

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MMSEG: MULTI-MODAL AND MULTI-VIEW DRIVEN SEMANTIC ENRICHMENT FOR TRAINING-FREE IMAGE PROMPT SEGMENTATION

Anonymous authors

Paper under double-blind review

## ABSTRACT

Rapid development of vision foundation models has fueled interest in training-free image segmentation utilizing image prompts. Current methods typically involve a single image and its corresponding mask as references, relying on high-level feature similarity to generate point prompts for subsequent segmentation. However, these approaches suffer from inaccurate target localization and suboptimal mask quality. In response to these limitations, we propose **MMSeg**, a training-free Multi-modal and Multi-view image prompt Segmentation framework. MMSeg enhances semantic information by diversifying references through two key components: visual localization augmented by diffusion prior and multi-view cues, alongside text-driven localization from generated pseudo-labels. By leveraging segmentation consistency across multi-view images and complementary strengths of multi-modal cues, these modules facilitate precise target localization. Furthermore, a consensus-oriented mask proposer is devised to filter and refine mask proposals. Experimental results demonstrate the competitive performance of MM-Seg, achieving 95.1% mIoU on the PerSeg dataset, 87.4% on the FSS dataset, and 52.8% on the COCO-20<sup>i</sup> dataset.

## 1 INTRODUCTION

Image segmentation is a fundamental task in computer vision and critical to perform scene understanding(Brar et al., 2025). It is widely applied in robotics (Jiang et al., 2025), autonomous driving (Shoeb et al., 2025), and medical imaging (Liu et al., 2024a). Recent years have witnessed the emergence of vision foundation models (Kirillov et al., 2023; Ravi et al., 2024; Caron et al., 2021; Oquab et al., 2024; Radford et al., 2021; Zou et al., 2023), which have propelled progress in semantic segmentation by enabling the identification of infinite object categories or visual concepts. In practice, performing segmentation with vision foundation models typically requires appropriate prompts tailored for each image. These prompts can be text descriptions or visual indicators, such as bounding boxes, scribbles, or points. However, providing effective prompts requires either multi-round interaction or professional expertise, which degrades generalization to unknown domains and limits automatic segmentation of batch data.

Recent studies have investigated SAM-based solutions (Kirillov et al., 2023; Ravi et al., 2024) that enable batch segmentation without the need for carefully crafted prompts. These methods generally fall into two categories: those using an image and its corresponding mask as reference, and those employing text as reference, as illustrated in Fig. 1(a) and Fig. 1(b) of the left panel. Among visual-only approaches, PerSAM (Zhang et al., 2024a) is a pioneering method that supports segmentation of customized visual concepts by generating point prompts for SAM through feature matching. Matcher (Liu et al., 2024b) further enhances the quality of generated point prompts and extends SAM’s capabilities to more general segmentation tasks. As a text-based approach, ESC-Net (Lee et al., 2025) automatically generates point prompts within the image by leveraging the correlation between text and images, incorporating textual guidance to refine mask generation. However, relying on a single modality for prompting presents inherent limitations in practical scenarios, underscoring the need for more robust approaches that integrate multiple modalities to provide complementary semantic cues and improve segmentation accuracy.

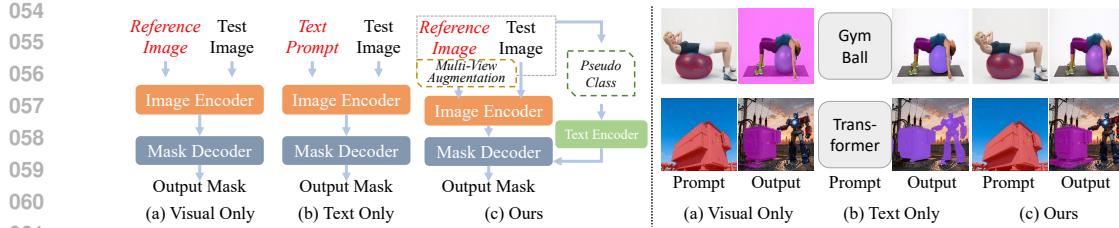


Figure 1: Illustration of our motivations. Left panel: From left to right, we summarize and visualize three paradigms for reference-based image segmentation. Right panel: we provide intuitive analyses on the failure cases of previously adopted paradigms. Meanwhile, we showcase the robust segmentation achieved by the proposed framework driven by image prompts and “hacked” text prompts.

This paper identifies two key issues for improving image-prompt-based segmentation: accurate object localization for point prompts and mask quality optimization. As illustrated in the right panel of Fig. 1, existing methods confront the following issues: 1) Visual-only methods frequently suffer from granularity misalignment and imprecise localization due to reliance on high-level features extracted by models such as DINOv2 (Oquab et al., 2024) or SAM. 2) Text-only methods effectively mitigate granularity inconsistencies but face difficulties caused by linguistic ambiguity or limited descriptive capacity, particularly when targets exhibit subtle or complex attributes that are hard to precisely describe.

In response, we propose a **Multi-modal and Multi-view Segmentation** framework (**MMSeg**), which integrates pseudo-class generation into the image-prompt segmentation pipeline. To improve localization, we enrich feature diversity using diffusion priors, multi-view image augmentation, and pseudo-label generation. For mask optimization, we first sample point prompts to generate candidate masks, then filter and merge them using a multi-step consensus-oriented pipeline. Experimental evaluations demonstrate that MMSeg significantly reduces both localization and segmentation errors compared to prior methods. Our main contributions are summarized as follows:

- We propose MMSeg, multi-modal and multi-view driven semantic enrichment for training-free image prompt segmentation. By further enhancing visual features and introducing pseudo class generation, our approach enhances semantic expression, enabling more accurate targeting and high-quality mask generation.
- We introduce three key components: Visual Localization augmented by Diffusion prior and Multi-view cues (VLDM) for visual localization, Text-driven Localization from Generated Pseudo-labels (TLGP) for text-driven localization, and Consensus-Oriented Mask Proposer (COMP) for mask optimization. These modules collaboratively alleviate the limited richness of feature representation derived from a single image, mitigate the reliance on high-level features, and improve mask quality of the generated masks.
- Extensive experiments show our method achieves strong performance on multiple datasets and tasks. It supports both one-shot semantic segmentation and generalizes well to one-shot part segmentation. Comprehensive ablation studies validate the contribution and efficacy of each component in our framework.

## 2 METHOD

As illustrated in Fig. 2, the proposed MMSeg framework leverages a single reference image to segment corresponding regions in the test image based on shared semantics. It comprises two main components: multi-modal localization and prompt generation, as well as mask proposal optimization. The localization employs a feature matching pipeline with visual and textual branches to extract feature similarity maps. A cascaded matching process gathers multi-modal point sets that guide precise target localization. Initial mask proposals are generated using the Segment Anything Model (SAM) and refined with a Consensus-Oriented Mask Proposer (COMP) strategy. The optimized masks are then used in SAM for accurate segmentation of regions in the test image that correspond to the reference image mask.

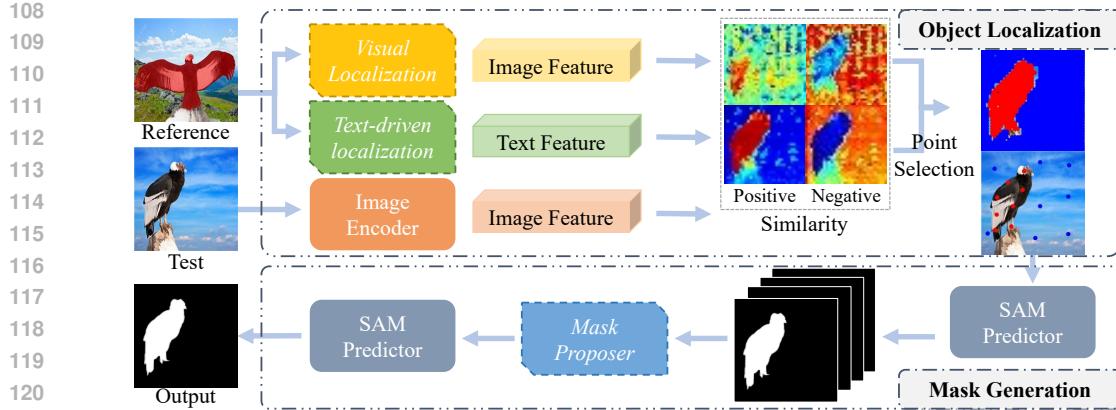


Figure 2: Overall pipeline of the proposed training-free segmentation framework, MMSeg. It consists of two main parts: object localization and mask generation. The localization part in the upper panel contains two independent branches, including VLDM and TLGP. In the rightmost two images, we use red and blue points to represent positive and negative point prompts, respectively. The mask generation part in the lower panel implements a COMP for accurate mask proposal refinement.

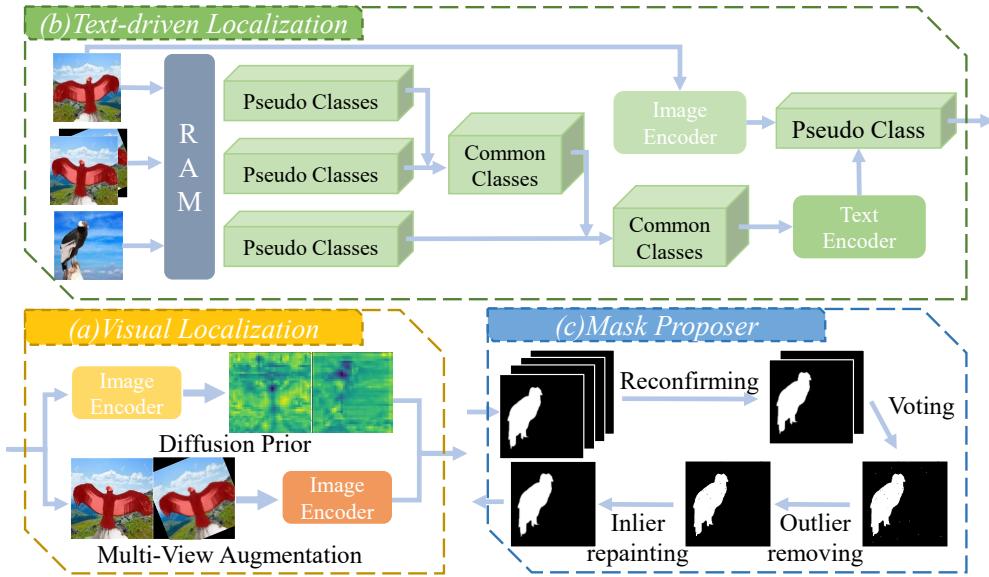


Figure 3: Detailed schematic diagram of VLDM for visual localization, TLGP for text-driven localization, and COMP for mask proposal generation.

## 2.1 VISUAL LOCALIZATION AUGMENTED BY DIFFUSION PRIOR AND MULTI-VIEW CUES

Most methods neglect the crucial role of low-level and diverse features in improving segmentation performance (Tang et al., 2024; Suo et al., 2024). To exploit target location cues embedded in visual prompts, we propose to augment visual features based on leveraging high-level image features. Specifically, we design a visual localization branch enhanced by diffusion priors and multi-view augmentation, as depicted in Fig. 3(a). This branch integrates low-level features extracted through diffusion models and diverse features obtained from multi-view augmented images.

**Diffusion prior.** Inspired by IPSeg, we utilize the prior knowledge embedded in pretrained diffusion models to extract low-level image features, thereby compensating for the tendency of high-level features to overlook fine-grained image details. However, we observe that the stability of diffusion priors is sensitive to the extraction location and the number of diffusion timesteps, rendering the method vulnerable to hyperparameter variations. To overcome the limitation, we introduce CleanDifft (Stracke et al., 2025) to eliminate the impacts of hyperparameters and deliver high-quality diffusion priors, effectively enhancing the preservation of detailed image information. We formu-

162 late the extraction of diffusion priors  $F_{ref_{sd}} = Enc_{sd}(Img_{ref})$  and  $F_{test_{sd}} = Enc_{sd}(Img_{test})$   
 163 separately from the reference image  $Img_{ref}$  and test image  $Img_{test}$ , where  $Enc_{sd}$  is the CleanDift  
 164 image encoder.

165 **Mutil-view cues.** Motivated by the insight that resulting confidence maps remain consistent and  
 166 robust under rigid geometric transformations of the reference image (Wang et al., 2025), we in-  
 167 incorporate multi-view image augmentation. Specifically, we apply random rotations and flips to the  
 168 images, effectively mitigating the adverse effects of target position and shape variations on feature  
 169 matching performance. In detail, we formulate the multi-view visual augmentation as the following  
 170 Eq. 1:

$$171 \quad Img_{ref_{var_i}} = MultiViewAug(Img_{ref}, M_{ref}) \quad (1)$$

172 where  $M_{ref}$  is the mask of the reference image, and  $Img_{ref_{var_i}}$  denotes the reference image  
 173 after applying the  $i_{th}$  image augmentation operation  $MultiViewAug(\cdot)$ . Available augmenta-  
 174 tions include one null operation *Identity*, as well as two spatial transformations: random rota-  
 175 tion, *RandRotate*, and horizontal flip, *HorizontalFlip*. Afterwards, we perform feature ex-  
 176 traction from these transformed reference images  $\{Img_{ref_{var_i}}\}_{i=1}^3$ . Regarding the  $i$ th image,  
 177 we denote its feature as  $F_{ref_{var_i}}$ . The resulting features are collected into a feature list, termed  
 178  $F_{ref_{mv}} = \{F_{ref_{var_i}}\}_{i=1}^3$ . As for the test image, we only extract its feature  $F_{test_{mv}}$  from the original  
 179 view without performing image augmentation.

180 **Visual localization.** To utilize diffusion priors and multi-view cues for localizing regions with  
 181 the expected semantics, we perform feature matching between features from  $Img_{ref}$  and  $Img_{test}$ .  
 182 Following existing methods (Tang et al., 2024; Zhang et al., 2024a), the cosine similarity in the  
 183 feature space is calculated. Subsequently, for  $F_{ref_{sd}}$  and each element in  $F_{ref_{mv}}$ , we calculate  
 184 their similarities with the corresponding test features  $F_{test} = \{F_{test_{sd}}, F_{test_{mv}}\}$  respectively. The  
 185 formulation of feature matching is presented in Eq. 2:

$$186 \quad S_{vis} = F_{ref} \cdot F_{test}^T \quad (2)$$

187 where  $F_{ref}$  can represent  $F_{ref_{sd}}$  and each item in  $F_{ref_{mv}}$ , and  $S_{vis}$  are collections of visual similar-  
 188 ity maps. Moreover, the manner in which multi-source visual cues are utilized significantly affects  
 189 the effectiveness of target matching and localization. Existing methods commonly fuse similarity  
 190 maps by simple element-wise addition (Tang et al., 2024), which often introduces artifacts outside  
 191 the target regions. To address the issue, we propose avoiding direct fusion of the confidence maps  
 192 of feature similarities. Instead, we defer their integration to the generation stage of point prompts,  
 193 employing an iteratively constraint-based mechanism to guide the point generation process.

## 195 2.2 TEXT-DRIVEN LOCALIZATION FROM GENERATED PSEUDO-LABELS

196 Text prompts possess certain advantages in describing common concepts and exhibit stronger capa-  
 197 bilities in retrieving targets based on semantic cues within cluttered environments (Rosi & Cermelli,  
 198 2025). To exploit the complementarity between modalities, this work proposes an intuitive, seam-  
 199 lessly integrated, and robust text-based localization module to enhance accuracy.

200 The proposed method is driven by a pseudo-class label list generated by the pretrained image recog-  
 201 nition model RAM (Zhang et al., 2024b). As indicated in Eq. 3, we first obtain the predicted label  
 202 lists  $\{Classes_{pseudo_{var_i}}\}_{i=1}^3$  and  $Classes_{pseudotest}$ , respectively.

$$203 \quad \begin{aligned} \{Classes_{pseudo_{var_i}}\}_{i=1}^3 &= \{RAM(Img_{ref_{var_i}})\}_{i=1}^3, \\ Classes_{pseudotest} &= RAM(Img_{test}), \end{aligned} \quad (3)$$

204 Based on the group of calculated label lists, an iterative process is performed to determine the  
 205 most representative pseudo-category labels  $Classes_{pseudo}$  via intersection operations as shown in  
 206 Fig. 3(b), and we formulate the process in Eq. 5,

$$207 \quad Classes_{pseudo} = \begin{cases} Classes_{pseudo} \cap Classes_{candidate}, & \text{if } Classes_{pseudo} \cap Classes_{candidate} \\ Classes_{pseudo}, & \text{otherwise} \end{cases} \quad (4)$$

208 where  $Classes_{pseudo}$  is initialized as the pseudo-category labels of  $I_{ref_{var_0}}$  and  $Classes_{candidate}$   
 209 represents each element in the iteration. Based on the reasonable assumption that the text label  
 210 achieving the best semantic alignment across multi-view observations of the same target should be

consistent, the frequently occurring categories in the RAM inference results are selected to form candidate label lists. In cases where multiple labels exist, CLIP (Radford et al., 2021) is employed to compute probability scores and identify the label with the highest probability corresponding to the masked region in the reference image, as indicated by Eq. 5.

$$Class_{pseudo} = \arg \max_{c \in L_{ref}} \text{CLIP}(Class_{pseudo}, I_{ref_{var_0}}) \quad (5)$$

We observed that CLIP predicted similarity maps corrupted by noise. Instead, CLIP Surgery (Li et al., 2025) is introduced to yield a cleaner textual similarity map  $S_{text}$  for improved localization.

Moreover, we select point prompts by iteratively fusing paired similarities ( $S_{vis/text}^{pos}, S_{vis/text}^{neg}$ ). In the  $i$ -th iteration, a pair of binarized maps,  $FG_i$  and  $BG_i$ , are generated to differentiate foreground and background via Eq. 6,

$$\begin{aligned} FG_i &= \mathbb{I}(S_i^{pos} > weight \cdot S_i^{neg}) \\ BG_i &= \sim FG_i \end{aligned} \quad (6)$$

where  $\mathbb{I}(\cdot) = \{(i, j) \mid I(i, j) = 1\}$  extracts the set of foreground pixels.  $FG_i$  is adaptively fused with  $FG_{i-1}$  from the previous iteration as indicated by Eq. 7,

$$FG_i = \begin{cases} FG_{i-1} \wedge FG_i, & \text{if } |FG_{i-1} \wedge FG_i| \geq \tau \cdot |FG_{i-1}| \\ FG_{i-1}, & \text{otherwise} \end{cases} \quad (7)$$

where  $\tau$  is the threshold for the ratio of overlapped foreground pixels between consecutive iterations, and  $|\cdot|$  measures the non-zero pixel count. By iterating on paired similarities, multi-modal prompts are fully exploited to refine the target semantic region progressively. Afterwards, we apply K-Means clustering to the final indicators to generate positive prompts  $\{P_m^{pos}\}_{m=1}^M$  and negative prompts  $\{P_n^{neg}\}_{n=1}^N$ .  $M$  and  $N$  are the predefined number of cluster centers.

### 2.3 CONSENSUS-ORIENTED MASK PROPOSER

Excessively dense positive point prompts for SAM lead to over-segmentation, whereas inappropriate negative points may cause under-segmentation. To address this, we propose a mask proposal generator, COMP, based on the consensus principle, which reframes mask filtering and refinement as a proposal voting problem. It consists of a self-correcting process with four adaptive steps: re-  
confirming, voting, outlier removal, and inlier repainting, shown in Fig. 3(c). They can be treated as multiple experts negotiating to reach a consensus on the final mask proposals. The first two procedures act as neutral experts, outlier removal as the radical expert, and inlier repainting as the conservative expert, collaboratively refining mask proposals. Specifically, for initial mask proposals ( $MP_{ini}$  derived from previously generated point prompts), COMP leverages the interaction between four experts to ensure the generation of high-quality mask proposals  $MP_{comp}$ . Subsequently, these proposals are sent back to SAM to obtain the final segmentation result  $M_{output}$ .

**Reconfirming.** We reevaluate the necessity of each proposal in  $MP_{ini}$  by thresholding their similarities with both the referenced region  $M_{ref} \circ F_{ref_{var_0}}$  and the generated pseudo label  $Class_{pseudo}$ . The recalculated similarities are represented as  $RS_{mask}$  and  $RS_{text}$ . Afterwards, using two pre-defined thresholds,  $T_{mask}$  and  $T_{text}$ , along with the TopK operator, we sequentially filter out the resulting candidate proposals  $MP_{reconfirm}$  with high similarity ratings. In this paper,  $T_{mask}$  and  $T_{text}$  are empirically set to 50 and 20, respectively.

**Voting.** Upon obtaining filtered mask proposals  $MP_{reconfirm}$  in the first stage, we adopt another neutral strategy to merge existing masks via a voting mechanism. In the implementation, we splat all mask proposals onto the same two-dimensional plane and aggregate them through element-wise addition. For each location, all pixels with votes exceeding a certain proportion,  $T_{voting}$ , of the total pixel number are selected to form the merged binary mask proposal  $MP_{voting}$ .

**Outlier Removal.** There are potential outliers that fail to be removed from the merged mask proposal  $MP_{vote}$  in the preceding stages. Exploiting the property that the spatial distribution of object masks tends to be continuous and smooth in their local regions, we propose to remove outlier pixels in an aggressive manner using morphological erosion operations, which effectively eliminate isolated noise pixels. The resulting mask proposal is defined as  $MP_{erode}$ .

**Inlier Repainting.** This operation serves to “deny the denied” and “smooth the unsmoothed”. The former restores mask regions that were mistakenly removed by reintegrating them back to the mask

270  
271 Table 1: Quantitative results on the PerSeg dataset. The average mIoU and scores of each represen-  
272 tative categories are presented. The best methods are indicated by **underlined bold** text, while the  
273 second-ranking and third-ranking methods are emphasized in **bold** and underlined, respectively.

| Venue                | Mean      | Backpack    | Barn        | Can         | Cat         | Clock       | Robot       | Toy         | Teddy       | Bear        | Thin | Bird |
|----------------------|-----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|------|
| <i>Training</i>      |           |             |             |             |             |             |             |             |             |             |      |      |
| VP                   | NIPS 2022 | 65.9        | 66.7        | 58.6        | 61.2        | 76.6        | 59.2        | 72.4        | 79.8        | 67.4        |      |      |
| Painter              | CVPR 2023 | 56.4        | 88.1        | 3.2         | 19.1        | <b>94.1</b> | 42.9        | 65.0        | 93.0        | 20.9        |      |      |
| SEEM                 | NIPS 2023 | 87.1        | 94.1        | 82.5        | 65.4        | 91.1        | 72.4        | <u>95.8</u> | <b>95.2</b> | 71.3        |      |      |
| SegGPT               | ICCV 2023 | <b>94.3</b> | 94.4        | 63.8        | <b>96.6</b> | <b>94.1</b> | <u>92.6</u> | <b>96.2</b> | 93.7        | 92.6        |      |      |
| <i>Training-Free</i> |           |             |             |             |             |             |             |             |             |             |      |      |
| PerSAM               | ICLR 2024 | 89.3        | 95.4        | 38.9        | 96.2        | <b>94.1</b> | <b>96.2</b> | 60.6        | 94.6        | <b>93.7</b> |      |      |
| Matcher              | ICLR 2024 | <u>94.1</u> | <u>95.6</u> | <b>94.6</b> | <u>96.1</u> | 93.4        | 91.3        | 95.2        | 94.8        | 90.8        |      |      |
| IPSeg                | IJCV 2025 | 90.9        | <b>96.3</b> | <u>93.5</u> | 80.9        | <b>94.1</b> | 73.2        | 65.8        | <u>86.8</u> | <u>93.1</u> |      |      |
| Ours                 | -         | <b>95.1</b> | <b>95.9</b> | <b>96.4</b> | <b>97.3</b> | <b>95.2</b> | <b>94.8</b> | <b>96.5</b> | <b>95.9</b> | <b>93.5</b> |      |      |

284 Table 2: Quantitative results on the COCO-20<sup>i</sup> and FSS datasets. Results of all folds are provided  
285 for the COCO-20<sup>i</sup> dataset. The top three are represented in the same way as in Table 1.

| Venue                | COCO       |             |             |             |             | FSS<br>mean |
|----------------------|------------|-------------|-------------|-------------|-------------|-------------|
|                      | Fold0      | Fold1       | Fold2       | Fold3       | mean        |             |
| <i>Training</i>      |            |             |             |             |             |             |
| HSNet                | ICCV 2021  | 37.2        | 44.1        | 42.4        | 41.3        | 41.2        |
| VAT                  | ECCV 2022  | 39.0        | 43.8        | 42.6        | 39.7        | 41.3        |
| FPTTrans             | NIPS 2022  | 44.4        | 48.9        | 50.6        | 44.0        | 47.0        |
| MSANet               | arXiv 2022 | 47.8        | <b>57.4</b> | 48.7        | 50.5        | 51.1        |
| Painter              | CVPR 2023  | 31.2        | 35.3        | 33.5        | 32.4        | 33.1        |
| SegGPT               | ICCV 2023  | <b>56.3</b> | <b>57.4</b> | <b>58.9</b> | <b>51.7</b> | <b>56.1</b> |
| <i>Training-Free</i> |            |             |             |             |             |             |
| PerSAM               | ICLR 2024  | 23.1        | 23.6        | 22.0        | 23.4        | 23.0        |
| Matcher              | ICLR 2024  | <u>52.2</u> | 53.3        | <u>52.5</u> | <b>51.7</b> | <u>52.4</u> |
| Ours                 | -          | <b>52.7</b> | <u>53.7</u> | <b>52.6</b> | <u>52.1</u> | <b>52.8</b> |

298 proposal, while the latter fills gaps within the mask to ensure spatial continuity. Morphological dilation  
299 operations are applied to detect pixels wrongly excluded and to identify internal discontinuities,  
300 enabling their correction.

### 3 EXPERIMENTS

304 To validate the superiority of MMSeg, we select several representative reference-based methods and  
305 specialized few-shot segmentation models for comparative experiments. MMSeg requires no dataset  
306 training and operates solely by leveraging pretrained Vision Foundation Models for segmentation  
307 based on reference images and masks. We utilize DINOv2 as a general visual feature extractor  
308 and CleanDIFT as a low-level visual feature extractor (Tang et al., 2024). RAM and CLIP-Surgery  
309 are used to identify and generate pseudo-category labels, while SAM functions as a class-agnostic  
310 image segmentation model. More details about dataset and evaluation metric are in Appendix.

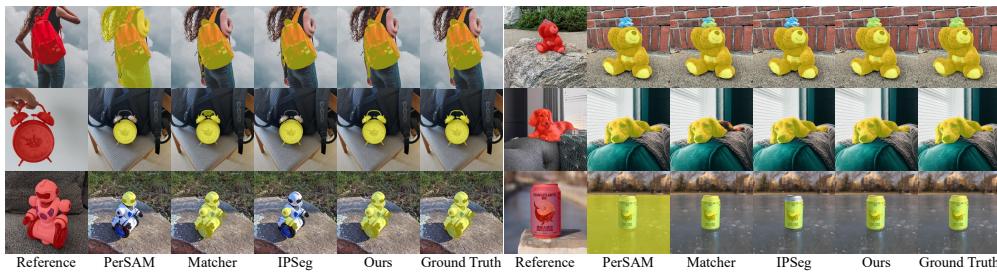
#### 3.1 QUANTITATIVE EXPERIMENTS

312 We display results on the PerSeg dataset in Table 1. Our method outperforms both training-based  
313 and training-free baselines. Concretely, it surpasses the second-best method, SegGPT, by 0.8% and  
314 outperforms Painter by a substantial margin of 38.7%. As for per-category analyses, while PerSAM  
315 exceeds our method on a few categories, it suffers from unstable segmentation performance, with  
316 considerably low IoU scores on the Barn and Robot Toy classes. However, our results are well-  
317 balanced and consistently high, with IoU scores exceeding 90% for most categories. The robustness  
318 and high accuracy stem from our core designs: visual localization and text-driven localization. These  
319 strategies enrich feature representation and enable more precise segmentation, effectively equipping  
320 our method to handle diverse personalized visual concepts.

322 Experimental results on the COCO-20<sup>i</sup> and FSS datasets are summarized in Table 2. Our method  
323 also achieves leading performance. Compared to other training-free baselines, MMSeg delivers

324  
 325 Table 3: Quantitative results on the part segmentation datasets, including PASCAL-Part and PACO-  
 326 Part. The per-class specifics are provided for the former, while the per-fold results are displayed for  
 327 the latter. The top three are represented in the same way as in Table 1.

|                      | PASCAL-Part |             |             |             |             | PACO-Part   |             |             |             |             |
|----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                      | animals     | indoor      | person      | vehicles    | mean        | F0          | F1          | F2          | F3          | mean        |
| <i>Training</i>      |             |             |             |             |             |             |             |             |             |             |
| HSNet                | 21.2        | 53.0        | 20.2        | 35.1        | 32.4        | 20.8        | 21.3        | 25.5        | 22.6        | 22.6        |
| VAT                  | 21.5        | 55.9        | 20.7        | 36.1        | 33.6        | 22.0        | 22.9        | 26.0        | 23.1        | 23.5        |
| Painter              | 20.2        | 49.5        | 17.6        | 34.4        | 30.4        | 13.7        | 12.5        | 15.0        | 15.1        | 14.1        |
| SegGPT               | 22.8        | 50.9        | 31.3        | 38.0        | 35.8        | 13.9        | 12.6        | 14.8        | 12.7        | 13.5        |
| <i>Training-Free</i> |             |             |             |             |             |             |             |             |             |             |
| PerSAM               | 19.9        | 51.8        | 18.6        | 32.0        | 30.1        | 19.4        | 20.5        | 23.8        | 21.2        | 21.2        |
| Matcher              | <b>37.1</b> | <b>56.3</b> | <b>32.4</b> | <b>45.7</b> | <b>42.9</b> | <b>32.7</b> | <b>35.6</b> | <b>36.5</b> | <b>34.1</b> | <b>34.7</b> |
| ours                 | <b>35.3</b> | <b>64.5</b> | <b>32.3</b> | <b>46.8</b> | <b>44.7</b> | <b>31.2</b> | <b>34.3</b> | <b>38.6</b> | <b>33.5</b> | <b>34.4</b> |



338  
 339 Figure 4: Qualitative results on PerSeg. In each half of the figure, the leftmost column contains  
 340 reference images and their masks for each row. The remaining columns visualize segmentation  
 341 results from PerSAM, Matcher, IPSeg, MMSeg, and the Ground Truth.  
 342

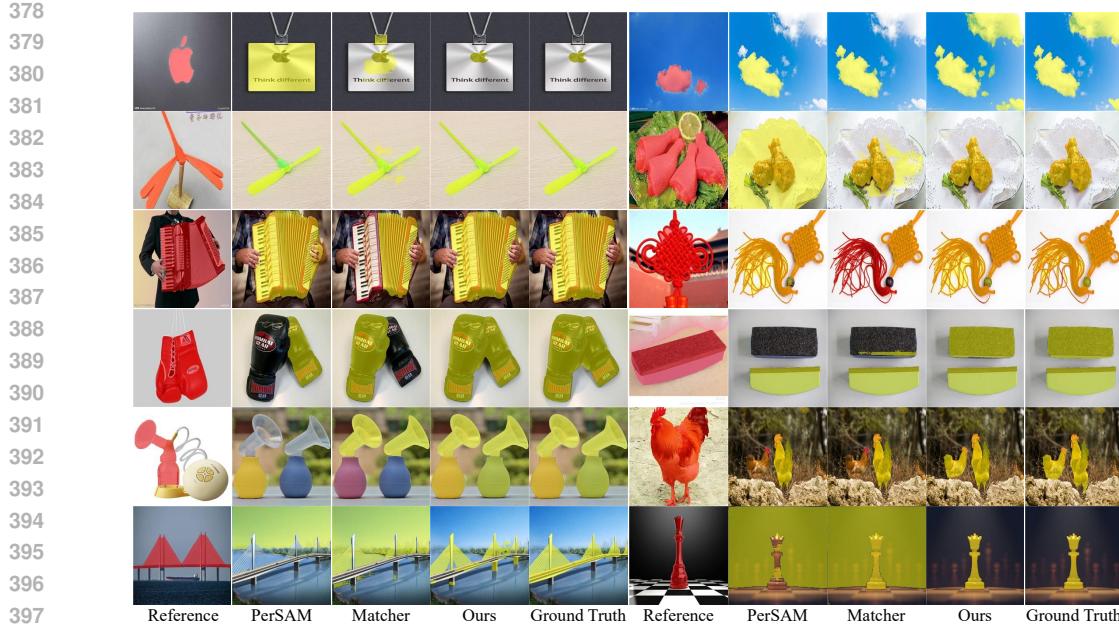
343  
 344 substantial advantages, surpassing PerSAM by 29.8% and 16.2% on both datasets, respectively. Al-  
 345 though SegGPT has been trained on in-domain data similar to these datasets, our method defeats  
 346 SegGPT on *COCO-20<sup>i</sup>-fold3* and outperforms it by 1.8% on the FSS dataset. These results demon-  
 347 strate that our approach achieves superior segmentation performance on unseen data. Furthermore,  
 348 we also include comparisons with specialized baselines for few-shot segmentation. Our method  
 349 excels over MSANet by 1.7% and HSNet by 11.6% on the *COCO-20<sup>i</sup>* dataset.

350  
 351 Furthermore, the results on the fine-grained part segmentation datasets are presented in Table 3.  
 352 On the PASCAL-Part dataset, MMSeg shows a significant improvement of 1.8% over the next-best  
 353 method and 14.6% over PerSAM. On the PACO-Part dataset, it also achieves top-tier performance  
 354 comparable to Matcher and significantly outperforms other peer methods. These results underscore  
 355 the strong generalization of MMSeg to segmenting targets across diverse semantic scales, categories,  
 356 and sizes without task-specific training.

### 3.2 QUALITATIVE EXPERIMENTS

363  
 364 Fig. 4 shows qualitative comparisons on the PerSeg dataset. Utilizing the aligned text-image feature  
 365 space of CLIP, our method employs generated pseudo-labels to accurately identify segmentation  
 366 targets and exclude extraneous elements, such as the person in the first image. The integration of  
 367 multi-view reference images further enriches feature extraction. In the second row, while PerSAM  
 368 and IPSeg only partially segment the alarm clock and dog, our method achieves complete segmenta-  
 369 tion. Notably, our approach captures finer details, such as backpack straps and teddy bear hat edges,  
 370 which is attributed to our mask proposal strategy that discards unsuitable masks while merging suit-  
 371 able ones, resulting in accurate and coherent segmentations.

372  
 373 We visualized comparison results on the FSS dataset in Fig. 5. The fourth and fifth images in the  
 374 left panel illustrate our method’s effective control over segmentation granularity. The final row  
 375 confirms our ability to distinguish regions with similar semantics, while competitors struggle with  
 376 unrelated content; for instance, Matcher missegments the background, and PerSAM fails to segment  
 377 the target. The introduction of pseudo-labels enhances semantic understanding, enabling complete  
 378 target segmentation and avoiding issues like recognizing only part of a boxing glove or pump. The



398  
399 Figure 5: Qualitative results on FSS. The layout is similar to Fig. 4. The results from PerSAM,  
400 Matcher, and our method are visualized.  
401

402 first three images in the left panel showcase MMSeg’s robustness against background interference,  
403 thanks to its text-driven target localization and mask proposal refinement. During the reconfirmation  
404 stage of COMP, we effectively eliminate irrelevant mask proposals, ensuring final mask quality.

### 405 3.3 ABLATION EXPERIMENTS

406 In this section, we conduct comprehensive ablation  
407 studies to validate the contribution of each  
408 component. As detailed in Table 4, the re-  
409 sults systematically demonstrate that each mod-  
410 ule yields significant mIoU gains.

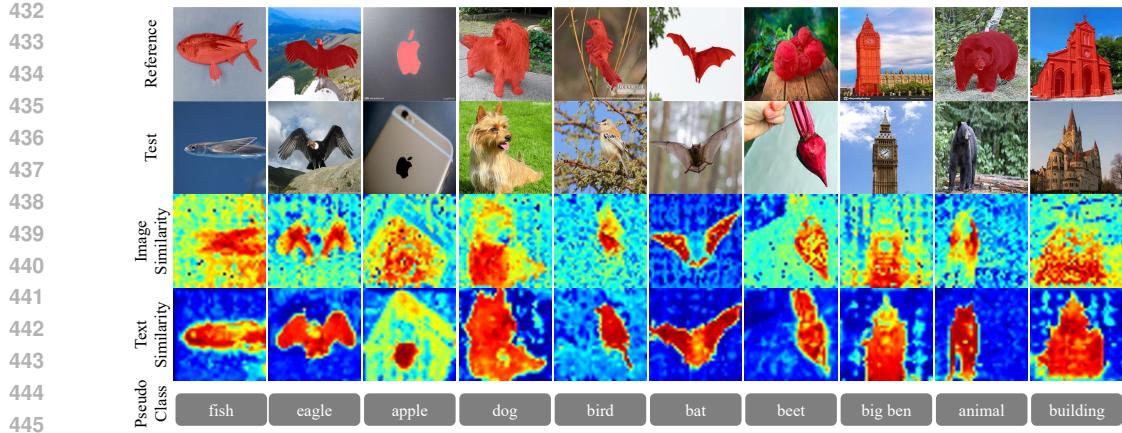
411 **Effect of VLDM.** This module exploits en-  
412 riched features from diffusion priors and multi-  
413 view augmented reference images for precise  
414 visual localization. A comparison between the  
415 first two rows reveals that the introduction of  
416 VLDM improves performance by 1.68% and  
417 7.6% on the PerSeg and FSS datasets, respec-  
418 tively. When integrated into the full model in the  
419 last two rows, it still delivers notable improvements of 1.4% and 1.0% on these datasets.

420 **Effect of TLGP.** This module provides essential semantic context, enhancing performance beyond  
421 visual features alone. The comparison of the first and third rows reveals a significant 7.1% improve-  
422 ment on the FSS dataset with TLGP integration. Additionally, comparisons between the fifth and  
423 seventh rows show accuracy gains of 0.7% and 0.6% on the PerSeg and FSS datasets, respectively,  
424 when combined with other components. These results underscore the importance of semantic guid-  
425 ance from generated pseudo-labels. For clarity, we visualize similarity maps in Fig. 6, illustrating  
426 the relationship between high-level visual features from the reference image, the test image, and  
427 the pseudo-label. The text-based similarity map enables more holistic target localization, effectively  
428 reducing granularity misalignment and background interference.

429 **Effect of COMP.** This pipeline consistently enhances mask quality, achieving mIoU gains of 0.7%  
430 to 2.4% across datasets and model configura-  
431 tions. Its effectiveness arises from a self-correction  
mechanism and multi-aspect generation constraints that refine mask proposals. Fig. 7 illustrates  
the predicted masks before and after incorporating COMP, highlighting significant flaws in masks

432 Table 4: Quantitative ablation results on the  
433 PerSeg and FSS datasets. The “Gain” column in-  
434 dicates the relative improvement of each ablation  
435 group relative to the baseline.

|               | PerSeg |      | FSS   |      |
|---------------|--------|------|-------|------|
|               | mIoU   | Gain | mIoU  | Gain |
| baseline      | 91.61  | -    | 78.16 | -    |
| + VLDM        | 93.29  | 1.68 | 85.78 | 7.62 |
| + TLGP        | 92.37  | 0.76 | 85.3  | 7.14 |
| + VLDM + TLGP | 92.67  | 1.06 | 86.5  | 8.34 |
| + VLDM + COMP | 94.42  | 2.81 | 86.82 | 8.66 |
| + TLGP + COMP | 93.67  | 2.06 | 86.43 | 8.27 |
| MMSeg         | 95.1   | 3.49 | 87.4  | 9.24 |



446 Figure 6: Visualization of feature similarity maps. The first and second rows are reference images  
447  
448 or test images. The third and fourth rows displays similarities between high-level visual features  
or visual-text features. The last row provides generated pseudo-labels for each case.



463 Figure 7: Qualitative ablation results on COMP. The top two rows are reference and test images.  
464 The third and fourth rows compare the mask quality before and after incorporating COMP. In the  
465 last row, the corresponding ground truth are provided for reference.

466 without COMP, such as localized omissions, peripheral outliers, and central-region discontinuities.  
467 These observations underscore COMP’s role in optimizing mask quality.

468  
469 In summary, the ablation studies validate that the visual and textual localization branches (VLDM  
470 and TLGP) provide complementary feature enhancements, while COMP serves as a critical final  
471 refinement stage. Together, they achieve a synergistic leap in segmentation performance, building  
472 on the quantitative mIoU gains observed earlier.

## 4 CONCLUSION

473  
474 This paper proposes MMSeg, multi-modal and multi-view driven semantic enrichment for training-  
475 free image prompt segmentation. MMSeg consists of two key components: object localization and  
476 mask generation, enhancing reference feature representation through multi-modal prompts and vi-  
477 sual cues from multi-view image augmentation. For localization, we boost feature discriminability  
478 via diffusion model priors and ensure robustness by maintaining segmentation consistency across  
479 multi-view references. To harness multi-modal complementarity, we integrate text modality and  
480 generate pseudo-category labels for semantic guidance, forging synergy between visual and textual  
481 cues. For mask generation, we design a self-correcting pipeline that aggregates consensus across  
482 multiple proposals to optimize mask precision and fidelity. Extensive experiments on benchmark  
483 datasets demonstrate that MMSeg achieves competitive performance in both semantic and part seg-  
484 mentation tasks, with notable improvements in segmentation quality.

486 REFERENCES  
487

488 Khushmeen Kaur Brar, Bhawna Goyal, Ayush Dogra, Mohammed Ahmed Mustafa, Rana Majum-  
489 dar, Ahmed Alkhayyat, and Vinay Kukreja. Image segmentation review: Theoretical back-  
490 ground and recent advances. *Information Fusion*, 114:102608, 2025. ISSN 1566-2535. doi:  
491 <https://doi.org/10.1016/j.inffus.2024.102608>. URL <https://www.sciencedirect.com/science/article/pii/S1566253524003865>.

492

493 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou, Julien Mairal, Piotr Bojanowski,  
494 and Armand Joulin. Emerging properties in self-supervised vision transformers. In 2021  
495 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9630–9640, 2021. doi:  
496 [10.1109/ICCV48922.2021.00951](https://doi.org/10.1109/ICCV48922.2021.00951).

497

498 Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and Alan Yuille. De-  
499 tect what you can: Detecting and representing objects using holistic models and body parts. In  
500 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1971–1978,  
501 2014.

502

503 Haixing Dai, Chong Ma, Zhiling Yan, Zhengliang Liu, Enze Shi, Yiwei Li, Peng Shu, Xiaozheng  
504 Wei, Lin Zhao, Zihao Wu, et al. Samaug: Point prompt augmentation for segment anything  
505 model. *arXiv preprint arXiv:2307.01187*, 2023.

506

507 Miguel Espinosa, Chenhongyi Yang, Linus Ericsson, Steven McDonagh, and Elliot J. Crowley. No  
508 time to train! training-free reference-based instance segmentation. *CoRR*, abs/2507.02798, 2025.  
509 doi: [10.48550/ARXIV.2507.02798](https://doi.org/10.48550/ARXIV.2507.02798). URL <https://doi.org/10.48550/arXiv.2507.02798>.

510

511 Chen Jiang, Allie Wang, and Martin Jagersand. Robot manipulation in salient vision through re-  
512 ferring image segmentation and geometric constraints. In 2025 *IEEE International Conference  
513 on Robotics and Automation (ICRA)*, pp. 11141–11147, 2025. doi: [10.1109/ICRA55743.2025.11128563](https://doi.org/10.1109/ICRA55743.2025.11128563).

514

515 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete  
516 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-  
517 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

518

519 Alexander Kolesnikov, Xiaohua Zhai, and Basil Mustafa. Sigmoid loss for language image pre-  
520 training. In *International Conference on Computer Vision (ICCV)*, 2023.

521

522 Minhyeok Lee, Suhwan Cho, Jungho Lee, Sunghun Yang, Heeseung Choi, Ig-Jae Kim, and Sangy-  
523oun Lee. Effective sam combination for open-vocabulary semantic segmentation. In *Proceedings  
524 of the Computer Vision and Pattern Recognition Conference*, pp. 26081–26090, 2025.

525

526 Feng Li, Qing Jiang, Hao Zhang, Tianhe Ren, Shilong Liu, Xueyan Zou, Huaizhe Xu, Hongyang Li,  
527 Jianwei Yang, Chunyuan Li, Lei Zhang, and Jianfeng Gao. Visual in-context prompting. In 2024  
528 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 12861–12871,  
529 2024. doi: [10.1109/CVPR52733.2024.01222](https://doi.org/10.1109/CVPR52733.2024.01222).

530

531 Xiang Li, Tianhan Wei, Yau Pun Chen, Yu-Wing Tai, and Chi-Keung Tang. Fss-1000: A 1000-class  
532 dataset for few-shot segmentation. In *Proceedings of the IEEE/CVF conference on computer  
533 vision and pattern recognition*, pp. 2869–2878, 2020.

534

535 Yi Li, Hualiang Wang, Yiqun Duan, Jiheng Zhang, and Xiaomeng Li. A closer look at the  
536 explainability of contrastive language-image pre-training. *Pattern Recognition*, 162:111409,  
537 2025. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2025.111409>. URL <https://www.sciencedirect.com/science/article/pii/S003132032500069X>.

538

539 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr  
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European  
conference on computer vision*, pp. 740–755. Springer, 2014.

540 Xueyu Liu, Guangze Shi, Rui Wang, Yexin Lai, Jianan Zhang, Lele Sun, Quan Yang, Yongfei  
 541 Wu, Ming Li, Weixia Han, and Wen Zheng. Feature-prompting GBMSeg: One-Shot Reference  
 542 Guided Training-Free Prompt Engineering for Glomerular Basement Membrane Segmentation  
 543 . In *proceedings of Medical Image Computing and Computer Assisted Intervention – MICCAI*  
 544 2024, volume LNCS 15009. Springer Nature Switzerland, October 2024a.

545 Xueyu Liu, Rui Wang, Yexin Lai, Guangze Shi, Feixue Shao, Fang Hao, Jianan Zhang, Jia Shen,  
 546 Yongfei Wu, and Wen Zheng. Plug-and-play ppo: An adaptive point prompt optimizer making  
 547 sam greater. In *2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition*  
 548 (*CVPR*), pp. 4332–4342, 2025a. doi: 10.1109/CVPR52734.2025.00409.

549 Yang Liu, Muzhi Zhu, Hengtao Li, Hao Chen, Xinlong Wang, and Chunhua Shen. Matcher: Seg-  
 550 ment anything with one shot using all-purpose feature matching. In *The Twelfth International*  
 551 *Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenRe-  
 552 view.net, 2024b.

553 Yufei Liu, Haoke Xiao, Jiaxing Chai, Yongcun Zhang, Rong Wang, Zijie Meng, and Zhiming  
 554 Luo. SynPo: Boosting Training-Free Few-Shot Medical Segmentation via High-Quality Neg-  
 555 ative Prompts . In *proceedings of Medical Image Computing and Computer Assisted Intervention*  
 556 – MICCAI 2025, volume LNCS 15964. Springer Nature Switzerland, September 2025b.

557 Khoi Nguyen and Sinisa Todorovic. Feature weighting and boosting for few-shot segmentation. In  
 558 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 622–631, 2019.

559 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,  
 560 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas  
 561 Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael  
 562 Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut,  
 563 Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without super-  
 564 vision. *Trans. Mach. Learn. Res.*, 2024, 2024. URL <https://openreview.net/forum?id=a68SUT6zFt>.

565 J. Quesada, Z. Fowler, M. Alotaibi, M. Prabhushankar, and G. AlRegib. Benchmarking human and  
 566 automated prompting in the segment anything model. *IEEE International Conference on Big*  
 567 *Data*, December 2024.

568 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-  
 569 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya  
 570 Sutskever. Learning transferable visual models from natural language supervision. In *Inter-  
 571 national Conference on Machine Learning*, 2021.

572 Vignesh Ramanathan, Anmol Kalia, Vladan Petrovic, Yi Wen, Baixue Zheng, Baishan Guo, Rui  
 573 Wang, Aaron Marquez, Rama Kovvuri, Abhishek Kadian, Amir Mousavi, Yiwen Song, Abhi-  
 574 manyu Dubey, and Dhruv Mahajan. Paco: Parts and attributes of common objects. In *2023*  
 575 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 7141–7151,  
 576 2023. doi: 10.1109/CVPR52729.2023.00690.

577 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham  
 578 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-  
 579 sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-  
 580 ichtenhofer. Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*,  
 581 2024. URL <https://arxiv.org/abs/2408.00714>.

582 Tianhe Ren, Yihao Chen, Qing Jiang, Zhaoyang Zeng, Yuda Xiong, Wenlong Liu, Zhengyu Ma,  
 583 Junyi Shen, Yuan Gao, Xiaoke Jiang, et al. Dino-x: A unified vision model for open-world object  
 584 detection and understanding. *arXiv preprint arXiv:2411.14347*, 2024a.

585 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,  
 586 Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual  
 587 tasks. *arXiv preprint arXiv:2401.14159*, 2024b.

594 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 595 resolution image synthesis with latent diffusion models. In *2022 IEEE/CVF Conference on*  
 596 *Computer Vision and Pattern Recognition (CVPR)*, pp. 10674–10685, 2022. doi: 10.1109/  
 597 CVPR52688.2022.01042.

598 Gabriele Rosi and Fabio Cermelli. Show or tell? a benchmark to evaluate visual and textual prompts  
 599 in semantic segmentation. In *2025 IEEE/CVF Conference on Computer Vision and Pattern Recog-*  
 600 *nition Workshops (CVPRW)*, pp. 4153–4163, 2025. doi: 10.1109/CVPRW67362.2025.00399.

601 Kosuke Sakurai, Ryotaro Shimizu, and Masayuki Goto. Vision and language reference prompt into  
 602 sam for few-shot segmentation. *arXiv preprint arXiv:2502.00719*, 2025.

603 Youssef Shoeb, Azarm Nowzad, and Hanno Gottschalk. Out-of-distribution segmentation in au-  
 604 tonomous driving: Problems and state of the art. In *2025 IEEE/CVF Conference on Com-*  
 605 *puter Vision and Pattern Recognition Workshops (CVPRW)*, pp. 4310–4320, 2025. doi: 10.1109/  
 606 CVPRW67362.2025.00416.

607 Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,  
 608 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel  
 609 Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darct, Théo Moutakanni, Leonel Sentana,  
 610 Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé  
 611 Jégou, Patrick Labatut, and Piotr Bojanowski. DINOv3, 2025. URL <https://arxiv.org/abs/2508.10104>.

612 Nick Stracke, Stefan Andreas Baumann, Kolja Bauer, Frank Fundel, and Björn Ommer. Cle-  
 613 andift: Diffusion features without noise. In *IEEE/CVF Conference on Computer Vision*  
 614 *and Pattern Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025*, pp. 117–  
 615 127. Computer Vision Foundation / IEEE, 2025. doi: 10.1109/CVPR52734.2025.00020.  
 616 URL [https://openaccess.thecvf.com/content/CVPR2025/html/Stracke\\_CleanDIFT\\_Diffusion\\_Features\\_without\\_Noise\\_CVPR\\_2025\\_paper.html](https://openaccess.thecvf.com/content/CVPR2025/html/Stracke_CleanDIFT_Diffusion_Features_without_Noise_CVPR_2025_paper.html).

617 Yanpeng Sun, Jiahui Chen, Shan Zhang, Xinyu Zhang, Qiang Chen, Gang Zhang, Errui Ding, Jing-  
 618 dong Wang, and Zechao Li. Vrp-sam: Sam with visual reference prompt. In *Conference on*  
 619 *Computer Vision and Pattern Recognition 2024*, 2024a.

620 Zeyi Sun, Ye Fang, Tong Wu, Pan Zhang, Yuhang Zang, Shu Kong, Yuanjun Xiong, Dahua Lin,  
 621 and Jiaqi Wang. Alpha-clip: A clip model focusing on wherever you want. In *Proceedings of the*  
 622 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 13019–13029, 2024b.

623 Wei Suo, Lanqing Lai, Mengyang Sun, Hanwang Zhang, Peng Wang, and Yanning Zhang. Rethink-  
 624 ing and improving visual prompt selection for in-context learning segmentation. In *European*  
 625 *Conference on Computer Vision*, pp. 18–35. Springer, 2024.

626 Lv Tang, Peng-Tao Jiang, Haoke Xiao, and Bo Li. Towards training-free open-world segmentation  
 627 via image prompt foundation models. *International Journal of Computer Vision*, 248 1, 2024.  
 628 doi: 10.1007/s11263-024-02185-6.

629 Xiaoqi Wang, Clint Sebastian, Wenbin He, and Liu Ren. Prosam: Enhancing the robust-  
 630 ness of sam-based visual reference segmentation with probabilistic prompts. *arXiv preprint*  
 631 *arXiv:2506.21835*, 2025.

632 Xinlong Wang, Wen Wang, Yue Cao, Chunhua Shen, and Tiejun Huang. Images speak in images:  
 633 A generalist painter for in-context visual learning. In *Proceedings of the IEEE/CVF Conference*  
 634 *on Computer Vision and Pattern Recognition*, pp. 6830–6839, 2023a.

635 Xinlong Wang, Xiaosong Zhang, Yue Cao, Wen Wang, Chunhua Shen, and Tiejun Huang. Seg-  
 636 gpt: Towards segmenting everything in context. In *2023 IEEE/CVF International Conference on*  
 637 *Computer Vision (ICCV)*, pp. 1130–1140, 2023b. doi: 10.1109/ICCV51070.2023.00110.

638 Renrui Zhang, Zhengkai Jiang, Ziyu Guo, Shilin Yan, Junting Pan, Hao Dong, Yu Qiao, Peng Gao,  
 639 and Hongsheng Li. Personalize segment anything model with one shot. In *The Twelfth Interna-  
 640 tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*.  
 641 OpenReview.net, 2024a. URL <https://openreview.net/forum?id=6Gzkhoc6YS>.

648 Youcai Zhang, Xinyu Huang, Jinyu Ma, Zhaoyang Li, Zhaochuan Luo, Yanchun Xie, Yuzhuo Qin,  
649 Tong Luo, Yaqian Li, Shilong Liu, et al. Recognize anything: A strong image tagging model.  
650 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
651 1724–1732, 2024b.

652 Ziqiao Zhou, Min Cen, Yuzhe Zhang, Hong Zhang, and Xu Steven Xu. Superpromptseg: A  
653 novel fine-tuning-free segmentation method leveraging superpixel-based point prompts. In  
654 *ICASSP 2025 - 2025 IEEE International Conference on Acoustics, Speech and Signal Processing*  
655 (*ICASSP*), pp. 1–5, 2025. doi: 10.1109/ICASSP49660.2025.10889755.

656 Muzhi Zhu, Yuzhuo Tian, Hao Chen, Chunluan Zhou, Qingpei Guo, Yang Liu, Ming Yang, and  
657 Chunhua Shen. Segagent: Exploring pixel understanding capabilities in mllms by imitating hu-  
658 man annotator trajectories. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*  
659 *Pattern Recognition (CVPR)*, pp. 3686–3696, June 2025.

660 Xueyan Zou, Jianwei Yang, Hao Zhang, Feng Li, Linjie Li, Jianfeng Wang, Lijuan Wang,  
661 Jianfeng Gao, and Yong Jae Lee. Segment everything everywhere all at once. In A. Oh,  
662 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-*  
663 *ral Information Processing Systems*, volume 36, pp. 19769–19782. Curran Associates, Inc.,  
664 2023. URL [https://proceedings.neurips.cc/paper\\_files/paper/2023/file/3ef61f7e4afacf9a2c5b71c726172b86-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2023/file/3ef61f7e4afacf9a2c5b71c726172b86-Paper-Conference.pdf).

665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701

702  
703 

## A APPENDIX

704  
705 

### A.1 REPRODUCIBILITY STATEMENT

706  
707 We have already elaborated on all the models or algorithms proposed, experimental configurations,  
708 and benchmarks used in the experiments in the main body or appendix of this paper. Furthermore,  
709 we declare that the entire code used in this work will be released after acceptance.710  
711 

### A.2 THE USE OF LARGE LANGUAGE MODELS

712  
713 We use large language models solely for polishing our writing, and we have conducted a careful  
714 check, taking full responsibility for all content in this work.715  
716 

### A.3 RELATED WORK

717  
718 

#### A.3.1 VISION FOUNDATION MODELS

719  
720 Vision foundation models (VFs) have demonstrated remarkable generalizability across a wide  
721 range of downstream tasks. The CLIP families (Radford et al., 2021; Kolesnikov et al., 2023; Sun  
722 et al., 2024b) perform contrastive learning on text-image pairs to construct a unified text-image  
723 feature space, enabling open-world perception. SAM and SAMv2 figure out segmentation by train-  
724 ing on large-scale image and video datasets, supporting domain-agnostic segmentation via visual  
725 prompting. SEEM further extends this capability by incorporating multi-modal prompts and inter-  
726 active refinement. Through self-supervised pretraining at scale, DINO and DINOv2 extract highly  
727 generalizable and semantically rich visual features that facilitate various applications, including se-  
728 mantic correspondence and depth estimation (Caron et al., 2021; Oquab et al., 2024). DINOv3 ad-  
729 vances these capabilities with improved feature discrimination and enhanced domain generalization  
730 (Siméoni et al., 2025). Recently, researchers have begun leveraging internal feature representations  
731 from pretrained diffusion models (Rombach et al., 2022). However, existing methods often require  
732 meticulous tuning of layer selection and iteration counts, resulting in unstable feature quality and  
733 compromised segmentation performance. To mitigate these limitations, CleanDIFT (Stracke et al.,  
734 2025) introduces a feature enhancement strategy that extracts more stable and higher-quality diffu-  
735 sion features without extensive tuning.736  
737 

#### A.3.2 REFERENCE-BASED SEGMENTATION

738  
739 Reference-based segmentation methods can be categorized by reference modality. Text-referenced  
740 methods, such as Grounded SAM (Ren et al., 2024b) and DINO-x (Ren et al., 2024a), segment  
741 regions aligned with natural language descriptions. Visual-referenced approaches, including SAM  
742 (Kirillov et al., 2023), Painter (Wang et al., 2023a), and SegGPT (Wang et al., 2023b), use visual  
743 prompts to segment regions of interest, while Dinov (Li et al., 2024) introduces flexible visual con-  
744 text prompts supporting multiple reference images. Multi-modal-referenced segmentation integrates  
745 both text and visual cues, as seen in SEEM (Zou et al., 2023) and VLP-SAM (Sakurai et al., 2025),  
746 which require full training or fine-tuning. SoT benchmark Rosi & Cermelli (2025) reveals that text  
747 prompts perform better in cluttered environments, while visual prompts capture complex concepts  
748 more effectively. To the best of our knowledge, no existing method efficiently combines both modal-  
749 ities in a training-free framework. To bridge this gap, we propose a novel multi-modal prompting  
750 framework for segmentation that utilizes only image prompts. Our method leverages pretrained  
751 Vision Foundation Models (VFs) by employing multi-view image augmentation and generating  
752 pseudo-category labels, all without the need for additional parameters or training.753  
754 

#### A.3.3 AUTOMATIC PROMPTING FOR SAM

755  
The practical deployment of SAM requires domain expertise for manual prompt design and iter-  
756 ative refinement, particularly in specialized fields such as medical imaging and remote sensing.  
757 High-quality guidance of the segmentation process requires specific knowledge, such as identify-  
758 ing pathological tissues or interpreting spectral signatures. This reliance on skilled operators incurs  
759 significant time and training costs. Automated prompt engineering seeks to alleviate these limita-  
760 tions.

756 tions by generating optimal prompts for SAM, reducing user burden while enhancing adaptability  
 757 to complex visual domains (Espinosa et al., 2025).  
 758

759 Existing automated prompt engineering methods for SAM can be classified into two categories.  
 760 Learning-based approaches enable SAM to generate prompts from textual, visual, or other refer-  
 761 ence modalities by fine-tuning prompt encoders or introducing additional parameters. For instance,  
 762 VRP-SAM (Sun et al., 2024a) trains a visual prompt encoder to produce embeddings from refer-  
 763 ence images, whereas FM-PPO (Liu et al., 2025a) learns a policy function for direct prompt point  
 764 selection without manual threshold configuration. In specialized domains, expert knowledge can  
 765 substantially enhance the prompt generation process. The PointPrompt benchmark (Quesada et al.,  
 766 2024) consolidates human-annotated trajectory data to evaluate existing methods. SegAgent (Zhu  
 767 et al., 2025) further fine-tunes a multi-modal large language model to emulate human annotators, au-  
 768 tomatically generating suitable point prompts for SAM. However, these learning-based approaches  
 769 incur huge computational costs, limiting their accessibility for users with constrained resources.  
 770

771 Training-free methods utilize predefined rules to select candidate prompts. SAMAug (Dai et al.,  
 772 2023) systematically evaluates point-based prompting strategies, providing insights for future re-  
 773 search. PerSAM (Zhang et al., 2024a) designates the most and least similar pixels as positive  
 774 and negative prompts, but often results in clustered distributions in complex scenes. IPSeg (Tang  
 775 et al., 2024) and SuperPromptSeg (Zhou et al., 2025) enhance prompt efficiency through cluster-  
 776 ing techniques. IPSeg selects top-k cluster centers, while SuperPromptSeg uses superpixel-based  
 777 feature clustering. Among training-free methods, Matcher achieves notable performance improve-  
 778 ments via bidirectional matching and multi-granularity constraints, albeit with considerable  
 779 computational overhead and sensitivity to hyperparameters. GBMSeg (Liu et al., 2024a) further refines  
 780 this paradigm with three sampling strategies to retain high-value prompts while minimizing spatial  
 781 concentration and positive-prompt bias. Synpo (Liu et al., 2025b) innovates by selecting negative  
 782 prompts from semantically ambiguous regions rather than merely dissimilar backgrounds. In con-  
 783 trast, our approach introduces adaptive target localization combined with mask self-correction in a  
 784 fully training-free pipeline, simplifying the process by avoiding complex criteria and human anno-  
 785 tations.  
 786

#### 787 A.4 DATASET AND EVALUATION METRIC

788 We conduct experiments on the PerSeg (Zhang et al., 2024a), FSS (Li et al., 2020), and COCO-20<sup>i</sup>  
 789 (Nguyen & Todorovic, 2019) dataset. The PerSeg benchmark is specifically designed for segmenta-  
 790 tion methods using image prompts. It covers 40 diverse object categories, with a total of 216 images  
 791 for testing (5 to 7 per category). The COCO-20<sup>i</sup> dataset (Nguyen & Todorovic, 2019) is a subset  
 792 of COCO (Lin et al., 2014), partitioned using a four-fold cross-validation split. Each fold contains  
 793 20 categories and 1,000 reference-test image pairs. The FSS dataset (Li et al., 2020) is a large-scale  
 794 dataset for few-shot segmentation tasks, comprising 1,000 categories: 520 for training, 240 for vali-  
 795 dation, and 240 for testing, with 10 images per category. Our method performs inference directly on  
 796 the full PerSeg dataset, the COCO-20<sup>i</sup> validation categories, and the FSS test categories without any  
 797 training. Furthermore, we introduce part segmentation datasets to validate the effectiveness across  
 798 varying semantic granularities. The PASCAL-Part (Chen et al., 2014) dataset includes part-level an-  
 799 notations for animals, indoor objects, persons, and vehicles, with 13 categories in total. The PACO  
 800 dataset (Ramanathan et al., 2023) provides higher semantic granularity and diversity, with 75 object  
 801 classes and over 450 part classes.  
 802

803 For all datasets, we use mean Intersection over Union (mIoU) as the evaluation metric. Regarding  
 804 COCO-20<sup>i</sup>, we follow the same evaluation protocol in Matcher, reporting results for each fold and  
 805 the average performance across all folds.  
 806

#### 807 A.5 MORE VISUALIZATION OF EXPERIMENTAL RESULTS

808 In this subsection, we present additional visualization experimental results. Figure 8 illustrates the  
 809 visualization of TLGP ablation experiments, while Figure 9 depicts the visualization of COMP  
 810 ablation experiments. Figures 10 and 11 showcase the visualizations of comparative experiments  
 811 conducted on the FSS and PerSeg datasets, respectively.  
 812

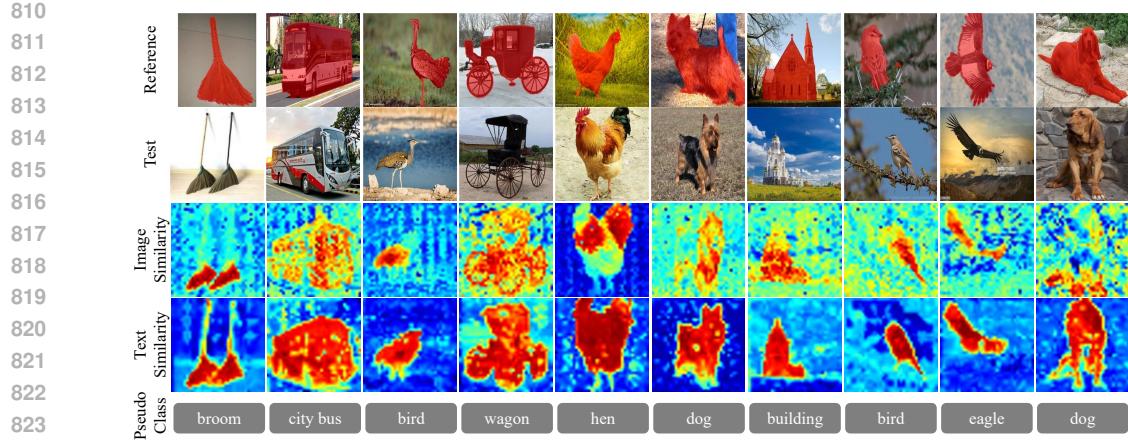


Figure 8: More visualization of feature similarity maps. The first and second rows are reference images and test images. The third and fourth rows displays similarities between high-level visual features or visual-text features. The last row provides generated pseudo-labels for each case.

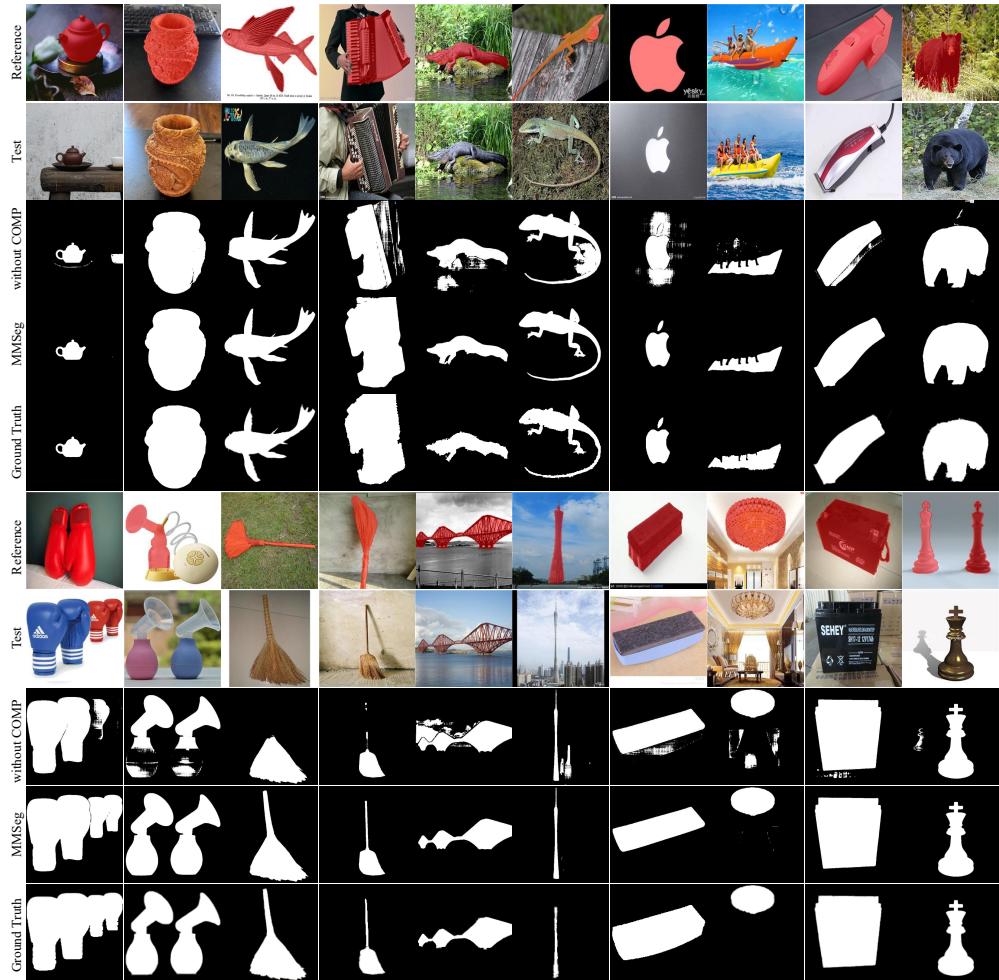


Figure 9: More qualitative ablation results on COMP. The figure can be divided into two sections: the upper and lower parts. In each part, the top two rows are reference and test images. The third and fourth rows compare the mask quality before and after incorporating COMP. In the last row, the corresponding ground truth is provided for reference.

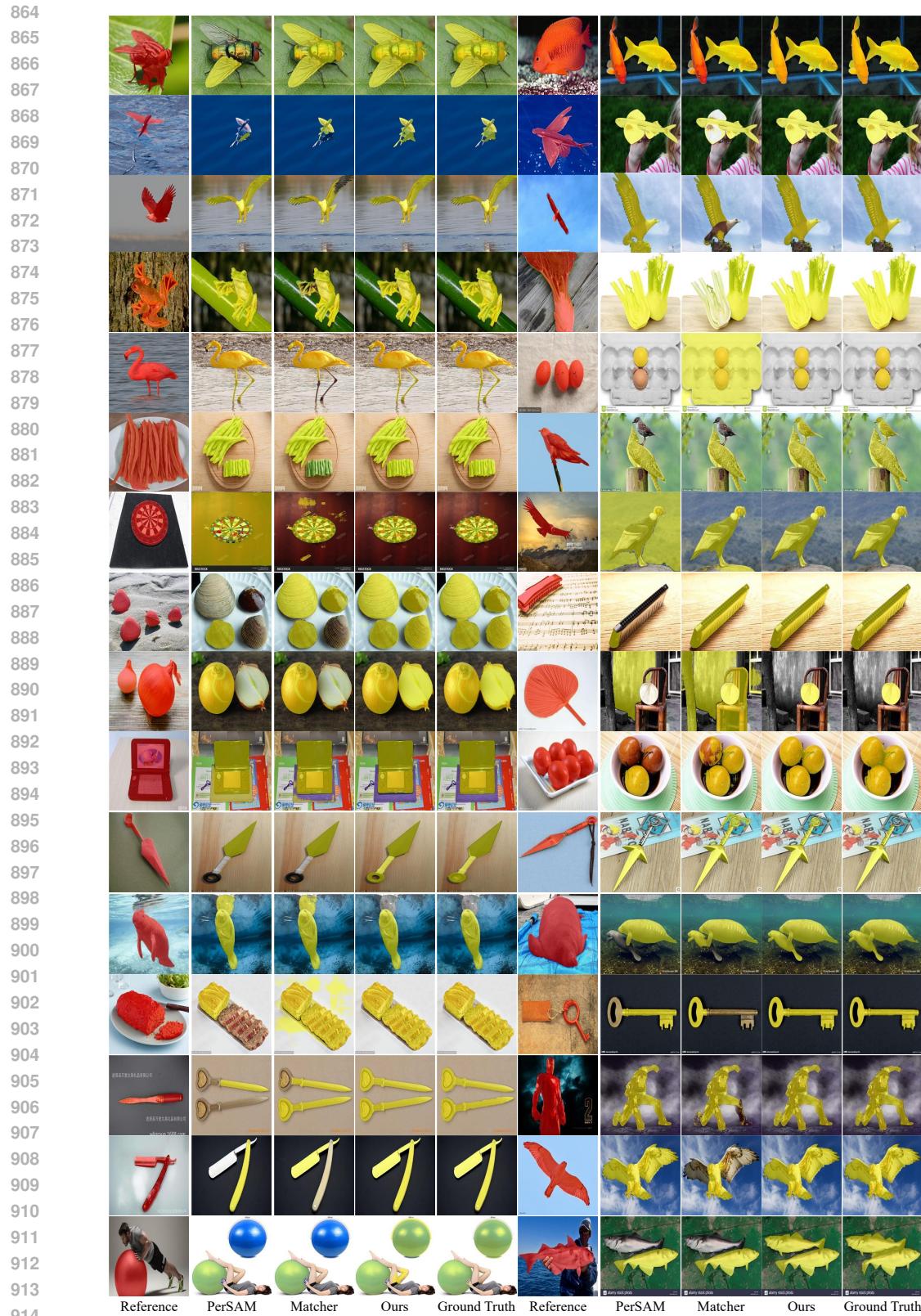


Figure 10: More qualitative results on FSS. In each half of the figure, the leftmost column contains reference images and their masks for each row. The remaining columns visualize segmentation results from PerSAM, Matcher, MMSeg, and the Ground Truth.



953      Figure 11: More qualitative results on PerSeg. The layout is similar to Fig. 10. The results from  
954      PerSAM, Matcher, IPSeg, and our method are visualized.