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ABSTRACT

Rapid development of vision foundation models has fueled interest in training-free
image segmentation utilizing image prompts. Current methods typically involve
a single image and its corresponding mask as references, relying on high-level
feature similarity to generate point prompts for subsequent segmentation. How-
ever, these approaches suffer from inaccurate target localization and suboptimal
mask quality. In response to these limitations, we propose MMSeg, a training-free
Multi-modal and Multi-view image prompt Segmentation framework. MMSeg
enhances semantic information by diversifying references through two key com-
ponents: visual localization augmented by diffusion prior and multi-view cues,
alongside text-driven localization from generated pseudo-labels. By leveraging
segmentation consistency across multi-view images and complementary strengths
of multi-modal cues, these modules facilitate precise target localization. Further-
more, a consensus-oriented mask proposer is devised to filter and refine mask
proposals. Experimental results demonstrate the competitive performance of MM-
Seg, achieving 95.1% mIoU on the PerSeg dataset, 87.4% on the FSS dataset, and
52.8% on the COCO-20i dataset.

1 INTRODUCTION

Image segmentation is a fundamental task in computer vision and critical to perform scene under-
standing(Brar et al., 2025). It is widely applied in robotics (Jiang et al., 2025), autonomous driving
(Shoeb et al., 2025), and medical imaging (Liu et al., 2024a). Recent years have witnessed the
emergence of vision foundation models (Kirillov et al., 2023; Ravi et al., 2024; Caron et al., 2021;
Oquab et al., 2024; Radford et al., 2021; Zou et al., 2023), which have propelled progress in se-
mantic segmentation by enabling the identification of infinite object categories or visual concepts.
In practice, performing segmentation with vision foundation models typically requires appropriate
prompts tailored for each image. These prompts can be text descriptions or visual indicators, such
as bounding boxes, scribbles, or points. However, providing effective prompts requires either multi-
round interaction or professional expertise, which degrades generalization to unknown domains and
limits automatic segmentation of batch data.

Recent studies have investigated SAM-based solutions (Kirillov et al., 2023; Ravi et al., 2024) that
enable batch segmentation without the need for carefully crafted prompts. These methods generally
fall into two categories: those using an image and its corresponding mask as reference, and those
employing text as reference, as illustrated in Fig. 1(a) and Fig. 1(b) of the left panel. Among visual-
only approaches, PerSAM (Zhang et al., 2024a) is a pioneering method that supports segmentation
of customized visual concepts by generating point prompts for SAM through feature matching.
Matcher (Liu et al., 2024b) further enhances the quality of generated point prompts and extends
SAM’s capabilities to more general segmentation tasks. As a text-based approach, ESC-Net (Lee
et al., 2025) automatically generates point prompts within the image by leveraging the correlation
between text and images, incorporating textual guidance to refine mask generation. However, relying
on a single modality for prompting presents inherent limitations in practical scenarios, underscoring
the need for more robust approaches that integrate multiple modalities to provide complementary
semantic cues and improve segmentation accuracy.
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Figure 1: Illustration of our motivations. Left panel: From left to right, we summarize and visualize
three paradigms for reference-based image segmentation. Right panel: we provide intuitive analyses
on the failure cases of previously adopted paradigms. Meanwhile, we showcase the robust segmen-
tation achieved by the proposed framework driven by image prompts and “hacked” text prompts.

This paper identifies two key issues for improving image-prompt-based segmentation: accurate ob-
ject localization for point prompts and mask quality optimization. As illustrated in the right panel
of Fig. 1, existing methods confront the following issues: 1) Visual-only methods frequently suffer
from granularity misalignment and imprecise localization due to reliance on high-level features ex-
tracted by models such as DINOv2 (Oquab et al., 2024) or SAM. 2) Text-only methods effectively
mitigate granularity inconsistencies but face difficulties caused by linguistic ambiguity or limited
descriptive capacity, particularly when targets exhibit subtle or complex attributes that are hard to
precisely describe.

In response, we propose a Multi-modal and Multi-view Segmentation framework (MMSeg), which
integrates pseudo-class generation into the image-prompt segmentation pipeline. To improve lo-
calization, we enrich feature diversity using diffusion priors, multi-view image augmentation, and
pseudo-label generation. For mask optimization, we first sample point prompts to generate candi-
date masks, then filter and merge them using a multi-step consensus-oriented pipeline. Experimental
evaluations demonstrate that MMSeg significantly reduces both localization and segmentation errors
compared to prior methods. Our main contributions are summarized as follows:

• We propose MMSeg, multi-modal and multi-view driven semantic enrichment for training-
free image prompt segmentation. By further enhancing visual features and introducing
pseudo class generation, our approach enhances semantic expression, enabling more accu-
rate targeting and high-quality mask generation.

• We introduce three key components: Visual Localization augmented by Diffusion prior
and Multi-view cues (VLDM) for visual localization, Text-driven Localization from Gen-
erated Pseudo-labels (TLGP) for text-driven localization, and Consensus-Oriented Mask
Proposer (COMP) for mask optimization. These modules collaboratively alleviate the lim-
ited richness of feature representation derived from a single image, mitigate the reliance on
high-level features, and improve mask quality of the generated masks.

• Extensive experiments show our method achieves strong performance on multiple datasets
and tasks. It supports both one-shot semantic segmentation and generalizes well to one-shot
part segmentation. Comprehensive ablation studies validate the contribution and efficacy
of each component in our framework.

2 METHOD

As illustrated in Fig. 2, the proposed MMSeg framework leverages a single reference image to seg-
ment corresponding regions in the test image based on shared semantics. It comprises two main
components: multi-modal localization and prompt generation, as well as mask proposal optimiza-
tion. The localization employs a feature matching pipeline with visual and textual branches to extract
feature similarity maps. A cascaded matching process gathers multi-modal point sets that guide pre-
cise target localization. Initial mask proposals are generated using the Segment Anything Model
(SAM) and refined with a Consensus-Oriented Mask Proposer (COMP) strategy. The optimized
masks are then used in SAM for accurate segmentation of regions in the test image that correspond
to the reference image mask.
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Figure 2: Overall pipeline of the proposed training-free segmetation framework, MMSeg. It consists
of two main parts: object localization and mask generation. The localization part in the upper panel
contains two independent branches, including VLDM and TLGP. In the rightmost two images, we
use red and blue points to represent positive and negative point prompts, respectively. The mask
generation part in the lower panel implements a COMP for accurate mask proposal refinement.
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Figure 3: Detailed schematic diagram of VLDM for visual localization, TLGP for text-driven local-
ization, and COMP for mask proposal generation.

2.1 VISUAL LOCALIZATION AUGMENTED BY DIFFUSION PRIOR AND MULTI-VIEW CUES

Most methods neglect the crucial role of low-level and diverse features in improving segmentation
performance (Tang et al., 2024; Suo et al., 2024). To exploit target location cues embedded in visual
prompts, we propose to augment visual features based on leveraging high-level image features.
Specifically, we design a visual localization branch enhanced by diffusion priors and multi-view
augmentation, as depicted in Fig. 3(a). This branch integrates low-level features extracted through
diffusion models and diverse features obtained from multi-view augmented images.

Diffusion prior. Inspired by IPSeg, we utilize the prior knowledge embedded in pretrained diffu-
sion models to extract low-level image features, thereby compensating for the tendency of high-level
features to overlook fine-grained image details. However, we observe that the stability of diffusion
priors is sensitive to the extraction location and the number of diffusion timesteps, rendering the
method vulnerable to hyperparameter variations. To overcome the limitation, we introduce Cle-
anDift (Stracke et al., 2025) to eliminate the impacts of hyperparameters and deliver high-quality
diffusion priors, effectively enhancing the preservation of detailed image information. We formu-
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late the extraction of diffusion priors Frefsd = Encsd(Imgref ) and Ftestsd = Encsd(Imgtest)
separately from the reference image Imgref and test image Imgtest, where Encsd is the CleanDift
image encoder.

Mutil-view cues. Motivated by the insight that resulting confidence maps remain consistent and
robust under rigid geometric transformations of the reference image (Wang et al., 2025), we in-
corporate multi-view image augmentation. Specifically, we apply random rotations and flips to the
images, effectively mitigating the adverse effects of target position and shape variations on feature
matching performance. In detail, we formulate the multi-view visual augmentation as the following
Eq. 1:

Imgrefvari
= MultiV iewAug(Imgref ,Mref ) (1)

where Mref is the mask of the reference image, and Imgrefvari
denotes the reference image

after applying the ith image augmentation operation MultiV iewAug(·). Available augmenta-
tions include one null operation Identity, as well as two spatial transformations: random rota-
tion, RandRotate, and horizontal flip, HorizontalF lip. Afterwards, we perform feature ex-
traction from these transformed reference images {Imgrefvari

}3i=1. Regarding the ith image,
we denote its feature as Frefvari

. The resulting features are collected into a feature list, termed
Frefmv = {Frefvari

}3i=1. As for the test image, we only extract its feature Ftestmv from the original
view without peforming image augmentation.

Visual localization. To utilize diffusion priors and multi-view cues for localizing regions with
the expected semantics, we perform feature matching between features from Imgref and Imgtest.
Following existing methods (Tang et al., 2024; Zhang et al., 2024a), the consine similarity in the
feature space is calculated. Subsequently, for Frefsd and each element in Frefmv , we calculate
their similarities with the corresponding test features Ftest = {Ftestsd , Ftestmv} respectively. The
formulation of feature matching is presented in Eq. 2:

Svis = Fref · FT
test (2)

where Fref can represent Frefsd and each item in Frefmv , and Svis are collections of visual similar-
ity maps. Moreover, the manner in which multi-source visual cues are utilized significantly affects
the effectiveness of target matching and localization. Existing methods commonly fuse similarity
maps by simple element-wise addition (Tang et al., 2024), which often introduces artifacts outside
the target regions. To address the issue, we propose avoiding direct fusion of the confidence maps
of feature similarities. Instead, we defer their integration to the generation stage of point prompts,
employing an iteratively constraint-based mechanism to guide the point generation process.

2.2 TEXT-DRIVEN LOCALIZATION FROM GENERATED PSEUDO-LABELS

Text prompts possess certain advantages in describing common concepts and exhibit stronger capa-
bilities in retrieving targets based on semantic cues within cluttered environments (Rosi & Cermelli,
2025). To exploit the complementarity between modalities, this work proposes an intuitive, seam-
lessly integrated, and robust text-based localization module to enhance accuracy.

The proposed method is driven by a pseudo-class label list generated by the pretrained image recog-
nition model RAM (Zhang et al., 2024b). As indicated in Eq. 3, we first obtain the predicted label
lists {Classespseudovari

}3i=1 and Classespseudotest , respectively.

{Classespseudovari
}3i=1 = {RAM(Imgrefvari

)}3i=1,
Classespseudotest = RAM(Imgtest),

(3)

Based on the group of calculated label lists, an iterative process is performed to determine the
most representative pseudo-category labels Classespseudo via intersection operations as shown in
Fig. 3(b), and we formulate the process in Eq. 5,

Classespseudo =

{
Classespseudo ∩ Classescandidate, if Classespseudo ∩ Classescandidate
Classespseudo, otherwise

(4)
where Classespseudo is initialized as the pseudo-category labels of Irefvar0

and Classescandidate
represents each element in the iteration. Based on the reasonable assumption that the text label
achieving the best semantic alignment across multi-view observations of the same target should be
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consistent, the frequently occurring categories in the RAM inference results are selected to form
candidate label lists. In cases where multiple labels exist, CLIP (Radford et al., 2021) is employed
to compute probability scores and identify the label with the highest probability corresponding to
the masked region in the reference image, as indicated by Eq. 5.

Classpseudo = arg max
c∈Lref

CLIP(Classespseudo, Irefvar0 ) (5)

We observed that CLIP predicted similarity maps corrupted by noise. Instead, CLIP Surgery (Li
et al., 2025) is introduced to yield a cleaner textual similarity map Stext for improved localization.

Moreover, we select point prompts by iteratively fusing paired similarities (Spos
vis/text, S

neg
vis/text). In

the i-th iteration, a pair of binarized maps, FGi and BGi, are generated to differentiate foreground
and background via Eq. 6,

FGi = I(Spos
i > weight · Sneg

i )
BGi =∼ FGi

(6)

where I(·) = {(i, j) | I(i, j) = 1} extracts the set of foreground pixels. FGi is adaptively fused
with FGi−1 from the previous iteration as indicated by Eq. 7,

FGi =

{
FGi−1 ∧ FGi, if |FGi−1 ∧ FGi| ≥ τ · |FGi−1|
FGi−1, otherwise

(7)

where τ is the threshold for the ratio of overlapped foreground pixels between consecutive iterations,
and | · | measures the non-zero pixel count. By iterating on paired similarities, multi-modal prompts
are fully exploited to refine the target semantic region progressively. Afterwards, we apply K-Means
clustering to the final indicators to generate positive prompts {P pos

m }Mm=1 and negative prompts
{Pneg

n }Nn=1. M and N are the predefined number of cluster centers.

2.3 CONSENSUS-ORIENTED MASK PROPOSER

Excessively dense positive point prompts for SAM lead to over-segmentation, whereas inappropri-
ate negative points may cause under-segmentation. To address this, we propose a mask proposal
generator, COMP, based on the consensus principle, which reframes mask filtering and refinement
as a proposal voting problem. It consists of a self-correcting process with four adaptive steps: re-
confirming, voting, outlier removal, and inlier repainting, shown in Fig. 3(c). They can be treated
as multiple experts negotiating to reach a consensus on the final mask proposals. The first two
procedures act as neutral experts, outlier removal as the radical expert, and inlier repainting as the
conservative expert, collaboratively refining mask proposals. Specifically, for initial mask proposals
(MPini derived from previously generated point prompts), COMP leverages the interaction between
four experts to ensure the generation of high-quality mask proposals MPcomp. Subsequently, these
proposals are sent back to SAM to obtain the final segmentation result Moutput.

Reconfirming. We reevaluate the necessity of each proposal in MPini by thresholding their similar-
ities with both the referenced region Mref ◦ Frefvar0

and the generated pseudo label Classpseudo.
The recalculated similarities are represented as RSmask and RStext. Afterwards, using two pre-
defined thresholds, Tmask and Ttext, along with the TopK operator, we sequentially filter out the
resulting candidate proposals MPreconfirm with high similarity ratings. In this paper, Tmask and
Ttext are empirically set to 50 and 20, respectively.

Voting. Upon obtaining filtered mask proposals MPreconfirm in the first stage, we adopt another
neutral strategy to merge existing masks via a voting mechanism. In the implementation, we splat
all mask proposals onto the same two-dimensional plane and aggregate them through element-wise
addition. For each location, all pixels with votes exceeding a certain proportion, Tvoting , of the total
pixel number are selected to form the merged binary mask proposal MPvoting .

Outlier Removal. There are potential outliers that fail to be removed from the merged mask pro-
posal MPvote in the preceding stages. Exploiting the property that the spatial distribution of object
masks tends to be continuous and smooth in their local regions, we propose to remove outlier pix-
els in an aggressive manner using morphological erosion operations, which effectively eliminate
isolated noise pixels. The resulting mask proposal is defined as MPerode.

Inlier Repainting. This operation serves to “deny the denied” and “smooth the unsmoothed”. The
former restores mask regions that were mistakenly removed by reintegrating them back to the mask
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Table 1: Quantitative results on the PerSeg dataset. The average mIoU and scores of each represen-
tative categories are presented. The best methods are indicated by underlined bold text, while the
second-ranking and third-ranking methods are emphasized in bold and underlined, respectively.

Venue Mean Backpack Barn Can Cat Clock Robot Toy Teddy Bear Thin Bird
Training

VP NIPS 2022 65.9 66.7 58.6 61.2 76.6 59.2 72.4 79.8 67.4
Painter CVPR 2023 56.4 88.1 3.2 19.1 94.1 42.9 65.0 93.0 20.9
SEEM NIPS 2023 87.1 94.1 82.5 65.4 91.1 72.4 95.8 95.2 71.3
SegGPT ICCV 2023 94.3 94.4 63.8 96.6 94.1 92.6 96.2 93.7 92.6

Training-Free
PerSAM ICLR 2024 89.3 95.4 38.9 96.2 94.1 96.2 60.6 94.6 93.7
Matcher ICLR 2024 94.1 95.6 94.6 96.1 93.4 91.3 95.2 94.8 90.8
IPSeg IJCV 2025 90.9 96.3 93.5 80.9 94.1 73.2 65.8 86.8 93.1
Ours - 95.1 95.9 96.4 97.3 95.2 94.8 96.5 95.9 93.5

Table 2: Quantitative results on the COCO-20i and FSS datasets. Results of all folds are provided
for the COCO-20i dataset. The top three are represented in the same way as in Table 1.

Venue COCO FSS
Fold0 Fold1 Fold2 Fold3 mean mean

Training
HSNet ICCV 2021 37.2 44.1 42.4 41.3 41.2 86.5
VAT ECCV 2022 39.0 43.8 42.6 39.7 41.3 90.3
FPTrans NIPS 2022 44.4 48.9 50.6 44.0 47.0 -
MSANet arXiv 2022 47.8 57.4 48.7 50.5 51.1 -
Painter CVPR 2023 31.2 35.3 33.5 32.4 33.1 61.7
SegGPT ICCV 2023 56.3 57.4 58.9 51.7 56.1 85.6

Training-Free
PerSAM ICLR 2024 23.1 23.6 22.0 23.4 23.0 71.2
Matcher ICLR 2024 52.2 53.3 52.5 51.7 52.4 87.0
Ours - 52.7 53.7 52.6 52.1 52.8 87.4

proposal, while the latter fills gaps within the mask to ensure spatial continuity. Morphological dila-
tion operations are applied to detect pixels wrongly excluded and to identify internal discontinuities,
enabling their correction.

3 EXPERIMENTS

To validate the superiority of MMSeg, we select several representative reference-based methods and
specialized few-shot segmentation models for comparative experiments. MMSeg requires no dataset
training and operates solely by leveraging pretrained Vision Foundation Models for segmentation
based on reference images and masks. We utilize DINOv2 as a general visual feature extractor
and CleanDIFT as a low-level visual feature extractor (Tang et al., 2024). RAM and CLIP-Surgery
are used to identify and generate pseudo-category labels, while SAM functions as a class-agnostic
image segmentation model. More details about dataset and evaluation metric are in Appendix.

3.1 QUANTITATIVE EXPERIMENTS

We display results on the PerSeg dataset in Table 1. Our method outperforms both training-based
and training-free baselines. Concretely, it surpasses the second-best method, SegGPT, by 0.8% and
outperforms Painter by a substantial margin of 38.7%. As for per-category analyses, while PerSAM
exceeds our method on a few categories, it suffers from unstable segmentation performance, with
considerably low IoU scores on the Barn and Robot Toy classes. However, our results are well-
balanced and consistently high, with IoU scores exceeding 90% for most categories. The robustness
and high accuracy stem from our core designs: visual localization and text-driven localization. These
strategies enrich feature representation and enable more precise segmentation, effectively equipping
our method to handle diverse personalized visual concepts.

Experimental results on the COCO-20i and FSS datasets are summarized in Table 2. Our method
also achieves leading performance. Compared to other training-free baselines, MMSeg delivers
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Table 3: Quantitative results on the part segmentation datasets, including PASCAL-Part and PACO-
Part. The per-class specifics are provided for the former, while the per-fold results are displayed for
the latter. The top three are represented in the same way as in Table 1.

PASCAL-Part PACO-Part
animals indoor person vehicles mean F0 F1 F2 F3 mean

Training
HSNet 21.2 53.0 20.2 35.1 32.4 20.8 21.3 25.5 22.6 22.6
VAT 21.5 55.9 20.7 36.1 33.6 22.0 22.9 26.0 23.1 23.5
Painter 20.2 49.5 17.6 34.4 30.4 13.7 12.5 15.0 15.1 14.1
SegGPT 22.8 50.9 31.3 38.0 35.8 13.9 12.6 14.8 12.7 13.5

Training-Free
PerSAM 19.9 51.8 18.6 32.0 30.1 19.4 20.5 23.8 21.2 21.2
Matcher 37.1 56.3 32.4 45.7 42.9 32.7 35.6 36.5 34.1 34.7
ours 35.3 64.5 32.3 46.8 44.7 31.2 34.3 38.6 33.5 34.4

Ground TruthPerSAM Matcher IPSeg OursReference Ground TruthPerSAM Matcher IPSeg OursReference

Figure 4: Qualitative results on PerSeg. In each half of the figure, the leftmost column contains
reference images and their masks for each row. The remaining columns visualize segmentation
results from PerSAM, Matcher, IPSeg, MMSeg, and the Ground Truth.

substantial advantages, surpassing PerSAM by 29.8% and 16.2% on both datasets, respectively. Al-
though SegGPT has been trained on in-domain data similar to these datasets, our method defeats
SegGPT on COCO-20i-fold3 and outperforms it by 1.8% on the FSS dataset. These results demon-
strate that our approach achieves superior segmentation performance on unseen data. Furthermore,
we also include comparisons with specialized baselines for few-shot segmentation. Our method
excels over MSANet by 1.7% and HSNet by 11.6% on the COCO-20i dataset.

Furthermore, the results on the fine-grained part segmentation datasets are presented in Table 3.
On the PASCAL-Part dataset, MMSeg shows a significant improvement of 1.8% over the next-best
method and 14.6% over PerSAM. On the PACO-Part dataset, it also achieves top-tier performance
comparable to Matcher and significantly outperforms other peer methods. These results underscore
the strong generalization of MMSeg to segmenting targets across diverse semantic scales, categories,
and sizes without task-specific training.

3.2 QUALITATIVE EXPERIMENTS

Fig. 4 shows qualitative comparisons on the PerSeg dataset. Utilizing the aligned text-image feature
space of CLIP, our method employs generated pseudo-labels to accurately identify segmentation
targets and exclude extraneous elements, such as the person in the first image. The integration of
multi-view reference images further enriches feature extraction. In the second row, while PerSAM
and IPSeg only partially segment the alarm clock and dog, our method achieves complete segmenta-
tion. Notably, our approach captures finer details, such as backpack straps and teddy bear hat edges,
which is attributed to our mask proposal strategy that discards unsuitable masks while merging suit-
able ones, resulting in accurate and coherent segmentations.

We visualized comparison results on the FSS dataset in Fig. 5. The fourth and fifth images in the
left panel illustrate our method’s effective control over segmentation granularity. The final row
confirms our ability to distinguish regions with similar semantics, while competitors struggle with
unrelated content; for instance, Matcher missegments the background, and PerSAM fails to segment
the target. The introduction of pseudo-labels enhances semantic understanding, enabling complete
target segmentation and avoiding issues like recognizing only part of a boxing glove or pump. The
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Ground TruthPerSAM Matcher OursReference Ground TruthPerSAM Matcher OursReference

Figure 5: Qualitative results on FSS. The layout is similar to Fig. 4. The results from PerSAM,
Matcher, and our method are visualized.

first three images in the left panel showcase MMSeg’s robustness against background interference,
thanks to its text-driven target localization and mask proposal refinement. During the reconfirmation
stage of COMP, we effectively eliminate irrelevant mask proposals, ensuring final mask quality.

3.3 ABLATION EXPERIMENTS
Table 4: Quantitative ablation results on the
PerSeg and FSS datasets. The “Gain” column in-
dicates the relative improvement of each ablation
group relative to the baseline.

PerSeg FSS
mIoU Gain mIoU Gain

baseline 91.61 - 78.16 -
+ VLDM 93.29 1.68 85.78 7.62
+ TLGP 92.37 0.76 85.3 7.14
+ VLDM + TLGP 92.67 1.06 86.5 8.34
+ VLDM + COMP 94.42 2.81 86.82 8.66
+ TLGP + COMP 93.67 2.06 86.43 8.27
MMSeg 95.1 3.49 87.4 9.24

In this section, we conduct comprehensive abla-
tion studies to validate the contribution of each
component. As detailed in Table 4, the re-
sults systematically demonstrate that each mod-
ule yields significant mIoU gains.

Effect of VLDM. This module exploits en-
riched features from diffusion priors and multi-
view augmented reference images for precise
visual localization. A comparison between the
first two rows reveals that the introduction of
VLDM improves performance by 1.68% and
7.6% on the PerSeg and FSS datasets, respectively. When integrated into the full model in the
last two rows, it still delivers notable improvements of 1.4% and 1.0% on these datasets.

Effect of TLGP. This module provides essential semantic context, enhancing performance beyond
visual features alone. The comparison of the first and third rows reveals a significant 7.1% improve-
ment on the FSS dataset with TLGP integration. Additionally, comparisons between the fifth and
seventh rows show accuracy gains of 0.7% and 0.6% on the PerSeg and FSS datasets, respectively,
when combined with other components. These results underscore the importance of semantic guid-
ance from generated pseudo-labels. For clarity, we visualize similarity maps in Fig. 6, illustrating
the relationship between high-level visual features from the reference image, the test image, and
the pseudo-label. The text-based similarity map enables more holistic target localization, effectively
reducing granularity misalignment and background interference.

Effect of COMP. This pipeline consistently enhances mask quality, achieving mIoU gains of 0.7%
to 2.4% across datasets and model configurations. Its effectiveness arises from a self-correction
mechanism and multi-aspect generation constraints that refine mask proposals. Fig. 7 illustrates
the predicted masks before and after incorporating COMP, highlighting significant flaws in masks
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Figure 6: Visualization of feature similarity maps. The first and second rows are reference images
and test images. The third and fourth rows displays similarities between high-level visual features
or visual-text features. The last row provides generated pseudo-labels for each case.

Figure 7: Qualitative ablation results on COMP. The top two rows are reference and test images.
The third and fourth rows compare the mask quality before and after incorporating COMP. In the
last row, the corresponding ground truth are provided for reference.

without COMP, such as localized omissions, peripheral outliers, and central-region discontinuities.
These observations underscore COMP’s role in optimizing mask quality.

In summary, the ablation studies validate that the visual and textual localization branches (VLDM
and TLGP) provide complementary feature enhancements, while COMP serves as a critical final
refinement stage. Together, they achieve a synergistic leap in segmentation performance, building
on the quantitative mIoU gains observed earlier.

4 CONCLUSION

This paper proposes MMSeg, multi-modal and multi-view driven semantic enrichment for training-
free image prompt segmentation. MMSeg consists of two key components: object localization and
mask generation, enhancing reference feature representation through multi-modal prompts and vi-
sual cues from multi-view image augmentation. For localization, we boost feature discriminability
via diffusion model priors and ensure robustness by maintaining segmentation consistency across
multi-view references. To harness multi-modal complementarity, we integrate text modality and
generate pseudo-category labels for semantic guidance, forging synergy between visual and textual
cues. For mask generation, we design a self-correcting pipeline that aggregates consensus across
multiple proposals to optimize mask precision and fidelity. Extensive experiments on benchmark
datasets demonstrate that MMSeg achieves competitive performance in both semantic and part seg-
mentation tasks, with notable improvements in segmentation quality.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

We have already elaborated on all the models or algorithms proposed, experimental configurations,
and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,
we declare that the entire code used in this work will be released after acceptance.

A.2 THE USE OF LARGE LANGUAGE MODELS

We use large language models solely for polishing our writing, and we have conducted a careful
check, taking full responsibility for all content in this work.

A.3 RELATED WORK

A.3.1 VISION FOUNDATION MODELS

Vision foundation models (VFMs) have demonstrated remarkable generalizability across a wide
range of downstream tasks. The CLIP families (Radford et al., 2021; Kolesnikov et al., 2023; Sun
et al., 2024b) perform contrastive learning on text-image pairs to construct a unified text-image
feature space, enabling open-world perception. SAM and SAMv2 figure out segmentation by train-
ing on large-scale image and video datasets, supporting domain-agnostic segmentation via visual
prompting. SEEM further extends this capability by incorporating multi-modal prompts and inter-
active refinement. Through self-supervised pretraining at scale, DINO and DINOv2 extract highly
generalizable and semantically rich visual features that facilitate various applications, including se-
mantic correspondence and depth estimation (Caron et al., 2021; Oquab et al., 2024). DINOv3 ad-
vances these capabilities with improved feature discrimination and enhanced domain generalization
(Siméoni et al., 2025). Recently, researchers have begun leveraging internal feature representations
from pretrained diffusion models (Rombach et al., 2022). However, existing methods often require
meticulous tuning of layer selection and iteration counts, resulting in unstable feature quality and
compromised segmentation performance. To mitigate these limitations, CleanDIFT (Stracke et al.,
2025) introduces a feature enhancement strategy that extracts more stable and higher-quality diffu-
sion features without extensive tuning.

A.3.2 REFERENCE-BASED SEGMENTATION

Reference-based segmentation methods can be categorized by reference modality. Text-referenced
methods, such as Grounded SAM (Ren et al., 2024b) and DINO-x (Ren et al., 2024a), segment
regions aligned with natural language descriptions. Visual-referenced approaches, including SAM
(Kirillov et al., 2023), Painter (Wang et al., 2023a), and SegGPT (Wang et al., 2023b), use visual
prompts to segment regions of interest, while Dinov (Li et al., 2024) introduces flexible visual con-
text prompts supporting multiple reference images. Multi-modal-referenced segmentation integrates
both text and visual cues, as seen in SEEM (Zou et al., 2023) and VLP-SAM (Sakurai et al., 2025),
which require full training or fine-tuning. SoT benchmark Rosi & Cermelli (2025) reveals that text
prompts perform better in cluttered environments, while visual prompts capture complex concepts
more effectively. To the best of our knowledge, no existing method efficiently combines both modal-
ities in a training-free framework. To bridge this gap, we propose a novel multi-modal prompting
framework for segmentation that utilizes only image prompts. Our method leverages pretrained
Vision Foundation Models (VFMs) by employing multi-view image augmentation and generating
pseudo-category labels, all without the need for additional parameters or training.

A.3.3 AUTOMATIC PROMPTING FOR SAM

The practical deployment of SAM requires domain expertise for manual prompt design and iter-
ative refinement, particularly in specialized fields such as medical imaging and remote sensing.
High-quality guidance of the segmentation process requires specific knowledge, such as identify-
ing pathological tissues or interpreting spectral signatures. This reliance on skilled operators incurs
significant time and training costs. Automated prompt engineering seeks to alleviate these limita-
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tions by generating optimal prompts for SAM, reducing user burden while enhancing adaptability
to complex visual domains (Espinosa et al., 2025).

Existing automated prompt engineering methods for SAM can be classified into two categories.
Learning-based approaches enable SAM to generate prompts from textual, visual, or other refer-
ence modalities by fine-tuning prompt encoders or introducing additional parameters. For instance,
VRP-SAM (Sun et al., 2024a) trains a visual prompt encoder to produce embeddings from refer-
ence images, whereas FM-PPO (Liu et al., 2025a) learns a policy function for direct prompt point
selection without manual threshold configuration. In specialized domains, expert knowledge can
substantially enhance the prompt generation process. The PointPrompt benchmark (Quesada et al.,
2024) consolidates human-annotated trajectory data to evaluate existing methods. SegAgent (Zhu
et al., 2025) further fine-tunes a multi-modal large language model to emulate human annotators, au-
tomatically generating suitable point prompts for SAM. However, these learning-based approaches
incur huge computational costs, limiting their accessibility for users with constrained resources.

Training-free methods utilize predefined rules to select candidate prompts. SAMAug (Dai et al.,
2023) systematically evaluates point-based prompting strategies, providing insights for future re-
search. PerSAM (Zhang et al., 2024a) designates the most and least similar pixels as positive
and negative prompts, but often results in clustered distributions in complex scenes. IPSeg (Tang
et al., 2024) and SuperPromptSeg (Zhou et al., 2025) enhance prompt efficiency through cluster-
ing techniques. IPSeg selects top-k cluster centers, while SuperPromptSeg uses superpixel-based
feature clustering. Among training-free methods, Matcher achieves notable performance improve-
ments via bidirectional matching and multi-granularity constraints, albeit with considerable com-
putational overhead and sensitivity to hyperparameters. GBMSeg (Liu et al., 2024a) further refines
this paradigm with three sampling strategies to retain high-value prompts while minimizing spatial
concentration and positive-prompt bias. Synpo (Liu et al., 2025b) innovates by selecting negative
prompts from semantically ambiguous regions rather than merely dissimilar backgrounds. In con-
trast, our approach introduces adaptive target localization combined with mask self-correction in a
fully training-free pipeline, simplifying the process by avoiding complex criteria and human anno-
tations.

A.4 DATASET AND EVALUATION METRIC

We conduct experiments on the PerSeg (Zhang et al., 2024a), FSS (Li et al., 2020), and COCO-20i
(Nguyen & Todorovic, 2019) dataset. The PerSeg benchmark is specifically designed for segmenta-
tion methods using image prompts. It covers 40 diverse object categories, with a total of 216 images
for testing (5 to 7 per category). The COCO-20i dataset (Nguyen & Todorovic, 2019) is a subset
of COCO (Lin et al., 2014), partitioned using a four-fold cross-validation split. Each fold contains
20 categories and 1,000 reference-test image pairs. The FSS dataset (Li et al., 2020) is a large-scale
dataset for few-shot segmentation tasks, comprising 1,000 categories: 520 for training, 240 for vali-
dation, and 240 for testing, with 10 images per category. Our method performs inference directly on
the full PerSeg dataset, the COCO-20i validation categories, and the FSS test categories without any
training. Furthermore, we introduce part segmentation datasets to validate the effectiveness across
varying semantic granularities. The PASCAL-Part (Chen et al., 2014) dataset includes part-level an-
notations for animals, indoor objects, persons, and vehicles, with 13 categories in total. The PACO
dataset (Ramanathan et al., 2023) provides higher semantic granularity and diversity, with 75 object
classes and over 450 part classes.

For all datasets, we use mean Intersection over Union (mIoU) as the evaluation metric. Regarding
COCO-20i, we follow the same evaluation protocol in Matcher, reporting results for each fold and
the average performance across all folds.

A.5 MORE VISUALIZATION OF EXPERIMENTAL RESULTS

In this subsection, we present additional visualization experimental results. Figure 8 illustrates the
visualization of TLGP ablation experiments, while Figure 9 depicts the visualization of COMP
ablation experiments. Figures 10 and 11 showcase the visualizations of comparative experiments
conducted on the FSS and PerSeg datasets, respectively.
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Figure 8: More visualization of feature similarity maps. The first and second rows are reference
images and test images. The third and fourth rows displays similarities between high-level visual
features or visual-text features. The last row provides generated pseudo-labels for each case.
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Figure 9: More qualitative ablation results on COMP. The figure can be divided into two sections:
the upper and lower parts. In each part, the top two rows are reference and test images. The third
and fourth rows compare the mask quality before and after incorporating COMP. In the last row, the
corresponding ground truth is provided for reference.
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Ground TruthPerSAM Matcher OursReference Ground TruthPerSAM Matcher OursReference

Figure 10: More qualitative results on FSS. In each half of the figure, the leftmost column contains
reference images and their masks for each row. The remaining columns visualize segmentation
results from PerSAM, Matcher, MMSeg, and the Ground Truth.
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Figure 11: More qualitative results on PerSeg. The layout is similar to Fig. 10. The results from
PerSAM, Matcher, IPSeg, and our method are visualized.
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