Under review as a conference paper at ICLR 2026

RELATIONAL FEATURE CACHING FOR ACCELERATING
DIFFUSION TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Feature caching approaches accelerate diffusion transformers (DiTs) by storing
the output features of computationally expensive modules at certain timesteps,
and exploiting them for subsequent steps to reduce redundant computations. Re-
cent forecasting-based caching approaches employ temporal extrapolation tech-
niques to approximate the output features with cached ones. Although effective,
relying exclusively on temporal extrapolation still suffers from significant pre-
diction errors, leading to performance degradation. Through a detailed analysis,
we find that 1) these errors stem from the irregular magnitude of changes in the
output features, and 2) an input feature of a module is strongly correlated with
the corresponding output. Based on this, we propose relational feature caching
(RFC), a novel framework that leverages the input-output relationship to enhance
the accuracy of the feature prediction. Specifically, we introduce relational fea-
ture estimation (RFE) to estimate the magnitude of changes in the output features
from the inputs, enabling more accurate feature predictions. We also present re-
lational cache scheduling (RCS), which estimates the prediction errors using the
input features and performs full computations only when the errors are expected
to be substantial. Extensive experiments across various DiT models demonstrate
that RFC consistently outperforms prior approaches significantly. We will release
our code publicly upon acceptance.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song & Ermon, [2019)) have recently achieved remarkable success
in generative tasks, such as text-to-image generation (Rombach et al.l[2022;Saharia et al.| 2022}, and
video generation (Blattmann et al., 2023a3b)). While early approaches (Ho et al., [2020; |Dhariwal &
Nichol, |2021)) relied on U-Net architectures (Ronneberger et al., 2015), recent works have shifted to-
ward diffusion transformers (DiTs) (Peebles & Xiel2023)), which demonstrate superior performance,
particularly when model and data scales increase. However, such gains come with significant com-
putational costs, since DiTs require performing expensive forward passes over numerous denoising
timesteps, which hinders their practical application. To address this, feature caching approaches (Ma
et al., 2024; [Wimbauer et al., [2024} [Liu et al., 2025b) have emerged, offering a promising solution
for reducing redundant computation in DiTs. These methods are based on the observation that the
intermediate features in DiTs are highly similar across adjacent timesteps. Specifically, they perform
full computations at certain timesteps, cache the output features of computationally expensive mod-
ules (e.g., attention and MLP), and exploit the cached features at subsequent timesteps to reduce
redundant computations.

Early caching approaches (Ma et al.| 2024} Selvaraju et al.,[2024) typically reuse cached features di-
rectly without adaptation. While this improves efficiency, the discrepancy between cached and fully
computed features accumulates over timesteps, which in turn degrades the generation quality. To
alleviate this, recent works have proposed forecasting-based methods, that predict features through
temporal extrapolation techniques, with an assumption that features evolve smoothly over timesteps.
For instance, FasterCache (Lv et al., 2025) and GOC (Qiu et al.| 2025) perform a linear extrapola-
tion technique based on features from the two most recent full-compute steps, while TaylorSeer (Liu
et al., 2025b) leverages the Taylor expansion to estimate feature changes along timesteps. However,
our observations reveal that the magnitude of changes in the output features differs significantly
across timesteps (Fig. [T{a)), leading to substantial prediction errors (Fig. [T[c)). Specifically, Tay-

Under review as a conference paper at ICLR 2026

10th Module

et
o

0.5 2 200 Module 8 12
8 0.4 A 5 . "\ 10
g ATAY 3 h m\wM a
20.3 A A 203 Y T s
A AR ~ > it f @
‘ 3
502 A .‘W\Mp \| 0.2 FORA 6
0.1} 2 TaylorSeer ———
}:;,{ 0.1 —— Ours (RFC) 4
0.0 0 20 0 0 20 10 7 5 3
Timestep Timestep Module Index FLOPs (T)
(a) Output difference. (b) Input difference. (c) Prediction error. (d) Performance.

Figure 1: Feature analysis and comparison between existing approaches (FORA (Selvaraju et al.| 2024), Tay-
lorSeer (Liu et al., |2025b)), and our method (RFC) using DiT-XL/2 (Peebles & Xie| 2023)). (a-b) Min-max
normalized L2 distances of output and input features, measured between consecutive timesteps. While the vari-
ations of feature changes are irregular, those of input and output remain closely aligned with each other. (c)
The prediction errors across different modules. We measure the relative L, error between output features with
and without applying caching methods and average the values over the timesteps. (d) Quantitative results on
ImageNet (Deng et al.|[2009) evaluated in terms of FLOPs and sFID (Nash et al.,|[2021).

lorSeer achieves slight reductions in prediction error compared to FORA (Selvaraju et al.| [2024),
which reuses features without adaptation. This degrades the generation quality severely, especially
when employing large temporal intervals between full computations (i.e., lower FLOPs in Fig.[T(d)).

To address this limitation, we propose relational feature caching (RFC), a simple yet effective frame-
work that leverages the relationship between the input and output features of modules (e.g., attention
and MLP), rather than relying solely on temporal extrapolation techniques. To this end, we propose
relational feature estimation (RFE), which estimates the magnitude of changes in the output feature
by exploiting the differences in input features. RFE is based on the observation that the magnitude of
changes in the output features is highly correlated with that of the input features (Figs. [T{a-b)), en-
hancing the accuracy of the feature estimation. We also introduce relational cache scheduling (RCS),
a dynamic caching strategy that determines when to perform full computations based on estimated
output errors. Since directly measuring output errors requires full computations, we instead employ
errors in the input prediction as an efficient proxy, leveraging the relationship between the input
and output features. Extensive experiments show that our proposed RFC consistently outperforms
previous caching methods across a variety of DiT models, demonstrating the effectiveness of our
method. We summarize our contributions as follows:

* We propose RFE, a forecasting method that leverages input feature variations to more ac-
curately estimate output features.

* We propose RCS, a dynamic strategy that performs full computations adaptively by esti-
mating the prediction error of the output features from that of input features.

» Extensive experiments across various DiT models demonstrate that using RFE and RCS
consistently outperforms existing caching methods in terms of both the generation quality
and computational efficiency.

2 RELATED WORK

In this section, we review representative works related to accelerating diffusion models.

2.1 TIMESTEP REDUCTION

The iterative generation process of diffusion models (Ho et al., [2020; Song & Ermonl [2019)) leads
to a slow inference and high computational costs, as each sample requires hundreds or even thou-
sands of denoising steps. To mitigate this, many works attempt to reduce the number of timesteps.
DDIM (Song et al., |2020) introduces a non-Markovian deterministic sampler that preserves the
DDPM (Ho et al., [2020)) training objective, while skipping intermediate timesteps. DPM-Solver (Lu
et al.,[2022) extends this idea with higher-order ODE solvers, approximating nonlinear terms through
the Taylor expansion. While these approaches achieve a faster sampling, their performance degrades
significantly when the number of steps becomes extremely small.

Another group of methods distill a pretrained diffusion model into a student model that generates
comparable results with only a few denoising steps. Progressive distillation (Salimans & Ho, [2022)

Under review as a conference paper at ICLR 2026

iteratively trains a student model, which then becomes the teacher for the next stage with fewer
steps. Consistency models learn direct mappings from noisy images at arbitrary
timesteps to noise-free images, enabling skipping intermediate denoising steps. Although these ap-
proaches generate high-quality images with limited timesteps, they typically incur a significant train-
ing overhead.

2.2 FEATURE CACHING

Feature caching methods aim to reduce the computational cost across timesteps by storing fully
computed features at certain timesteps and exploiting them for subsequent steps to avoid redundant
computations. Early approaches (Ma et al.| 2024} [Selvaraju et al., 2024} [So et al} [2024)) use uniform
intervals for full computations, but this ignores the fact that cache errors can vary significantly across
timesteps. To address this, CacheMe (Wimbauer et al.| [2024) sets a schedule for the full computa-
tion before the denoising process based on the cache error, but this predetermined schedule does not
consider varying cache errors across samples. To mitigate this, TeaCache caches
input features at full-compute steps and adaptively triggers full computations when the current input
feature deviates significantly from the last cached feature. It however requires an additional calibra-
tion step to predict output cache errors from input differences. Furthermore, all the aforementioned
caching approaches reuse the cached features directly without an adaptation, which can cause sub-
stantial cache errors, particularly under long intervals between successive full computations. The
works of (Zou et all, 2025}, [2024) aim to reduce cache errors of important tokens by selectively per-
forming full computations on them, while still relying on cached features for the majority of other
tokens.

More recent works address the cache error by predicting features from cached ones rather than
reusing them directly. FasterCache observes that the change in the output features
is directionally consistent, and uses a linear extrapolation technique to predict subsequent features.
GOC also adopts a linear extrapolation technique, while reusing the cached fea-
tures for timesteps where the extrapolation is less accurate. TaylorSeer leverages
the higher-order Taylor expansions to better capture nonlinear feature dynamics, providing more
accurate predictions than the linear extrapolation and improving the generation quality.

3 METHOD

In this section, we describe diffusion models and feature caching in DiTs (Sec. [3.1). We then intro-
duce our RFC framework in detail (Sec.[3.2).

3.1 PRELIMINARIES

Diffusion models. Diffusion models consist of a forward and a reverse process. In the forward
process, Gaussian noise ¢, sampled from a normal distribution A/(0, 1), is added to the input image
xo over a sequence of timesteps. Specifically, at a given timestep ¢, the noisy image x; is defined as:

xr = gz + V1 —age, e~ N(0,1),)

where a; denotes a predefined noise schedule at timestep ¢. The reverse process recovers the original
image xo from the noisy input by iteratively denoising it through a series of steps. At each timestep
t, the model predicts the noise component, which is then used to compute the denoised image for the

previous timestep z;_1. For instance, DDIM sampler (Song et al.,|2020) defines the reverse process

as follows:
Ty — V1 — ageg(ay, t
Ty—1 = /o1 (¢ \/cTt o(:)> + /1= apreg(ay, t), (2
t

where € is the noise prediction model parameterized by 6. While early diffusion models (Ho et al.,
2020;, Dhariwal & Nicholl [2021)) adopt U-Net architectures (Ronneberger et al.l 2015), DiTs

bles & Xie, [2023)) instead parameterize €y with transformers. DiTs have been shown to be effective
for large-scale generation tasks, but at the cost of a substantial computational overhead.

TaylorSeer (Liu et al.,|2025b). TaylorSeer reduces cache errors in diffusion transformers by pre-
dicting output features through the Taylor expansion around the last fully computed timestep t.

Under review as a conference paper at ICLR 2026

10

10th module S06 T &)
8 —+— 20th module IR 0)
—_ —e— 30th module [e5)
6 0.4 [
p _1
N 4 2
24 502
5 =
Q
o2
o 0.0
50 20 30 20 10 50 40 30 20 10 O
Timestep (r) Timestep (7)
(a) Variation of sg. (b) Relation between £o and &;.

Figure 2: Empirical analyses in DiT-XL/2 (Peebles & Xie} [2023). (a) RSD of sy (¢t — k) with varying ¢. (b)
Relative L, errors of the output and input features, i.e., Eo(t) and £;(t), respectively. Please see the text for
details.

Given a cache interval N, the m-th order prediction of the output feature for the /-th module at
timestep ¢ — k (0 < k < N) is computed as follows:

— kP ARO!(t
O"ll"aylor(t - Z 7[Nt (3)

where O'(t) is the output feature of the /-th module at timestep #, and A, denotes the i-th order
finite difference operator with the stride N defined recursively as:
i o O'(t) - O'(t+ N), i=1,
ANO(t) = ATTONE) — ATTIONt+ N), i>1
N N) :
For the clarity and convenience of notation, we omit the superscript ¢ for first-order differences and
the module index [in the remainder of this paper.

4)

3.2 RELATIONAL FEATURE CACHING

While TaylorSeer achieves the state-of-the-art performance over previous caching
approaches, it still shows considerable prediction errors (Fig. [I{c)). This is because the magnitude
of the feature changes is irregular across the timesteps (Fig. |1(a)), making it difficult to accurately
estimate the subsequent features based only on temporal extrapolation techniques. To this end, we
propose RFC, a framework that enhances feature prediction by leveraging the relationship between
input and output features through two complementary components, RFE and RCS. RFE estimates
the magnitude of changes in the output features, while RCS identifies when predictions become
unreliable and performs full computation accordingly.

Relational feature estimation (RFE). We have observed in Fig. [T(a-b) that the magnitudes of
changes in the input and output features for the same module are highly correlated, suggesting that
differences in input features can serve as effective predictors of the output variations. To quantify
this relationship, we define the ratio between the magnitudes of changes in output and input features

as follows:

184:0(t = 1)l s
[ARI(t = FK)ll2”
where O(t—k) and I(t— k) denote the output and input features of the same module, respectively, at
timestep t—k, and Ay, is the first-order difference with stride % in Eq. (). To evaluate the consistency
of the ratio, we compute s (¢t — k) for k € [1, 9], and measure the relative standard deviation (RSD)
over the resulting values. We can see from Fig. [J[a) that the RSD values remain consistently low
(typically around 2%), indicating that s (t — k) is highly consistent across timesteps. To support the
empirical consistency of sy (t — k), we present the following proposition:

Sk(t — k) =

Proposition 1. Assume that the mapping from input to output features is locally linear, and the
direction of the difference vector AI(t — k) remains constant for 1 < k < N, where N is an
interval between full computations. Then, the ratio si(t — k) is approximately invariant w.r.t. k.

Proof. Suppose the output feature O(t) is a locally linear to the input feature 1(t), i.e.,
O(t) = AI(t) + b, (6)

Under review as a conference paper at ICLR 2026

where A and b denote the weight matrix and bias vector of the linear transformation, respectively.
Then, the change in output features over the temporal offset k& can be written as:

AO(t — k) = Ot — k) — O(t))
— A(I(t — k) — I(t)))
— AAGI(E—F). 9)

Taking the Lo-norm of both sides gives:

1ROt = F)ll2 = [|AARI(E = k)2 (10)
= [|Aug(t = F)ll2[| A I(E = B2, (1)
where uy(t — k) is the normalized direction of the input change defined as:
ARI(t — k)
ug(t — k) = ———————. (12)
S Ve R
By dividing both sides of Eq. with || AxI(t — k)||2, we have the following:
[A£0(t — K2

sp(t—k) = ————<— = || Aui(t — k)]|2. 13)

By the assumption that uy (¢ — k) remains constant for 1 < k < N, the ratio s (¢ — k) is invariant
w.rt. k. O

Note that the two assumptions in Proposition [T] are commonly observed in diffusion models. First,

changes in input features are usually small (Ma et al.| 2024} [Selvaraju et al.| 2024} [So et al.,[2024),

which allows for the output features to be locally approximated using Taylor’s theorem. Second, the
works of (Lv et al.|[2025}|Qiu et al., 2025) show that the direction of feature changes remains largely
consistent across timesteps. We provide empirical validation of the assumptions in Sec.[A]

Based on the above finding, we propose RFE, a simple yet effective method that estimates the mag-
nitude of changes in output features ||A;O(t — k)||2 by leveraging the changes in input features
||[ArI(t — k)||2. Specifically, we can rewrite Eq. (5)) as follows:

|ALO(t — k)2 = skt — k)| ARI(t — k)||2- (14)

Given the consistency of sy (¢t — k) across timesteps, we can approximate Eq. (14)) as follows:

[ALO(t — k)|l = sn(t) | AxL(t — K)||2, (15)

where sy (t) is the ratio computed between the two most recent full computations with the interval
of N. Note that obtaining an input feature I(t — k) is efficient, since it only requires lightweight
operations (e.g., LayerNorm 2016), scaling, and shifting). Consequently, RFE refines the
predicted magnitude of feature changes in Eq. (3) as follows:

— k
Orri(t — k) = O(t) + (sn (1) | ApI (t — k (Z, e) (16)
where g(+) is an Lo normalization function as follows:
x
g(z) = . (17)
=l

RFE can capture irregular dynamics of feature changes, reducing the error of feature prediction,
efficiently and effectively.

Under review as a conference paper at ICLR 2026

Relational cache scheduling (RCS). Although RFE significantly improves the accuracy of the
feature prediction, estimation errors are unavoidable and tend to fluctuate over timesteps, making
a fixed caching interval N suboptimal. To address this, we propose RCS, a dynamic scheduling
strategy that determines when to perform a full computation based on the estimated prediction error.
To this end, we define the error of the output prediction at timestep ¢t — k as follows:

Eo(t—k) = O(t — k) — Oges(t — k). (18)

However, computing Eo (t — k) is not feasible during sampling, since it depends on O(t — k), which
requires a costly computation (e.g., attention or MLP). Instead, we propose to estimate this error
using the error of the input prediction E;(t — k) as a proxy:

EI(t_k) :I(t_k) _ITaylor(t_k)a (19)

where the predicted input feature Irayior(t — k) is computed with the Taylor expansion as follow

" kANt
ITaylor(t — k‘) = I(t) + Z F 1}[\[1()

i=1

(20)

Our intuition is that prediction errors in the output tend to increase when the feature changes
abruptly, and such changes are highly correlated with the variations in the corresponding in-
put (Figs. [[(a-b) and [2(a)). Therefore, errors in the output prediction are likely to be correlated
with those in the input prediction. To support this, we compare the relative L, error of the output
and input features, which is defined as follows:

[1Eo(t = K)llx 1Er(t — k)1

D op=pl TN re=wn e

As shown in Fig. 2b), the trends of the input and output errors closely align across timesteps. Based
on this, we aim to estimate the accumulated errors in the output prediction during the sampling
process by tracking the relative L, error of the input prediction for the first module. We then perform
a full computation when the accumulated error exceeds a predefined threshold 7 as follows:

k
> Et—j4) > (22)
j=1

The left term in Eq. (22) effectively reflects the accumulation of errors in the output prediction. By
adjusting 7, RCS controls the trade-off between the generation quality and efficiency. RCS performs
full computations more frequently at timesteps, where the accumulated errors are large, reducing the
cache error and improving the generation quality.

4 EXPERIMENTS

In this section, we first describe our implementation details (Sec. @.T). We then provide quantitative
and qualitative comparisons of RFC with state-of-the-art methods (Sec.[.2)), and present an in-depth
analysis of RFC (Sec.[4.3). More experimental results and a discussion on the limitation of our work
can be found in Appendix.

4.1 IMPLEMENTATION DETAILS

Datasets and models. We apply RFC to various DiT models and perform extensive experiments
on standard benchmarks for the class-conditional, text-to-image, and text-to-video generation tasks.
For class-conditional generation, we perform experiments using the DiT-XL/2 (Peebles & Xie}[2023))
model trained on ImageNet (Deng et al.| 2009). We use FLUX.1 dev (Batifol et al.,[2025) for text-to-
image generation and HunyuanVideo (Kong et al.,|2024) for text-to-video generation, and evaluate
them on DrawBench (Saharia et al., 2022) and VBench (Huang et al.| [2024)), respectively. We use
the DDIM sampler (Song et al., [2020) with 50 steps for DiT-XL/2, while using the Rectified Flow
sampler (Liu et al.| 2023)) for FLUX.1 dev and HunyuanVideo with the same number of steps.

'RFE is not applied to input prediction, as it is defined to exploit input—output relationships.

Under review as a conference paper at ICLR 2026

Class Full-Compute Prompt Full-Compute TaylorSeer
x 1.00 x 1.00 x6.23

Anemone fish

An emoji of a
baby panda
wearing a red
hat, green
gloves, red shitt,
and green pants.

Appenzeller

Aside view of an
owl sitting in a
field

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Fox squirrel 1
1
1
1

Figure 3: Qualitative comparisons of (left) class-conditional image generation for DiT-XL/2 (Peebles
2023)) on ImageNet (Deng et all [2009), and (right) text-to-image generation for FLUX.1
dev (Batifol et al.| 2025) on DrawBench (Saharia et al., [2022).

Evaluation and metric. Following the previous approaches (Zou et al.| 2025} [Liu et al.| [2025b),
we evaluate S0K images of size 256256 for class-conditional generation using standard metrics,
including Fréchet Inception Distance (FID) (Heusel et all [2017), sFID 2021)), and In-
ception Score (IS) (Salimans et all 2016). In addition, we introduce FID2FC and sFID2FC, which
quantify the degradation introduced by caching through measuring the FID and sFID scores, re-
spectively, between the images obtained from full computations and feature caching methods. For
the text-to-image generation task, we generate 200 images of size 1000x 1000 from DrawBench
prompts 2022) and evaluate the image quality and text-to-image alignment using
ImageReward 2023) and the CLIP score (Hessel et al., 2021), respectively. We also eval-
uate PSNR, SSIM (Wang et al., [2004), and LPIPS (Zhang et al., |2018) computed between images
generated by full computations and caching approaches. For text-to-video generation, we produce
2,838 videos by generating three videos for each of the 946 prompts. We evaluate the generated
videos with the VBench score (Huang et al [2024), as well as PSNR, SSIM, and LPIPS. For all
tasks, we report FLOPs and latency to evaluate the computational efficiency. For a fair comparison,
we reproduce the results of state-of-the-art methods using the official source codes, and adjust the
threshold 7 in Eq. (22)) to ensure that the average number of full computations (NFC) matches that
of other methods.

4.2 RESULTS

Quantitative results. We show in Tables [TH3] quantitative comparisons of RFC and state-of-the-
art methods (Selvaraju et all, [2024; [Zou et al., [2025}; 2024} [Liu et al.l 2025b)) for class-conditional
image, text-to-image, and text-to-video generation tasks, respectively. We summarize our findings
as follows: (1) RFC outperforms existing caching approaches across various generative tasks, by
a large margin. For example, we can see from Table [T] that RFC with 3.37 TFLOPs outperforms
TaylorSeer 2025b) with 4.76 TFLOPs by 1.26 in terms of sFID. We can also see that
the improvement is significant for metrics that compare the quality of generated images from full
computations and caching approaches (e.g., FID2FC, sFID2FC, PSNR, SSIM (Wang et al., [2004),
and LPIPS (Zhang et al, 2018)), suggesting that RFC can accurately estimate output features by
leveraging the relationship with the corresponding input features. (2) RFC performs particularly
well under limited computational budgets. In such cases, prior approaches suffer from large errors
in feature prediction, mainly due to irregular changes of features across timesteps, which degrades
the performance. Even with limited computation, RFC accurately estimates the output features with
RFE and effectively performs full computations with RCS, preserving the generation quality. (3)
With a similar NFC, the overhead of RFC compared to TaylorSeer 2025Db) is minimal.
This is because computing the input features in RFC only requires lightweight operations such as
LayerNorm 2016), shifting, and scaling, which adds negligible computational costs, while
improving the generation quality significantly.

Qualitative results. We show in Fig. 3] the qualitative comparisons of images generated using
DiT-XL/2 (Peebles & Xiel [2023) and FLUX.1 dev (Batifol et al) [2025). We observe that RFC

Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparisons on class-conditional image generation for DiT-XL/2 (Peebles &
Xiel 2023) on ImageNet (Deng et al.l [2009). Numbers in bold indicate the best performance, while
underscored ones are the second best among similar computational costs. NV is the interval between
full computations, and m refers to the order of the Taylor expansion.

Methods NFC FLOPs (T)| Latency (s) FID| sFID, FID2FC/| sFID2FC| ISt
Full-Compute 50 23.74 7.61 2.32 4.32 - - 241.25
FORA (N = 4) (Selvaraju et al.;2024] 14 6.66 2.37 4.33 7.38 1.90 6.32 215.33
ToCa (N = 4) (Zou et al.]2025] 17 8.73 3.64 3.03 5.02 0.86 3.56 229.01
DuCa (N = 4) (Zou et al.}2024] 17 7.66 2.94 3.39 4.95 1.19 4.22 224.03
TaylorSeer (N = 4, m = 2) (Liu et al. 2025b] 14 6.66 2.84 2.55 5.30 0.44 2.17 232.26
RFC (m = 2) 14.01 6.67 2.86 2.52 4.60 0.30 1.33 231.00
FORA (N = 5) (Selvaraju et al.|2024) 11 5.24 2.03 6.12 10.51 3.57 10.19 196.04
ToCa (N = 5) (Zou et al.][2025] 14 743 3.35 3.53 5.36 1.28 4.50 224.07
DuCa (N = 5) (Zou et al.;2024] 14 6.32 2.57 6.02 6.71 4.19 8.18 196.96
TaylorSeer (N = 5, m = 2) (Liu et al. 2025b] 11 524 2.52 2.70 5.45 0.56 2.74 228.76
RFC (m = 2) 11.01 5.24 2.52 271 4.80 0.48 2.14 227.72
FORA (N = 6 (Selvaraju et al.;2024}) 10 4.76 1.82 8.12 12.94 532 12.87 179.11
ToCa (N = 6) (Zou et al.]2025] 13 7.01 3.27 3.54 5.54 1.44 5.18 226.32
DuCa (N = 6) (Zou et al.}[2024] 13 5.86 2.53 6.37 6.74 4.51 7.86 187.74
TaylorSeer (N = 6, m = 2) (Liu et al.|2025b] 10 4.76 227 3.10 6.47 1.00 4.63 222.85
RFC (m = 2) 10.04 4.78 2.46 2.75 5.02 0.54 243 226.93
FORA (N = 7) (Selvaraju et al.|2024] 8 3.35 1.73 12.63 18.49 9.66 19.11 147.06
ToCa (N = T7) (Zou et al.{2025] 14 6.25 2.90 4.04 5.72 1.62 4.72 214.25
DuCa (N = 7) (Zou ct al. | 2024] 14 4.96 224 776 177 545 8.80 181.50
TaylorSeer (N =7, m = 2) (Liu et al.2025b] 8 3.82 2.02 3.46 6.97 130 5.61 217.18
RFC (m = 2) 8.02 3.83 2.15 312 5.07 0.81 3.10 219.20
TaylorSeer (N = 9, m = 2) (Liu et al.2025b] 7 3.35 1.89 4.90 7.92 233 7.35 198.46
RFC (m = 2) 7.04 3.37 1.99 3.40 5.21 1.03 3.66 215.39

Table 2: Quantitative comparisons on text-to-image generation for FLUX.1 dev (Batifol et al.,[2025)
on DrawBench (Saharia et al., [2022)). Numbers in bold indicate the best performance, while under-
scored ones are the second best among similar computational costs. N is the interval between full
computations, and m refers to the order of the Taylor expansion.

Methods NFC FLOPs (T)| Latency (s), PSNR SSIM{ LPIPS| IRt CLIPt
Full-Compute 50 2813.50 26.210 - - - 09655 17.0720
FORA (N = 3) (Selvaraju et al.|[2024) 17 957.33 10489 17.4967 07236 0.4209 09111 16.9515
ToCa (N = 5) (Zou et al.]2025) 14 105626 18.591 18.0333 0.7269 0.3490 0.9457 17.0063
TaylorSeer (N = 4, m = 1) (Liu et al.|2025b] 14 788.59 8863 19.5722 0.7695 03226 0.9204 17.0659
TaylorSeer (N = 4, m = 2) 14 788.59 8985 19.7733 0.7706 03175 0.9407 17.0527
RFC (m = 1) 1402 789.82 9.148 202707 0.7905 0.2934 0.9448 17.0288
RFC (m = 2) 1380 777.44 9364 20.3524 0.7930 02952 0.9499 17.0394
FORA (N = 7) (Selvaraju et al.|2024) 8 451.10 6.065 158656 0.6692 0.5557 0.6121 16.8531
ToCa (N = 12) (Zou et al.|2025] 5 673.88 11504 162240 0.6479 05512 0.6238 16.9020
TaylorSeer (N = 9, m = 1) (Liu et al.|2025b] 8 451.10 6382 16.1346 0.6736 0.5261 0.7602 17.0769
TaylorSeer (N = 9,m = 2) 8 451.10 6.796 165492 0.6563 0.5328 0.7996 17.0534
REC (m = 1) 8.00 45123 6407 167952 0.6979 0.4645 09142 17.0165
RFC (m = 2) 8.03 45291 6.849 16.9188 0.6936 04708 0.9189 16.9641

Table 3: Quantitative comparisons on text-to-video generation for HunyuanVideo (Kong et al.,[2024)
on VBench (Huang et all 2024). Numbers in bold indicate the best performance among similar
computational costs. IV is the interval between full computations, and m refers to the order of the
Taylor expansion.

Methods NFC FLOPs (T)] Latency (s)J PSNR1T SSIM?T LPIPS| VBench{
Full-Compute 50 7520.00 263.480 - - - 81.40
FORA (N = 6) (Selvaraju et al.|[2024) 9 1359.19 55339 15.5221 0.4349 02743 7851
TaylorSeer (N = 5, m = 1) (Liu et al.{2025b) 10 1510.21 60.051 16.3606 0.5126 0.1985 80.77
TaylorSeer (N = 6, m = 1) 9 1359.19 55.872 15.5321 0.4606 0.2448 79.52
RFC (m = 1) 8.96 1354.65 57.786 18.5408 0.6352 0.1329 80.83
FORA (N = 8) (Selvaraju et al.|[2024) 7 1058.45 48.340 14.8878 0.4114 0.2959 77.50
TaylorSeer (Liu et al.J2025bf (N =8, m =1) 7 1058.45 48.736 15.1999 0.4408 0.2624 79.59
RFC (m = 1) 7.09 1072.65 49.684 18.2521 0.6155 0.1436 80.49

produces more realistic images that are visually closer to those generated by full computations. For
example, in the first row of Fig. 3{right), RFC better preserves the brick structure compared to the

Under review as a conference paper at ICLR 2026

Motion colour drop in water, ink swirling in water, colourful ink in
Methods i p;
water, abstraction fancy dream cloud of ink.

a giraffe running to join a herd of its kind A car moving slowly on an empty street, rainy evening

Full-Compute
x1.00

TaylorSeer
x7.10

- & d e B

Figure 4: Qualitative comparisons of text-to-video generation for HunyuanVideo (Kong et al. 2024)
on VBench (Huang et al.}[2024). Please see the supplementary material for the actual video clips.

Table 4: Quantitative comparison of different components for DiT-XL/2 (Peebles & Xie} 2023) on
ImageNet (Deng et al., 2009). All results are obtained using the first-order approximation (m = 1).

Methods NFC FID, sFID] FID2FC| sFID2FC
TaylorSeer (Liu et al.]2025b) 14 2.65 5.60 0.57 2.77
RFE 14 2.52 5.18 0.43 2.02
RCS 14 2.52 4.76 0.36 1.88
RFC (RFE + RCS) 14 2,51 4.66 0.31 1.41
TaylorSeer 2025b 11 2.87 5.85 0.73 3.53
RFE 11 2.69 5.22 0.55 2.55
RCS 11 2.77 5.21 0.62 3.09
RFC (RFE + RCS) 11 2.71 4.88 0.51 2.30

prior approaches (Selvaraju et al., 2024} [Liu et al, 2025b), closely matching the image generated
by full computations, indicating that RFC effectively minimizes the prediction errors in the output

features. We also show in Fig.] generated videos using HunyuanVideo (Kong et al.,[2024). We can
see that RFC produces high-quality videos that are similar to those generated by full computations,

demonstrating the effectiveness of RFC once more. Please see Appendix for more results.

4.3 DISCUSSION

Ablations. We show in Table [4] the ablation study for each component of RFC. We can see that
applying either RFE or RCS alone already outperforms TaylorSeer [2025Db) regardless
of NFC. For instance, when NFC is 11, applying RFE and RCS to TaylorSeer reduces the sFID
from 5.85 to 5.22 and 5.21, respectively. This indicates that both RFE and RCS can effectively
improve feature prediction by leveraging the input—output feature relationship. Moreover, combining
both components (i.e., RFC) further reduces the sFID to 4.88, suggesting that RFE and RCS are
complementary to each other.

Relational feature estimation (RFE). Feature forecasting methods based on linear extrapolation

techniques (Lv et al, 2025}, [Qiu et al.} [2025)) can be formulated as:

Opea(t =) = 0(1) + 1w()Ax 01 @3

where Opreq (t—k) is the predicted output feature at timestep ¢t —k, Ay O(t) is the difference between
features from the two latest full-compute steps, N is the interval between the full computations, and
w(t) is a scaling factor at the timestep ¢. Existing approaches differ in how w(t) is determined. For
instance, FasterCache (Lv et al.,2025) linearly increases w(#) from zero to one as ¢ increases, while
GOC (Qiu et al., 2025) employs a fixed hyperparameter for w(t). We show in Table [5| quantitative
comparisons between RFE and these strategies. We can see that RFE consistently outperforms all
the others significantly. This suggests that a simple linear extrapolation fails to capture the irregular

Under review as a conference paper at ICLR 2026

Table 5: Quantitative comparison of different Table 6: Quantitative comparison of differ-

strategies for estimating the change in output fea- ent strategies for the cache scheduling us-

tures for DiT-XL/2 (Peebles & Xiel[2023) on Ima- ing DiT-XL/2 (Peebles & Xie, 2023) on

geNet (Deng et al.| [2009). All results are obtained ImageNet (Deng et al. 2009). All results

using the first-order approximation (m = 1). are obtained using the first-order approxima-
tion (m = 1).

Methods NFC FID2FC| sFID2FC| Latency (s))

Linear 14 0.73 3.40 2.85 Methods ~ NFC FID2FC) sFID2FC| Latency (s).
w(t) = 0.8 14 0.73 3.36 2.84
wg; = 1(2) {3 gg; gg %»gj Input distance 14.03 0.50 2.53 2.62
RFE 14 0.43 2.02 .86 All modules 14.02 0.37 1.85 2.79

- RCS 1400 036 1.88 2.63
Linear 11 0.93 4.08 2.52
“’83 = (llg }: g-gg ;‘g gg} Input distance 11.15 0.72 347 223
w = 1. . 3.93 .
w(t) = 1.2 1 067 34 5% Allmodules 11.00 0.61 3.03 241
RFE 11 0.55 2.55 2.52 RCS 11.01 0.62 3.09 2.26

changes in the output features, while RFE improves the prediction by leveraging the input—output
relationship.

Relational cache scheduling (RCS) RCS performs full computations based on the prediction
error in input features of the first module. To evaluate the effectiveness of RCS, we provide in Table[6]
quantitative results of various scheduling strategies on ImageNet (Deng et al., 2009). First, we adopt
a distance-based strategy (Liu et al.l [2025a) and schedule full computations based on the distance
between the current and the latest cached input features, instead of exploiting the prediction error.
We can see that RCS achieves stronger performance, suggesting that the prediction error is more
reliable for forecasting-based methods than the simple distance measure. Second, we add the input
prediction errors of all modules rather than using the first module only. RCS remains comparable to
this variant, indicating that using the error from the first module is sufficient.

5 CONCLUSION

We have shown that output feature changes in DiTs are highly irregular across timesteps, while still
maintaining a strong correlation with their corresponding inputs. Based on this, we have introduced
a new caching framework, dubbed RFC, that leverages the input-output relationship for accurate
feature prediction, consisting of two novel components, RFE and RCS. We have demonstrated that
RFC achieves the state of the art on standard benchmarks, and further validated the effectiveness of
each component through a detailed analysis.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint,
2016.

Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dock-
horn, Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux.1 kontext: Flow match-
ing for in-context image generation and editing in latent space. arXiv preprint, 2025.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In CVPR, 2023b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In CVPR, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
NeurlPS, 2021.

10

Under review as a conference paper at ICLR 2026

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In EMNLP, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In NeurIPS,
2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurlIPS,
2020.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In CVPR, 2024.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint, 2024,

Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In ECCV,
2024.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. In CVPR, 2025a.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to fore-
casting: Accelerating diffusion models with taylorseers. In ICCV, 2025b.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In ICLR, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A fast
ODE solver for diffusion probabilistic model sampling in around 10 steps. In NeurIPS, 2022.

Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K
Wong. FasterCache: Training-free video diffusion model acceleration with high quality. In ICLR,
2025.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. DeepCache: Accelerating diffusion models for free.
In CVPR, 2024.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. In ICML, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, 2023.

Junxiang Qiu, Lin Liu, Shuo Wang, Jinda Lu, Kezhou Chen, and Yanbin Hao. Accelerating diffusion
transformer via gradient-optimized cache. In ICCV, 2025.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedi-
cal image segmentation. In MICCAI, 2015.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. In NeurIPS, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In NeurIPS, 2016.

11

Under review as a conference paper at ICLR 2026

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. FORA: Fast-
forward caching in diffusion transformer acceleration. arXiv preprint, 2024.

Junhyuk So, Jungwon Lee, and Eunhyeok Park. Frdiff: Feature reuse for universal training-free
acceleration of diffusion models, 2024b. In ECCV, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In /ICML, 2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE TIP, 2004.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating
diffusion models through block caching. In CVPR, 2024.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
NeurlPS, 2023.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint, 2015.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
Accelerating diffusion transformers with dual feature caching. arXiv preprint, 2024.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion trans-
formers with token-wise feature caching. In ICLR, 2025.

12

Under review as a conference paper at ICLR 2026

—-
=3
—-
=]

AT TN N

0.8 0.8 0.8
o £ g
50.6 10th Module © 0.6 © 0.6
O
A 15th Module 0‘:) g
~ 0.4 —e— 20th Module ‘7 0.4 ‘» 0.4
& 3 10th module S 10th module

0.2 0.2 15th module 0.2 15th module

L —e— 20th module —e— 20th module
O e e e e e e S i
50 45 40 35 30 25 20 15 10 5 0.0%50 45 40 35 30 25 20 15 10 5 0.0'5045 40 35 30 25 20 15 10 5
Timestep (1) TimeStep (1) TimeStep (r)
(a) Linearity. (b) Input feature consistency. (c) Output feature consistency.

Figure 5: Feature analyses using DiT-XL/2 (Peebles & Xiel 2023) on ImageNet (Deng et al.,[2009). (a) A lin-
earity analysis of diffusion features. The solid lines present the linearity between the input and output features,
while the dashed lines show the linearity between the timesteps and output features. (b-c) The directional con-
sistency of the input and output features.

In Appendix, we first validate the conditions underlying Proposition|[I] (Sec.[A])), followed by further
analyses of the input-output feature relationship (Sec. [B). We then provide more quantitative and
qualitative results (Sec. [C) with additional discussions (Sec. D). Finally, we present the limitations
of RFC (Sec.[E) and describe the usage of LLMs (Sec. [F).

A CONDITIONS FOR PROPOSITION

Proposition |I| relies on two key conditions commonly observed in diffusion models: (1) a locally
linear relationship between input and output features, and (2) directional consistency of feature
changes across timesteps. The first condition is supported by the fact that feature changes between
timesteps are typically small (Ma et al., 2024; Selvaraju et al., [2024} |So et al., [2024), allowing for a
local linear approximation by the Taylor’s theorem. The second condition is grounded in empirical
observations from prior works (Lv et al.} 2025} |Qiu et al., [2025)), which observe that the direction of
feature changes remains largely consistent throughout the denoising process. To further verify these,
we provide additional empirical analyses on these conditions.

Linearity. To validate the local linearity between the input and output features, we fit a linear
model via least squares between the input and output features of the same module (e.g., attention
and MLP), using the features of 5 consecutive timesteps (e.g., t ~ (¢t —4)). We show in Fig.[5(a) the
average coefficient of determination (R?) score of the fitted linear model. We can see that R? scores
show consistently high values (e.g., close to 1), demonstrating a strong linearity between input and
output features. For comparison, we also compute the R? scores to quantify the linearity between
the timesteps and their corresponding output features. We observe a substantial drop in R? scores,
which indicates that the relationship between the output features and the timesteps is highly non-
linear. This is because the magnitude of changes in the output features varies significantly, which
limits the effectiveness of previous forecasting methods (Liu et al.,2025b; |Lv et al.|[2025} |Q1u et al.}
2025) (see Fig. [[[c-d)).

Directional consistency. To validate the directional consistency of feature changes, we com-
pute the pairwise cosine similarities of the feature differences AI(t — k) and ALO(t — k),
where k ranges from 1 to 4. Specifically, we compute the difference vectors of features across
timesteps (e.g., A l(t — k) = I(t — k) — I(t) for k = 1 to 4), and measure the pairwise cosine sim-
ilarities among them to assess how consistent their directions are over time. We then average these
similarities to quantify the overall degree of directional consistency. As shown in Fig. [5[b-c), the
average similarities remain consistently high across modules, indicating that the direction of feature
change is preserved over time. These empirical observations align well with the findings of prior
studies (Lv et al.} 2025; |Q1u et al., 2025).

B MORE ANALYSES

We have shown the strong correlation between the input and output features in the main paper. To
further validate the generalizability of the analyses, we provide in Fig.[6|an additional analysis on the

13

Under review as a conference paper at ICLR 2026

5th Module 1.0
—+— 15th Module 5th module

— smmoa | o s —+— 15th module f
—+— 25th module

e
2

rror
o
=

—

0.6|

i
N N
i 0.4 - g
\JLQM . LJL\‘A&.\J ’ '
0.0 / 1 1 1 0.0

L, Distance
o
@

RSD (%)
-
Relative L
e
T

|
I
il
1l 1 A;
WY it
i 20 0 40 20 0 050 40 30 20 10 50 40 30 20 10 0
Timestep Timestep (1) Timestep (1)
1.0 odule 1
' palrivien 10th module i -
\‘ —— 30th Module 10 e 20th module 04 ! —— &

8 ~ 5 —— 30th module E ’
£0.6 S =03 gﬂ 4
2 6 o i
Zod il 5 foal 41 |
3, A = 5 L F
0.2 0.1 / ’g :
2f ¢ ? 7
0.0 v 0.0 M
0 20 0 10 20 0 05020 30 2 10 50 40 30 20 100
Timestep Timestep Timestep (1) Timestep ()
(a) Output difference. (b) Input difference. (¢) Variation of sj. (d) o vs. &1

Figure 6: Analyses using FLUX.1 dev (Batifol et al.l [2025) on DrawBench (Saharia et al., [2022) (upper row)
and HunyuanVideo (Kong et al.,2024) on VBench (Huang et al.,[2024) (lower row). (a-b) Min-max normalized

L, distances of output and input features, measured between consecutive timesteps. (¢c) RSD of s (¢t — k) in
Eq. (5) with varying ¢. (d) Relative L1 errors of the output and input features, i.e., £o(¢) and £;(¢) in Eq. (21]
respectively.

),

Table 7: Quantitative comparison under extremely high acceleration ratios for DiT-XL/2 (Peebles
2023) on ImageNet (Deng et al., [2009). All results are obtained using the second-order

approximation (m = 2).

Methods NFC FID| sFID| FID2FC| sFID2FC]
Full-Compute 50 2.32 432 - -
TaylorSeer 2025b 6 13.57 13.19 10.68 15.19
REC 6 431 5.39 1.83 4.80
TaylorSeer 2025b 5 45.81 27.64 42.29 31.46
REC 5 5.43 6.29 2.81 6.13
TaylorSeer 2025b 4 160.85 135.55 157.53 137.65
RFC 4 8.65 7.14 5.71 8.78

Table 8: Quantitative comparison on distilled model, FLUX.1 schnell (Batifol et al., [2025) with 6
denoising steps, on DrawBench (Saharia et al, 2022). All results are obtained using the first-order
approximation (m = 1).

Methods NFC PSNRT SSIMT LPIPS|
Full-Compute 6 - 1.0000 0.0000
Step reduction 4 26.5377 0.8855 0.1164
TaylorSeer 2025b 4 29.3435 0.9242 0.0736
RFC 4 327436 09275 0.0635
Step reduction 3 25.0214 0.8580 0.1511
TaylorSeer 2025b 3 22.2134 0.7491 0.3687
REC 3 27.1185 0.8931 0.0983

relationship between input and output using FLUX.1 dev (Batifol et al., 2025 on DrawBench
haria et al., [2022), and HunyuanVideo on VBench (Huang et al.| [2024). Similar
to the findings in Figs. [[|and 2] we can see that the feature changes are irregular across timesteps,
while those of input and output remain closely aligned with each other. We can also see that the ratio
between the magnitude of changes in output and input features (i.e., si(t — k)) is highly consistent
along timesteps. Finally, we can see that the relative L; error of the output and input features, o (t)
and &;(t), respectively, are closely aligned with each other, demonstrating the strong correlation
between the input and output features.

14

Under review as a conference paper at ICLR 2026

Methods Guinea pig Meerkat Puffer Leonberg Goblet

Full-Compute
x 1.00

FORA
x7.08

TaylorSeer
x6.21

RFC
x6.21

Figure 7: Qualitative comparisons of class-conditional image generation for DiT-XL/2 (Peebles &

2023) on ImageNet 2009).

C MORE RESULTS

Quantitative results on higher acceleration ratios. We show in Table [7] quantitative results us-
ing DiT-XL/2 (Peebles & Xiel [2023)) on ImageNet (Deng et al, [2009) under extremely low full
computation budgets (i.e., NFC = 6, 5, 4). We can see that the performance of TaylorSeer (Liu
degrades significantly. This indicates that relying solely on temporal extrapolation is
insufficient when intervals between full computations are large. In contrast, RFC maintains strong
performance by leveraging input—output correlations, which enables more accurate prediction even
when feature changes become irregular and difficult to extrapolate.

Quantitative results on distilled model. We show in Table [8] quantitative results on the distilled
model, FLUX.1 schnell (Batifol et al.} 2025)), with 6 denoising steps. For the distilled models, the
overall number of denoising steps is significantly smaller, which leads to larger changes in features
between consecutive timesteps and makes feature prediction more difficult. Under this setting, we
can see that TaylorSeer shows a notable performance drop, while RFC maintains
consistently strong performance across all metrics. This demonstrates the effectiveness of leverag-
ing the input—output relationship for stable and accurate feature prediction, even when the output
features of distilled models highly fluctuate.

More qualitative results. We provide in Figs. [7}9] additional qualitative results for class-
conditional image, text-to-image, and text-to-video generation tasks. Consistent with the obser-
vations in Sec. .2] RFC produces higher-quality images and videos compared to those of state-

of-the-art approaches (Selvaraju et al [2024; [Liu et al., 2025b). These results further validate the

effectiveness and superiority of RFC.

D MORE DISCUSSIONS

Details on choosing 7. In our framework, 7 is a key parameter in RCS that controls the trade-off
between generation quality and computational efficiency. Specifically, a larger 7 allows more pre-
diction steps before triggering a full computation, thereby reducing the number of full computations
and improving efficiency. This role is similar to adjusting § in or N in (Liu et al}
2025b}; [Selvaraju et al} [2024}; [Zou et al} [2024), where users can tune the parameter based on their
desired efficiency level.

For fair comparison with other methods, we tune 7 to match the target NFC. Specifically, we conduct
a grid search over candidate 7 values, generate 10 samples per setting, and measure the average NFC.

15

Under review as a conference paper at ICLR 2026

A stack of 3 cubes. A red cube is
on the. on a red cube.

A triangular orange picture
Ahorse riding an astronaut. frame. An orange picture frame. A shark in the desert
in the shape of a triangle.

Two cats and three dogs.

Ablack apple and a green A stop sign on the right of a
Methods sitting on the grass.

Full-Compute
x 1.00

FORA
x6.23

TaylorSeer
x6.23

RFC
x 6.23

Figure 8: Qualitative comparisons of text-to-image generation for FLUX.1 dev (Batifol et al.,[2025)

on DrawBench (Saharia et al.,[2022).

Methods A beautiful coastal beach in spring, waves lapping on sand by
Hokusai, in the style of Ukiyo

- '(.4 'ﬂ,‘ T
Full-Compute -
X1.00
s H

A robot DJ is playing the turntable, in heavy raining futuristic tokyo

A cute happy Corgi playing in park, sunset rooftop cyberpunk night, sci-fi, fantasy

TaylorSeer
x7.10

Figure 9: Qualitative comparisons of text-to-video generation for HunyuanVideo (Kong et al.,[2024)

on VBench (Huang et al.,[2024).

We then fix the 7 value that yields the desired NFC, and use this setting for reporting quantitative
results. For detailed 7 settings for Tables [IH3]are shown in Table [0} We also provide the trade-off of
our approach with varying 7 in Fig. Please note that we have observed that NFC remains highly
consistent across different samples, requiring no extensive tuning.

Reliability of CLIP score. RFC does not achieve the highest CLIP score in Table |2 due to the
limitations of the CLIP score. The CLIP score mainly reflects coarse semantic alignment between
the images and texts rather than detailed correctness, as demonstrated by prior work
[2024). Also, we can see in Table 2] that the CLIP score of TaylorSeer frequently outperforms fully
computed counterparts, which shows its unreliability.

To further validate this, we show in Fig. [[T]qualitative results where CLIP scores fail to reflect true
generation quality. We can see that even when the generated images exhibit visual artifacts, they can
still receive high CLIP scores when they roughly match the prompt. For instance, TaylorSeer (Liu|
generates a dog with a distorted face and a cat with unrealistic colors (first row), a
clock where the number “9” is inaccurately shaped (second row), and an umbrella with unnatural
textures (third row), but these examples show the highest CLIP scores.

16

Under review as a conference paper at ICLR 2026

Table 9: Settings of 7 for various models.

Model Order (m) T NFC
0.19 14.01
0.38 11.01
DiT-XL/2 (Peebles & Xie}|2023) 2 0.48 10.04
0.88 8.02
1.20 7.04
| 0.30 14.02
- 1.10 8.00
FLUX.1 dev (Batifol et al.}|[2025)
5 0.34 13.80
1.15 8.03
0.70 8.96
HunyuanVideo l 2024) 1 _—
1.10 7.09
- 6.67
35 ® I
3.0 .
[¢) E
& 2.5 9
g g

1.5 .
1.0 I
-3.37
0.2 0.4 0.6 0.8 1.0 1.2
T

Figure 10: Trade-off between generation quality and computational cost on ImageNet
[2009) using DiT-XL/2 (Peebles & Xie, 2023)) under varying values of 7. The plot shows the change
in performance (i.e., SFID2FC) as 7 increases, with the corresponding FLOPs indicated by the size
and color of each circle.

Table 10: Quantitative results for layer-wise caching strategies on ImageNet (Deng et al.,2009) using
DiT-XL/2 (Peebles & Xie| [2023)). We reduce the frequency of full computations by half for the first
(shallow skip) or last (deep skip) 7 blocks out of 28. We adjust 7 to use more full computations
for these variants to match FLOPs. All results are obtained using the second-order approximation
(m = 2).

Methods NFC FLOPs(T)] FID| sFID| FID2FC| sFID2FC] ISt

Full-Compute 50 23.74 2.32 432 - - 241.25
Shallow Skip 16 6.66 3.09 4.65 0.75 2.61 220.00
Deep Skip 16 6.66 3.47 5.15 1.10 2.82 211.54
RFC (m = 2) 14 6.66 2.52 4.60 0.30 1.33 231.00
Shallow Skip 8 3.35 11.70 9.13 9.10 11.71 147.88
Deep Skip 8 3.35 10.20 6.22 6.95 6.59 149.10
RFC (m = 2) 7 3.35 3.40 5.21 1.03 3.66 215.39

Layer-wise caching strategy. We investigate whether skipping full computations for certain lay-
ers leads to a better trade-off between image quality and efficiency. Specifically, we consider two
strategies: skipping full computations more often for (1) the shallow layers (i.e., the first 7 blocks),
or (2) the deep layers (i.e., the last 7 blocks). In these settings, the selected layers perform fewer full-
compute steps (i.e., at half the frequency) than the remaining layers during the denoising process.
We can see from Table[T0] that both variants result in worse performance compared to our method,
indicating that naive layer-wise skipping does not lead to better overall results. We believe, however,
that exploring the strategies for layer-wise skipping could be a promising direction for future work.

17

Under review as a conference paper at ICLR 2026

Prompts Full Compute TaylorSeer
x1.00 x6.23

Two cats and
one dog
sitting on the
grass.

Asingle
clockis
sittingon a
table.

20.2584 20.2865 19.5301

An umbrella
ontopofa

spoon.
17.6717 24.0149 20.1665

Figure 11: Clip scores of text-to-image generation for FLUX.1 dev (Batifol et al., 2025) on Draw-

Bench (Saharia et aI.L 2022)).

Table 11: Quantitative comparison of FORA (Selvaraju et al.,[2024)), TaylorSeer (Liu et al.,[2025b)),
and RFC using the DDIM 2020) model trained on LSUN-bedroom 2015)

with 50 timesteps. We use the first-order approximation (m = 1).

Methods NFC FID2FC| sFID2FCJ|
FORA (Selvaraju et al.}[2024) (N=5) 11 78.27 69.84
TaylorSeer (Liu et al., b) (N=5) 11 18.83 11.83
RFC 11 8.55 7.59
FORA (Selvaraju et al.|[2024) (N=6) 10 103.48 89.17
TaylorSeer (Liu et al., b) (N=6) 10 37.81 21.35
RFC 10 11.64 8.25

Adaptability to U-Net architecture (Ronneberger et al.,2015). Although we mainly focus on
DiTs, RFC can also be applied to U-Net architectures. To validate its effectiveness, we compare
in Table [TT] RFC with prior methods (FORA (Selvaraju et al 2024) and TaylorSeer
[2025b)) using the DDIM [2020) model trained on LSUN-bedroom 2015).

We can see that RFC significantly outperforms others, demonstrating its generality and architectural
adaptability.

Non-uniform intervals. Our RCS dynamically determines when to perform full computations by
monitoring the accumulated error in feature prediction. To investigate how this error varies across
the denoising process, we show in Fig. [T2]the average interval between two successive full-compute
steps across 1,000 samples. We observe that the average interval between early full computations
(i.e., close to noises) tends to be large, and the interval progressively shortens for the later timesteps
(i.e., close to clean images). This indicates that prediction error accumulates more slowly at the
beginning of the denoising process.

This phenomenon aligns with the generative process, where early stages form coarse, low-frequency
structures with more stable feature dynamics, while later stages refine fine-grained, high-frequency
details, involving more dynamic feature changes. RCS naturally adapts to this behavior by perform-
ing full computations less frequently during the early timesteps, when feature prediction is easier,

18

Under review as a conference paper at ICLR 2026

6 7
5 6
£ £’
) 24
g3 g

2 3
1 2

Y A H D 0N D39 0 DI DD YD » o o A > > QS N

N oo W T T AT %7\9414:,{/1%? NG T N G G AT & (7 \Q,’/\

Full-compute step Full-compute step
(a) 14 NFC. (b) 11 NFC.

Figure 12: Analysis of non-uniform intervals scheduled by RCS using DiT-XL/2 (Peebles & Xie, 2023) on
ImageNet [2009). We visualize the average interval between full-compute steps for (a) 14 and (b)
11 NFC settings. 7 — ¢ + 1 at the x-axis denotes the i-th and (7 + 1)-th full computation, and the y-axis shows
the average interval. The results are averaged across 1,000 samples.

Table 12: Quantitative results of DiT-XL/2 (Peebles & Xie}, [2023) on ImageNet (Deng et al.,[2009),
in terms of NFC, order in the Taylor expansion, GPU peak memory, FID2FC, and sFID2FC.

Methods NFC Order Peak Memory (MB) FID2FC| sFID2FCJ
FORA 1 m 10 - 3121 5.32 12.87
TaylorSeer (W 10 1 3207 1.42 6.17
RFC 10.04 1 3335 0.58 2.79
TaylorSeer - -2025b 10 2 3333 1.05 4.86
RFC 10.02 2 3463 0.54 2.43

and increasing the frequency in the later timesteps as prediction becomes more challenging, thereby
optimizing the efficiency-quality trade-off.

E LIMITATION

Table 13: Time overhead of RFC components compared to the baseline (TaylorSeer (Liu et al.}
2025b)) using DiT-XL/2 (Peebles & Xie|, 2023) on ImageNet (Deng et al [2009) with 14 NFCs.

Percentages in parentheses indicate the time increase relative to the baseline.

Methods Time (Overhead %)
Baseline (TaylorSeer 2025b)) 2.840s

Input feature computation +0.019s (0.67%)
Input feature prediction +0.002s (0.07%)

RFC effectively improves the generation quality but incurs additional memory costs to store input
features, similar to TaylorSeer 2025Db)), which stores more output features for higher-order
approximations. Notably, as shown in Table[I2] RFC generally achieves greater improvements in the
generation quality than increasing the approximation order by one in TaylorSeer, while requiring a
comparable amount of memory, highlighting the effectiveness of our approach.

As shown in Table[T3] RFC incurs a slight time overhead compared to the baseline. Compared to the
baseline, RFC needs (1) input feature computation for RFE and RCS, which requires lightweight
operations (e.g., LayerNorm, scaling and shifting); and (2) input feature prediction using the Taylor
expansion for RCS. To reduce the cost of input feature prediction in RCS, we have demonstrated in
Table[6]that computing the prediction error from only the first module, rather than all modules (e.g.,
56 modules in DiT-XL/2), is sufficient. For instance, under the 11 NFC setting, computing predic-
tion error across all modules increases runtime by approximately 7%, while yielding only marginal
improvement in performance (0.62 vs. 0.61 in terms of FID2FC). We conjecture that this is because
errors in early modules affect subsequent modules, suggesting that the prediction error of the first
module can be a reliable indicator of the overall prediction error. To further reduce the cost of input
feature computation, a promising direction for future work could be to explore a hybrid strategy

19

Under review as a conference paper at ICLR 2026

that applies RFE only to a subset of important modules, while using the baseline method for the
remaining ones.

There are some failure cases in RFC, where the generated image does not align well with the prompt.
This typically occurs when full computations fail to capture the prompt correctly, for example, as
shown in the third row of Fig. (8] where an astronaut is riding a horse, instead of a horse riding an
astronaut. This is because RFC accurately approximates the full computations, it also reproduces
such errors.

F LLM USAGE

We used a large language model (LLM) solely for proofreading and polishing the manuscript. The
model was not involved in generating research ideas, designing methods, conducting experiments,
or interpreting results.

20

	Introduction
	Related Work
	Timestep Reduction
	Feature Caching

	Method
	Preliminaries
	Relational Feature Caching

	Experiments
	Implementation details
	Results
	Discussion

	Conclusion
	Conditions for Proposition 1
	More analyses
	More results
	More Discussions
	Limitation
	LLM Usage

