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Abstract
Vision systems in nature show remarkable diversity, from simple light-sensitive patches to
complex camera eyes with lenses [1, 2]. While natural selection has produced these eyes
through countless mutations over millions of years, they represent just one set of realized
evolutionary paths [3, 4]. Testing hypotheses about how environmental pressures shaped eye
evolution remains challenging since we cannot experimentally isolate individual factors [5].
Computational evolution offers a way to systematically explore alternative trajectories [6–10].
Here we show how environmental demands drive three fundamental aspects of visual evo-
lution through an artificial evolution framework that co-evolves both physical eye structure
and neural processing in embodied agents. First, we demonstrate computational evidence
that task specific selection drives bifurcation in eye evolution - orientation tasks like naviga-
tion in a maze leads to distributed compound-type eyes while an object discrimination task
leads to the emergence of high-acuity camera-type eyes. Second, we reveal how optical inno-
vations like lenses naturally emerge to resolve fundamental tradeoffs between light collection
and spatial precision. Third, we uncover systematic scaling laws between visual acuity and
neural processing, showing how task complexity drives coordinated evolution of sensory and
computational capabilities. Our work introduces a novel paradigm that illuminates evolu-
tionary principles shaping vision by creating targeted single-player games where embodied
agents must simultaneously evolve visual systems and learn complex behaviors. Through our
unified genetic encoding framework, these embodied agents serve as next-generation hypoth-
esis testing machines while providing a foundation for designing manufacturable bio-inspired
vision systems [11].

Keywords: Embodied Artificial Intelligence, Computer Vision, Evolutionary Biology,
Computational Neuroscience
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Fig. 1: Computational evolution of embodied artificial intelligence (AI) agents reveals
how environmental pressures shaped natural vision evolution. We evolve artificial
embodied agents to show how three evolutionary branch points shaped vision evolution. (a) We
demonstrate how environmental specificity led to distinct eye morphologies, (b) a physical trade-
off of light throughput vs. spatial precision lead to the emergence of optical elements, and (c)
how visual acuity and neural capacity co-evolve to reveal hardware-software trade-offs and scal-
ing laws. (d) Our framework mirrors natural selection: an outer loop governs genetic inheritance
and selection over evolutionary timescales, while an inner loop enables agents to learn through
sensory feedback (lifetime adaptation). This nested structure reflects the Baldwin effect [12],
where lifetime learning can guide and accelerate evolutionary adaptation. (e) The agent’s digital
anatomy parallels biological visual systems: from eye morphology and placement, through optical
elements and photoreceptors (mimicking retinal organization), to neural processing (analogous
to visual cortex). (f) Agents are evolved to solve three distinct visual tasks to probe how envi-
ronmental pressures shape vision: (i) Navigation: orientation and obstacle avoidance through
a maze-like environment; (ii) Detection: object discrimination between a ‘good’ object (food)
and two ‘bad‘ objects (poison); (iii) Tracking: tracking of moving ‘food’ targets. Our results
highlight how embodied agents can serve as scientific instruments to understand biological visual
intelligence.

What if vision was only used for navigation or detection? What if eyes never evolved optical
elements like lenses? What if animal brains stayed small throughout evolution? Operating over
millions of years and culminating in millions of unique perception systems [1], natural evolution
has followed specific evolutionary trajectories in its development of vision. What if there was
a tool to instead simulate alternative paths that evolution didn’t take? By computationally
recreating the evolutionary dynamics (i.e., mutation, selection, adaptation) which gave rise to
the remarkable diversity of eyes we see today, we can explore different evolutionary trajectories
and systematically probe the principles that shape visual diversity. This framework would enable
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us to test hypotheses about the relationships between eye morphology, neural processing, and
environmental pressures, and guide the design of novel vision systems for artificial agents both
in nature and engineering.

In this work, we introduce a framework to elucidate how environmental pressures shaped
visual system evolution using embodied artificial intelligence (AI). Our approach evolves the
eyes and neural circuitry of embodied agents inside physics-based simulation environments to
understand what environmental factors drove vision evolution. While comparative biology has
revealed remarkable insight into eye evolution [1, 3, 13], empirically testing causal hypotheses
about environmental influences on eye evolution remains challenging. Our work builds on two
foundational directions. First, pioneered by Grey Walter’s machina speculatrix [6, 7], the use
of evolutionary robotics to test scientific hypotheses about biological mechanisms and processes
[8, 10, 14–16], and advanced through studies about predator-prey dynamics [17], brain-body co-
evolution [11], and environmental adaptation [9, 18–21]; however, vision evolution has yet to
be studied in this context. Second, the emergence of deep reinforcement learning (DRL) as a
powerful tool for discovery in domains that can be formulated as reward-driven games [22–25].
Our work is the first that illuminates evolutionary principles shaping vision by creating single-
player games with specific environmental conditions that embodied agents solve by evolving
their vision and learning complex behavior simultaneously. We demonstrate that visually-capable
embodied agents trained via DRL can serve as next-generation hypothesis testing machines.

We first implement a genetic encoding that unifies physical eye morphology, eye optics, and
neural processing (Figure 2), and then computationally mimic the evolutionary process in embod-
ied agents by evolving this genetic encoding to best complete a visual task (Figure 1.d). Our
framework is the first to computationally recreate vision system evolution – where complex eyes
and behaviors coevolve due to specific environmental pressures. We use this framework to study
the emergence of visual capabilities documented across animal phylogeny [3, 4]. Our encod-
ing integrates morphological, optical, and neural components into a unified genome capable of
describing over 1020 unique configurations, and provides a continuous space for exploring evolu-
tionary pathways (i.e., lens-less cup eyes, camera-type eyes, compound eyes). Subsequently, over
generations, agent genes are selected and mutated, leading to the emergence of complex eyes and
behaviors for specific visual tasks. This computational survival-of-the-fittest mimics the interplay
of variation and selection that shaped biological vision.

Through targeted computational experiments, we establish causal links between specific visual
functions [4, 26, 27] and solutions, validate aspects of eye evolution as trade-offs between light
collection and spatial precision [4, 5], and study relationships between eyes design, neural pro-
cessing, and visual tasks. Concretely, our scientific contributions are: (1) By strictly changing
the visual task an agent is subject to, orientation (Navigation) task vs. object discrimination
(Detection) task [4, 27], we observe a bifurcation in our evolved agents between camera-type
and compound-type eyes (Figure 1a); (2) We show that the emergence of optical structures, such
as focused lensing from primitive simple eyes [5], is a key innovation that addresses the funda-
mental trade-off between light collection and spatial precision (Figure 1b); (3) We reveal that
sensory acuity and neural capacity scales as a power-law, where decreasing task error requires
complimentary improvement in both dimensions — consistent with observations made in animal
vision and AI [28, 29]. Additionally, our engineering contributions are: (1) A framework that
evolves embodied agents through genetic algorithms and deep reinforcement learning in a cus-
tom simulation framework; (2) A genetic encoding scheme for vision that describes a diverse set
of eyes and cognitive capabilities in addition to being physically-based and realizable.

Due to biological complexity and computational tractability, we scope our work to recreate
the system-level process of vision evolution rather than an imitation of its historical timeline.
Since our goal is to understand the principles driving vision evolution (not imitate evolution’s
exact path), we computationally recreate essential elements that shaped natural vision. We model
key components universal to biological evolution (Figure 1.d), agent’s anatomy (Figure 1.e),
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Fig. 2: Our genetic encoding enables vision to evolve computationally. Our encoding
mirrors the natural separation between sensory and neural development through three gene clus-
ters. Morphological genes control eye placement and field of view. Optical genes determine visual
sensing capabilities (# photoreceptors, optical elements, pupil size). Neural genes describe the
structure of the underlying processing mechanisms. These independently mutable traits enable
the computational exploration of evolutionary pathways that mirror the pathways which shaped
biological vision.

and consult biological studies [27, 30] when designing the simulated environments (Figure 1.f).
Additionally, when studying optical transitions, we use physics-based approximations that are
widely-used (Figure 6), a dynamics engine [31] for interaction, and train our agents only through
sensory feedback using reinforcement learning. While our computational framework represents
a novel approach to exploring vision evolution, fundamental limitations remain. For example,
complex biological phenomena is poorly understood such as eye genomics and development [32,
33], bio-physical models [34], or mechanistic neural circuits [16]. Moreover, modeling evolutionary
dynamics is often akin to modeling a chaotic system [35] as eye adaptions are often a result of
many interdependent pressures. However, our results highlight how embodied agents trained via
deep reinforcement learning can serve as scientific instruments to understand biological visual
intelligence.

2 Results
Our computational framework tests hypotheses about how specific environmental pressures shape
eye morphologies, neural architectures, and behavior. While previous work has used evolutionary
algorithms to independently design optical systems [36, 37], embodied agent morphologies [8, 38,
39], or visually-guided behaviors [40], our approach uniquely evolves embodied agents with both
eyes and behaviors together in a hierarchical approach. This enables the automatic task-driven
discovery of diverse vision-based embodied agents.

2.1 A What if ...? World
We model the world in which embodied agents interact as a deep reinforcement learning environ-
ment, where agents must evolve appropriate vision capabilities such that they can learn effective
behavior. It’s infeasible, however, to model all factors which contribute to the evolution of vision;
thus, we model each environment as corresponding to a specific function of vision, such as simple
light detection or object discrimination. In this way, each environment represents a single task
which models the functional pressures hypothesized to garner the emergence of vision. We focus
on modeling three distinct tasks to isolate their effects on vision evolution [2, 27]: Navigation,
Detection, and Tracking. We create these tasks in a MuJoCo simulation environment [31, 41]
with custom features to support complex imaging models and evolutionary search. Each agent
in this environment is modeled as a point mass (the green sphere in Figure 2) with a heading
and forward velocity. For more technical details, please see Section 4.
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2.2 Genetic Encoding for Vision
Vision in nature has co-evolved as a function of sensing and the underlying neural circuitry;
subsequently constraining behavior that an animal learns during its lifetime [2, 4, 42]. At a
population scale, this continuous feedback loop between evolution and learning ensures that
learned behaviors affect the evolved genetic traits of future generations. Similarly, we create a
genotype that directly encodes both the physical (morphological and optical) and the neurological
components of an agent’s vision. Rather than incorporating neural network weights directly in
the genomic encoding [43–45], we train the agent each agent from scratch. The genetic encoding
is discussed in more detail in Section 4.

Similar to nature, our genetic encoding scheme needs to be general enough to describe a
diverse set of eyes and cognitive capabilities while being physically realizable. Therefore, we
conceptualize an agent’s eye as a physical sensor that converts photons into neural impulses.
These impulses are then followed by cognition, which enables agent’s to interact within the
environment. We categorize the genotype into three broad subspaces (Figure 1e,f): morphological,
optical, and neural. Each subspace describes a subset of an agent’s visual system, where each
gene is mutated through specific evolutionary operators (Figure 2). We provide more details in
Section 4.

2.3 Co-Evolution of Vision and Behavior
Our approach computationally mimics nature’s co-evolution approach to vision innovation:
changes in sensory capabilities directly influence behavioral performance, which in turn guides
the evolution of future eye and network designs. We implement co-evolution through two nested
loops that mirror the interplay between evolutionary timescales and lifelong adaptation. Over
generations, the outer evolutionary loop utilizes the Covariance Matrix Adaptation Evolution-
ary Strategy (CMA-ES) [46, 47] to enable efficient selection and mutation of populations of
agents. Within each generation, the inner learning loop, an agent with the selected genotype is
instantiated and trained to solve a visual task through reinforcement learning via Proximal Pol-
icy Optimization (PPO) [48]. During the agent’s lifetime, the agent’s performance is evaluated
within the same visual task. The fitness of each agent is then used in the following generation
to selectively adapt the populations genotypes. We discuss the evolution and learning loops in
more detail in Section 4.

2.4 What if vision was only needed to discern food from poison?
Understanding how specific visual tasks shaped the evolution of eyes remains a major challenge
because animals are required to solve multiple visual tasks simultaneously. For instance, honey-
bees have evolved compound eyes with around 5,000 individual receptors, balancing trade-offs
between extracting optic flow to maintain equidistance from obstacles and regulate flight speed,
and sufficient spatial resolution to discern body movements of other bees in their colony [30].
This coupling of tasks in nature makes it difficult to understand how individual visual demands
influence eye evolution. For instance, while dragonflies primarily use compound eyes for navi-
gation, they have also evolved high-resolution regions for prey detection, making it challenging
to identify which visual adaptation was a result of which environmental pressure. Thus, would
evolution converge on similar eye morphologies as found in nature if we could isolate individ-
ual visual tasks? To address this, we create two distinct environments that isolate specific visual
demands, allowing us to observe how eye morphologies evolve when optimizing for a single task.

Our computational framework tests vision evolution through two distinct tasks that isolate
different environmental pressures. The Navigation task is a goal-less orientation task ([27])
where agents are incentivized to traverse a maze environment as fast as possible while avoiding
collisions with walls and forward barriers which are alternating with white/black striped patterns
of different frequencies (similar to navigational setups that test navigational abilities within
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Fig. 3: Low- and high-acuity spatial tasks lead to compound and camera eyes,
respectively. (a) We initialize a population of agents for two visual tasks (Detection and Nav-
igation) with a single eye with one photoreceptor. We then evolve a population of agents subject
to morphological mutations: add photoreceptor, add eye, and adjust placement. In the Naviga-
tion task, we first observe an emergence of dispersed vision, where many eyes are employed. By
50 generations, a compound-type eye emerges; that is, a vision system consisting of 10 individual
eyes, each with four photoreceptors, distributed over the entire diameter of the agent. (c) In the
Detection task, we initially observe the emergence low-resolution vision. After 50 generations,
the population has converged on a morphology consisting of two forward facing, high-resolution
camera-type eyes. (d) Configuration vs generation plots are shown, depicting the evolutionary
progression of the mean agent in the population and the task dependence on evolutionary adap-
tation. The plots show the mean and 95% bootstrapped confidence interval, respectively.

honeybees [30]). Conversely, the Detection task is an object discrimination task where agents
choose the goal sphere between three visually similar spherical objects in an open environment
(this can be conceptualized as identifying food from poison with the only difference being the
rotation of a high frequency spherical pattern on the sphere). In both environments, agents
control only their forward speed and heading. Both tasks start are initialized by generating a
population of agents via randomly mutating the genotype of a primitive agent (a single eye
with one photoreceptor and a field-of-view of 100◦). Over the course of evolution, agents mutate
by using only morphological constraints: adding or remove photoreceptors, adding or removing
eyes, and adjusting the eye’s placement. Agent fitness in Navigation scales with completion
speed and collision avoidance, while Detection fitness rewards quick, accurate food selection
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with evolutionary termination for selecting poison (the exact reward functions are described in
Section 4)

From an initial configuration of one eye with a single photoreceptor, agents evolve distinctly
different morphologies under each task. To enforce realistic physical constraints, we limit the
allowed configurations to prevent overlap based on photoreceptor size and eye radius. Similar to
flying insects that navigate complex environments at high speeds [30], our navigation-specialized
agents evolved compound-type eyes with 8 widely distributed visual units, each containing 5
photoreceptors (Figure 3b). This configuration optimizes full-body coverage with a 270◦ total
field-of-view, enabling rapid environmental sampling during high-speed maze traversal. In con-
trast, detection-specialized agents develop two forward-facing eyes with 15 photoreceptors each
(Figure 3c), concentrating their visual resources frontally. This evolutionary divergence reflects
task-specific optimization: navigation agents maximize spatial awareness through distributed low-
resolution sensing, while detection agents sacrifice peripheral vision for enhanced frontal acuity,
enabling object discrimination at greater distances within their fixed time constraint.

Our agent’s morphological divergence directly influences the topology of their neural network
used to learn task behavior. A compound eye configuration in our genetic scheme enables parallel
processing of visual information — each additional eye gets its own visual processing unit (MLPs)
that handles processing of a specific part of the visual field before the low dimensional features
from each eye are concatenated. Conversely, in the Detection task, agents evolve camera-type
vision (2-3 forward facing eyes) with with larger input arrays (15x15x3) per eyes.

Our computational isolation of visual tasks reveals fundamental patterns that parallel natural
evolution [1, 46, 49–51]. The emergence of distinct morphologies from identical starting condi-
tions demonstrates how environmental demands can drive visual specialization. Like bees using
wide-field motion detection [30], our navigation agents evolved distributed sensing for efficient
environmental sampling. When quantifying visual capabilities using cycles-per-degree measure-
ments [29, 52, 53], we found a clear trade-off between spatial coverage and resolution that mirrors
natural systems (Figure 3d). This trade-off manifests across species [13], where animals evolve
either enhanced acuity or broader fields of view based on their ecological needs. Our results pro-
vide computational evidence that task-specific selection pressures can drive the emergence of
these distinct visual and neural processing strategies.

2.5 What if eyes never evolved optical element like lenses?
Early visual systems faced a fundamental trade-off between light collection and acuity, progressing
from simple light-sensitive patches to cup-shaped eyes with smaller apertures [54, 55]. While
decreasing the size of the aperture and creating pinhole-like designs is a straightforward way to
improve image formation, they severely limit light collection. This trade-off creates a performance
ceiling, where further improvements in spatial resolution through pinhole designs are limited
by the lack of light. This inherent limitation ultimately restricts the visual capabilities of such
systems, causing a saturation in performance. We see this manifested in our results where agents
with pinhole eyes plateau in fitness and are not able to achieve the performance benefits of
improved spatial resolution. What if we introduced optical elements or lenses into our agents?
Lenses emerged as a innovation in biological evolution and we investigate the impact of enabling
lensing in our framework.

We investigate here whether artificial evolution would replicate these major transitions in
eye morphology, tracking the emergence of optical structures from simple light-sensitive patches
to complex lens-based systems. To isolate optical evolution, we restrict mutations to the optical
subspace: pupil size, optical element, and refractive index. We fixed the remaining morphological
genes to the parameters evolved in the Detection task in Figure 3. Pupil size controls the
signal-to-noise (SNR) ratio by controlling the total light throughput on the retina; since the the
noise in the environment is fixed, SNR decreases as pupil size decreases. The optical element is
represented as a 2D array that can be programmed into lenses of different shapes (modeled as a
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Fig. 4: Evolution of eye morphology reveals how lensing resolves a fundamental
trade-off in vision. We demonstrate that to achieve maximum fitness in the Detection task,
evolution learns to evolve optical structures against two competing objectives: achieving high
spatial precision and maximizing light collection. (a) The evolutionary sequence shows five key
stages of eye development: (1) open pupil with maximum light collection but poor spatial preci-
sion, (2) cup eye and (3) pinhole eye that achieve better spatial precision by reducing pupil size
at the cost of light collection, followed by the emergence of (4) unfocused and (5) focused lens-
based eyes that maintain spatial precision by evolving optical structures while allowing larger
pupils for more light collection. Agent images show the scene as perceived at each stage. (b)
Without optics (dark blue), pupil size decreases to improve precision, sacrificing the signal-to-
noise ratio (SNR). When lensing is enabled (orange line, generation 30), larger pupils emerge as
lenses are evolved maintain precision while increasing light throughput. (c) The Image Quality
metric (image sharpness × light throughput) quantifies this trade-off resolution: pinhole eyes (3)
plateau at low values due to limited light collection, while lens-based eyes (4,5) achieve higher
quality by combining good spatial precision with larger pupils. This mirrors the evolutionary
pressure that drove the emergence of biological lenses, which enabled enhanced vision across
lighting conditions.

diffractive optical element (DOE)) [56–58]. Refractive index controls the bending of light within
the optical element. These three parameters are general enough to be represent a large number
of different lens shapes. We discuss these parameters, the physics-based rendering model, and
their relation to real eyes in Section 4.

We conduct two large-scale evolution experiments within the Detection task: Phase I, a
baseline evolution with only pupil size mutations; Phase II, a counterfactual study where we
enable optical element mutations and refractive index mutations after 30 generations of Phase I.
After the experiment concludes, we perform an analysis of the evolved agents’ vision systems with
the “Image Quality” metric, which is defined as the product of spatial precision and maximum
light throughput. Spatial precision is determined using the Modulation Transfer Function (MTF)
of the eye’s point spread function (PSF). We refer to Appendix Section A for Fitness and MTF
plots, PSNR and SSIM graphs (measures signal-to-noise ratio and structural information between
agent and reference image), and 3D plots of evolved lenses.
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In Phase I of the experiment, where we only enable pupil size mutations, we observe a clear
evolutionary progression from open apertures (Figure 4.1) to cup eyes (Figure 4.2) and finally to
pinhole eyes (Figure 4.3). As shown in the agent’s image, the blur is significant for the open eye,
and meaning the agent cannot discern between the objects reliably. To evolve cup eyes, agents
with decreased pupil size are selected for. A smaller pupil restricts light throughput and FOV but
reduces the overall blur of the image at the cost of decreased SNR (See Section A for PSNR/SSIM
analysis). A pinhole eye is formed at (Figure 4.3), where the agent fitness saturates at around
30% of the maximum pupil size; the converged pupil size is dependent on the total ambient light
in the environment, as in less light in the environment results in a evolved larger pupil.

In Phase II of the experiment, we enable DOE and refractive index mutations while maintain-
ing pupil size mutations at generation 30. Initially, the image quality decreases as the random
DOE shapes perform worse than pinhole eyes. Between generation 30 to 50, we observe a crucial
transition: DOEs slowly evolve from a diffusing lens (surfaces that scatter light everywhere) to
developing convex shapes that mark evolution’s first step toward lens-like structures. These early
convex surfaces can focus some light but remain unoptimized, creating unfocused eyes with larger
pupils that collect more light than pinhole eyes (Figure 4.4). This intermediate stage demon-
strates evolution discovering the basic principle of light focusing before convergence. As evolution
progresses beyond generation 50, the DOE is refined into focused lenses and symmetric PSFs
while maintaining large pupils (Figure 4.5), achieving both high spatial precision and improved
light collection necessary for Detection. This optical improvement is reflected in multiple met-
rics: maximum agent fitness increases substantially from 15 to 25, while PSNR improves from 7.5
to 8.6 dB and SSIM rises from 0.15 to 0.275 (Section A). Figure A1 shows high-performing agents
(F>24.4) evolved singular, smooth optical responses, while poor performers (F<3.4) developed
fragmented, multi-peaked patterns.

Our results demonstrate a critical sequence that illuminates why lenses emerged over the
course of vision evolution. While our agents were simply tasked with discriminating between
similar-looking objects, it required the populations to evolve effective eyes subject to the funda-
mental trade-off in vision evolution: balancing spatial precision (needed to discriminate similar
objects) with light collection (needed for reliable vision). Our Image Quality metric, which com-
bines MTF-derived spatial precision with light throughput, quantifies this trade-off directly. In
Phase I, where only pupil size could vary, spatial precision saturates as pinhole eyes sacrifice light
collection for acuity, resulting in dark, noisy vision. Phase II reveals how lens evolution resolves
this constraint: DOEs evolve into lenses that maintain spatial precision while allowing larger
pupils, eliminating the precision vs. light throughput trade-off. Our counterfactual experiment
suggests that without this innovation, accurate vision would have been restricted to high-light
conditions; for example, while pinhole eyes can technically produce sharp images, they are rarely
found in nature due to the decrease in light throughput. This aligns with theoretical predic-
tions which suggest that lens development coincided with an increase in eye size [54, 55]. The
lens thus represents a fundamental innovation in the evolutionary solution space, discovered by
our agents not through direct optimization of optical properties, but through the demands of
achieving accurate perception on a specific behavioral task.

2.6 What if animal brains stayed small throughout evolution?
Biological Visual intelligence emerges from the interplay and scaling between sensory hardware,
morphology, and neural processing [59, 60]. While artificial intelligence relies on fixed sensors
(RGB cameras) and scales with the number of parameters, nature has evolved diverse eye-brain
systems that scale in complexity together to solve intelligent tasks. By varying eye acuity (cycles-
per-degree) [61], neural network size, and temporal processing [62], we investigate how these
resources shape the evolution of visual intelligence and task-specific performance in embodied
agents.
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Fig. 5: Task-dependent scaling laws reveal how sensory acuity bounds performance
and how temporal memory compensates for neural capacity (a-c) Our experiments
reveal visual task-dependent power-law scaling between number of parameters and sensory acu-
ity (CPD). This demonstrates that scaling in sensory input is required for embodied tasks to
avoid a bottleneck that cannot be overcome by neural scaling alone. (d) Minimum required
visual acuity versus number of parameters for different embodied tasks suggest a hierarchy in the
task emergence. textbf(e) Temporal processing shows complementary scaling with neural capac-
ity, where increased temporal memory (number of frames) can compensate for reduced neural
processing, particularly evident in tasks with larger networks (128-32 neurons). Together, these
results quantify how visual intelligence emerges from the interplay between sensory, neural, and
temporal capabilities.

Our analysis reveals distinct power-law scaling between task performance and neural capacity
across navigation, detection, and tracking tasks. Performance across network sizes (Figure 5.a-c)
follows characteristic power laws (L = (2.38 ·10−3) ·N0.85 for navigation, L = (1.38 ·10−2) ·N0.85

for detection, and L = (8.54 · 10−2) · N0.43 for tracking). This power law defines a predictable
improvement in task error as a function of increasing network size. But this trend is only persists
when another quantity, the level of visual acuity, is also able to improve. Each acuity level
bounds the maximum achievable task performance (minimum task error). Low acuity models hit
performance ceilings, demonstrating that poor visual acuity creates a fundamental bottleneck
that cannot be overcome by simply scaling neural capacity. This resource limitation mirrors the
power laws for scaling seen in artificial intelligence systems, where performance is bounded by
the interplay of computational resources, data availability, and model size [28].

These scaling relationships reveal how evolving morphological constraints like eye structure
and number of parameters (brain size) act as fundamental resources that can affect scaling
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in embodied agents performance. Sensory acuity (measured by CPD) is also a resource which
limits the throughput of information from the scene to agent based on fundamental limitations
of light transport. Our results demonstrate that power-law scaling only holds when both acuity
and parameter resources scale appropriately, with performance saturating when either becomes
a bottleneck (i.e. in the relationship between visual acuity and number of parameters increasing
model size cannot overcome fundamental sensing limitations). However, biological evolution has
repeatedly overcome such constraints through scaling across different genetic traits [59, 60] -
suggesting parallel opportunities for artificial systems where scaling of data and parameters alone
may be insufficient without corresponding scaling in sensory capabilities.

Critically, we also identify transition points that reveal fundamental limits in visual processing
(Figure 5.d). For a fixed neural network size, increasing sensory acuity (CPD) beyond certain
thresholds yields diminishing returns, with each task showing distinct saturation points. For
example, the detection task requires higher minimum acuity to achieve comparable performance,
suggesting a hierarchy in the task emergence and visual processing demands of different behaviors.

For time-oriented tasks like tracking, we uncover a compensatory relationship between neural
processing and temporal memory (Figure 5.e), where increased temporal information can offset
reduced neural processing capacity and vice versa. This demonstrates that equivalent task per-
formance can be achieved either through sophisticated processing of individual frames or through
extended temporal integration of simpler visual features. The shallower scaling exponent (0.43)
for tracking compared to navigation and detection (0.85) suggests that temporal integration may
provide an alternative pathway to improved performance beyond pure neural scaling.

3 Discussion
Similar to natural evolution, we follow a function over form approach, where we code the desired
function through fitness and let evolutionary search discover a variety of forms that are optimal
for the fitness. This results in our agent’s form (eye design and learned behavior) to emerge solely
from functional pressures of orientation and navigation or object discrimination. The emergent
features resemble principles of real biological evolution. These results affirm our central claim
that embodied agents trained via DRL can serve as hypothesis-testing machines for vision and
vision evolution. The evolutionary outcomes we present are a result of the co-evolution of vision-
hardware (physical eye morphology and structure) and software (learned behavior of the agent).
Lastly, in our current approach, we evolve our agents under isolated environmental pressures i.e.
cases where agents are heavily biased to evolve to solve a single task. However, in the natural
world animals have evolved to jointly solve diverse tasks found in their ecological niches. While our
framework can be easily extended for diverse visual tasks, isolated scenarios help us understand
the extreme cases.

Since our work is the first in this space, our results point towards open technical challenges
that will enable a wider variety of hypothesis to be tested. For instance, future research can be
extended to incorporate explore multi-agent interactions where multiple species evolve in shared
environments, applying gradient-based methods, or incorporating richer light properties like spec-
tral, polarization, or temporal sampling. Additionally, future work could include incorporating
bio-physical models of vision [34] or replace neural networks with mechanistic circuits derived
from fly connectomes [16, 63].

Our framework provides a discovery tool by enabling large scale computational evolution
of vision in embodied artificial agents. For biologists and cognitive scientists, this approach
allows systematic manipulation of key variables to test alternative hypothesis or counterfactuals
- such as isolating the effects of optical elements from neural processing, or testing how specific
environmental pressures drive eye morphology. Much like natural evolution [64], our frame-
work demonstrates remarkable creativity in discovering solutions - for instance, it independently
evolved compound-eye architectures without being explicitly designed to do so. For engineers,
these evolutionary simulations reveal design principles for artificial vision systems, particularly
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valuable when optimizing for practical constraints like energy efficiency and manufacturability
[11, 65].

4 Methods
Learning loop. The learning loop is the mechanism for which we score each agent. Via reinforce-
ment learning, we train the brain of the agent (i.e., neural network parameters). Reinforcement
learning serves as a mechanism for learning representations of the environment through interac-
tions with it. The subsequent score, or fitness, of the agent is determined from the average reward
it receives over six evaluation episodes after training. We utilize an open-source implementation
of the Proximal Policy Optimization (PPO) algorithm [48, 66]. Hyperparameter values can be
found in the Supplementary Material. Each agent has 1 million total training steps, though train-
ing may be terminated early if no improvement is found after five evaluations (which takes place
every 50,000 training steps).

Reinforcement learning algorithms have been shown to have a strong dependence on the ran-
dom seed used to initialize the environment [67]. Thus, during the evolution loop, we allow the
same agent genotype to be sampled multiple times. Additionally, each agent’s training loop is ini-
tialized with a unique random seed such that configurations sampled with the same genotype are
not subject to the same seed. This allows for a more robust evaluation of the agent’s performance.

Observations. An agent interacts with its environment through actions based on its obser-
vations. The observations are created by compositing the images captured from each eye. For
example, if an agent’s vision system consists of 5 eyes with four photoreceptors in each eye, the
resulting observation by the full animal “eye” at each time step will be a tensor of size 5 x 4 x 1
x 3. Furthermore, for each eye, the previous observations are stacked in a memory buffer. If the
memory buffer is of size 10, then a tensor if size 10 x 5 x 4 x 1 x 3 is provided to the underly-
ing agent network. In addition to the visual stimuli, we provide a single boolean that describes
whether an agent is in physical contact with an object at the current time step and the previ-
ous action that was taken. Although not needed for the agent to solve the tasks, we have found
that providing contact information and previous action as observations led to convergence nearly
twice as fast; in an evolutionary search context, this speed-up significantly improves the overall
optimization time.

Reward function. The reward function is used in RL to drive policy optimization towards some
desired observation and action mapping. In our case, each task has a unique reward function:

Navigation RNavigation = λ (∥xt − x0∥ − ∥xt−1 − x0∥) + wg + wc

Detection RDetection = −λ (∥xt − xf ∥ − ∥xt−1 − xf ∥) + wg + wa + wc

Tracking RTracking = −λ (∥xt − xf ∥ − ∥xt−1 − xf ∥) + wg + wa + wc

(1)

where RX is the reward at time t for each task, λ is a scaling factor, xt and xt−1 is the position
of the agent at time t and t − 1 respectively, x0 is the initial position of the agent, and xf is
the position of the goal (i.e., end of maze for Navigation, goal object in Detection). The w
variables are non-zero when certain conditions are met. wg and wa indicates the reward/penalty
given for reaching the goal and adversary, respectively. wc is the penalty for contacting a wall. In
essence, in the Navigation task, the agent is incentivized to move from it’s initial position as
fast as possible. In the Detection and Tracking tasks, the agent is incentivized to navigate
to the goal as quickly as it can. During training, λ = 0.25, wg = 1, wa = −1, and wc = −1.
Additionally, when an agent reaches the goal or adversary, the episode terminates.

Fitness function. As compared to the reward function, the fitness function is used to evalu-
ate the current performance of an agent. Where the reward function is used to inform the RL
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algorithm for it’s weight optimization, the fitness function informs the evolutionary search algo-
rithm for further selection and mutation. For each task, the fitness function FX in generation g
is identical to RX , except with different weights to emphasize the relative performance difference
between agents. During fitness evaluation, λ = 1.5, wg = 10, wa = −10, and wc = −2. Instead
of terminating when the goal or adversary is reached, in evaluation, the object is respawned and
the agent continues to solve the task.

Evolution loop. Evolving the physical and neural representation, each with >∼1020 parameters,
of hundreds of agents efficiently necessitates “intelligent” optimization. The vast size of the
search space alone means all combinations cannot be tested in a timely fashion. Strategically
selecting morphologies that simultaneously explore new configurations and exploit previously
gained knowledge is imperative to not waste resources on suboptimal solutions. In ACI, we
accomplish this intelligent search mechanism through the integration of evolutionary strategies
(ES) [44]. ES is a broad optimization technique that is inspired by natural evolution and operates
by iteratively refining a population of candidate solutions through processes such as mutation,
selection, and adaptation. Unlike traditional genetic algorithms, ES emphasizes mutation over
crossover and is particularly well-suited for optimizing continuous, high-dimensional spaces.

We use a population size of 16 agents, and evolve for 50 to 100 generations depending on the
experiment. The specific ES algorithm we use is the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [68]. CMA-ES is a variant of ES that adapts the mutation distribution
based on the covariance matrix of the population. This adaptation allows for faster convergence
and better exploration of the search space. We use the open-source implementation of CMA-ES
provided by nevergrad [47]. Hyperparameters for CMA-ES can be found in the Supplementary
Material.

Agent’s genotype. An agent’s genotype encodes the language that is used to create the agent’s
vision. The overarching genotype compromises of a physical genotype (encodes the agent’s eye
properties) and a neural genotype (encodes the neural topology). The properties within each
genotype are further divided into subspaces that can be mutated independently, and incorporate
both continuous and discrete parameters. The subgenes are: morphological, optical, and neural.
Rather than modeling complex biological mechanisms like photoreceptor dynamics, we imple-
ment these traits using a physics-based rendering model that captures the essential functional
properties of vision while remaining computationally tractable. Our encoding scheme is capable
of representing approximately 1020 unique agent morphologies.

Morphological subspace. The morphological subspace defines properties used to spatially
sample the environment, such as the number of eyes, their position/orientation, and field of view
(FOV). We model the agent as a sphere of fixed radius with eyes distributed uniformly along
its equator. Thus, the position and orientation of each eye is dependent on both the number of
eyes, and a placement range (i.e., the maximum angle from latitude 0◦) that eyes are uniformly
distributed within. For instance, if an agent has 3 eyes and the placement range is 90◦, the eyes
are placed at -45◦, 0◦, and 45◦. We assume bilateral symmetry, consistent with the observation
that the overwhelming majority of animals have bilateral symmetry [69]. The FOV is a continuous
decimal value which can be between 1◦ and 100◦.

Optical subspace. The optical subspace describes how each eye interacts with incoming light
in a physically plausible way. It encompasses a programmable Diffractive Optical Element, or a
phase mask, that modulates the phase of the incoming light (represented as a 4 × 4 array with
∈ [0, 1]), pupil radius (scaled dynamically with sensor size as r = a × L, where a ∈ [0, 1] and L
is the sensor size), and refractive index (η ∈ [1.0, 2.0]). We use continuous parameters for phase
mask, pupil radius, and refractive index and then upsample the phase mask to a size of 51, 51
for sharper PSFs. The optical subspace can also be disabled in which case a rasterization-based
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imaging model is used to create visual stimuli for the agent; this model is analogous to an eye
with a perfect lens, i.e no blur.

Neural subspace. The neural subspace defines the properties of the neural network, such as
memory size, number of neurons, and the neural network architecture. The memory size repre-
sents the number of historical frames relative to the current frame the agent has access to; for
instance, a memory size of five means the agent’s visual stimuli is a flattened vector composed
of the current frame and the previous five frames. The underlying neural network is a fully con-
nected feedforward network with two identically sized hidden layers. The number of neurons in
the hidden layers is an integer mutation parameter that can be between 1 and 512. Although we
don’t present experiments in this work evolving the neural network architecture, it is possible
to mutate the underlying architecture (i.e., add layers, change activation functions, etc.) in our
framework.

Mutation operators. The agent’s genotype is designed with specific mutation operators for
each parameter type. For continuous parameters (such as FOV, phase mask values, pupil radius
scaling factor, and refractive index), mutations occur through Gaussian perturbation within their
defined ranges. For discrete integer parameters (such as number of eyes and number of neurons),
mutations increment or decrement the current value while respecting the parameter bounds.
Bilateral symmetry is preserved during all morphological mutations.

Experimental Control. In each experiment, we enable specific mutations to isolate and study
specific aspects of vision evolution. For example, the number of eyes in the morphological subspace
is represented as an integer parameter that can be mutated. This controlled approach allows us
to systematically investigate the evolution of different visual traits.

Agent phenotype. An agent’s phenotype is the physical manifestation of its genotype. The
phenotype is the realized form that interacts within the environment that acquires and acts
on observed stimuli. An agent in this work is represented as a fixed radius sphere with eyes
distributed uniformly along its equator. The output of the underlying policy is direction and
speed, which are used to actuate the joints to move the agent in the simulation environment. In
the case of the Tracking task, we assign computed action profiles to the goal and adversary to
move to random locations within the environment.

Imaging model. Our model consists of a lens described by a phase mask, refractive index, and
amplitude modulating (aperture) elements. We model a retina emulated by a discretized pixel
at the sensor plane at a focal length distance away from the pupil (Figure 6).

All imaging systems capture the scene as an optically encoded image on to the sensor plane.
These optical encodings are commonly referred to as the blur or point spread function (PSF),
and are dependent on the phase and amplitude of the pupil function along with wavelength and
depth of the scene point. We follow the wave propagation model described in [71–73] to estimate
the depth in-dependent PSF.

Given a point light source at a distance z and the pupil function P (x, y) = A exp(iϕ) (Figure 6)
the response of the agent’s eye can be measure by the PSF. The PSF at the sensor plane s
distance away from the pupil plane is described as:

PSFλ,z (x′, y′) =
∣∣F−1 {F {P (x, y)Uin(x, y)} Hs(fx, fy)}

∣∣2
, (2)

where Hs(·) represents the field propagation transfer function [74] for distance s with (fx, fy) as
the spatial frequencies given as

Hs(fx, fy) = exp
[
iks

√
1 − (λfx)2 − (λfy)2

]
; (3)
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Fig. 6: Imaging Model. Our simulation implements both wave and geometric optics using a
OpenGL [70] (a) Our scene imaging model shows how a depth dependent blur kernel is derived:
light from a point source in the 3D scene propagates through free space, passing through a
pupil plane which is composed of (1) an aperture with a variable aperture radius (r) and (2) a
programmable phase mask with height map H(x, y) and refractive index n, before forming an
image on the sensor plane. (b) The approximated model uses a 2D convolution between the
scene, a depth map, and a single blur kernel using the far-field approximation (i.e., the Point
Spread Function) for computational efficiency.

where k = 2π
λ is the wavenumber; Uin(x, y) denotes the complex-valued wave field immediately

before the lens which for a point light source is given as

Uin(x, y) = exp
(

ik
√

x2 + y2 + z2
)

; (4)

F{·} is the 2D Fourier transform; (x′, y′) are the spatial coordinates on the camera plane, and

(x, y) are the coordinates on the lens plane.
The phase modulation function tϕ(x, y) = ei 2π

λ ϕ(x,y) in Equation (2) is generated by the lens
surface profile ϕ(x, y) which in our case is a square 2D phase-mask array of size 25 pixels that is
mutated by the outer evolution loop, where ϕ(x, y) ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. These values are
scaled appropriately based on the agent eye’s refractive index.

Finally, our agent’s image formation follows a shift-invariant convolution of the image and
the depth-independent PSF to yield the final image, Iℓ, perceived by the agent.

Iℓ = Sℓ(Hℓ ∗ Xℓ) + Nℓ, (5)

where the sub-index ℓ denotes the color channel; Xℓ ∈ Rw×h
+ represents the underlying scene

with w × h pixels; Hℓ represents the discretized version of the PSF in Equation (2); Nℓ ∈ Rw×h

denotes the Gaussian noise in the sensor; Sℓ(·) : Rw×h → Rw×h is the camera response function,
modeled as a linear operator; and ∗ denotes the 2D convolution operation.

In practice, the discretized version of the PSF is of size (H+1, W +1) where (H, W ) is the reso-
lution of the agent’s eye Iℓ as chosen by the evolutionary search. This is an explicit choice to make
the PSF larger than the image to enable a full blur on the eye when the aperture is fully open.
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The scene image Xℓ is rendered by padding Iℓ of size (H, W ) to
(
H + (2 ∗ H+1

2 ), W + (2 ∗ W +1
2 )

)
.

This enables the corner pixels to accumulate light from areas directly due to the aperture size
which is more physically-based. This also means that closing the aperture also helps with reduc-
ing the total effective field of view of the agent’s eye, which is how the agent controls the blur in
Phase I experiment of Section 2.5. For a pinhole eye, the field-of-view becomes equivalent to the
encoded fov in the agent’s morphological gene.

Quantifying vision capabilities. We quantify an agent’s morphological phenotype and optical
phenotype in cycles per degree (cpd) and the Modulation Transfer Function, respectively. The
cycles per degree is a measure of the spatial frequency observable to the imaging system; a
higher cpd value corresponds to a better ability to resolve fine spatial details and distinguish
closely spaced features in the visual scene [29]. CPD is also a commonly used metric to measure
visual capabilities in real-life animals [29]. The Modulation Transfer Function (MTF) quantifies
how well different spatial frequencies are preserved by an optical system. Unlike CPD, which
represents a limit on resolvable detail, MTF describes the gradual degradation of contrast across
spatial frequencies in a given optical system. We analyze agents’ performance relative to its MTF
in more detail in the Appendix.

Simulated environment. This framework is built on top of a the MuJoCo physics engine [31]
and within a gymnasium-style [41] setup. The underlying dynamics of each agent is governed
by the MuJoCo physics and images are rendered via a rasterization pipeline using the builtin
OpenGL renderer.

In this work, we differentiate between a visual task and an environment. A visual task is
the specific goal an agent is trying to achieve, such as light seeking or object tracking. The
environment is the physical space in which the agent is placed, and so can contain multiple tasks.
For instance, the same environment is used to train agents on both the detection and tracking
tasks; the only difference is the reward function and the movement of the goal/adversary. In
addition to the physical positioning of objects in an environment, the textures, light, colors, etc.
can be modified to create a diverse set of various environments.

Each environment in the experiments presented here have walls, which can are organized as
boundary or in a maze-like configuration. These walls are rigid and contactable, and provide
barriers where the agent cannot move escape.

In any one environment, there is only ever one agent which is considered trainable. Trainable
agents have observations and an underlying neural network which is optimized during training.
Conversely, non-trainable agents are static or privileged (privileged in that they can access all
information about an environment at any point in time), and have a fixed action policy. An
example policy for a non-trainable agent is the goal object in the Tracking task; it’s policy is
to continuously move to a random location within the environment.
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Appendix A Lensing Analysis

noise floor

Bottom 
Perform
ing PSFs 

Top 
Perform
ing PSFs 

MTF Plot for Agent 151.10 with Final Fitness: 30.99 MTF Plot for Agent 151.5 with Final Fitness: 29.15

MTF Plot for Agent 51.11 with Final Fitness: 2.70MTF Plot for Agent 33.10 with Final Fitness: 4.50

Fig. A1: Modulation Transfer Function (MTF) analysis of evolved vision systems:
We analyze the spatial frequency response of evolved vision systems using MTF curves, which
quantify how well different spatial frequencies are preserved. Left: Average MTF curves for top
25 and bottom 25 performing agents, colored by reward. The horizontal dashed line indicates the
noise floor, below which spatial information becomes unreliable. Bottom: Point Spread Functions
(PSFs) for the best and worst performing agents, showing the characteristic light distribution
patterns. Top Performing Agents develop compact and symmetric PSFs even though we don’t
enforce any symmetry in our setup. Right: Individual MTF curves for agents at different evolu-
tionary stages (Generation 33, 51, and 151) and performance levels. Early generations (Gen 32,
51) show erratic frequency responses with significant dips, indicating poor optical performance.
By Generation 151, high-performing agents develop smooth MTF curves that maintain good con-
trast above the noise floor up to 40 cycles/mm, demonstrating evolution of effective lens-based
vision systems. The RGB channels show similar responses, suggesting achromatic optimization
of the optical system.

Our analysis quantifies the optical performance of evolved vision systems using three metrics.
The Point Spread Function (PSF) represents the system’s response to a point source of light -
how a perfect point gets ”spread out” by the optical system. In Figure A3, high-performing agents
develop compact, symmetric PSFs indicating precise light focusing, while poor performers show
diffuse, irregular patterns suggesting inefficient light management. A perfect PSF would appear
as an infinitesimally small point, while real optical systems produce some degree of spread due
to diffraction and optical imperfections.

The Modulation Transfer Function (MTF), mathematically derived as the Fourier transform
of the PSF, quantifies how well different spatial frequencies are preserved by the optical system.
On the MTF plots in Figure A3, the y-axis represents contrast preservation (from 0 to 1) while
the x-axis shows spatial frequency in cycles/mm. The area above the noise floor ( 10−2) represents
useful spatial information - frequencies where the signal can be reliably distinguished from noise.
Early-generation agents show erratic MTF curves with sharp dips below this noise floor, while
later-generation agents maintain smooth curves above the noise floor up to 40 cycles/mm.

The PSNR and SSIM curves in Figure A2 reveal limitations of these conventional metrics.
Initially, with fully open apertures, both metrics show high values because extreme blur acts as a
noise-reducing low-pass filter. However, this blurred vision makes the detection task impossible,
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Fig. A2: Agent Fitness, PSNR (dB) and SSIM over generations: We show additional
graphs from Section 2.4 that show steady increase in agent fitness. The main plot tracks both
maximum (purple) and median (blue) agent fitness, which initially plateau around generation 25
due to pinhole eye limitations. After enabling lensing, maximum fitness shows steady improve-
ment, reaching significantly higher levels compared to the pre-lensing phase. To compute SSIM
and PSNR we render a rastered version of the image using the pinhole camera model as the ref-
erence image. For PSNR we show a substantial increase from the pinhole eyes. This shows that
lensing significantly improves the signal-to-noise tradeoff that we discussed in Section 2.4. We can
also compare the SSIM between Phase I and II. Unlike PSNR, SSIM is a perception-based model
that considers changes in structural information between reference and target images. The SSIM
increases are little as it relies on pixel wise calculations but the trend demonstrates that lens-
based eyes better preserve image structure while maintaining higher light collection compared to
pinhole eyes, enabling more reliable discrimination between similar visual features.

resulting in low agent fitness. As apertures begin to close (forming pinhole eyes), PSNR and
SSIM decrease as the system preserves more high-frequency information but with increased noise
due to limited light collection. When lensing is enabled at generation 30, we observe steady
improvement in both metrics as the system evolves the ability to maintain high-frequency detail
while collecting sufficient light.

These observations led us to develop an Image Quality metric that multiplies two factors: (1)
the area under the MTF curve above the noise floor (marked in Figure A3 by the dashed noise
floor line), representing spatial precision, and (2) light throughput, which decreases quadratically
with smaller apertures. This metric captures the trade-off between spatial precision and light
collection. While pinhole eyes can achieve good MTF performance, their limited light throughput
constrains their overall image quality. Lens-based eyes resolve this trade-off by maintaining strong
MTF performance while allowing larger apertures for better light collection.

Notably, some agents with excellent optical properties (high MTF and light throughput) show
slightly lower rewards due to the stochastic nature of reinforcement learning. This variance in
reward despite similar optical quality suggests that the relationship between optical performance
and task success is not purely deterministic - better vision enables but does not guarantee better
task performance.

Appendix B Sampling from the Design Space
The genetic encoding for vision can be fundamentally understood as operating on the plenoptic
function, which describes the complete flow of light in a scene [75]. While our current imple-
mentation demonstrates proof-of-concept by allowing evolution to explore a subset of plenoptic
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Optical Elements of Worst Performing Agents

Optical Elements of Best Performing Agents

Fig. A3: Comparison of evolved optical elements between best and worst perform-
ing agents. Three-dimensional surface plots showing the optical response patterns for the top
six (upper panel) and bottom six (lower panel) performing agents. Best performing agents
(F=24.4-31.0) exhibit well-defined, singular peak formations with smooth gradients, while worst
performing agents (F=0.7-3.4) display irregular, multi-peaked patterns with abrupt transitions.
Each plot represents a unique evolved optical configuration denoted by its agent identifier (A)
and corresponding fitness score (F).
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Eyes
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Fig. B4: Sampling greater number of eyes by modifications to the Morphological
Gene: We display our agent’s vision captured with progressively more number of eyes. Top row
shows progressively increasing eyes allows for larger FOV of the scene and creates multiple copies
of the spheres from slightly different perspectives in each eye. The bottom row shows that for
the navigation task number of eyes allows the agent to see different parts of the wall which it
uses to orient itself against wall collisions.

Resolution

5x5 10x10 20x20 30x30 40x40 50x50 100x100

Fig. B5: Sampling larger resolutions by modifications to the Optical Gene: We display
our agent’s vision captured with progressively larger resolutions. Top row shows progressively
increasing resolution resolved the difference between food and poison which can be differentiated
with the orientation of the stripes. The bottom row shows that for the navigation task resolution
helps resolve the stripes on the wall.

dimensions such as placement, optics constraints, movement of the agent etc. , the framework can
naturally extend to encompass the full plenoptic representation of light - including spectral sen-
sitivity, polarization detection, and varied spatiotemporal resolutions. Just as our computational
experiments have shown evolution discovering diverse and creative solutions within a limited
set of visual parameters, expanding the genetic language to sample from the complete plenop-
tic dimensions would enable the discovery of even more sophisticated visual systems, analogous
to those found in nature. For instance, the mantis shrimp (stomatopods) evolved 16 different
photoreceptor types that can detect both linear and circular polarized light [76], while jumping
spiders (Salticidae: Dendryphantinae) developed a unique combination that provide both high
acuity and wide-field motion detection [77]. Our language enables co-evolution of eyes, neural
circuitry and subsequent behavior (learnt through reinforcement learning) and provides a unified
way to think about vision evolution as a creative optimization process operating directly on the
fundamental properties of light. As we expand the available plenoptic dimensions in our genetic
language, we expect to see the emergence of increasingly sophisticated and novel visual systems
that may parallel, or even exceed, the remarkable diversity found in biological evolution.
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(a) Refractive Index (when phase is a lens)

1.0 1.2 1.3 1.5 Raster Image

Fig. B6: Sampling refractive indices in the Optical Gene: We illustrate examples of sam-
pled refractive indices within the Optical Gene for Detection (top row) and Navigation(bottom
row) tasks. For a fixed phase mask (a perfect lens) increases in refractive index causes increase
sharper images.

(b) Phase Mask  (2D Programmable Height Mask)

Flat Random Random Lens Raster Image

Fig. B7: Sampling optical elements in the Optical Gene: We illustrate examples of
sampled optical elements (phase masks) within the Optical Gene for Detection (top row) and
Navigation(bottom row) tasks. The figure shows Flat, and 2 Randomly samples phase masks
which shows the complexity of the design space. These visualizations also demonstrate that while
using a lens is a major innovation in eye design, creating a focused lens is a hard problem that
evolution solved really well.

Appendix C Acuity-Neural Processing Trade-offs and
Task-Specific Scaling

In our framework, we systematically explore how visual task performance emerges from the
interplay of three key components. The first component is the eye’s physical characteristics, mea-
sured in cycles-per-degree (CPD, ranging from 0.0056 to 0.5444), which determines the ability
to resolve spatial detail. The second is neural capacity, where we vary the number of parameters
in the vision-processing layers (ranging from 800 to 98,000 parameters). Our parameter sweep
reveals emergent power-law scaling relationships between sensory acuity and neural capacity
Figure C9. The relative fitness plots (top row) demonstrate that navigation achieves high perfor-
mance (>0.8) at lower CPDs ( 0.05) with modest neural capacity ( 8000 parameters). Detection
and tracking tasks show a distinct scaling pattern, requiring both higher CPDs (>0.3) and larger
networks (>40,000 parameters) for comparable fitness levels. The error plots (bottom row) reveal
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Fig. B8: Sampling Different Aperture by modifications to the Optical Gene: We
display our agent’s vision captured with progressively smaller apertures, demonstrating how
reducing the aperture size leads to increased image sharpness. However, as the aperture closes,
the signal strength decreases quadratically with its radius, leading to higher noise levels. The
balance between sharpness and noise is a critical factor for agents to successfully complete their
visuomotor tasks.
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Fig. C9: Dense parameter analysis revealing task-specific relationships between sen-
sory acuity and neural processing. Top: Performance visualization showing individual trials
(vertical lines) across CPD values and network sizes for navigation (left), detection (middle), and
tracking (right). Bottom: Corresponding scatter plots with log-scaled axes demonstrate how
error rates vary with CPD for different network sizes (indicated by color intensity). The distinct
patterns across tasks support our findings about task-dependent scaling relationships between
sensory and neural resources.

fundamental constraints in how these capabilities emerge. At fixed CPD values, increasing neural
capacity follows characteristic power-law improvements until hitting task-specific performance
ceilings. These ceilings are particularly evident in the scattered error distributions, where higher
CPDs enable lower minimum error rates across all tasks. This demonstrates that poor visual acu-
ity creates a fundamental bottleneck that cannot be overcome by simply scaling neural capacity.
Notably, detection and tracking display continuous improvements in error rates as both CPD and
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network size increase, suggesting these tasks benefit from simultaneous scaling of both sensory
and neural resources. These computational scaling relationships emerged spontaneously through
evolution in our framework, revealing how physical constraints in sensory acuity interact with
neural processing capacity to shape task performance. The distinct scaling patterns across tasks,
particularly the earlier saturation in navigation compared to detection and tracking, suggest a
natural hierarchy in the visual processing demands of different behaviors [27]. This emergent
relationship between sensory hardware and neural processing mirrors both biological evolution
[59, 60] and contemporary artificial intelligence scaling laws [28, 78, 79].

For temporal performance, we find that performance saturates beyond 10 frames across all
configurations. This is particularly evident in tracking tasks, where agents are incentivized to
complete objectives quickly, typically achieving success in under 10 frames. This reveals an opti-
mal balance between temporal information and computational efficiency that varies by task
complexity.
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