

000 001 002 003 004 005 RELATIONAL FEATURE CACHING FOR ACCELERATING 006 DIFFUSION TRANSFORMERS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029

ABSTRACT

030 Feature caching approaches accelerate diffusion transformers (DiTs) by storing
031 the output features of computationally expensive modules at certain timesteps,
032 and exploiting them for subsequent steps to reduce redundant computations. Recent
033 forecasting-based caching approaches employ temporal extrapolation tech-
034 niques to approximate the output features with cached ones. Although effective,
035 relying exclusively on temporal extrapolation still suffers from significant pre-
036 diction errors, leading to performance degradation. Through a detailed analysis,
037 we find that 1) these errors stem from the irregular magnitude of changes in the
038 output features, and 2) an input feature of a module is strongly correlated with
039 the corresponding output. Based on this, we propose relational feature caching
040 (RFC), a novel framework that leverages the input-output relationship to enhance
041 the accuracy of the feature prediction. Specifically, we introduce relational fea-
042 ture estimation (RFE) to estimate the magnitude of changes in the output features
043 from the inputs, enabling more accurate feature predictions. We also present re-
044 lational cache scheduling (RCS), which estimates the prediction errors using the
045 input features and performs full computations only when the errors are expected
046 to be substantial. Extensive experiments across various DiT models demonstrate
047 that RFC consistently outperforms prior approaches significantly. We will release
048 our code publicly upon acceptance.
049

1 INTRODUCTION

050 Diffusion models (Ho et al., 2020; Song & Ermon, 2019) have recently achieved remarkable success
051 in generative tasks, such as text-to-image generation (Rombach et al., 2022; Saharia et al., 2022), and
052 video generation (Blattmann et al., 2023a;b). While early approaches (Ho et al., 2020; Dhariwal &
053 Nichol, 2021) relied on U-Net architectures (Ronneberger et al., 2015), recent works have shifted to-
054 ward diffusion transformers (DiTs) (Peebles & Xie, 2023), which demonstrate superior performance,
055 particularly when model and data scales increase. However, such gains come with significant com-
056 putational costs, since DiTs require performing expensive forward passes over numerous denoising
057 timesteps, which hinders their practical application. To address this, feature caching approaches (Ma
058 et al., 2024; Wimbauer et al., 2024; Liu et al., 2025b) have emerged, offering a promising solution
059 for reducing redundant computation in DiTs. These methods are based on the observation that the
060 intermediate features in DiTs are highly similar across adjacent timesteps. Specifically, they perform
061 full computations at certain timesteps, cache the output features of computationally expensive mod-
062 ules (e.g., attention and MLP), and exploit the cached features at subsequent timesteps to reduce
063 redundant computations.
064

065 Early caching approaches (Ma et al., 2024; Selvaraju et al., 2024) typically reuse cached features di-
066 rectly without adaptation. While this improves efficiency, the discrepancy between cached and fully
067 computed features accumulates over timesteps, which in turn degrades the generation quality. To
068 alleviate this, recent works have proposed forecasting-based methods, that predict features through
069 temporal extrapolation techniques, with an assumption that features evolve smoothly over timesteps.
070 For instance, FasterCache (Lv et al., 2025) and GOC (Qiu et al., 2025) perform a linear extrapola-
071 tion technique based on features from the two most recent full-compute steps, while TaylorSeer (Liu
072 et al., 2025b) leverages the Taylor expansion to estimate feature changes along timesteps. However,
073 our observations reveal that the magnitude of changes in the output features differs significantly
074 across timesteps (Fig. 1(a)), leading to substantial prediction errors (Fig. 1(c)). Specifically, Tay-

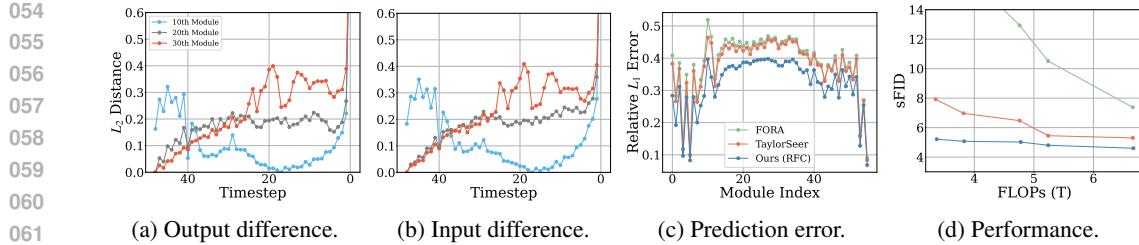


Figure 1: Feature analysis and comparison between existing approaches (FORA (Selvaraju et al., 2024), TaylorSeer (Liu et al., 2025b)), and our method (RFC) using DiT-XL/2 (Peebles & Xie, 2023). (a-b) Min-max normalized L_2 distances of output and input features, measured between consecutive timesteps. While the variations of feature changes are irregular, those of input and output remain closely aligned with each other. (c) The prediction errors across different modules. We measure the relative L_1 error between output features with and without applying caching methods and average the values over the timesteps. (d) Quantitative results on ImageNet (Deng et al., 2009) evaluated in terms of FLOPs and sFID (Nash et al., 2021).

lorSeer achieves slight reductions in prediction error compared to FORA (Selvaraju et al., 2024), which reuses features without adaptation. This degrades the generation quality severely, especially when employing large temporal intervals between full computations (*i.e.*, lower FLOPs in Fig. 1(d)).

To address this limitation, we propose relational feature caching (RFC), a simple yet effective framework that leverages the relationship between the input and output features of modules (*e.g.*, attention and MLP), rather than relying solely on temporal extrapolation techniques. To this end, we propose relational feature estimation (RFE), which estimates the magnitude of changes in the output feature by exploiting the differences in input features. RFE is based on the observation that the magnitude of changes in the output features is highly correlated with that of the input features (Figs. 1(a-b)), enhancing the accuracy of the feature estimation. We also introduce relational cache scheduling (RCS), a dynamic caching strategy that determines when to perform full computations based on estimated output errors. Since directly measuring output errors requires full computations, we instead employ errors in the input prediction as an efficient proxy, leveraging the relationship between the input and output features. Extensive experiments show that our proposed RFC consistently outperforms previous caching methods across a variety of DiT models, demonstrating the effectiveness of our method. We summarize our contributions as follows:

- We propose RFE, a forecasting method that leverages input feature variations to more accurately estimate output features.
- We propose RCS, a dynamic strategy that performs full computations adaptively by estimating the prediction error of the output features from that of input features.
- Extensive experiments across various DiT models demonstrate that using RFE and RCS consistently outperforms existing caching methods in terms of both the generation quality and computational efficiency.

2 RELATED WORK

In this section, we review representative works related to accelerating diffusion models.

2.1 TIMESTEP REDUCTION

The iterative generation process of diffusion models (Ho et al., 2020; Song & Ermon, 2019) leads to a slow inference and high computational costs, as each sample requires hundreds or even thousands of denoising steps. To mitigate this, many works attempt to reduce the number of timesteps. DDIM (Song et al., 2020) introduces a non-Markovian deterministic sampler that preserves the DDPM (Ho et al., 2020) training objective, while skipping intermediate timesteps. DPM-Solver (Lu et al., 2022) extends this idea with higher-order ODE solvers, approximating nonlinear terms through the Taylor expansion. While these approaches achieve a faster sampling, their performance degrades significantly when the number of steps becomes extremely small.

Another group of methods distill a pretrained diffusion model into a student model that generates comparable results with only a few denoising steps. Progressive distillation (Salimans & Ho, 2022)

108 iteratively trains a student model, which then becomes the teacher for the next stage with fewer
 109 steps. Consistency models (Song et al., 2023) learn direct mappings from noisy images at arbitrary
 110 timesteps to noise-free images, enabling skipping intermediate denoising steps. Although these ap-
 111 proaches generate high-quality images with limited timesteps, they typically incur a significant train-
 112 ing overhead.

114 2.2 FEATURE CACHING

115 Feature caching methods aim to reduce the computational cost across timesteps by storing fully
 116 computed features at certain timesteps and exploiting them for subsequent steps to avoid redundant
 117 computations. Early approaches (Ma et al., 2024; Selvaraju et al., 2024; So et al., 2024) use uniform
 118 intervals for full computations, but this ignores the fact that cache errors can vary significantly across
 119 timesteps. To address this, CacheMe (Wimbauer et al., 2024) sets a schedule for the full computa-
 120 tion before the denoising process based on the cache error, but this predetermined schedule does not
 121 consider varying cache errors across samples. To mitigate this, TeaCache (Liu et al., 2025a) caches
 122 input features at full-compute steps and adaptively triggers full computations when the current input
 123 feature deviates significantly from the last cached feature. It however requires an additional calibra-
 124 tion step to predict output cache errors from input differences. Furthermore, all the aforementioned
 125 caching approaches reuse the cached features directly without an adaptation, which can cause sub-
 126 stantial cache errors, particularly under long intervals between successive full computations. The
 127 works of (Zou et al., 2025; 2024) aim to reduce cache errors of important tokens by selectively per-
 128 forming full computations on them, while still relying on cached features for the majority of other
 129 tokens.

130 More recent works address the cache error by predicting features from cached ones rather than
 131 reusing them directly. FasterCache (Lv et al., 2025) observes that the change in the output features
 132 is directionally consistent, and uses a linear extrapolation technique to predict subsequent features.
 133 GOC (Qiu et al., 2025) also adopts a linear extrapolation technique, while reusing the cached fea-
 134 tures for timesteps where the extrapolation is less accurate. TaylorSeer (Liu et al., 2025b) leverages
 135 the higher-order Taylor expansions to better capture nonlinear feature dynamics, providing more
 136 accurate predictions than the linear extrapolation and improving the generation quality.

137 3 METHOD

138 In this section, we describe diffusion models and feature caching in DiTs (Sec. 3.1). We then intro-
 139 duce our RFC framework in detail (Sec. 3.2).

143 3.1 PRELIMINARIES

144 **Diffusion models.** Diffusion models consist of a forward and a reverse process. In the forward
 145 process, Gaussian noise ϵ , sampled from a normal distribution $\mathcal{N}(0, 1)$, is added to the input image
 146 x_0 over a sequence of timesteps. Specifically, at a given timestep t , the noisy image x_t is defined as:

$$148 x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I), \quad (1)$$

149 where α_t denotes a predefined noise schedule at timestep t . The reverse process recovers the original
 150 image x_0 from the noisy input by iteratively denoising it through a series of steps. At each timestep
 151 t , the model predicts the noise component, which is then used to compute the denoised image for the
 152 previous timestep x_{t-1} . For instance, DDIM sampler (Song et al., 2020) defines the reverse process
 153 as follows:

$$154 x_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{x_t - \sqrt{1 - \alpha_t} \epsilon_\theta(x_t, t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1}} \epsilon_\theta(x_t, t), \quad (2)$$

155 where ϵ_θ is the noise prediction model parameterized by θ . While early diffusion models (Ho et al.,
 156 2020; Dhariwal & Nichol, 2021) adopt U-Net architectures (Ronneberger et al., 2015), DiTs (Pee-
 157 bles & Xie, 2023) instead parameterize ϵ_θ with transformers. DiTs have been shown to be effective
 158 for large-scale generation tasks, but at the cost of a substantial computational overhead.

159 **TaylorSeer (Liu et al., 2025b).** TaylorSeer reduces cache errors in diffusion transformers by pre-
 160 dicting output features through the Taylor expansion around the last fully computed timestep t .

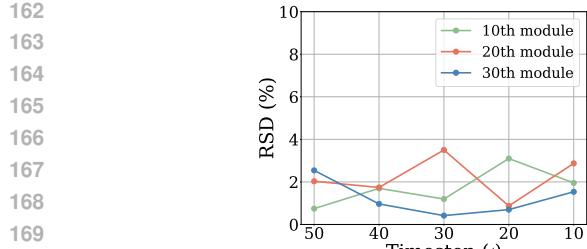
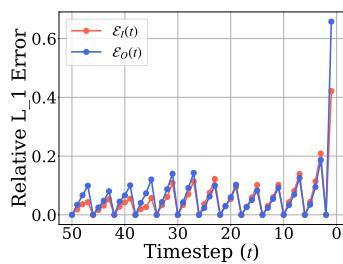


Figure 2: Empirical analyses in DiT-XL/2 (Peebles & Xie, 2023). (a) RSD of $s_k(t - k)$ with varying t . (b) Relative L_1 errors of the output and input features, i.e., $\mathcal{E}_O(t)$ and $\mathcal{E}_I(t)$, respectively. Please see the text for details.

Given a cache interval N , the m -th order prediction of the output feature for the l -th module at timestep $t - k$ ($0 < k < N$) is computed as follows:

$$O_{\text{Taylor}}^l(t - k) = O^l(t) + \sum_{i=1}^m \frac{k^i}{i!} \frac{\Delta_N^i O^l(t)}{N^i}, \quad (3)$$

where $O^l(t)$ is the output feature of the l -th module at timestep t , and Δ_N^i denotes the i -th order finite difference operator with the stride N defined recursively as:

$$\Delta_N^i O^l(t) = \begin{cases} O^l(t) - O^l(t + N), & i = 1, \\ \Delta_N^{i-1} O^l(t) - \Delta_N^{i-1} O^l(t + N), & i > 1. \end{cases} \quad (4)$$

For the clarity and convenience of notation, we omit the superscript i for first-order differences and the module index l in the remainder of this paper.

3.2 RELATIONAL FEATURE CACHING

While TaylorSeer (Liu et al., 2025b) achieves the state-of-the-art performance over previous caching approaches, it still shows considerable prediction errors (Fig. 1(c)). This is because the magnitude of the feature changes is irregular across the timesteps (Fig. 1(a)), making it difficult to accurately estimate the subsequent features based only on temporal extrapolation techniques. To this end, we propose RFC, a framework that enhances feature prediction by leveraging the relationship between input and output features through two complementary components, RFE and RCS. RFE estimates the magnitude of changes in the output features, while RCS identifies when predictions become unreliable and performs full computation accordingly.

Relational feature estimation (RFE). We have observed in Fig. 1(a-b) that the magnitudes of changes in the input and output features for the same module are highly correlated, suggesting that differences in input features can serve as effective predictors of the output variations. To quantify this relationship, we define the ratio between the magnitudes of changes in output and input features as follows:

$$s_k(t - k) = \frac{\|\Delta_k O(t - k)\|_2}{\|\Delta_k I(t - k)\|_2}, \quad (5)$$

where $O(t - k)$ and $I(t - k)$ denote the output and input features of the same module, respectively, at timestep $t - k$, and Δ_k is the first-order difference with stride k in Eq. (4). To evaluate the consistency of the ratio, we compute $s_k(t - k)$ for $k \in [1, 9]$, and measure the relative standard deviation (RSD) over the resulting values. We can see from Fig. 2(a) that the RSD values remain consistently low (typically around 2%), indicating that $s_k(t - k)$ is highly consistent across timesteps. To support the empirical consistency of $s_k(t - k)$, we present the following proposition:

Proposition 1. *Assume that the mapping from input to output features is locally linear, and the direction of the difference vector $\Delta_k I(t - k)$ remains constant for $1 \leq k \leq N$, where N is an interval between full computations. Then, the ratio $s_k(t - k)$ is approximately invariant w.r.t. k .*

Proof. Suppose the output feature $O(t)$ is a locally linear to the input feature $I(t)$, i.e.,

$$O(t) = AI(t) + b, \quad (6)$$

216 where A and b denote the weight matrix and bias vector of the linear transformation, respectively.
 217 Then, the change in output features over the temporal offset k can be written as:
 218

$$\Delta_k O(t - k) = O(t - k) - O(t) \quad (7)$$

$$= A(I(t - k) - I(t)) \quad (8)$$

$$= A\Delta_k I(t - k). \quad (9)$$

223 Taking the L_2 -norm of both sides gives:
 224

$$\|\Delta_k O(t - k)\|_2 = \|A\Delta_k I(t - k)\|_2 \quad (10)$$

$$= \|Au_k(t - k)\|_2 \|\Delta_k I(t - k)\|_2, \quad (11)$$

228 where $u_k(t - k)$ is the normalized direction of the input change defined as:
 229

$$u_k(t - k) = \frac{\Delta_k I(t - k)}{\|\Delta_k I(t - k)\|_2}. \quad (12)$$

232 By dividing both sides of Eq. (11) with $\|\Delta_k I(t - k)\|_2$, we have the following:
 233

$$s_k(t - k) = \frac{\|\Delta_k O(t - k)\|_2}{\|\Delta_k I(t - k)\|_2} = \|Au_k(t - k)\|_2. \quad (13)$$

237 By the assumption that $u_k(t - k)$ remains constant for $1 \leq k \leq N$, the ratio $s_k(t - k)$ is invariant
 238 w.r.t. k . \square
 239

240 Note that the two assumptions in Proposition 1 are commonly observed in diffusion models. First,
 241 changes in input features are usually small (Ma et al., 2024; Selvaraju et al., 2024; So et al., 2024),
 242 which allows for the output features to be locally approximated using Taylor’s theorem. Second, the
 243 works of (Lv et al., 2025; Qiu et al., 2025) show that the direction of feature changes remains largely
 244 consistent across timesteps. We provide empirical validation of the assumptions in Sec. A.
 245

246 Based on the above finding, we propose RFE, a simple yet effective method that estimates the mag-
 247 nitude of changes in output features $\|\Delta_k O(t - k)\|_2$ by leveraging the changes in input features
 248 $\|\Delta_k I(t - k)\|_2$. Specifically, we can rewrite Eq. (5) as follows:
 249

$$\|\Delta_k O(t - k)\|_2 = s_k(t - k) \|\Delta_k I(t - k)\|_2. \quad (14)$$

251 Given the consistency of $s_k(t - k)$ across timesteps, we can approximate Eq. (14) as follows:
 252

$$\|\Delta_k O(t - k)\|_2 \approx s_N(t) \|\Delta_k I(t - k)\|_2, \quad (15)$$

255 where $s_N(t)$ is the ratio computed between the two most recent full computations with the interval
 256 of N . Note that obtaining an input feature $I(t - k)$ is efficient, since it only requires lightweight
 257 operations (e.g., LayerNorm (Ba et al., 2016), scaling, and shifting). Consequently, RFE refines the
 258 predicted magnitude of feature changes in Eq. (3) as follows:
 259

$$O_{\text{RFE}}(t - k) = O(t) + (s_N(t) \|\Delta_k I(t - k)\|_2) g\left(\sum_{i=1}^m \frac{k^i}{i!} \frac{\Delta_N^i O(t)}{N^i}\right), \quad (16)$$

264 where $g(\cdot)$ is an L_2 normalization function as follows:
 265

$$g(x) = \frac{x}{\|x\|_2}. \quad (17)$$

268 RFE can capture irregular dynamics of feature changes, reducing the error of feature prediction,
 269 efficiently and effectively.

270 **Relational cache scheduling (RCS).** Although RFE significantly improves the accuracy of the
 271 feature prediction, estimation errors are unavoidable and tend to fluctuate over timesteps, making
 272 a fixed caching interval N suboptimal. To address this, we propose RCS, a dynamic scheduling
 273 strategy that determines when to perform a full computation based on the estimated prediction error.
 274 To this end, we define the error of the output prediction at timestep $t - k$ as follows:

$$275 \quad E_O(t - k) = O(t - k) - O_{\text{RFE}}(t - k). \quad (18)$$

277 However, computing $E_O(t - k)$ is not feasible during sampling, since it depends on $O(t - k)$, which
 278 requires a costly computation (e.g., attention or MLP). Instead, we propose to estimate this error
 279 using the error of the input prediction $E_I(t - k)$ as a proxy:

$$280 \quad E_I(t - k) = I(t - k) - I_{\text{Taylor}}(t - k), \quad (19)$$

282 where the predicted input feature $I_{\text{Taylor}}(t - k)$ is computed with the Taylor expansion as follows¹:

$$284 \quad I_{\text{Taylor}}(t - k) = I(t) + \sum_{i=1}^m \frac{k^i}{i!} \frac{\Delta_N^i I(t)}{N^i}. \quad (20)$$

286 Our intuition is that prediction errors in the output tend to increase when the feature changes
 287 abruptly, and such changes are highly correlated with the variations in the corresponding in-
 288 put (Figs. 1(a-b) and 2(a)). Therefore, errors in the output prediction are likely to be correlated
 289 with those in the input prediction. To support this, we compare the relative L_1 error of the output
 290 and input features, which is defined as follows:

$$292 \quad \mathcal{E}_O(t - k) = \frac{\|E_O(t - k)\|_1}{\|O(t - k)\|_1}, \quad \mathcal{E}_I(t - k) = \frac{\|E_I(t - k)\|_1}{\|I(t - k)\|_1}. \quad (21)$$

294 As shown in Fig. 2(b), the trends of the input and output errors closely align across timesteps. Based
 295 on this, we aim to estimate the accumulated errors in the output prediction during the sampling
 296 process by tracking the relative L_1 error of the input prediction for the first module. We then perform
 297 a full computation when the accumulated error exceeds a predefined threshold τ as follows:

$$299 \quad \sum_{j=1}^k \mathcal{E}_I(t - j) > \tau. \quad (22)$$

302 The left term in Eq. (22) effectively reflects the accumulation of errors in the output prediction. By
 303 adjusting τ , RCS controls the trade-off between the generation quality and efficiency. RCS performs
 304 full computations more frequently at timesteps, where the accumulated errors are large, reducing the
 305 cache error and improving the generation quality.

307 4 EXPERIMENTS

309 In this section, we first describe our implementation details (Sec. 4.1). We then provide quantitative
 310 and qualitative comparisons of RFC with state-of-the-art methods (Sec. 4.2), and present an in-depth
 311 analysis of RFC (Sec. 4.3). More experimental results and a discussion on the limitation of our work
 312 can be found in Appendix.

314 4.1 IMPLEMENTATION DETAILS

316 **Datasets and models.** We apply RFC to various DiT models and perform extensive experiments
 317 on standard benchmarks for the class-conditional, text-to-image, and text-to-video generation tasks.
 318 For class-conditional generation, we perform experiments using the DiT-XL/2 (Peebles & Xie, 2023)
 319 model trained on ImageNet (Deng et al., 2009). We use FLUX.1 dev (Batifol et al., 2025) for text-to-
 320 image generation and HunyuanVideo (Kong et al., 2024) for text-to-video generation, and evaluate
 321 them on DrawBench (Saharia et al., 2022) and VBench (Huang et al., 2024), respectively. We use
 322 the DDIM sampler (Song et al., 2020) with 50 steps for DiT-XL/2, while using the Rectified Flow
 323 sampler (Liu et al., 2023) for FLUX.1 dev and HunyuanVideo with the same number of steps.

¹RFE is not applied to input prediction, as it is defined to exploit input–output relationships.

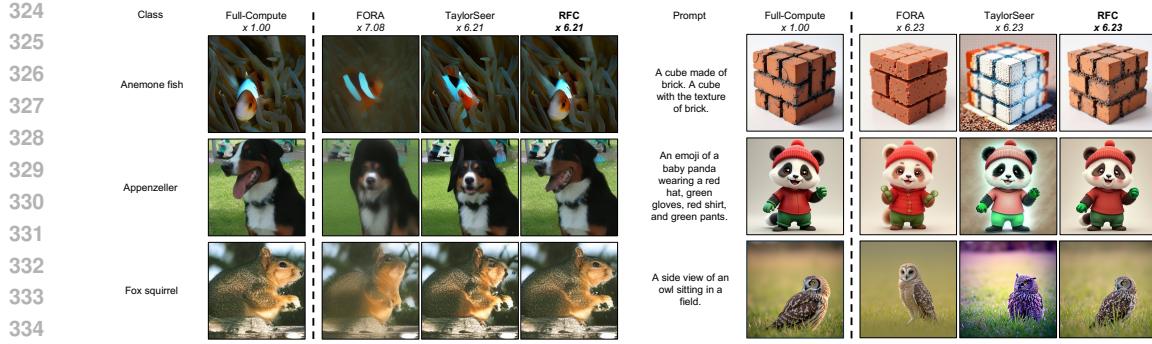


Figure 3: Qualitative comparisons of (left) class-conditional image generation for DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009), and (right) text-to-image generation for FLUX.1 dev (Batifol et al., 2025) on DrawBench (Saharia et al., 2022).

Evaluation and metric. Following the previous approaches (Zou et al., 2025; Liu et al., 2025b), we evaluate 50K images of size 256×256 for class-conditional generation using standard metrics, including Fréchet Inception Distance (FID) (Heusel et al., 2017), sFID (Nash et al., 2021), and Inception Score (IS) (Salimans et al., 2016). In addition, we introduce FID2FC and sFID2FC, which quantify the degradation introduced by caching through measuring the FID and sFID scores, respectively, between the images obtained from full computations and feature caching methods. For the text-to-image generation task, we generate 200 images of size 1000×1000 from DrawBench prompts (Saharia et al., 2022) and evaluate the image quality and text-to-image alignment using ImageReward (Xu et al., 2023) and the CLIP score (Hessel et al., 2021), respectively. We also evaluate PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018) computed between images generated by full computations and caching approaches. For text-to-video generation, we produce 2,838 videos by generating three videos for each of the 946 prompts. We evaluate the generated videos with the VBFench score (Huang et al., 2024), as well as PSNR, SSIM, and LPIPS. For all tasks, we report FLOPs and latency to evaluate the computational efficiency. For a fair comparison, we reproduce the results of state-of-the-art methods using the official source codes, and adjust the threshold τ in Eq. (22) to ensure that the average number of full computations (NFC) matches that of other methods.

4.2 RESULTS

Quantitative results. We show in Tables 1-3 quantitative comparisons of RFC and state-of-the-art methods (Selvaraju et al., 2024; Zou et al., 2025; 2024; Liu et al., 2025b) for class-conditional image, text-to-image, and text-to-video generation tasks, respectively. We summarize our findings as follows: (1) RFC outperforms existing caching approaches across various generative tasks, by a large margin. For example, we can see from Table 1 that RFC with 3.37 TFLOPs outperforms TaylorSeer (Liu et al., 2025b) with 4.76 TFLOPs by 1.26 in terms of sFID. We can also see that the improvement is significant for metrics that compare the quality of generated images from full computations and caching approaches (e.g., FID2FC, sFID2FC, PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018)), suggesting that RFC can accurately estimate output features by leveraging the relationship with the corresponding input features. (2) RFC performs particularly well under limited computational budgets. In such cases, prior approaches suffer from large errors in feature prediction, mainly due to irregular changes of features across timesteps, which degrades the performance. Even with limited computation, RFC accurately estimates the output features with RFE and effectively performs full computations with RCS, preserving the generation quality. (3) With a similar NFC, the overhead of RFC compared to TaylorSeer (Liu et al., 2025b) is minimal. This is because computing the input features in RFC only requires lightweight operations such as LayerNorm (Ba et al., 2016), shifting, and scaling, which adds negligible computational costs, while improving the generation quality significantly.

Qualitative results. We show in Fig. 3 the qualitative comparisons of images generated using DiT-XL/2 (Peebles & Xie, 2023) and FLUX.1 dev (Batifol et al., 2025). We observe that RFC

378
 379 Table 1: Quantitative comparisons on class-conditional image generation for DiT-XL/2 (Peebles &
 380 Xie, 2023) on ImageNet (Deng et al., 2009). Numbers in bold indicate the best performance, while
 381 underscored ones are the second best among similar computational costs. N is the interval between
 382 full computations, and m refers to the order of the Taylor expansion.

Methods	NFC	FLOPs (T)↓	Latency (s)↓	FID↓	sFID↓	FID2FC↓	sFID2FC↓	IS↑
Full-Compute	50	23.74	7.61	2.32	4.32	-	-	241.25
FORA ($N = 4$) (Selvaraju et al., 2024)	14	6.66	2.37	4.33	7.38	1.90	6.32	215.33
ToCa ($N = 4$) (Zou et al., 2025)	17	8.73	3.64	3.03	5.02	0.86	3.56	229.01
DuCa ($N = 4$) (Zou et al., 2024)	17	7.66	2.94	3.39	4.95	1.19	4.22	224.03
TaylorSeer ($N = 4, m = 2$) (Liu et al., 2025b)	14	6.66	2.84	<u>2.55</u>	5.30	<u>0.44</u>	2.17	232.26
RFC ($m = 2$)	14.01	6.67	2.86	2.52	4.60	0.30	<u>1.33</u>	<u>231.00</u>
FORA ($N = 5$) (Selvaraju et al., 2024)	11	5.24	2.03	6.12	10.51	3.57	10.19	196.04
ToCa ($N = 5$) (Zou et al., 2025)	14	7.43	3.35	3.53	<u>5.36</u>	1.28	4.50	224.07
DuCa ($N = 5$) (Zou et al., 2024)	14	6.32	2.57	6.02	6.71	4.19	8.18	196.96
TaylorSeer ($N = 5, m = 2$) (Liu et al., 2025b)	11	5.24	2.52	2.70	5.45	<u>0.56</u>	2.74	228.76
RFC ($m = 2$)	11.01	5.24	2.52	<u>2.71</u>	4.80	0.48	2.14	<u>227.72</u>
FORA ($N = 6$ (Selvaraju et al., 2024))	10	4.76	1.82	8.12	12.94	5.32	12.87	179.11
ToCa ($N = 6$) (Zou et al., 2025)	13	7.01	3.27	3.54	<u>5.54</u>	1.44	5.18	226.32
DuCa ($N = 6$) (Zou et al., 2024)	13	5.86	2.53	6.37	6.74	4.51	7.86	187.74
TaylorSeer ($N = 6, m = 2$) (Liu et al., 2025b)	10	4.76	2.27	<u>3.10</u>	6.47	<u>1.00</u>	4.63	222.85
RFC ($m = 2$)	10.04	4.78	2.46	2.75	5.02	<u>0.54</u>	2.43	226.93
FORA ($N = 7$) (Selvaraju et al., 2024)	8	3.35	1.73	12.63	18.49	9.66	19.11	147.06
ToCa ($N = 7$) (Zou et al., 2025)	14	6.25	2.90	4.04	<u>5.72</u>	1.62	<u>4.72</u>	214.25
DuCa ($N = 7$) (Zou et al., 2024)	14	4.96	2.24	7.76	7.77	5.45	8.80	181.50
TaylorSeer ($N = 7, m = 2$) (Liu et al., 2025b)	8	3.82	2.02	<u>3.46</u>	6.97	<u>1.30</u>	5.61	<u>217.18</u>
RFC ($m = 2$)	8.02	3.83	2.15	3.12	5.07	<u>0.81</u>	3.10	219.20
TaylorSeer ($N = 9, m = 2$) (Liu et al., 2025b)	7	3.35	1.89	<u>4.90</u>	<u>7.92</u>	<u>2.33</u>	<u>7.35</u>	198.46
RFC ($m = 2$)	7.04	3.37	1.99	3.40	5.21	<u>1.03</u>	<u>3.66</u>	215.39

399
 400 Table 2: Quantitative comparisons on text-to-image generation for FLUX.1 dev (Batifol et al., 2025)
 401 on DrawBench (Saharia et al., 2022). Numbers in bold indicate the best performance, while under-
 402 scored ones are the second best among similar computational costs. N is the interval between full
 403 computations, and m refers to the order of the Taylor expansion.

Methods	NFC	FLOPs (T)↓	Latency (s)↓	PSNR↑	SSIM↑	LPIPS↓	IR↑	CLIP↑
Full-Compute	50	2813.50	26.210	-	-	-	0.9655	17.0720
FORA ($N = 3$) (Selvaraju et al., 2024)	17	957.33	10.489	17.4967	0.7236	0.4209	0.9111	16.9515
ToCa ($N = 5$) (Zou et al., 2025)	14	1056.26	18.591	18.0333	0.7269	0.3490	<u>0.9457</u>	17.0063
TaylorSeer ($N = 4, m = 1$) (Liu et al., 2025b)	14	788.59	8.863	19.5722	0.7695	0.3226	0.9204	17.0659
TaylorSeer ($N = 4, m = 2$)	14	788.59	8.985	19.7733	0.7706	0.3175	0.9407	17.0527
RFC ($m = 1$)	14.02	789.82	9.148	20.2707	<u>0.7905</u>	0.2934	0.9448	17.0288
RFC ($m = 2$)	13.80	777.44	9.364	20.3524	0.7930	<u>0.2952</u>	0.9499	17.0394
FORA ($N = 7$) (Selvaraju et al., 2024)	8	451.10	6.065	15.8656	0.6692	0.5557	0.6121	16.8531
ToCa ($N = 12$) (Zou et al., 2025)	5	673.88	11.504	16.2240	0.6479	0.5512	0.6238	16.9020
TaylorSeer ($N = 9, m = 1$) (Liu et al., 2025b)	8	451.10	6.382	16.1346	0.6736	0.5261	0.7602	17.0769
TaylorSeer ($N = 9, m = 2$)	8	451.10	6.796	16.5492	0.6563	0.5328	0.7996	17.0534
RFC ($m = 1$)	8.00	451.23	6.407	<u>16.7952</u>	0.6979	0.4645	0.9142	17.0165
RFC ($m = 2$)	8.03	452.91	6.849	16.9188	<u>0.6936</u>	0.4708	0.9189	16.9641

416
 417 Table 3: Quantitative comparisons on text-to-video generation for HunyuanVideo (Kong et al., 2024)
 418 on VBench (Huang et al., 2024). Numbers in bold indicate the best performance among similar
 419 computational costs. N is the interval between full computations, and m refers to the order of the
 420 Taylor expansion.

Methods	NFC	FLOPs (T)↓	Latency (s)↓	PSNR↑	SSIM↑	LPIPS↓	VBench↑
Full-Compute	50	7520.00	263.480	-	-	-	81.40
FORA ($N = 6$) (Selvaraju et al., 2024)	9	1359.19	55.339	15.5221	0.4349	0.2743	78.51
TaylorSeer ($N = 5, m = 1$) (Liu et al., 2025b)	10	1510.21	60.051	16.3606	0.5126	0.1985	80.77
TaylorSeer ($N = 6, m = 1$)	9	1359.19	55.872	15.5321	0.4606	0.2448	79.52
RFC ($m = 1$)	8.96	1354.65	57.786	18.5408	0.6352	<u>0.1329</u>	80.83
FORA ($N = 8$) (Selvaraju et al., 2024)	7	1058.45	48.340	14.8878	0.4114	0.2959	77.50
TaylorSeer (Liu et al., 2025b) ($N = 8, m = 1$)	7	1058.45	48.736	15.1999	0.4408	0.2624	79.59
RFC ($m = 1$)	7.09	1072.65	49.684	18.2521	0.6155	<u>0.1436</u>	80.49

429
 430 produces more realistic images that are visually closer to those generated by full computations. For
 431 example, in the first row of Fig. 3(right), RFC better preserves the brick structure compared to the

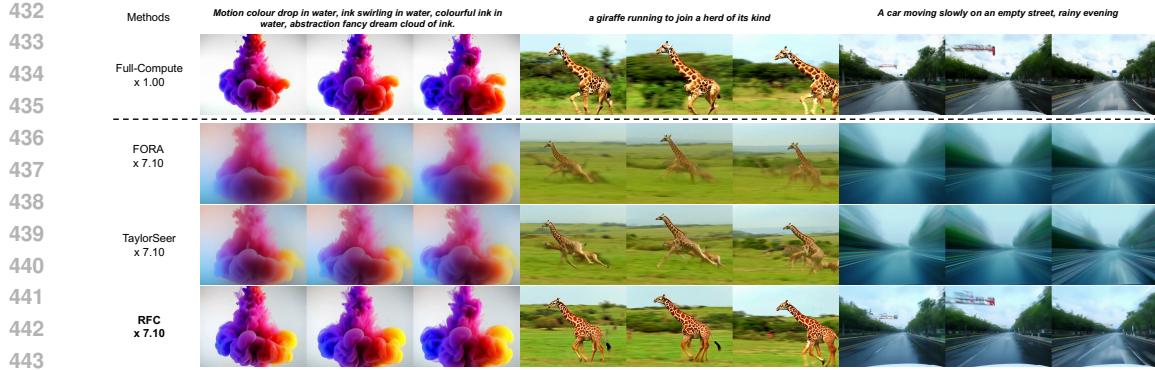


Figure 4: Qualitative comparisons of text-to-video generation for HunyuanVideo (Kong et al., 2024) on VBench (Huang et al., 2024). Please see the supplementary material for the actual video clips.

Table 4: Quantitative comparison of different components for DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009). All results are obtained using the first-order approximation ($m = 1$).

Methods	NFC	$\text{FID} \downarrow$	$\text{sFID} \downarrow$	$\text{FID2FC} \downarrow$	$\text{sFID2FC} \downarrow$
TaylorSeer (Liu et al., 2025b)	14	2.65	5.60	0.57	2.77
RFE	14	2.52	5.18	0.43	2.02
RCS	14	2.52	4.76	0.36	1.88
RFC (RFE + RCS)	14	2.51	4.66	0.31	1.41
TaylorSeer (Liu et al., 2025b)	11	2.87	5.85	0.73	3.53
RFE	11	2.69	5.22	0.55	2.55
RCS	11	2.77	5.21	0.62	3.09
RFC (RFE + RCS)	11	2.71	4.88	0.51	2.30

prior approaches (Selvaraju et al., 2024; Liu et al., 2025b), closely matching the image generated by full computations, indicating that RFC effectively minimizes the prediction errors in the output features. We also show in Fig. 4 generated videos using HunyuanVideo (Kong et al., 2024). We can see that RFC produces high-quality videos that are similar to those generated by full computations, demonstrating the effectiveness of RFC once more. Please see Appendix for more results.

4.3 DISCUSSION

Ablations. We show in Table 4 the ablation study for each component of RFC. We can see that applying either RFE or RCS alone already outperforms TaylorSeer (Liu et al., 2025b) regardless of NFC. For instance, when NFC is 11, applying RFE and RCS to TaylorSeer reduces the sFID from 5.85 to 5.22 and 5.21, respectively. This indicates that both RFE and RCS can effectively improve feature prediction by leveraging the input–output feature relationship. Moreover, combining both components (*i.e.*, RFC) further reduces the sFID to 4.88, suggesting that RFE and RCS are complementary to each other.

Relational feature estimation (RFE). Feature forecasting methods based on linear extrapolation techniques (Lv et al., 2025; Qiu et al., 2025) can be formulated as:

$$O_{\text{pred}}(t - k) = O(t) + \frac{k}{N} w(t) \Delta_N O(t) \quad (23)$$

where $O_{\text{pred}}(t - k)$ is the predicted output feature at timestep $t - k$, $\Delta_N O(t)$ is the difference between features from the two latest full-compute steps, N is the interval between the full computations, and $w(t)$ is a scaling factor at the timestep t . Existing approaches differ in how $w(t)$ is determined. For instance, FasterCache (Lv et al., 2025) linearly increases $w(t)$ from zero to one as t increases, while GOC (Qiu et al., 2025) employs a fixed hyperparameter for $w(t)$. We show in Table 5 quantitative comparisons between RFE and these strategies. We can see that RFE consistently outperforms all the others significantly. This suggests that a simple linear extrapolation fails to capture the irregular

486
 487 Table 5: Quantitative comparison of different
 488 strategies for estimating the change in output fea-
 489 tures for DiT-XL/2 (Peebles & Xie, 2023) on Im-
 490 ageNet (Deng et al., 2009). All results are obtained
 491 using the first-order approximation ($m = 1$).
 492

Methods	NFC	FID2FC \downarrow	sFID2FC \downarrow	Latency (s) \downarrow
Linear	14	0.73	3.40	2.85
$w(t) = 0.8$	14	0.73	3.36	2.84
$w(t) = 1.0$	14	0.57	2.77	2.84
$w(t) = 1.2$	14	0.52	2.51	2.84
RFE	14	0.43	2.02	2.86
Linear	11	0.93	4.08	2.52
$w(t) = 0.8$	11	0.94	4.17	2.51
$w(t) = 1.0$	11	0.73	3.53	2.51
$w(t) = 1.2$	11	0.67	3.24	2.52
RFE	11	0.55	2.55	2.52

493 changes in the output features, while RFE improves the prediction by leveraging the input–output
 494 relationship.
 495

500 **Relational cache scheduling (RCS)** RCS performs full computations based on the prediction
 501 error in input features of the first module. To evaluate the effectiveness of RCS, we provide in Table 6
 502 quantitative results of various scheduling strategies on ImageNet (Deng et al., 2009). First, we adopt
 503 a distance-based strategy (Liu et al., 2025a) and schedule full computations based on the distance
 504 between the current and the latest cached input features, instead of exploiting the prediction error.
 505 We can see that RCS achieves stronger performance, suggesting that the prediction error is more
 506 reliable for forecasting-based methods than the simple distance measure. Second, we add the input
 507 prediction errors of all modules rather than using the first module only. RCS remains comparable to
 508 this variant, indicating that using the error from the first module is sufficient.
 509

513 CONCLUSION

514 We have shown that output feature changes in DiTs are highly irregular across timesteps, while still
 515 maintaining a strong correlation with their corresponding inputs. Based on this, we have introduced
 516 a new caching framework, dubbed RFC, that leverages the input–output relationship for accurate
 517 feature prediction, consisting of two novel components, RFE and RCS. We have demonstrated that
 518 RFC achieves the state of the art on standard benchmarks, and further validated the effectiveness of
 519 each component through a detailed analysis.
 520

522 REFERENCES

523 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint*,
 524 2016.

525 Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dock-
 526 horn, Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux.1 kontext: Flow match-
 527 ing for in-context image generation and editing in latent space. *arXiv preprint*, 2025.

528 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 529 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
 530 latent video diffusion models to large datasets. *arXiv preprint*, 2023a.

531 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
 532 and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
 533 models. In *CVPR*, 2023b.

534 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
 535 hierarchical image database. In *CVPR*, 2009.

536 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
 537 *NeurIPS*, 2021.

538 Table 6: Quantitative comparison of differ-
 539 ent strategies for the cache scheduling us-
 540 ing DiT-XL/2 (Peebles & Xie, 2023) on Im-
 541 ageNet (Deng et al., 2009). All results are obtained
 542 using the first-order approximation ($m = 1$).
 543

Methods	NFC	FID2FC \downarrow	sFID2FC \downarrow	Latency (s) \downarrow
Input distance	14.03	0.50	2.53	2.62
All modules	14.02	0.37	1.85	2.79
RCS	14.00	0.36	1.88	2.63
Input distance	11.15	0.72	3.47	2.23
All modules	11.00	0.61	3.03	2.41
RCS	11.01	0.62	3.09	2.26

540 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
 541 reference-free evaluation metric for image captioning. In *EMNLP*, 2021.

542

543 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 544 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*,
 545 2017.

546 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 547 2020.

548

549 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 550 ingle Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
 551 video generative models. In *CVPR*, 2024.

552

553 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 554 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 555 models. *arXiv preprint*, 2024.

556

557 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 558 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *ECCV*,
 559 2024.

560

561 Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
 562 Qixiang Ye, and Fang Wan. Timestep embedding tells: It's time to cache for video diffusion
 563 model. In *CVPR*, 2025a.

564

565 Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to fore-
 566 casting: Accelerating diffusion models with taylorseers. In *ICCV*, 2025b.

567

568 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 569 transfer data with rectified flow. In *ICLR*, 2023.

570

571 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A fast
 572 ODE solver for diffusion probabilistic model sampling in around 10 steps. In *NeurIPS*, 2022.

573

574 Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K
 575 Wong. FasterCache: Training-free video diffusion model acceleration with high quality. In *ICLR*,
 576 2025.

577

578 Xinyin Ma, Gongfan Fang, and Xinchao Wang. DeepCache: Accelerating diffusion models for free.
 579 In *CVPR*, 2024.

580

581 Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
 582 sparse representations. In *ICML*, 2021.

583

584 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023.

585

586 Junxiang Qiu, Lin Liu, Shuo Wang, Jinda Lu, Kezhou Chen, and Yanbin Hao. Accelerating diffusion
 587 transformer via gradient-optimized cache. In *ICCV*, 2025.

588

589 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 590 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

591

592 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedical
 593 image segmentation. In *MICCAI*, 2015.

594

595 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 596 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 597 text-to-image diffusion models with deep language understanding. In *NeurIPS*, 2022.

598

599 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 600 *ICLR*, 2022.

601

602 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 603 Improved techniques for training GANs. In *NeurIPS*, 2016.

594 Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. FORA: Fast-
595 forward caching in diffusion transformer acceleration. *arXiv preprint*, 2024.
596

597 Junhyuk So, Jungwon Lee, and Eunhyeok Park. Frdiff: Feature reuse for universal training-free
598 acceleration of diffusion models, 2024b. In *ECCV*, 2024.

599 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*,
600 2020.

601

602 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
603 In *NeurIPS*, 2019.

604 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *ICML*, 2023.

605

606 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
607 from error visibility to structural similarity. *IEEE TIP*, 2004.

608 Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
609 Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating
610 diffusion models through block caching. In *CVPR*, 2024.

611

612 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
613 Dong. Imagereward: learning and evaluating human preferences for text-to-image generation. In
614 *NeurIPS*, 2023.

615 Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
616 Construction of a large-scale image dataset using deep learning with humans in the loop. *arXiv
617 preprint*, 2015.

618 Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
619 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.

620

621 Chang Zou, Evelyn Zhang, Runlin Guo, Haohang Xu, Conghui He, Xuming Hu, and Linfeng Zhang.
622 Accelerating diffusion transformers with dual feature caching. *arXiv preprint*, 2024.

623

624 Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion trans-
625 formers with token-wise feature caching. In *ICLR*, 2025.

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

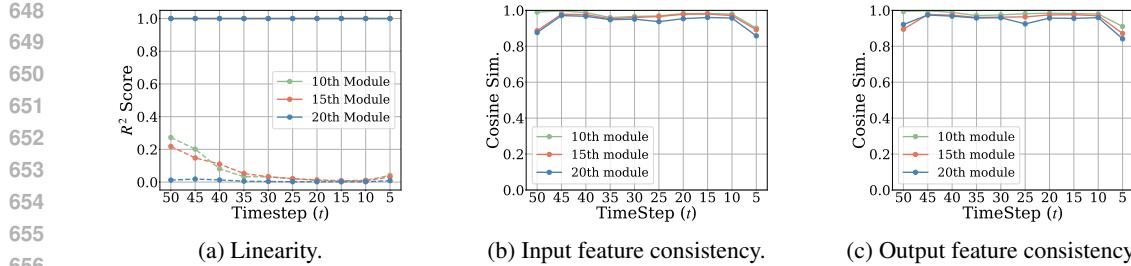


Figure 5: Feature analyses using DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009). (a) A linearity analysis of diffusion features. The solid lines present the linearity between the input and output features, while the dashed lines show the linearity between the timesteps and output features. (b-c) The directional consistency of the input and output features.

In Appendix, we first validate the conditions underlying Proposition 1 (Sec. A), followed by further analyses of the input-output feature relationship (Sec. B). We then provide more quantitative and qualitative results (Sec. C) with additional discussions (Sec. D). Finally, we present the limitations of RFC (Sec. E) and describe the usage of LLMs (Sec. F).

A CONDITIONS FOR PROPOSITION 1

Proposition 1 relies on two key conditions commonly observed in diffusion models: (1) a locally linear relationship between input and output features, and (2) directional consistency of feature changes across timesteps. The first condition is supported by the fact that feature changes between timesteps are typically small (Ma et al., 2024; Selvaraju et al., 2024; So et al., 2024), allowing for a local linear approximation by the Taylor’s theorem. The second condition is grounded in empirical observations from prior works (Lv et al., 2025; Qiu et al., 2025), which observe that the direction of feature changes remains largely consistent throughout the denoising process. To further verify these, we provide additional empirical analyses on these conditions.

Linearity. To validate the local linearity between the input and output features, we fit a linear model via least squares between the input and output features of the same module (e.g., attention and MLP), using the features of 5 consecutive timesteps (e.g., $t \sim (t - 4)$). We show in Fig. 5(a) the average coefficient of determination (R^2) score of the fitted linear model. We can see that R^2 scores show consistently high values (e.g., close to 1), demonstrating a strong linearity between input and output features. For comparison, we also compute the R^2 scores to quantify the linearity between the timesteps and their corresponding output features. We observe a substantial drop in R^2 scores, which indicates that the relationship between the output features and the timesteps is highly non-linear. This is because the magnitude of changes in the output features varies significantly, which limits the effectiveness of previous forecasting methods (Liu et al., 2025b; Lv et al., 2025; Qiu et al., 2025) (see Fig. 1(c-d)).

Directional consistency. To validate the directional consistency of feature changes, we compute the pairwise cosine similarities of the feature differences $\Delta_k I(t - k)$ and $\Delta_k O(t - k)$, where k ranges from 1 to 4. Specifically, we compute the difference vectors of features across timesteps (e.g., $\Delta_k I(t - k) = I(t - k) - I(t)$ for $k = 1$ to 4), and measure the pairwise cosine similarities among them to assess how consistent their directions are over time. We then average these similarities to quantify the overall degree of directional consistency. As shown in Fig. 5(b-c), the average similarities remain consistently high across modules, indicating that the direction of feature change is preserved over time. These empirical observations align well with the findings of prior studies (Lv et al., 2025; Qiu et al., 2025).

B MORE ANALYSES

We have shown the strong correlation between the input and output features in the main paper. To further validate the generalizability of the analyses, we provide in Fig. 6 an additional analysis on the

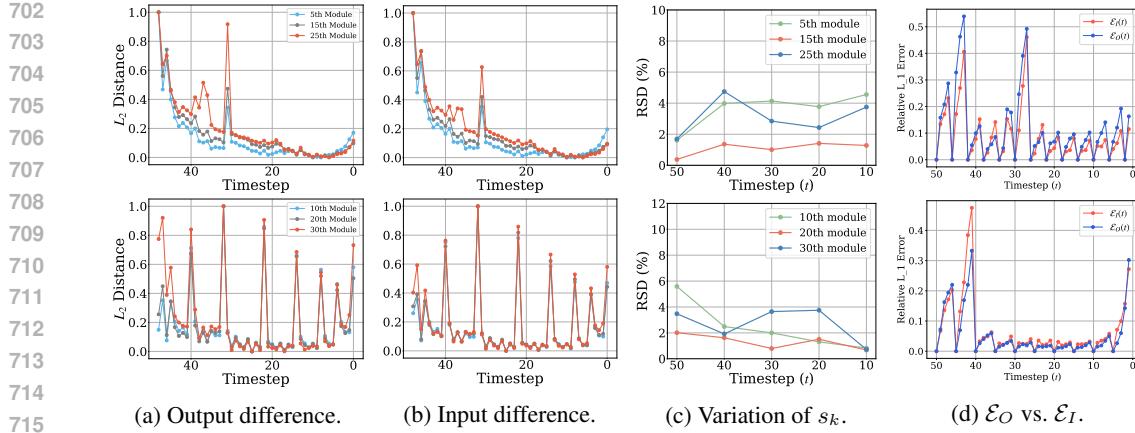


Figure 6: Analyses using FLUX.1 dev (Batifol et al., 2025) on DrawBench (Saharia et al., 2022) (upper row) and HunyuanVideo (Kong et al., 2024) on VBench (Huang et al., 2024) (lower row). (a-b) Min-max normalized L_2 distances of output and input features, measured between consecutive timesteps. (c) RSD of $s_k(t - k)$ in Eq. (5) with varying t . (d) Relative L_1 errors of the output and input features, i.e., $\mathcal{E}_O(t)$ and $\mathcal{E}_I(t)$ in Eq. (21), respectively.

Table 7: Quantitative comparison under extremely high acceleration ratios for DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009). All results are obtained using the second-order approximation ($m = 2$).

Methods	NFC	$\text{FID} \downarrow$	$\text{sFID} \downarrow$	$\text{FID2FC} \downarrow$	$\text{sFID2FC} \downarrow$
Full-Compute	50	2.32	4.32	-	-
TaylorSeer (Liu et al., 2025b)	6	13.57	13.19	10.68	15.19
RFC	6	4.31	5.39	1.83	4.80
TaylorSeer (Liu et al., 2025b)	5	45.81	27.64	42.29	31.46
RFC	5	5.43	6.29	2.81	6.13
TaylorSeer (Liu et al., 2025b)	4	160.85	135.55	157.53	137.65
RFC	4	8.65	7.14	5.71	8.78

Table 8: Quantitative comparison on distilled model, FLUX.1 schnell (Batifol et al., 2025) with 6 denoising steps, on DrawBench (Saharia et al., 2022). All results are obtained using the first-order approximation ($m = 1$).

Methods	NFC	$\text{PSNR} \uparrow$	$\text{SSIM} \uparrow$	$\text{LPIPS} \downarrow$
Full-Compute	6	-	1.0000	0.0000
Step reduction	4	26.5377	0.8855	0.1164
TaylorSeer (Liu et al., 2025b)	4	29.3435	0.9242	0.0736
RFC	4	32.7436	0.9275	0.0635
Step reduction	3	25.0214	0.8580	0.1511
TaylorSeer (Liu et al., 2025b)	3	22.2134	0.7491	0.3687
RFC	3	27.1185	0.8931	0.0983

relationship between input and output using FLUX.1 dev (Batifol et al., 2025) on DrawBench (Saharia et al., 2022), and HunyuanVideo (Kong et al., 2024) on VBench (Huang et al., 2024). Similar to the findings in Figs. 1 and 2, we can see that the feature changes are irregular across timesteps, while those of input and output remain closely aligned with each other. We can also see that the ratio between the magnitude of changes in output and input features (i.e., $s_k(t - k)$) is highly consistent along timesteps. Finally, we can see that the relative L_1 error of the output and input features, $\mathcal{E}_O(t)$ and $\mathcal{E}_I(t)$, respectively, are closely aligned with each other, demonstrating the strong correlation between the input and output features.

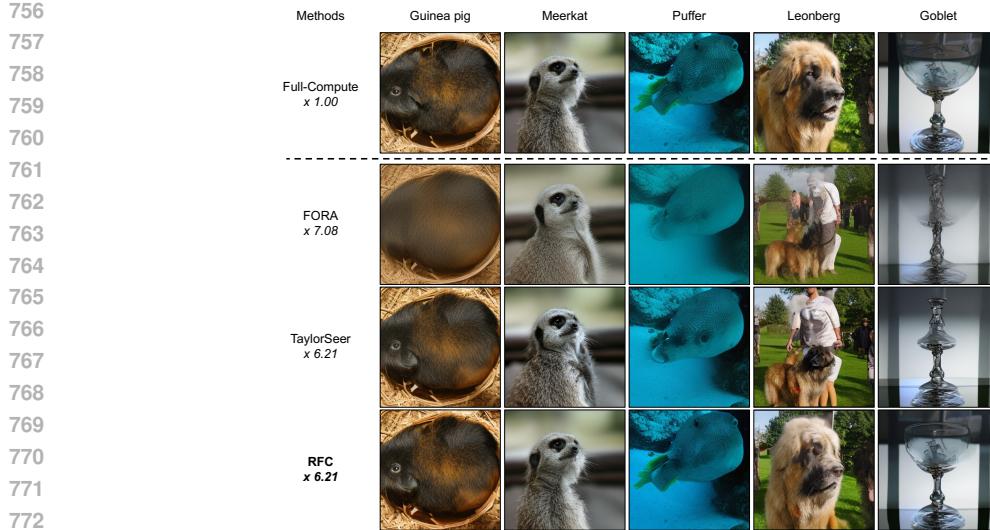


Figure 7: Qualitative comparisons of class-conditional image generation for DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009).

C MORE RESULTS

Quantitative results on higher acceleration ratios. We show in Table 7 quantitative results using DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009) under extremely low full computation budgets (*i.e.*, NFC = 6, 5, 4). We can see that the performance of TaylorSeer (Liu et al., 2025b) degrades significantly. This indicates that relying solely on temporal extrapolation is insufficient when intervals between full computations are large. In contrast, RFC maintains strong performance by leveraging input–output correlations, which enables more accurate prediction even when feature changes become irregular and difficult to extrapolate.

Quantitative results on distilled model. We show in Table 8 quantitative results on the distilled model, FLUX.1 schnell (Batifol et al., 2025), with 6 denoising steps. For the distilled models, the overall number of denoising steps is significantly smaller, which leads to larger changes in features between consecutive timesteps and makes feature prediction more difficult. Under this setting, we can see that TaylorSeer (Liu et al., 2025b) shows a notable performance drop, while RFC maintains consistently strong performance across all metrics. This demonstrates the effectiveness of leveraging the input–output relationship for stable and accurate feature prediction, even when the output features of distilled models highly fluctuate.

More qualitative results. We provide in Figs. 7–9 additional qualitative results for class-conditional image, text-to-image, and text-to-video generation tasks. Consistent with the observations in Sec. 4.2, RFC produces higher-quality images and videos compared to those of state-of-the-art approaches (Selvaraju et al., 2024; Liu et al., 2025b). These results further validate the effectiveness and superiority of RFC.

D MORE DISCUSSIONS

Details on choosing τ . In our framework, τ is a key parameter in RCS that controls the trade-off between generation quality and computational efficiency. Specifically, a larger τ allows more prediction steps before triggering a full computation, thereby reducing the number of full computations and improving efficiency. This role is similar to adjusting δ in (Liu et al., 2025a) or N in (Liu et al., 2025b; Selvaraju et al., 2024; Zou et al., 2024), where users can tune the parameter based on their desired efficiency level.

For fair comparison with other methods, we tune τ to match the target NFC. Specifically, we conduct a grid search over candidate τ values, generate 10 samples per setting, and measure the average NFC.

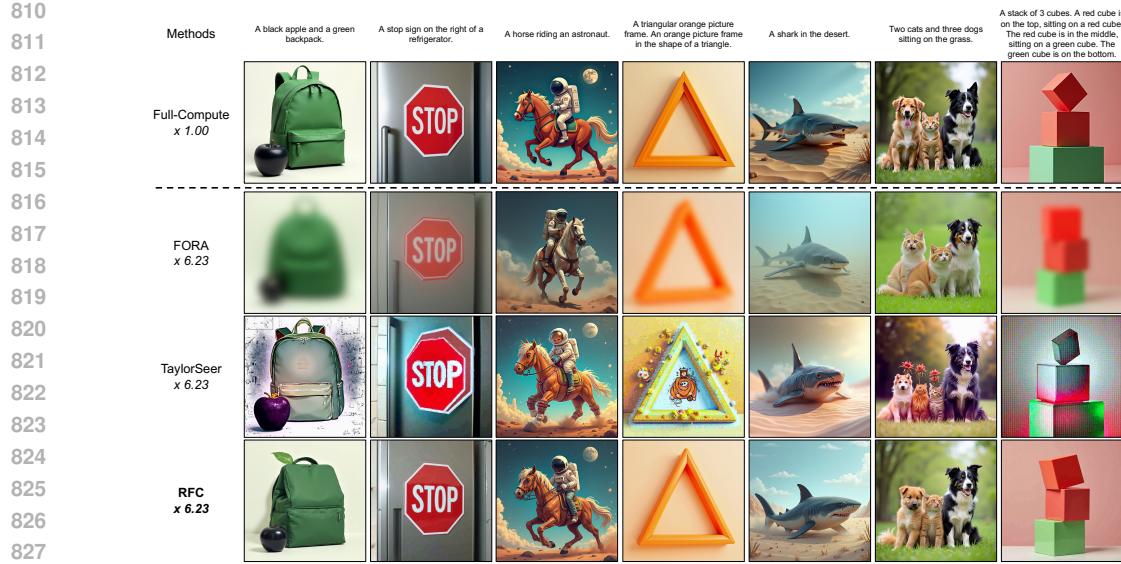


Figure 8: Qualitative comparisons of text-to-image generation for FLUX.1 dev (Batifol et al., 2025) on DrawBench (Saharia et al., 2022).

Figure 9: Qualitative comparisons of text-to-video generation for HunyuanVideo (Kong et al., 2024) on VBench (Huang et al., 2024).

We then fix the τ value that yields the desired NFC, and use this setting for reporting quantitative results. For detailed τ settings for Tables 1–3 are shown in Table 9. We also provide the trade-off of our approach with varying τ in Fig. 10. Please note that we have observed that NFC remains highly consistent across different samples, requiring no extensive tuning.

Reliability of CLIP score. RFC does not achieve the highest CLIP score in Table 2 due to the limitations of the CLIP score. The CLIP score mainly reflects coarse semantic alignment between the images and texts rather than detailed correctness, as demonstrated by prior work (Lin et al., 2024). Also, we can see in Table 2 that the CLIP score of TaylorSeer frequently outperforms fully computed counterparts, which shows its unreliability.

To further validate this, we show in Fig. 11 qualitative results where CLIP scores fail to reflect true generation quality. We can see that even when the generated images exhibit visual artifacts, they can still receive high CLIP scores when they roughly match the prompt. For instance, TaylorSeer (Liu et al., 2025b) generates a dog with a distorted face and a cat with unrealistic colors (first row), a clock where the number ‘9’ is inaccurately shaped (second row), and an umbrella with unnatural textures (third row), but these examples show the highest CLIP scores.

Table 9: Settings of τ for various models.

Model	Order (m)	τ	NFC
DiT-XL/2 (Peebles & Xie, 2023)	2	0.19	14.01
		0.38	11.01
		0.48	10.04
		0.88	8.02
		1.20	7.04
FLUX.1 dev (Batifol et al., 2025)	1	0.30	14.02
		1.10	8.00
	2	0.34	13.80
		1.15	8.03
HunyuanVideo (Kong et al., 2024)	1	0.70	8.96
		1.10	7.09

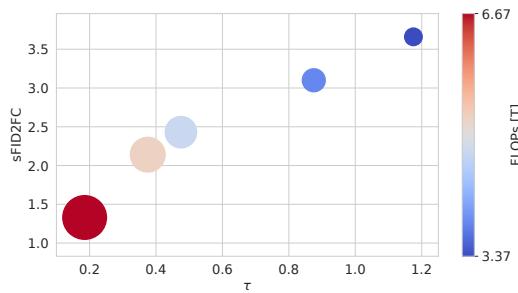


Figure 10: Trade-off between generation quality and computational cost on ImageNet (Deng et al., 2009) using DiT-XL/2 (Peebles & Xie, 2023) under varying values of τ . The plot shows the change in performance (*i.e.*, sFID2FC) as τ increases, with the corresponding FLOPs indicated by the size and color of each circle.

Table 10: Quantitative results for layer-wise caching strategies on ImageNet (Deng et al., 2009) using DiT-XL/2 (Peebles & Xie, 2023). We reduce the frequency of full computations by half for the first (shallow skip) or last (deep skip) 7 blocks out of 28. We adjust τ to use more full computations for these variants to match FLOPs. All results are obtained using the second-order approximation ($m = 2$).

Methods	NFC	FLOPs (T)↓	FID↓	sFID↓	FID2FC↓	sFID2FC↓	IS↑
Full-Compute	50	23.74	2.32	4.32	-	-	241.25
Shallow Skip	16	6.66	3.09	4.65	0.75	2.61	220.00
Deep Skip	16	6.66	3.47	5.15	1.10	2.82	211.54
RFC ($m = 2$)	14	6.66	2.52	4.60	0.30	1.33	231.00
Shallow Skip	8	3.35	11.70	9.13	9.10	11.71	147.88
Deep Skip	8	3.35	10.20	6.22	6.95	6.59	149.10
RFC ($m = 2$)	7	3.35	3.40	5.21	1.03	3.66	215.39

Layer-wise caching strategy. We investigate whether skipping full computations for certain layers leads to a better trade-off between image quality and efficiency. Specifically, we consider two strategies: skipping full computations more often for (1) the shallow layers (*i.e.*, the first 7 blocks), or (2) the deep layers (*i.e.*, the last 7 blocks). In these settings, the selected layers perform fewer full-compute steps (*i.e.*, at half the frequency) than the remaining layers during the denoising process. We can see from Table 10 that both variants result in worse performance compared to our method, indicating that naive layer-wise skipping does not lead to better overall results. We believe, however, that exploring the strategies for layer-wise skipping could be a promising direction for future work.

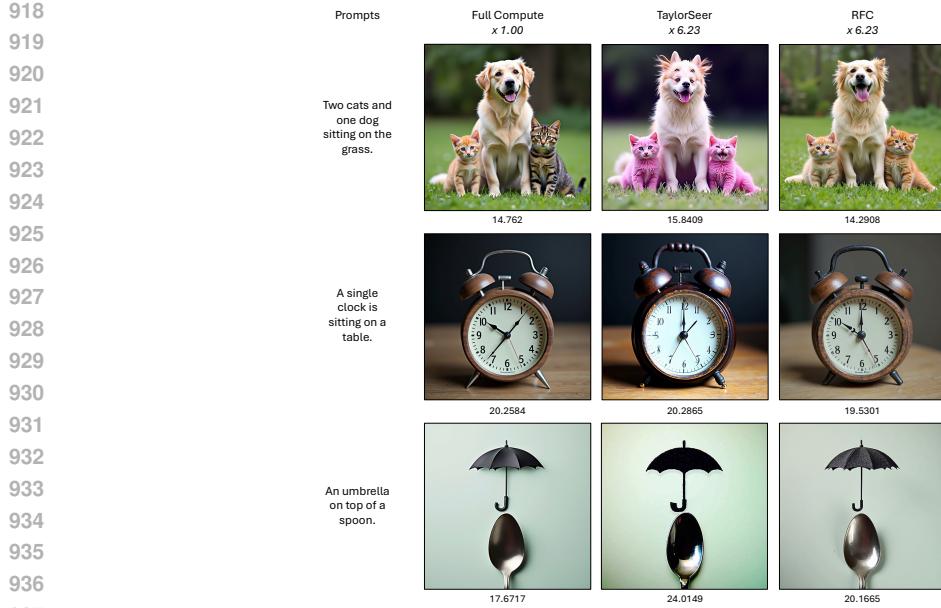


Figure 11: Clip scores of text-to-image generation for FLUX.1 dev (Batifol et al., 2025) on DrawBench (Saharia et al., 2022).

Table 11: Quantitative comparison of FORA (Selvaraju et al., 2024), TaylorSeer (Liu et al., 2025b), and RFC using the DDIM (Song et al., 2020) model trained on LSUN-bedroom (Yu et al., 2015) with 50 timesteps. We use the first-order approximation ($m = 1$).

Methods	NFC	FID2FC \downarrow	sFID2FC \downarrow
FORA (Selvaraju et al., 2024) (N=5)	11	78.27	69.84
TaylorSeer (Liu et al., 2025b) (N=5)	11	18.83	11.83
RFC	11	8.55	7.59
FORA (Selvaraju et al., 2024) (N=6)	10	103.48	89.17
TaylorSeer (Liu et al., 2025b) (N=6)	10	37.81	21.35
RFC	10	11.64	8.25

Adaptability to U-Net architecture (Ronneberger et al., 2015). Although we mainly focus on DiTs, RFC can also be applied to U-Net architectures. To validate its effectiveness, we compare in Table 11 RFC with prior methods (FORA (Selvaraju et al., 2024) and TaylorSeer (Liu et al., 2025b)) using the DDIM (Song et al., 2020) model trained on LSUN-bedroom (Yu et al., 2015). We can see that RFC significantly outperforms others, demonstrating its generality and architectural adaptability.

Non-uniform intervals. Our RCS dynamically determines when to perform full computations by monitoring the accumulated error in feature prediction. To investigate how this error varies across the denoising process, we show in Fig. 12 the average interval between two successive full-compute steps across 1,000 samples. We observe that the average interval between early full computations (i.e., close to noises) tends to be large, and the interval progressively shortens for the later timesteps (i.e., close to clean images). This indicates that prediction error accumulates more slowly at the beginning of the denoising process.

This phenomenon aligns with the generative process, where early stages form coarse, low-frequency structures with more stable feature dynamics, while later stages refine fine-grained, high-frequency details, involving more dynamic feature changes. RCS naturally adapts to this behavior by performing full computations less frequently during the early timesteps, when feature prediction is easier,

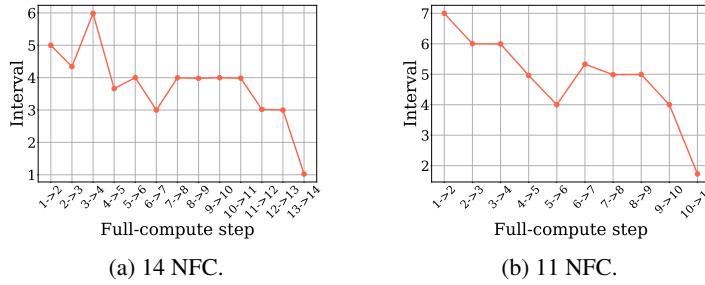


Figure 12: Analysis of non-uniform intervals scheduled by RCS using DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009). We visualize the average interval between full-compute steps for (a) 14 and (b) 11 NFC settings. $i \rightarrow i + 1$ at the x-axis denotes the i -th and $(i + 1)$ -th full computation, and the y-axis shows the average interval. The results are averaged across 1,000 samples.

Table 12: Quantitative results of DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009), in terms of NFC, order in the Taylor expansion, GPU peak memory, FID2FC, and sFID2FC.

Methods	NFC	Order	Peak Memory (MB)	FID2FC \downarrow	sFID2FC \downarrow
FORA (Selvaraju et al., 2024)	10	—	3121	5.32	12.87
TaylorSeer (Liu et al., 2025b)	10	1	3207	1.42	6.17
RFC	10.04	1	3335	0.58	2.79
TaylorSeer (Liu et al., 2025b)	10	2	3333	1.05	4.86
RFC	10.02	2	3463	0.54	2.43

and increasing the frequency in the later timesteps as prediction becomes more challenging, thereby optimizing the efficiency-quality trade-off.

E LIMITATION

Table 13: Time overhead of RFC components compared to the baseline (TaylorSeer (Liu et al., 2025b)) using DiT-XL/2 (Peebles & Xie, 2023) on ImageNet (Deng et al., 2009) with 14 NFCs. Percentages in parentheses indicate the time increase relative to the baseline.

Methods	Time (Overhead %)
Baseline (TaylorSeer (Liu et al., 2025b))	2.840s
Input feature computation	+ 0.019s (0.67%)
Input feature prediction	+ 0.002s (0.07%)

RFC effectively improves the generation quality but incurs additional memory costs to store input features, similar to TaylorSeer (Liu et al., 2025b), which stores more output features for higher-order approximations. Notably, as shown in Table 12, RFC generally achieves greater improvements in the generation quality than increasing the approximation order by one in TaylorSeer, while requiring a comparable amount of memory, highlighting the effectiveness of our approach.

As shown in Table 13, RFC incurs a slight time overhead compared to the baseline. Compared to the baseline, RFC needs (1) input feature computation for RFE and RCS, which requires lightweight operations (*e.g.*, LayerNorm, scaling and shifting); and (2) input feature prediction using the Taylor expansion for RCS. To reduce the cost of input feature prediction in RCS, we have demonstrated in Table 6 that computing the prediction error from only the first module, rather than all modules (*e.g.*, 56 modules in DiT-XL/2), is sufficient. For instance, under the 11 NFC setting, computing prediction error across all modules increases runtime by approximately 7%, while yielding only marginal improvement in performance (0.62 vs. 0.61 in terms of FID2FC). We conjecture that this is because errors in early modules affect subsequent modules, suggesting that the prediction error of the first module can be a reliable indicator of the overall prediction error. To further reduce the cost of input feature computation, a promising direction for future work could be to explore a hybrid strategy

1026 that applies RFE only to a subset of important modules, while using the baseline method for the
1027 remaining ones.

1028 There are some failure cases in RFC, where the generated image does not align well with the prompt.
1029 This typically occurs when full computations fail to capture the prompt correctly, for example, as
1030 shown in the third row of Fig. 8, where an astronaut is riding a horse, instead of a horse riding an
1031 astronaut. This is because RFC accurately approximates the full computations, it also reproduces
1032 such errors.

1034 F LLM USAGE

1035 We used a large language model (LLM) solely for proofreading and polishing the manuscript. The
1036 model was not involved in generating research ideas, designing methods, conducting experiments,
1037 or interpreting results.

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079