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Abstract

Maintaining semantic label consistency across multiple views is a persistent challenge in
3D semantic object detection. Existing zero-shot approaches that combine 2D detections
with vision-language features often suffer from bias toward non-descriptive viewpoints and
require a fixed label list to operate on. We propose a truly open-vocabulary algorithm that
uses large language model (LLM) reasoning to relabel multi-view detections, mitigating
errors from poor, ambiguous viewpoints and occlusions. Our method actively samples in-
formative views based on feature diversity and uncertainty, generates new label hypotheses
via LLM reasoning, and recomputes confidences to build a spatial-semantic representation
of objects. Experiments on controlled single-object and multi-object scenes show double
digit improvement, in accuracy and sampling rate over ubiquitous fusion methods using
YOLO, and CLIP. We demonstrate in multiple cases that LLM-guided Active Detection
and Reasoning (LADR) balances detail preservation with reduced ambiguity and low sam-
pling rate. We provide theoretical convergence analysis showing exponential convergence to
a stable and correct semantic label.

1 Introduction

Consistently detecting objects across multiple viewpoints is a crucial task for autonomous agents, such as
drones and robots. A single object may appear vastly different depending on the viewpoint, lighting, or
degree of occlusion, and visual features extracted from such views often drift in embedding space. As a
result, inconsistent labels emerge when fusing detections across views, leading to degraded spatial-semantic
representations and downstream performance.

Recent zero-shot approaches (Jatavallabhula et al., 2023; Peng et al., 2023; Cartillier et al., 2021), address
this by combining off-the-shelf detectors (Redmon et al., 2016) with vision-language models (Radford et al.,
2021; Cherti et al., 2023) to assign open-vocabulary labels in 3D. While these methods avoid task-specific
retraining, they rely heavily on two components: (1) the accuracy of the underlying detector, and (2) the
similarity between extracted image features and a user-defined list of candidate labels. Both dependencies
introduce bottlenecks. First, misdetections or low-quality views (such as those from the back of an object)
can dominate the fused feature representation, biasing the final label. Second, reliance on a user-defined list
of labels limits true open-vocabulary capability, hampers generalization to novel categories, and constrains
the level of detail that can be captured for each object.

We propose a different approach referred to as LADR (LLM-guided Active Detection and Reasoning).
LADR uses large language model (LLM) reasoning to actively refine and reweight multi-view detections.
Instead of passively aggregating features, our method iteratively samples informative viewpoints based on
feature diversity, prompts an LLM to generate and refine label hypotheses from available visual evidence,
and recomputes label confidences accordingly. This reasoning process reduces the influence of misleading
views, removes the need for a fixed label set, and enables a more robust spatial-semantic representation of the
scene. We provide rigorous Markov process-based analysis for an exponential convergence rate to consistent
labels. It shows differentiation in rates on the ablated versions of LADR, proving that active uncertainty
based sampling, with geometric grounding is the best approach among LADR algorithms.
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Our contributions are as follows:

• LLM-guided relabeling for 3D consistency: An open-vocabulary method that uses LLM rea-
soning to correct viewpoint-induced misclassifications without retraining.

• Smart sampling strategy: An active selection of views based on feature diversity, uncertainty
estimation, and geometric grounding, balancing detail preservation with reduced context ambiguity.

• Spatial-semantic mapping: A representation that integrates refined labels with object geometry,
suitable for downstream 3D tasks.

• Comprehensive evaluation: single-object and multi-object experiments across diverse environ-
ments, showing improvement of over 40%, respectively, in 3D semantic label accuracy and sampling
rate, over ubiquitous fusion methods using YOLO, and CLIP.

• Theoretical analysis for each ablated LADR version, proving exponential convergence to consistent
semantic labels, with increasingly stronger constants for added components.

Our contributions establish a framework for zero-shot open-vocabulary 3D understanding that combines
semantic reasoning, efficient view selection, and spatial integration, leading to more robust and consistent
labeling across diverse scenarios.

2 Related work

Foundation Models in Object Detection. Object detection has rapidly advanced from region-based
CNNs and single-stage detectors to foundation models, which enable more general and flexible represen-
tations beyond closed-set training. Architectures such as YOLO-World and YOLOE (Cheng et al., 2024;
Wang et al., 2025) leverage large-scale pretraining to improve detection accuracy and adaptability across
diverse scenarios. Vision-language models (VLMs) like CLIP (Radford et al., 2021; Cherti et al., 2023)
provide open-vocabulary capabilities by connecting visual features with text embeddings, while models such
as Segment Anything (Kirillov et al., 2023) offer class-agnostic segmentation that can be integrated into
detection pipelines. Multimodal large language models like GPT-4V (OpenAI, 2024) further complement
these approaches by enabling zero-shot reasoning over visual inputs, making them useful for refining labels
and guiding exploration. These approaches demonstrate the potential to reduce reliance on task-specific
training and expand detection to previously unseen categories.

Open-Vocabulary 3D Object Detection. ConceptFusion (Jatavallabhula et al., 2023) builds open-
vocabulary 3D object maps by combining pretrained VLMs with 3D scene representations. The method
uses YOLO-World as an initial object detector and Segment Anything for segmentation, attaching VLM
features (e.g., from CLIP) to 3D points reconstructed from RGB-D scans, with features from multiple 2D
observations aggregated via simple averaging (which ignores the 3D consistency problem). While it aims to
assign open-vocabulary labels, the object categories are ultimately constrained to a fixed set. Peng et al.
(2023) takes a voxel-based approach, backprojecting per-pixel CLIP features into a 3D voxel grid and fusing
multiple views using different pooling strategies (random, median, or mean) among these approaches, mean
pooling yields the most stable results. Kassab et al. (2024) revisits design choices for open-vocabulary 3D
labeling by selecting a single “best” view per object based on a confidence metric, with the entropy of CLIP
similarities with category embeddings performing best. In contrast, LADR leverages LLM reasoning to
iteratively identify and reweight informative views, producing a more robust spatial-semantic representation
that is less sensitive to viewpoint bias and not limited by a fixed label set.

Active exploration. Active exploration in embodied agents aims to optimize camera or agent trajectories
to reduce uncertainty and collect informative observations. SEAL Chaplot et al. (2021) and subsequent
works Scarpellini et al. (2024) introduce a self-supervised framework in which agents explore their envi-
ronment to learn semantic segmentation without manual labels, leveraging 3D spatial consistency. These
methods train an exploration policy to target novel or uncertain areas, optimizing coverage of diverse object
views. Features from multiple viewpoints are reprojected into a shared 3D space using depth and camera
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poses, and a 3D consistency loss ensures that features corresponding to the same physical point remain
consistent across views. This supervision enables learning of a semantic segmentation function directly from
RGB-D frames, without human annotations, and replaces random or fixed path planning with informed,
targeted exploration. While effective, these approaches often require reinforcement learning policies and
multiple rollouts, which can be computationally expensive. In contrast, zero-shot LLM-based methods can
reason about object semantics and its correlation with the viewpoint directly from observations without
task-specific policy training, avoiding the overhead and sample inefficiency inherent to learned exploration
policies.

3 The 3D Consistency Problem

Achieving consistent object labeling across multiple viewpoints remains a key obstacle in 3D perception.
In multi-view pipelines, each observation of an object is processed independently before being fused into a
unified label. When these observations are heterogeneous (due to varying viewpoints, occlusions, or lighting)
the resulting feature embeddings can drift toward non-representative appearances. This drift can overweight
misleading views, leading to label instability.

In zero-shot approaches such as those combining YOLO detections with CLIP embeddings, the problem is
exacerbated by two factors:

1. Viewpoint sensitivity: Descriptive views (e.g., the front of a piano) and non-descriptive views
(e.g., the back of the same piano) contribute equally to the aggregated embedding. If the majority
of views lack discriminative features, the resulting label can shift toward incorrect categories.

2. Label space constraints: Even in open-vocabulary settings, relying on a fixed set of candidate
labels constrains the level of detail that can be captured for each object, e.g., labeling a chair simply
as ‘furniture’ rather than distinguishing it as an ‘office swivel chair.’

To illustrate the severity of this issue, we consider a controlled example where images are taken around a
piano. We define good views as those from the front, containing distinctive features, and bad views as
those from the back, lacking such cues. In a progressive experiment, we start with three good views and
incrementally replace them with bad ones, testing multiple labeling strategies. The task is to assign a single
label to the object, given all current views.

Method 3 Good / 0 Bad 2 Good / 1 Bad 1 Good / 2 Bad

YOLOE Constrained piano (0.25) piano (0.21) crate (0.26)
YOLOE ScanNet200 cabinet (0.78) cabinet (0.61) cabinet (0.51)
YOLOE RAM chiffonier (0.90) wall (0.16) wall (0.17)

CLIP Constrained piano (0.31) piano (0.27) crate (0.26)
CLIP ScanNet200 piano (0.31) piano (0.27) crate (0.26)
CLIP RAM piano (0.31) piano (0.27) oak (0.27)

LLM acoustic piano acoustic piano acoustic piano

Table 1: Piano viewpoint bias experiment. “Good” images show the piano front, while “Bad” images show
the back. Each cell reports the predicted label (confidence), with correct predictions shown in bold. For YOLOE
baselines, the most frequent label is selected, whereas CLIP baselines choose the label with the highest similarity.
The “Constrained” setting restricts candidate labels to “piano” and “crate,” while “ScanNet200” (Rozenberszki et al.,
2022) and “RAM” (Recognize Anything Model class list of over four thousand categories, (Zhang et al., 2023)) use
their respective class lists to select the most probable label. The LLM is prompted to give a more specific label than
a simple class label.”
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As shown in Table 1, methods relying solely on YOLO or CLIP degrade quickly as bad views increase. In
the 1-good / 2-bad case, CLIP-based methods incorrectly label the piano as “crate” or “oak,” while YOLO
struggles particularly when the label space is large, producing highly inconsistent predictions. In contrast, the
LLM-based approach consistently selects the correct and more detailed label across all conditions. However,
the LLM does not provide calibrated confidence values, making it difficult to assess the reliability of its
predictions. This observation motivates LADR’s hybrid strategy: combining the reasoning capabilities of
LLMs with the quantitative confidence scores from CLIP. Our approach allows for both robust label selection
and informed weighting across views, mitigating the effects of viewpoint bias and constrained label spaces.

4 Notation and Workflow

We consider multi-view object labeling in 3D scenes. For simplicity, and without loss of generality, we
address a single object. Let I = {I1, . . . , IN} denote the initial set of RGB-D images captured around a
target object, where N is the number of views. Each image Ii is accompanied by depth information Di

and camera pose Pi. For each image, object observations are extracted using a combination of a detector, a
feature extractor and a segmentation model as

Oi = DetectAndSegment(Ii, Di, Pi),

and merged across all views into a spatial-semantic map

M = MergeObservations({O1, . . . , ON}),

which accumulates object points, labels, and features into a coherent 3D representation, analogous to Con-
ceptFusion’s fusion (Jatavallabhula et al., 2023). We define a function for relabeling as

Mrefined, Pnext = RefineAndPropose(M, I),

which applies LLM reasoning to refine labels in M and selects the most informative next viewpoint.

Our workflow proceeds iteratively: images are captured and objects inside it are merged into M, refined,
and used to propose the next viewpoint. This repeats until labels reach sufficient confidence or a maximum
number of views is obtained.

5 Methodology

In this section, we present our algorithm for LLM-guided multi-view object labeling. In multi-view labeling,
the evolving set of detection images at each iteration often contains a mix of highly informative canonical
views, ambiguous and redundant observations. Presenting all available images to the LLM simultaneously is
problematic: it risks pushing the model toward a generic, lowest-common-denominator label, substantially
increases computational cost, and may even exceed the LLM’s context window. A possible workaround is
to tile multiple views into a single composite image, but this forces downsampling that discards fine-grained
details. To address these challenges, we adopt an iterative inner loop that samples a small subset of images
to form a hypothesis and then prunes away views that conflict with it.

We introduce two ablated LADR studies prior to presenting our algorithm, to facilitate the introduction of
LADR. We focus on the RefineAndPropose function which defines each algorithm. We also provide conver-
gence analysis for each algorithm, showing improved convergence rates with the addition of key algorithmic
components.

5.1 LLM-Random: Basic Hypothesis Proposal and Killing

The first ablated version, LLM-Random, introduces the fundamental hypothesis-proposal and iterative
image removal procedure. The LLM-Random variant implements this process using the simplest possible
sampling strategy: uniform random selection. The workflow of the algorithm is illustrated in Figure ??, and
its pseudo code in Alg. 1.
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Algorithm 2 Given a set of detection images and camera poses, the algorithm iteratively samples views
and queries a large language model (LLM) to propose a hypothesis ŷt together with a boolean confidence
indicator ct. The confidence indicator denotes whether the LLM considers the current hypothesis sufficiently
reliable to terminate the procedure; otherwise, an uninformative view is pruned and the process continues
until a confident hypothesis is obtained or a maximum number of iterations is reached.
Require: Detection images I, camera angles P, sample size N

1: Mrefined ← ∅ , t← 0
2: while |I| ≥ N and t < Tmax do
3: t← t + 1
4: Isample ← RandomSample(I, N)
5: (ŷ, ct, Ikill, Pnext) ← LLM_Query(Isample,P)
6: if ct = True then
7: Mrefined ← ŷ
8: break
9: end if

10: I ← I \ {Ikill}
11: Mrefined ← ŷ
12: end while
13: return (Mrefined, Pnext)

The process repeats until either (1) the LLM reports confidence in its label, or (2) the detection set I has
been reduced to fewer than N images (3) a maximum number of iterations is reached; in which case the
algorithm returns the refined mapMrefined along with the next proposed viewpoint Pnext. The LLM prompt
used for this algorithm is provided in Appendix B.7.

5.1.1 Theoretical analysis

For an apples-to-apples comparison with methods that compare two views per iteration, we analyze the
randomized baseline in the minimal N = 2 setting. The extension to general N follows by replacing pairwise
exposure and dominance constants with their N -subset counterparts.

Theorem 1 (High-probability elimination of bad views under LLM-kill random-pair pruning)
Let I0 be a finite set of views, and let G ⊆ I0 and B = I0 \G denote the good and bad views, with G ̸= ∅.
At iteration t, let It be the retained set and define

Gt := G ∩ It, Bt := B ∩ It, bt := |Bt|.

Assume the following hold for all t:

(A1) Exposure under random sampling. There exists δ > 0 such that whenever bt > 0,

Pr(Isample,t ∩Bt ̸= ∅ | Ft) ≥ δ, Ft := σ({Xs : s ≤ t}) .

(A2) LLM kill-dominance on mixed pairs. There exists ηkill > 1
2 such that whenever Isample,t =

{Ig, Ib} with Ig ∈ Gt and Ib ∈ Bt,

Pr(Ikill,t = Ib | Isample,t = {Ig, Ib}, Ft) ≥ ηkill.

Define β := δ ηkill ∈ (0, 1) and let b0 := |B|.

for any T ≥ 1, Pr(bT > 0) ≤ Pr
(
Bin(T, β) < b0

)
. In particular, if T ≥ 2b0

β
then

Pr[bT > 0] ≤ exp
(
−βT

8

)
= exp(−c2T ) , c2 := β

8 .

Equivalently, for any ε ∈ (0, 1) it suffices to take T ≥ max
{

2b0
β , 8

β log 1
ε

}
to guarantee Pr[bT > 0] ≤ ε.
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5.2 LLM-Sampling: CLIP-Guided Selection and Confidence

The LLM-Sampling algorithm follows similar structure as LLM-Random, but improves upon it by lever-
aging image embeddings provided by a contrastive VLM (eg. CLIP, Cherti et al. (2023)) for both image
selection and confidence assessment; we refer to these embeddings as CLIP features. We illustrate the method
using two sampled images per iteration for clarity. In practice, this generalizes to two subsets of images,
sampled similarly. We provide a sketch of an iteration in Figure 1, and pseudo code in Algorightm 3.

Sampling. Instead of randomly sampling images, this algorithm identifies two images Irep, Iamb ⊂ I
based on their cosine similarity of CLIP features relative to the current label hypothesis: the closest (most
representative) and the farthest (potentially ambiguous) image. The initial hypothesis can be set using the
most common detection label (e.g. YOLO detections). Irep and Iamb are then fed to the LLM to generate
a new label hypothesisMrefined and propose the next best view Pnext. This procedure balances exploitation
(focusing on the most representative view) with exploration (including a diverse, informative view).

Confidence Computation and Removal. A global object representation is computed by averaging
CLIP features across all current images. Cosine similarity between this global feature and the LLM label
embedding Mrefined provides a confidence score for the proposed label. Similarities are computed between
ŷ=Mrefined and the sampled detections Irep, Iamb. The less similar detection is discarded from It. To
determine whether the current label is reliable enough to be accepted or if further iterations with new
images are required, a confidence threshold is applied (see Appendix B for its calibration).

Sampling New Hypothesis
and Removal

Confidence
Computation

Detections

Initial Hypothesis

Best/Worst Detection
for Initial Hypothesis

New Hypothesis

Similarity

Global Averaged Feature

"crate"

"piano"

Figure 1: Visualization of the LLM-Sampling algorithm: (left) two images are selected based on feature
distance from current hypothesis, (middle) a new label hypothesis is generated from the two images, and the less
similar detection is removed, (right) a global averaged feature and global confidence are computed.

Recovering the Final Hypothesis via Caching. In some cases, the LLM may generate an accurate
label early on, but it cannot yet be accepted due to insufficient supporting evidence. The CLIP-similarity-
based confidence computation allows for the re-evaluation of previously generated hypotheses. When new
images are introduced or when the hypothesis-proposal loop concludes, the most confident hypothesis is
retrieved from the cache. Empirically, this mechanism reduces noise from LLM hallucinations, prevents
sudden label shifts, and improves convergence consistency.

Advantages. By selecting views using CLIP feature distances, our approach presents the LLM with more
informative and diverse samples than random subset selection, reducing redundancy and improving sample
efficiency. CLIP-based similarity scores also provide a more stable and interpretable confidence signal than
the LLM’s self-reported confidence used in LLM-Random. In addition, hypothesis caching allows candidate
labels to be retained and re-evaluated without repeated LLM calls, improving both efficiency and robustness.
Together, these strategies effectively combine the generative strengths of LLMs with the contrastive structure
of CLIP models, leading to more reliable and faster convergence.
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Algorithm 4 The algorithm iteratively selects representative and ambiguous views using CLIP features,
queries an LLM to propose a label, and prunes inconsistent images based on feature-level agreement, retaining
the hypothesis with the highest global consistency score.
Require: Detection images I, camera angles P, sample size N = 2

1: Initialize hypothesis cache C ← ∅
2: t← 0
3: while |I| ≥ N and t < Tmax do
4: t← t + 1
5: Compute global representation: g← 1

|I|
∑

I∈I fCLIP(I)
6: Select informative views: ∀I : compute sI = cos(fCLIP(I), g)
7: Irep ← arg maxI∈I sI ▷ closest to mean, most representative
8: Iamb ← arg minI∈I sI ▷ farthest from mean, most ambiguous
9: Isample ← {Irep, Iamb}

10: Query LLM to propose a label: (ŷ, h, Pnext)← LLM_Query(Isample,P)
11: Evaluate hypothesis confidence: cglobal ← cos(h, g)
12: Determine which image harms consistency more:
13: if samb < srep then: Remove Iamb from I
14: else: Remove Irep from I
15: end if
16: Cache hypothesis: Store (ŷ, h, cglobal) in C
17: end while
18: Recover most confident hypothesis: (y∗, h∗, c∗)← arg maxc (ŷ, h, c) ∈ C
19: return (y∗, Pnext)

5.2.1 Theoretical analysis

Theorem 2 (Exponential elimination of bad views under hypothesis-driven extreme selection)
Let I0 be a finite set of views of an object, and let G ⊆ I0 and B = I0 \G denote the sets of good and bad
views, where good views provide reliable evidence of the true canonical label y∗ and bad views are ambiguous.
Assume G ̸= ∅. At iteration t, the algorithm maintains a retained set It ⊆ I0 and a hypothesis ht.

Define: Gt = G ∩ It, Bt = B ∩ It, bt = |Bt|.

Assume:

(C1) Extreme selection exposes good and bad views. There exists δ > 0 such that, whenever bt > 0,

Pr
(
Iamb,t ∈ Bt, Irep,t ∈ Gt | Ft

)
≥ δ, Ft := σ({Xs : s ≤ t}) .

(C2) Good-vs-bad semantic dominance. There exists η > 1/2 such that, whenever the selected un-
ordered pair {Irep,t, Iamb,t} consists of exactly one good view Ig ∈ Gt and one bad view Ib ∈ Bt, the
refined hypothesis ht+1 produced by the LLM satisfies

Pr
(

cos
(
ht+1, fCLIP(Ig)

)
> cos

(
ht+1, fCLIP(Ib)

) ∣∣∣ {Irep,t, Iamb,t} = {Ig, Ib}, Ft

)
≥ η.

Then there exist c1, c2 > 0 (depending only on δ and η) such that for all T ≥ 0, Pr[bT > 0] ≤ c1e−c2T .

Namely, the probability that at least one bad view remains after T iterations decays exponentially in T . Or,
for any ε ∈ (0, 1), all bad views are eliminated after O(log(1/ε)) iterations with probability at least 1− ε.

5.3 LLM-Polygon: Spatially Grounded Refinement

The LADR algorithms presentation, LLM-Polygon, extends LLM-Sampling by incorporating spatial
grounding into the label refinement process. This addition allows the algorithm to reason about cover-
age of the object’s geometry, to guide exploration, and to prioritize views that reduce semantic uncertainty,
see Figure 2. We provide the pseudo code for LLM-Polygon in Algorithm 5.
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Spatial Assignment. A right-prism polygon (or an icosahedron) is constructed around the object to
approximate its spatial extent. Each detection is associated with the polygon faces it observes, determined by
projecting camera rays on the polygon faces. This partition grounds the detections into spatially meaningful
subsets and prevents over-representation of individual sides.
Per-Face Confidence. For each polygon face, CLIP features of the associated detections are averaged to
form a local feature representation. Unobserved faces are assigned an uncertainty weight, a hyperparameter
that trades off exploration and exploitation: lower uncertainty weights promote taking additional views, while
higher values enable faster convergence by downweighting unseen sides (see Appendix B for a calibration
guide). Global confidence is then computed as the average similarity between the current label hypothesis
and the per-face features of existing images in It.
Iterative Refinement. Label proposal and image pruning proceed as in LLM-Sampling, but the next
viewpoint is chosen using spatial confidence and coverage, and not via an LLM. Specifically, Pnext is selected
as the face whose neighboring faces exhibit the largest confidence difference, with priority given to previously
unseen sides. This active mechanism directs exploration toward underrepresented object regions.

Object
Bounding

Box

New Hypothesis: "Piano"💡

Next Proposed View 👀

❌
To be removed

Sample  Sample 

Figure 2: Illustration of LLM-Polygon: Object detections are spatially grounded to polygon faces. Per-face
confidence is computed based on CLIP features: green sides correspond to high visual similarity to the current label
(“piano”), red sides indicate low similarity, and yellow sides represent unseen faces. The next camera viewpoint is
selected to reduce uncertainty, prioritizing unseen faces.

5.4 Theoretical Analysis

LLM-Polygon introduces three mechanisms absent from LLM-Sampling.

(A) Spatial partitioning via polygon faces. Each view is assigned to one or more polygon faces F ∈ F ,
based on camera-ray intersection. This ensures balanced geometric coverage and eliminates oversampling of
a single side of the object.

Theoretical implication: Every side of the object is guaranteed to be observed, so good views always have
nonzero sampling probability. In LLM-Sampling this had to be assumed; here it is built into the algorithm.

(B) Per-face feature averaging with uncertainty weighting. Each face F computes a representative
embedding

fF =


1

|IF |
∑

I∈IF

fCLIP(I), IF ̸= ∅,

λu, IF = ∅,

where u is a calibrated uncertainty vector. Then each image receives a similarity score sI =
cos

(
fCLIP(I), fF (I)

)
.

Theoretical implication: Bad views tend to be scored poorly (ambiguous), and therefore are much more
likely to be selected as Iamb. Thus the probability of encountering a good–bad pair increases automatically.
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Algorithm 5 LLM-Polygon: Spatially Grounded Multi-View Label Refinement
Require: Detection images I, camera angles P, polygon faces F , uncertainty weight λ

1: Initialize hypothesis cache C ← ∅
2: t← 0
3: while |I| ≥ 2 and t < Tmax do
4: t← t + 1
5: Spatial assignment of detections:
6: for each face F ∈ F do
7: IF ← detections whose camera rays intersect F
8: end for
9: Compute per-face features and uncertainties:

10: for each face F ∈ F do
11: if IF is non-empty then: fF ← 1

|IF |
∑

I∈IF
fCLIP(I)

12: else: fF ← λ · u ▷ u: calibrated uncertainty vector
13: end if
14: end for
15: Select informative views: ∀I : compute sI = cos(fCLIP(I), g)
16: Irep ← arg maxI∈I sI ▷ closest to mean, most representative
17: Iamb ← arg minI∈I sI ▷ farthest from mean, most ambiguous
18: Isample ← {Irep, Iamb}
19: Compute spatially grounded global confidence:
20: cglobal ← 1

|{F :IF ̸=∅}|
∑

F :IF ̸=∅ cos(h, fF )
21: Determine which image harms consistency more:
22: if samb < srep then: Remove Iamb from I
23: else: Remove Irep from I
24: end if
25: Cache hypothesis: Store (ŷ, h, cglobal) in C
26: Select next viewpoint via spatial uncertainty:
27: For each face F , compute ∆F = max confidence difference with adjacent faces
28: Pnext ← viewpoint observing face with largest ∆F , prioritizing unseen faces
29: end while
30: Recover most confident hypothesis: (y∗, h∗, c∗)← arg maxc (ŷ, h, c) ∈ C
31: return (y∗, Pnext)

(C) Spatially grounded viewpoint selection. The next viewpoint Pnext is chosen from faces with large
confidence differences ∆F , prioritizing unseen faces.

Theoretical implication: Exploration becomes systematic and directed, guaranteeing eventual exposure
of faces where inconsistencies (bad views) are likely to reside.

LLM-Polygon is not simply LLM-Sampling with additional notation. Its geometric structure fundamentally
changes the sampling distribution, leading to provably stronger constants in the convergence theorem. We
now formalize these improvements.

Theorem 3 (Exponential Decay of Bad Views under LLM-Polygon) Let Gt and Bt denote the
good and bad views at iteration t, and bt = |Bt|. Assume:

1. Semantic dominance: For every good–bad pair {Ig, Ib} selected as Irep,t, Iamb,t,

Pr[cos(ht+1, f(Ig)) > cos(ht+1, f(Ib))] ≥ η > 1
2 .

2. Geometric exposure of bad views: For every iteration with bt > 0,

Pr[{Irep,t, Iamb,t} ∩Bt ̸= ∅] ≥ δpoly > 0.
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That is, with probability at least δpoly, the deterministically chosen representative and ambiguous
views include at least one bad view. This probability is enforced by polygon-based partitioning, per-
face feature averaging, and spatial uncertainty prioritization.

Then the probability of retaining any bad views after T iterations satisfies Pr[bT > 0] ≤ c1e−c2T , for
constants c1, c2 > 0 depending only on η and δpoly.

In particular, the algorithm eliminates all bad views after O(log(1/ε)) iterations with probability at least 1−ε.

Remark. The proof follows the same Markov-chain drift argument as for the non-polygon algorithm, with
the key constant β replaced by βpoly ≥ η δpoly, where δpoly is the probability that the deterministically
selected pair (Irep,t, Iamb,t) forms a good–bad pair. Since polygon-based spatial partitioning and per-face
averaging ensure δpoly > δsample, the drift toward eliminating bad views is strictly larger, yielding a strictly
larger exponential rate c2 in the bound

Pr[bT > 0] ≤ c1e−c2T .

6 Experiments

We evaluate our proposed method, LADR, against several baseline algorithms in both single-object and
multi-object settings. The experiments are designed to assess each method’s ability to infer object semantic
labels accurately in multi-view scenarios. On single-object scenes, we demonstrate that reasoning with a
large language model is crucial for 3D consistency and that active view selection greatly improves sample
efficiency and stability. We also evaluate all methods on multi-object scenes, a realistic setting for robot
exploration. Here, we isolate the impact of our label generation mechanism by using off-the-shelf exploration
policies rather than proposing next-best views. This setup highlights that our representation still improves
multi-object labeling as an offline refinement process. Full details of all hyperparameters used are provided
in Appendix B.1, and extended results are presented in B.4 and B.5.

6.1 Baselines

We compare methods that rely solely on YOLO detections, CLIP embeddings, or LLM reasoning, with
LADR, which leverages multi-view aggregation, spatial grounding, and confidence-based label selection.

’YOLO’: uses the most common YOLO label as the final label. This is the aggregation policy in Concept-
Fusion (Jatavallabhula et al., 2023).

’CLIP’: takes the average of the CLIP embeddings of all images and compares it via cosine similarity to an
extensive list of CLIP-embedded labels of the RAM class list (Zhang et al., 2023).

’LLM-Label’: The LLM reasons over the set of YOLO labels, their frequencies, and possible semantic
relationships to infer the most plausible label. No visual data is used, only text.

’LLM-Tiled’: creates a single image with all input images tiled. This layout is then analyzed by a large
vision model to produce the final label. (We provide example in Appendix B.6).

’LLM-Angle’: creates a single composite image with all input images around a circle capturing their relative
positions to the object. This panoramic-style layout is then analyzed by a large vision model to produce the
final label. Unlike the other baselines, the LLM provides the next best view to take an image from. (We
provide example in Appendix B.6).

LADR implementation: Here, LADR refers to our three algorithms: LLM-Random, LLM-Sampling, and
LLM-Polygon. Apart from these, only ’LLM-Angle’ explicitly proposes the next best view; for all other
baselines, random view sampling is used when not otherwise specified.

10
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6.2 Dataset

We evaluate our methods on a single-object dataset, a subset of the OmniObjects3D (Wu et al., 2023) dataset
of annotated 3D object models. These objects are rendered in NVIDIA Isaac Sim under controlled conditions
to generate multi-view image sequences. We focus on five object classes: backpack, cup, cabinet, sofa, and
suitcase. For each class, we include five distinct instances, several of which are deliberately misleading in
appearance (e.g., a mug shaped like a cartoon character) to test the robustness of semantic labeling methods.

We also constructed a multi-object dataset in the same simulation environment. These scenes contain mul-
tiple objects arranged in varied environments, including SimpleRoom, Commercial, Industrial, Residential,
and Vegetation, providing more complex scenarios with occlusions.

Each object in the datasets is annotated with both its class name and a concise descriptive phrase, for
example a chair labeled as chair with the description wooden dining chair with a cushioned seat. We provide
examples for both datasets in Appendix B.3.

6.3 Evaluation Metrics

To assess performance, the predicted labels are compared against ground-truth object class names and
longer, descriptive phrases (e.g., "yellow cartoon character-shaped mug"). Since LADR is an open-vocabulary
setting, direct comparison with ground-truth labels is not sufficient: the LLM may propose synonyms of the
annotated class, which should be accepted. Empirically, we found that the CLIP model used for image–text
similarity is overly sensitive to lexical variation (e.g., number of words), leading to unreliable synonym
matching. Instead, we employ a Sentence Transformer (Reimers & Gurevych, 2019) model to evaluate label
equivalence. The final similarity score is defined as the maximum of the similarity to the class name and the
similarity to the description, capturing both category-level and instance-level alignment. To evaluate success
rates rather than raw similarities, we adopt the similarity value 0.5 as the threshold for label correctness
(based on preliminary experiments; see Appendix B.2), while also considering thresholds of 0.3, 0.7, and 0.9.

To evaluate detections in the multi-object setting, we establish one-to-one matches between ground-truth
objects and predicted detections from the global map. Matching is based on a semantic-spatial similarity
score, defined as a weighted sum of label similarity and spatial overlap between ground-truth and predicted
bounding boxes. Once matches are established, evaluation metrics follow the same procedure as in the
single-object setting, ensuring comparability.

Figure 3: Single-Object Experiment Results (a) Averaged success rates across different success thresholds for
each algorithm. (b) Evolution of success rates over data collection steps for each algorithm, using 0.5 as the threshold.

6.4 Summary of Findings

We provide our results for the single- and multi-object cases in Figures 3 and 4, respectively. We provide
detailed results, including per-object examples for each setting in Appendices B.4 and B.5. Figure 3a shows

11
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Figure 4: Multi-Object Experiment Results (a) Averaged success rates across different success thresholds. (b)
Averaged success rates across scenes, using 0.5 as the threshold.

the averaged success rates based on different success thresholds, and Figure 3b shows how success rates
evolve over the data collection steps with 0.5 as the threshold.

Similar trends are observed for single- and multi-object cases. The first observation is that they show over 40%
improvements, respectively, compared to ubiquitous fusion methods using YOLO, and CLIP. YOLO and
LLM-Label rely solely on YOLOE predictions, resulting in consistently low success rates. This is likely due
to their lack of multi-view image-based reasoning. Notably, LLM reasoning alone offers little improvement
over simply taking the most frequent YOLO label. CLIP performs comparably to YOLO, but struggles
with the vast label set and ambiguity introduced by averaging embedded views, often leading to confused
predictions. LLM-Tiled achieves higher success rates by leveraging all views simultaneously. However, its
accuracy lags behind LADRs, suggesting that the tiled representation loses fine-grained detail or introduces
structural incoherence that limits reasoning. LLM-Angle adds structural consistency by ordering views in a
layout, yet provides no improvement over LLM-Tiled. This indicates that the performance gap is more likely
due to loss of visual detail. LLM-Random and LLM-Sampling analyze images in greater detail, leading
to stronger descriptive accuracy. However, LLM-Random often declares detections prematurely, and LLM-
Sampling cannot fully mitigate instability despite its confidence-based pruning. Finally, LLM-Polygon
outperforms all, with near-perfect success at a 0.5 threshold. By combining detailed reasoning with active
exploration and consistency across unseen sides, it avoids the pitfalls of LLM-Only and LLM-Sampling.
Figure 3 /b shows how active exploration of unseen sides leads to success rate improvement. LADR’s
combination of uncertainty sampling, confidence computation, and spatial grounding is key to outperform
approaches that provide multiple images to an LLM, as in LLM-Tile and LLM-Angle.

7 Conclusion

Our contributions in this work center on a scalable framework for iterative sampling with LLM-guided active
refinement and exploration in open-vocabulary 3D object detection. By integrating the generative reason-
ing of LLMs with the quantitative similarity assessment of contrastive VLMs, our approach substantially
improves label consistency, establishing a foundation for future research in robust and efficient 3D percep-
tion. The method also serves as a drop-in extension to existing object detection pipelines, allowing zero-shot
re-evaluation of detections.

Despite these advantages, the methods presented require multiple inner-loop queries, which increases com-
putational cost. This limitation could be mitigated through batch sampling strategies, or pruning multiple
detections simultaneously, as well as by employing more efficient vision-language models, e.g., FastVLM
(Vasu et al., 2025), to enable inference on resource-constrained hardware.
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