∈
{−1,+1}, the distribution of each term ξi(L(fθ(x′i)(x

′
i), y

′
i)− L(fθxi (xi), yi)) is the distribution of

(L(fθ(x′i)(x
′
i), y

′
i)− L(fθxi (xi), yi)) since S̄ and S̄′ are drawn iid with the same distribution. The

forth line uses the subadditivity of supremum.

Proof of Theorem 6. For any θ and κ ∈ [0, 1],
Ex,y[L(fθ(x), y)] = κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 4 for the first term and Lemma 7 yields the desired statement.

C.5 PROOF OF THEOREM 3

Proof of Theorem 3. Let θ(1:H) be fixed. We first prove the first statement for the convexity. The func-
tion θ(H+1) 7→ ψx,y,y−(θ(H+1)) is convex, since it is a composition of a convex function `cont and a
affine function z 7→ (zy−zy−)hθ(1:H)(x)). The function θ(H+1) 7→ Ey−∼µy− (x)[ψx,y,y−(θ(H+1))−
ψx,1,2([u+

h , u
−
h ]>)] is convex since the expectation and affine translation preserves the convexity.

Finally, θ(H+1) 7→ Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1)) is convex since it is the piecewise maximum of the
convex functions

θ(H+1) 7→ Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,1,2([u+
h , u

−
h ]>)]

for each y.

We now prove the second statement of the theorem for the inequality. Let us write µx+ = µx|y and
µx− = µx|y− . Let U = [u1, u2]> ∈ Rmy×(mH+1) where uy = Ex∼µx|y [hθ(1:H)(x)] for y ∈ {1, 2}.
Then,

u+
h = Ex+∼µx+ (x)[hθ(1:H)(x+)] = Ex+∼µx|y [hθ(1:H)(x+)] = uy,

and
u−h = Ex−∼µx− (x)[hθ(1:H)(x−)] = Ex−∼µx|y− [hθ(1:H)(x−)] = uy− .

Therefore,
ψx,1,2([u+

h , u
−
h ]>) = ψx,y,y−(U),

with which
Lx

+,x−,y−

cont (x, θ) = max
y

Ey−∼µy− (x)[ψx,y,y−(θ(H+1))− ψx,y,y−(U)].

Since U and θ(1:H) do not contain θ(H+1), for any U, θ̄(1:H), there exists θ(H+1) = U for which
ψx,y,y−(θ(H+1))− ψx,y,y−(U) = 0 and hence Lx

+,x−,y−

cont (x, θ) = 0. Therefore,

inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−

cont (x, θ(1:H)) + Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1))

= Lx
+,x−

cont (x, θ(1:H)) + inf
θ(H+1)∈Rmy×(mH+1)

Lx
+,x−,y−

cont (x, θ(1:H), θ(H+1))

≤ Lx
+,x−

cont (x, θ(1:H)).
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C.6 PROOF OF REMARK 1

Proof of Remark 1. For any θ,

Ex,y[L(fθ(x), y)] = inf
κ∈[0,1]

κEx,y[L(fθ(x), y)] + (1− κ)Ex,y[L(fθ(x), y)].

Applying Lemma 5 for Theorem 1 (and Lemma 7 for Theorem 6) to the second term and the
assumption Ex,y[L(fθ(x), y)] ≤ Ex[Lun(fθ(x))] to the first term yields the desired statement.
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D DETAILS AND DESCRIPTION OF CNGRAD

In this section we describe CNGRAD in greater detail: its implementation, different variants and
run-time costs. Note that, although this section is written from the perspective of meta-tailoring, CN-
GRAD is also applicable to meta-learning, we provide pseudo-code in algorithm 2. The main idea
behind CNGRAD is to optimize only conditional normalization (CN) parameters γ(l), β(l) in the
inner loop and optimize all the other weights w in the outer loop. To simplify notation for imple-
mentation, in this subsection only, we overload notations to make them work over a mini-batch
as follows. Let b be a (mini-)batch size. Given X ∈ Rb×m0 , γ ∈ Rb×

∑
lml and β ∈ Rb×

∑
lml ,

let (fw,γ,β(X))i = fw,γi,βi(Xi) where Xi, γi, and βi are the transposes of the i-th row vectors of
X , γ and β, respectively. Similarly, Lsup and Ltailor are used over a mini-batch. We also refer to
θ = (w, γ, β).

Initialization of γ, β In the inner loop we always initialize γ = 1b,
∑
lml

, β = 0b,
∑
lml

. More
complex methods where the initialization of these parameters is meta-trained are also possible.
However, we note two things:

1. By initializing to the identity function, we can pick an architecture trained with regular
inductive learning, add CN layers without changing predictions and perform tailoring. In
this manner, the prediction algorithm is the same regardless of whether we trained with
meta-tailoring or without the CN parameters.

2. We can add a previous normalization layer with weights γ′(l), β′(l) that are trained in the
outer loop, having a similar effect than meta-learning an initialization. However, we do not
do it in our experiments.

First and second order versions of CNGRAD: w affect Lsup in two ways: first, they directly
affect the evaluation fw,γs,βs(X) by being weights of the neural network; second, they affect
∇βLtailor,∇γLtailor which affects γs, βs which in turn affect Lsup. Similar to MAML (Finn et al.,
2017), we can implement two versions: in the first order version we only take into account the first
effect, while in the second order version we take into account both effects. The first order version has
three advantages:

1. It is very easy to code: the optimization of the inner parameters and the outer parameters are
detached and we simply need to back-propagate Ltailor with respect to β, γ and Lsup with
respect to w. This version is easier to implement than most meta-learning algorithms, since
the parameters in the inner and outer loop are different.

2. It is faster: because we do not back-propagate through the optimization, the overall compu-
tation graph is smaller.

3. It is more stable to train: second-order gradients can be a bit unstable to train; this required
us to lower the inner tailoring learning rate in experiments of section 5.1 for the second-order
version.

The second-order version has one big advantage: it optimizes the true objective, taking into account
how Ltailor will affect the update of the network. This is critical to linking the unsupervised loss to
best serve the supervised loss by performing informative updates to the CN parameters.

WarpGrad-inspired stopping of gradients and subsequent reduction in memory cost: Warp-
Grad (Flennerhag et al., 2019) was an inspiration to CNGRAD suggesting to interleave layers that
are adapted in the inner loop with layers only adapted in the outer loop. In contrast to WarpGrad,
we can evaluate inputs (in meta-tailoring) or tasks (in meta-learning) in parallel, which speeds up
training and inference. This also simplifies the code because we do not have to manually perform
batches of tasks by iterating through them.

WarpGrad also proposes to stop the gradients between inner steps; we include this idea as an optional
operation in CNGRAD, as shown in line 12 of 1. The advantage of adding it is that it decreases the
memory cost when performing multiple inner steps, as we now only have to keep in memory the
computation graph of the last step instead of all the steps, key when the networks are very deep like
in the experiments of section 5.2. Another advantage is that it makes training more stable, reducing
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variance, as back-propagating through the optimization is often very noisy for many steps. At the
same time it adds bias, because it makes the greedy assumption that locally minimizing the decrease
in outer loss at every step will lead to low overall loss after multiple steps.

Computational cost: in CNGRAD we perform multiple forward and backward passes, compared
to a single forward pass in the usual setting. In particular, if we perform s tailoring steps, we execute
(s + 1) forward steps and s backward steps, which usually take the same amount of time as the
forward steps. Therefore, in its naive implementation, this method takes about 2s+ 1 times more
than executing the regular network without tailoring.

However, it is well-known that we can often only adapt the higher layers of a network, while keeping
the lower layers constant. Moreover, our proof about the capacity of CNGRAD to optimize a broad
range of inner losses only required us to adapt the very last CN layer γ(H), β(H). This implies we
can put the CN layers only on the top layer(s). In the case of only having one CN layer at the last
network layer, we only require one initial full forward pass (as we do without tailoring). Then, we
have s backward-forward steps that affect only the last layer, thus costing 1

H in case of layers of
equivalent cost. This leads to a factor of 1 + 2s

H in cost, which for s small and H large (typical for
deep networks), is a very small overcost. Moreover, for tailoring and meta-tailoring, we are likely to
get the same performance with smaller networks, which may compensate the increase in cost.

Meta-learning version: CNGRAD can also be used in meta-learning, with the advantage of being
provably expressive, very efficient in terms of parameters and compute, and being able to parallelize
across tasks. We show the pseudo-code for few-shot supervised learning in algorithm 2. There are
two changes to handle the meta-learning setting: first, in the inner loop, instead of the unsupervised
tailoring loss we optimize a supervised loss on the training (support) set. Second, we want to share
the same inner parameters γ, β for different samples of the same task. To do so we add the operation
"repeat_interlave" (PyTorch notation), which makes k contiguous copies of each parameter γ, β,
before feeding them to the network evaluation. In doing so, gradients coming from different samples
of the same task get pooled together. At test time we do the same for the k′ queries (k′ can be
different than k). Note that, in practice, this pooling is also used in meta-tailoring when we have
more than one data augmentation within Ltailor.
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Algorithm 1: CNGRAD for meta-tailoring

1 Subroutine Training(f , Lsup, λsup, Ltailor, λtailor, steps,((xi, yi))ni=1)
2 randomly initialize w // All parameters except γ, β; trained in outer

loop
3 while not done do
4 for 0 ≤ i ≤ n/b do // b batch size
5 X,Y = xib:i(b+1), yib:i(b+1)

6 γ0 = 1b,
∑
lml

7 β0 = 0b,
∑
lml

8 for 1 ≤ s ≤ steps do
9 γs = γs−1 − λtailor∇γLtailor(w, γs−1, βs−1, X)

10 βs = βs−1 − λtailor∇βLtailor(w, γs−1, βs−1, X)
11 w = w − λsup∇wLsup (fw,γs,βs(X), Y ))
12 βs, γs = βs.detach(), γs.detach() // Optional operation:

WarpGrad detach to avoid back-proping through
multiple steps; reducing memory, and increasing
stability, but adding bias.

13 return w
14 Subroutine Prediction(f , w, Ltailor, λ, steps, X) // For meta-tailoring &

tailoring
// X contains multiple inputs, with independent tailoring

processes
15 b = X.shape[0] // number of inputs
16 γ0 = 1b,

∑
lml

17 β0 = 0b,
∑
lml

18 for 1 ≤ s ≤ steps do
19 γs = γs−1 − λ∇γLtailor(w, γs−1, βs−1, X)

20 βs = βs−1 − λ∇βLtailor(w, γs−1, βs−1, X)
21 return fw,γsteps,βsteps(X)
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Algorithm 2: CNGRAD for meta-learning
1 Subroutine Meta-training(f , Lsup, λinner, λouter, steps,T )
2 randomly initialize w // All parameters except γ, β; trained in outer

loop
3 while not done do
4 for 0 ≤ i ≤ n/b do // b batch size
5 Xtrain, Ytrain = [ ], [ ]
6 Xtest, Ytest = [ ], [ ]
7 for ib ≤ j ≤ i(b+ 1) do
8 (inp, out) ∼k Tj // Take k samples from each task for

training
9 X.append (inp) ;Y.append (out)

10 (query, target) ∼′k Tj // Take k′ samples from each task for
testing

11 X.append (query) ;Y.append (target)
// We can now batch evaluations of multiple tasks

Xtrain, Ytrain = concat (Xtrain, dim = 0) , concat (Ytrain, dim = 0)
12 Xtest, Ytest = concat (Xtest, dim = 0) , concat (Ytest, dim = 0)
13 γ0 = 1b,

∑
lml

14 β0 = 0b,
∑
lml

15 for 1 ≤ s ≤ steps do
// We now repeat the CN parameters k times so that

samples from the same task share the same CN
parameters

16 γtrs−1, β
tr
s−1 = γs−1.repeat_interleave(k, 1), βs−1.repeat_interleave(k, 1)

17 γs = γs−1 − λinnner∇γLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

18 βs = βs−1 − λinnner∇βLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

19 γtests , βtests = γs.repeat_interleave(k′, 1), βs.repeat_interleave(k′, 1)

20 w = w − λouter∇wLsup
(
fw,γtests ,βtests

(Xtest), Ytest)
)

21 βs, γs = βs.detach(), γs.detach()
// WarpGrad detach to not backprop through multiple

steps
22 return w
23 Subroutine Meta-test(f , w, Lsup, λinner,steps,Xtrain, Ytrain, Xtest)

// Assuming a single task, although we could evaluate
multiple tasks in parallel as in meta-training.

24 γ0 = 11,
∑
lml

// single γ, β because we only have one task
25 β0 = 01,

∑
lml

26 for 1 ≤ s ≤ steps do
27 γtrs−1, β

tr
s−1 = γs−1.repeat_interleave(k, 1), βs−1.repeat_interleave(k, 1)

28 γs = γs−1 − λinnner∇γLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

29 βs = βs−1 − λinnner∇βLsup(fw,γtrs−1,β
tr
s−1

(Xtrain), Ytrain)

30 γteststeps, β
test
steps = γsteps.repeat_interleave(k′, 1), βsteps.repeat_interleave(k′, 1)

31 return fw,γteststeps,β
test
steps

(Xtest)
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E EXPERIMENTAL DETAILS OF PHYSICS EXPERIMENTS

Dataset generation As mentioned in the main text, 5-body systems are chaotic and most random
configurations are unstable. To generate our dataset we used Finite Differences to optimize 5-body
dynamical systems that were stable for 200 steps (no planet collisions and no planet outside a
predetermined grid) and then picked the first 100 steps of their trajectories, to ensure dynamical
stability. To generate each trajectory, we randomly initialized 5 planets within a 2D grid of size
w = 600, h = 300, with a uniform probability of being anywhere in the central grid of size w/2, h/2,
each with a mass sampled from a uniform between [0.15, 0.25] (arbitrary units) and with random
starting velocity initialized with a Gaussian distribution. We then use a 4th order Runge-Kutta
integrator to accurately simulate the ODE of the dynamical system until we either reach 200 steps,
two planets get within a certain critical distance from each other or a planet gets outside the pre-
configured grid. If the trajectory reached 200 steps, we added it to the dataset; otherwise we made
a small random perturbation to the initial configuration of the planets and tried again. If the new
perturbation did not reach 200 steps, but lasted longer we kept the perturbation as the new origin
for future initialization perturbations, otherwise we kept our current initialization. Once all the
datasets were generated we picked those below a threshold mean mass and partitioned them randomly
into train and test. Finally, we normalize each of the 25 dimensions (5 planets and for each planet
x,y,vx,vy,m) to have mean zero and standard deviation one. For inputs, we use each state and as
target we use the next state; therefore, each trajectory gives us 100 pairs.

For more details, we attach the code that generated the dataset.

Implementation of tailoring, meta-tailoring and CNGRAD All of our code is implemented in
PyTorch (Paszke et al., 2019), using the higher library (Grefenstette et al., 2019)(https://github.
com/facebookresearch/higher) to implement the second-order version of CNGRAD. We
implemented a 3-layer feedforward neural network, with a conditional normalization layer after
each layer except the final regression layer. The result of the network was added to the input, thus
effectively predicting the delta between the current state and the next state. For both the first-order and
second-order versions of CNGRAD, we used the detachment of WarpGrad (line 12 in algorithm 1).
For more details, we also attach the implementation of the method.

Compute and hyper-parameter search To keep the evaluation as strict as possible, we searched
all the hyper-parameters affecting the inductive baseline and our tailoring versions with the baseline
and simply copied these values for tailoring and meta-tailoring. For the latter two, we also had to
search for λtailor.

The number of epochs was 1000, selected with the inductive baseline, although more epochs did
not substantially affect performance in either direction. We note that meta-tailoring performance
plateaued earlier in terms of epochs, but we left it the same for consistency. Interestingly, we found
that regularizing the physics loss (energy and momentum conservation) helped the inductive baseline,
even though the training data already has 0 physics loss. We searched over [10−4, 3 · 10−4, 10−3, 3 ·
10−3, 10−2] for the weight assigned to the physics loss and chose 2 · 10−3 for best performance in the
inductive baseline. To balance between energy and momentum losses we multiplied the momentum
loss by 10 to roughly balance their magnitudes before adding them into a single physics loss, this
weighting was not searched. We copied these settings for meta-tailoring.

In terms of the neural network architecture, we chose a simple model with 3 hidden layers of the same
size and tried [128, 256, 512] on the inductive baseline, choosing 512 and deciding not to go higher
for compute reasons and because we were already able to get much lower training loss than test loss.
We copied these settings for the meta-tailoring setup. We note that since there are approximately
O(m2

h) weight parameters, yet only O(mh) affine parameters used for tailoring, adding tailoring
and meta-tailoring increase parameters roughly by a fraction O(1/mh), or about 0.2%. Also in the
inductive baseline, we tried adding Batch Normalization (Ioffe & Szegedy, 2015), since it didn’t
affect performance we decided not to add it.

We chose the tailoring step size parameter by trying [10−5, 10−4, 10−3, 10−2], finding 10−3 worked
well while requiring less steps than using a smaller step size. We therefore used this step for meta-
tailoring as well, which worked well for first-order CNGRAD, but not for second-order CNGRAD,
whose training diverged. We thus lowered the tailoring step size to 10−4 for the second-order version,
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which worked well. We also tried clipping the inner gradients to increase the stability of the second-
order method; since gains on preliminary experiments were small, we decided to keep it out for
simplicity.

For meta-tailoring we only tried 2 and 5 tailoring steps (we wanted more than one step to show the
algorithm capability, but few tailoring steps to keep inference time competitive). Since they worked
similarly well, we chose 2 steps to have a faster model. For the second-order version we also used
2 steps, which performed much better than the inductive baseline and tailoring, but worse than the
first-order version reported in the main text(about 20% improvement of the second-order version vs.
7% of tailoring and 35% improvement of the first-order version).

For the baseline of optimizing the output we tried a step size of 10−4, 10−3, 10−2, 10−1. Except for
a step size of 10−1, results optimized the physics loss and always achieved a very small improvement,
without overfitting to the physics loss. We thus chose a big learning rate and high number of steps to
report the biggest improvement, of 0.7%.

Runs, compute and statistical confidence: we ran each method 2 times and averaged the results.
Note that the baseline of optimizing the output and tailoring start from the inductive learning baseline,
as they are meant to be methods executed after regular inductive training. This is why both curves
start at the same point in figure 2. For those methods, we report the standard deviation of the mean
estimate of the improvement, since they are executed on the same run. Note that the standard deviation
of the runs would be higher, but less appropriate. For meta-tailoring, we do use the standard deviation
of the mean estimate of both runs, since they are independent from the inductive baseline.

All experiments were performed on a GTX 2080 Ti with 4 CPU cores.

26



Under review as a conference paper at ICLR 2021

F UNDERSTANDING THE DIFFERENCE BETWEEN TAILORING AND TEST-TIME
TRAINING WITH EXPERIMENTS ON THE PLANETS DATASET

As discussed in section 2, multiple methods have been proposed to optimize unsupervised objectives
at test time to account for some deficiency in the training distribution. This makes a lot of sense: it
has been widely observed that training a deep model in some task can learn useful features so that
fine-tuning it on small amounts of data for a different task achieves high performance (Donahue et al.,
2014). When having access to some unlabeled test data that differs from the training data in some
way (distribution, task, image scale, simulation vs real, etc) we would want to fine-tune the model to
account for this, but by definition, we do not have labels. Therefore, multiple methods have been
proposed to optimize an unsupervised loss to adapt to the test.

Probably the closest to tailoring (but not meta-tailoring) is "Test-time training with self-supervision for
out-of-distribution generalization" (Sun et al., 2019) which uses available test samples to approximate
the test distribution when there is a distribution shift and optimizes an unsupervised loss to adapt to
that distribution. There are three key differences with our work.

1. In contrast to test-time-training for out-of-distribution generalization and other prior work,
we suggest that adaptation is useful even when there is no change between training and
test distribution or task, solving different problems. We show test-time training is not good
for same-distribution generalization and that meta-tailoring is not the right approach for
out-of-distribution generalization.

2. Because adaptation makes sense even on the same distribution, it also makes sense to do
tailoring at training time, not just at test time, resulting in meta-tailoring. Moreover, this
work shows theoretically and empirically shown that meta-tailoring is a better paradigm than
simply tailoring because, when training and test come from the same task and distribution,
we want to train as we test.1

3. Test-time training and other prior work suggest to adapt via unsupervised samples on
available data from the correct test distribution. This suggest two testable consequences
that test-time training predicts but tailoring doesn’t; we show neither is satisfied when the
distributions are the same:
(a) Since samples are used to adapt to the test distribution, most of the benefit of adapting

with sample x before evaluating on x should be captured by adapting on another test
sample x′ 6= x. We show this is not the case when training matches test.

(b) As we get more test samples performance should increase (and it indeed does in their
OOD experiments). We show this is not the case when the distributions are the same:
even with 6400 samples (a full batch, including the evaluated sample), performance is
worse than just tailoring on the one trained sample. Meta-tailoring further increases
this gap.

Related work on unsupervised adaptation are solving different problems "Test-time training
with self-supervised objectives for out-of-distribution generalization"(Sun et al., 2019) focuses on
problems where there is a distribution shift between training and testing. Other methods have used
similar unsupervised fine-tuning methods to adapt from simulated to real data or to different tasks in
the meta-learning context. The key insight of this work (which echoes that of Vapnik in the 80s) is
that we can tailor the model to each query (both test and training queries) at prediction-time.

The single-sample case of test-time training is computationally equivalent to tailoring when the
adaptation sample is the same as the evaluated sample (which is the most common case). However,
this new application of fine-tuning motivates meta-tailoring, which also applies it at training time in
an inner loop. At the end of this section we show experimental evidence that test-time training is
worse than tailoring in the classic ML setting. Conversely, meta-tailoring (which is well-motivated
for same-distribution generalization) may not be well-suited for extrapolation: first, our theoretical
guarantees no longer apply and second, we experimentally tested on an extrapolation version of the
planets dataset (asking to generalize to bigger planets) and meta-tailoring performs worse than just

1We call our paper tailoring instead of meta-tailoring because the key idea is that fine-tuning is useful to
encode inductive biases in the classic learning paradigm where test matches training. Moreover, meta-tailoring
could confuse readers into believing we are in a meta-learning paradigm.
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tailoring. The intuition for why this may be the case is that meta-tailoring couples the unsupervised
loss to the task loss; however, this coupling is learned for the training distribution, not the test
distribution. When applied to a different distribution, this coupling may be incorrect.

Meta-tailoring is the correct paradigm for classic generalization Our theoretical guarantees
in section 3 apply to meta-tailoring, but not tailoring. This is because in machine learning to get
guarantees we usually need to test as we train; which meta-tailoring does, but tailoring and test-time
training do not. Note that the guarantees done by test-time training (Sun et al., 2019), which would
also apply to tailoring, assume a relation between the two gradients when the model is already trained.
This a posteriori assumption is much more strict than the a priori assumptions we use, which do not
need to make assumptions about the trained model and instead guarantee that (meta-)training will
happen in such a way that the conditions will hold for the trained model.

Finally, all our experiments use meta-tailoring to obtain results, since it also performs better in
practice.

Experiments show that tailoring is a better approach than test-time training in same-
distribution generalization. Test-time training (and other fine-tuning for adaptation methods)
suggest to fine-tune on the available samples. The most useful case is when we use the single test
sample for itself (tailoring). However, we can make the artificial experiment of using a different
sample for adaptation than the one we test. This separates the adaptation component from the
tailoring component. Our experiments showed that optimization on a different sample is much slower
(50 steps vs less than 10) and results in less than half the improvement than tailoring (2.9% vs 7.5%).
Notably, meta-tailoring adapts even faster than tailoring, and to much larger improvements (36%).

Possibly more surprising, we also experiment on allowing test-time training to adapt on the entire test
batch, which by definition will now include each sample we evaluate on. Each batch contained 64
trajectories of 100 states, thus 6400 samples, 1 of which is the test query and 99 others are from the
same trajectory, and thus specially related. Note that this is not allowed in the classic test evaluation
where test samples do not see each other.

For test-time training and other fine-tuning methods, having 6400 times more data would be extremely
useful to have much better adaptation. From the tailoring point-of-view, however, the extra samples
are a nuisance, since it is now harder to tailor the model to each individual sample. We experimentally
find that 6400-sample test-time training slightly improves over single-sample test-time training, but
is still much worse than tailoring and meta-tailoring: 3.6% vs 7.5%, 36% improvement. Note that,
since the evaluated query is part of the 6400 optimized samples, this provides strong evidence that
the other 6399 samples are hurting the fine-tuning, aligning with the tailoring approach instead of the
adaptation approach.

G TOY ADVERSARIAL EXAMPLES EXPERIMENT

We illustrate the tailoring process with a simple illuminating example using the data from Ilyas et al.
(2019). They use discriminant analysis on the data in figure 5 and obtain the purple linear separator.
It has the property that, under assumptions about Gaussian distribution of the data, points above the
line are more likely to have come from the blue class, and those below, from the red class. This
separator is not very adversarially robust, in the sense that, for many points, a perturbation with a
small δ would change the assigned class. We improve the robustness of this classifier by tailoring
it using the loss Ltailor(x, θ) = KL(φ(fθ(x)) || φ(fθ(x+ arg max|δ|<ε

∑
j e
fθ(x+δ)j ))), where KL

represents the KL divergence, φ is the logistic function, and φ(fθ(x)i) is the probability of x being
in class i, so that φ(fθ(x)) represents the entire class distribution.

With this loss, we can adjust our parameters θ so that the KL divergence between our prediction at
x is closer to the prediction at perturbed point x+ δ, over all perturbations in radius ε. Each of the
curves in figure 3 corresponds to a decision boundary induced by tailoring the original separator with
a different value for the maximum perturbation ε. Note that the resulting separators are non-linear,
even though we are tailoring a linear separator, because the tailoring is local to the prediction point.
We also have the advantage of being able to choose different values of ε at prediction time.
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Hyper-parameters the model does not have any hyper-parameters, as we use the model from Ilyas
et al. (2019), which is based on the mean µ and standard deviation σ of the Gaussians. For tailoring,
we used a 5× 5 grid to initialize the inner optimization to find the point of highest probability within
the ε-ball. Using a single starting point did not work as gradient descent found a local optima. Using
more (10 × 10) did not improve results further, while increasing compute. We also experimented
between doing a weighted average of the predictions by their energy to compute the tailoring loss
or picking the element with the biggest energy. Results did not seem to differ much (likely because
likelihood distributions are very peaked), so we picked the simplest option of imitating the element
of highest probability. Doing a single tailoring step already worked well (we tried step sizes of
10−1, 1, 10, 30 with 10 working best), so we kept that for simplicity and faster predictions.

Regarding compute, this experiment can be generated in a few minutes using a single GTX 2080 Ti.

Figure 5: Decision boundary of our model at multiple levels of robustness on an example from Ilyas
et al. (2019).
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σ Method 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.00 2.25 ACR

0.25 RandSmooth 0.75 0.60 0.43 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.416
Meta-tailored 0.80 0.66 0.48 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.452

0.50 RandSmooth 0.65 0.54 0.41 0.32 0.23 0.15 0.09 0.04 0.00 0.00 0.491
Meta-tailored 0.68 0.57 0.45 0.33 0.23 0.15 0.08 0.04 0.00 0.00 0.542

1.00 RandSmooth 0.47 0.39 0.34 0.28 0.21 0.17 0.14 0.08 0.05 0.03 0.458
Meta-tailored 0.50 0.43 0.36 0.30 0.24 0.19 0.14 0.10 0.07 0.05 0.546

Figure 6: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the CIFAR-10 dataset. Meta-tailoring improves the Average Certification Radius by
8.6%, 10.4%, 19.2% respectively. Results for Cohen et al. (2019) are taken from Zhai et al. (2020)
because they add more measures than the original work, with similar results.

σ Method 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.00 2.25 ACR

0.25

RandSmooth 0.75 0.60 0.43 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.416
Salman 0.74 0.67 0.57 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.538
MACER 0.81 0.71 0.59 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.556
Meta-tailored 0.80 0.66 0.48 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.452

0.50

RandSmooth 0.65 0.54 0.41 0.32 0.23 0.15 0.09 0.04 0.00 0.00 0.491
Salman 0.50 0.46 0.44 0.40 0.38 0.33 0.29 0.23 0.00 0.00 0.709
MACER 0.66 0.60 0.53 0.46 0.38 0.29 0.19 0.12 0.00 0.00 0.726
Meta-tailored 0.68 0.57 0.45 0.33 0.23 0.15 0.08 0.04 0.00 0.00 0.542

1.00

RandSmooth 0.47 0.39 0.34 0.28 0.21 0.17 0.14 0.08 0.05 0.03 0.458
Salman 0.45 0.41 0.38 0.35 0.32 0.28 0.25 0.22 0.19 0.17 0.787
MACER 0.45 0.41 0.38 0.35 0.32 0.29 0.25 0.22 0.18 0.16 0.792
Meta-tailored 0.50 0.43 0.36 0.30 0.24 0.19 0.14 0.10 0.07 0.05 0.546

Figure 7: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the CIFAR-10 dataset, comparing with SOA methods. In contrast to pretty competitive
results in ImageNet, meta-tailoring improves randomized smoothing, but not enough to reach SOA.
It is worth noting that the SOA algorithms could also likely be improved via meta-tailoring.

H EXPERIMENTAL DETAILS OF ADVERSARIAL EXPERIMENTS

Results for CIFAR-10 experiments can be found in table 6, 7; results for ImageNet comparing to
state-of-the-art methods can be found in 8.

Hyper-parameters and other details of the experiments there are just three hyper-parameters to
tweak for these experiments, as we try to remain as close as possible to the experiments from Cohen
et al. (2019). In particular, we tried different added noises ν ∈ [0.05, 0.1, 0.2] and tailoring inner
steps λ ∈ [10−3, 10−2, 10−1, 100] for σ = 0.5. To minimize compute, we tried these settings by
tailoring (not meta-tailoring) the original model and seeing its effects on the smoothness and stability
of optimization, choosing ν = 0.1, λ = 0.1 (the fact that they’re the same is a coincidence). We chose
to only do a single tailoring step to reduce the computational burden, since robustness certification is
very expensive, as each example requires 100k evaluations (see below). For simplicity and to avoid
excessive tuning, we chose the hyper-parameters for σ = 0.5 and copied them for σ = 0.25 and
σ = 1. As mentioned in the main text, σ = 1 required initializing our model with that of Cohen et al.
(2019) (training wasn’t stable otherwise), which is easy to do using CNGRAD.

In terms of implementation, we use the codebase of Cohen et al. (2019)(https://github.com/
locuslab/smoothing) extensively, modifying it only in a few places, most notably in the
architecture to include tailoring in its forward method. It is also worth noting that we had to deactivate
their disabling of gradients during certification, because tailoring requires gradients. We chose to
use the first-order version of CNGRAD which made it much easier to keep our implementation very
close to the original. It is likely that doing more tailoring steps would result in better performance.
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σ Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 ACR

0.25

RandSmooth 0.67 0.49 0.00 0.00 0.00 0.00 0.00 0.470
Salman 0.65 0.56 0.00 0.00 0.00 0.00 0.00 0.528
MACER 0.68 0.57 0.00 0.00 0.00 0.00 0.00 0.544
Meta-tailored RS 0.72 0.55 0.00 0.00 0.00 0.00 0.00 0.494

0.50

RandSmooth 0.57 0.46 0.37 0.29 0.00 0.00 0.00 0.720
Salman 0.54 0.49 0.43 0.37 0.00 0.00 0.00 0.815
MACER 0.64 0.53 0.43 0.31 0.00 0.00 0.00 0.831
Meta-tailored RS 0.66 0.54 0.42 0.31 0.00 0.00 0.00 0.819

1.00

RandSmooth 0.44 0.38 0.33 0.26 0.19 0.15 0.12 0.863
Salman 0.40 0.38 0.33 0.30 0.27 0.25 0.20 1.003
MACER 0.48 0.37 0.34 0.30 0.25 0.18 0.14 1.008
Meta-tailored RS 0.52 0.45 0.36 0.31 0.24 0.20 0.15 1.032

Figure 8: Percentage of points with certificate above different radii, and average certified radius
(ACR) for on the ImageNet dataset, including other SOA methods. Randomized smoothing with
meta-tailoring are very competitive with other SOA methods, including having the biggest ACR for
σ = 1.

We note that other works focused on adversarial examples, such as Zhai et al. (2020); Salman et al.
(2019), improve on Cohen et al. (2019) by bigger margins. However, tailoring and meta-tailoring can
also improve a broad range of algorithms in applications outside of adversarial examples. Moreover,
they could also improve these new algorithms further, as these algorithms can also be tailored and
meta-tailored.

Compute requirements For the CIFAR-10 experiments building on Cohen et al. (2019), each
training of the meta-tailored method was done in a single GTX 2080 Ti for 6 hours. Certification was
much more expensive (10k examples with 100k predictions each for a total of 109 predictions). Since
certifications of different images can be done in parallel, we used a cluster consisting of 8 GTX 2080
Ti, 16 Tesla V-100, and 40 K80s (which are about 5 times slower), during 36 hours.

For the ImageNet experiments, we fine-tuned the original models for 5 epochs; each took 18 hours
on 1 Tesla V-100. We then used 30 Tesla V-100 for 20 hours for certification.
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I EXPERIMENTAL DETAILS OF TAILORING FOR MODEL-BASED
REINFORCEMENT LEARNING

We re-implemented PDDM (Nagabandi et al., 2020) in Pytorch (Paszke et al., 2019). We keep all of
its hyper-parameters the same between the base inductive version and the meta-tailoring versions. We
note that, in the process, we found out that some of the hyper-parameters for the dclaw environemnt
were wrongly set in their github and instead were correctly specified in their appendix. We could not
reproduce the other complex environment, baoding, and we are currently in conversations with them
trying to reproduce it. This (current) lack of reproducibility has been confirmed by the authors as
well as Github issues raised by other researchers.

There are three main hyper-parameters we tried changing: the learning rate of the likelihood model
(we tried 10−2, 10−3, 10−4, and settled for 10−3), the number of Gaussians (we set it to 5 without
parameter search), and the tailoring learning rate: we tried 10−2, 10−3, 10−4, 10−5 and show 10−3

as large tailoring and 10−4 as small. 10−2 was too unstable to obtain proper results.

A few implementation tricks were required to make training stable:

• We clamped the affine parameters after tailoring between −10 and 10.
• We set a minimum predicted standard deviation of each Gaussian in the mixture of Gaussians

to 10−2, to avoid degenerate Gaussians.
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