
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INNOVATORBENCH: EVALUATING AGENTS’ ABILITY
TO CONDUCT INNOVATIVE LLM RESEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

AI agents could accelerate scientific discovery by automating hypothesis forma-
tion, experiment design, coding, execution, and analysis, yet existing benchmarks
probe narrow skills in simplified settings. To address this gap, we introduce In-
novatorBench, a benchmark-platform pair for realistic, end-to-end assessment of
agents performing Large Language Model (LLM) research. It comprises 20 tasks
spanning Data Construction, Filtering, Augmentation, Loss Design, Reward De-
sign, and Scaffold Construction, which require runnable artifacts and assessment
of correctness, performance, output quality, and uncertainty. To support agent op-
eration, we develop ResearchGym, a research environment offering rich action
spaces, distributed and long-horizon execution, asynchronous monitoring, and
snapshot saving. We also implement a lightweight ReAct agent that couples ex-
plicit reasoning with executable planning using frontier models such as Claude-4,
GPT-5, GLM-4.5, and Kimi-K2. Our experiments demonstrate that while fron-
tier models show promise in code-driven research tasks, they struggle with fragile
algorithm-related tasks and long-horizon decision making, such as impatience,
poor resource management, and overreliance on template-based reasoning. Fur-
thermore, agents require over 11 hours to achieve their best performance on Inno-
vatorBench, underscoring the benchmark’s difficulty and showing the potential of
InnovatorBench to be the next generation of code-based research benchmark.

Dataset

Available ActionsInfrastructure Support

Agent Working
Time Horizon

Research Domains

Task Description

Conda Environment

Hint

Related Repository

Evaluation

2-36h

Data Construction

Data Filtering

Data Augmentation

Loss Design

Reward Design

Scaffold Construction

Operate Files

Parse Files

Operate Terminal

Web Search

Online Browse

Multi-Computer
Control

Asynchronous
Command Execution

Snapshots Saving & Loading

Figure 1: Overview of InnovatorBench and ResearchGym. InnovatorBench consists of 20 LLM
research tasks from 6 research domains. Each task requires the most powerful agent 2-36 hours to
complete. ResearchGym provides the infrastructure support and a rich action space for the agent to
work on InnovatorBench.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Artificial intelligence is becoming central to scientific discovery (Chen et al., 2024; Starace et al.,
2025). Traditional workflows require humans to hypothesize, design experiments, implement and
debug code, process data, manage resources, and analyze results. Recent agent systems aim to
automate much more of this loop Liu et al. (2025). We refer to these systems as “AI researchers”:
agents that integrate multiple stages of research and target human-level behaviors, including insight
generation and implementation (Team et al., 2025b). Large Language Models (LLMs) act as the
“brains” of such agents (Xi et al., 2025). As LLM capabilities improve in planning, code generation
and debugging, architecture design, and auxiliary tasks such as data cleaning, augmentation, and
loss/reward specification, their effects compound. Better LLMs enable agents to propose hypotheses
and execute experiments more reliably, which accelerates discovery and feeds back into improving
LLMs (Liu et al., 2025). However, transferring improvements in LLM capabilities into genuine
progress for AI research agents requires more than analyzing skills in isolation. The key question
is whether these abilities can be orchestrated into coherent, end-to-end research workflows (Chen
et al., 2024; Edwards et al., 2025). This motivates systematic and realistic evaluation of AI research
agents and has prompted recent efforts to benchmark them.

Recent efforts to benchmark AI research agents have provided valuable insights and represent impor-
tant first steps toward formalizing this emerging area (Starace et al., 2025; Chen et al., 2024; Edwards
et al., 2025; Xu et al., 2025; Team, 2025). These studies show that current agents can already achieve
non-trivial performance on experiment design, implementation correctness, and even limited repli-
cation of advanced research results, establishing clear baselines for progress. At the same time, these
benchmarks highlight several structural limitations. Many existing tasks concentrate narrowly on a
single performance dimension, such as code implementation accuracy, or parameter tuning (Hua
et al., 2025), rather than evaluating the entire research process end to end. Success is often framed
as reproducing existing results (Starace et al., 2025), which measures fidelity but not the capacity for
innovation, new objective design, or architectural creativity. Moreover, the research environments
where agents are evaluated are simplified and resource-constrained, so large-scale and long-duration
training or inference are typically unsupported, and asynchronous monitoring of processes that span
multiple hours is rare (Kon et al., 2025). Action spaces are also constrained, preventing agents from
engaging in realistic research behaviors such as managing files, modifying dependencies, brows-
ing literature, or adapting scaffolds (Chen et al., 2024). These limitations collectively restrict the
conclusions that can be drawn about an agent’s potential as a true research collaborator.

We address these challenges by introducing InnovatorBench and a new experimental platform Re-
searchGym that evaluates AI research agents in settings closer to real scientific practice.

InnovatorBench systematically evaluates core subproblems in LLM research, encompassing data
construction (DC), filtering (DF), and augmentation (DA), loss design (LD), reward design (RD),
and scaffold construction (SC). InnovatorBench consists of 20 tasks. Each task isolates a distinct
research ability, requiring agents to propose creative methods and produce concrete outputs. The
evaluation scripts quantify correctness and quality, and they also estimate output uncertainty like
the entropy of predictions after Reinforcement Learning (RL) (Yu et al., 2025), thereby providing
a multifaceted view of agent capabilities. Reference solutions exist to establish baselines and en-
sure reproducibility, but they remain hidden during evaluation so that agents must rely on their own
reasoning and design choices. This setup emphasizes both diversity and openness because the tasks
span different types of challenges, allow multiple solution strategies, and reward innovation rather
than simple replication. Consequently, InnovatorBench moves beyond narrow tests of implementa-
tion fidelity and provides a rigorous framework for assessing whether agents can execute end-to-end
research workflows that mirror the demands of real LLM development.

In parallel, ResearchGym offers a scalable and realistic environment that addresses limitations of
existing platforms (Nathani et al., 2025; Wang et al., 2024a). It provides a rich action space that
covers terminal commands, file operations, web search, and web browsing. Building on this foun-
dation, ResearchGym supports large-scale experiments that may run for many hours or even days,
with facilities for launching, monitoring, and adapting long-running processes, as well as distributed
training across multiple machines and GPUs. It also provides snapshot saving and loading for paus-
ing and resuming experiments without loss of progress. Importantly, ResearchGym is not tied to
a single benchmark; it is a general and extensible platform to which the community can contribute

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of AI benchmarks across key evaluation dimensions. Time Horizon refers
to the time the ReAct-based Agent takes to reach its best score. ML-Bench doesn’t report this result.

Benchmark Task Resource Max Eval times Multi-GPU
/ Multi-Node

Save and
Restore Creativity Time

Horizon

SWE-bench (Jimenez et al., 2024) GitHub Issues 1 × × × 30m-2h
ScienceAgentBench (Chen et al., 2024) Scientific Papers 1 × × ✓ 10m
RExBench (Edwards et al., 2025) NeurIPS, ACL*, etc. Paper 3 × × × 6h-12h
RE-Bench (Wijk et al., 2024) Design Manually 1 × × × 12m-2h
EXP-Bench (Kon et al., 2025) NeurIPS, ICLR Papers 1 × × × 35m
PaperBench (Starace et al., 2025) ICML 2024 Papers 1 × × × 1h-3h
ML-Bench (Tang et al., 2023) Kaggle Competitions 1 × × × Unknown
MLE-bench (Chan et al., 2024) Kaggle ML Tasks ∞ × × ✓ 10m

InnovatorBench NeurIPS, ICLR, etc. Papers 4 ✓ ✓ ✓ 2h-36h

new tasks, datasets, and evaluation protocols, similar to how models and datasets are shared in the
HuggingFace Wolf et al. (2019). This openness allows ResearchGym to evolve with research needs,
serving as the foundation for InnovatorBench and as an independent environment for testing new
ideas, building baselines, and comparing agents across diverse experimental settings.

To demonstrate the utility of our framework, we deploy a ReAct-based agent on InnovatorBench
with several frontier LLMs, including Claude Sonnet 4 (Anthropic, 2025), GPT-5 (OpenAI, 2025),
and GLM-4.5 (Zeng et al., 2025), Kimi-K2 (Team et al., 2025a). These experiments provide a sys-
tematic basis to analyze how different foundation models perform across diverse subproblems in
LLM research, revealing that these models have the potential to handle code-based research tasks
longer than 10 hours. However, they struggle with fragile algorithm design and long-horizon de-
cision making, often exhibiting impatience, resource mismanagement, poor library choice, and re-
liance on template-based reasoning. Such comparative analysis offers new insights into the align-
ment between model capabilities and the requirements of end-to-end agentic research.

Our contributions can be summarized as follows:

• We introduce InnovatorBench, the first benchmark to systematically evaluate AI research agents
on end-to-end LLM research tasks, spanning data construction, filtering, and augmentation, loss
design, reward design, and scaffold construction under multiple dimensions.

• We develop ResearchGym, a general and extensible research environment supporting long-
duration and distributed experiments, asynchronous execution, snapshot saving and loading, and
a broad action space for realistic research workflows.

• We perform an empirical analysis of InnovatorBench across multiple leading LLMs, demonstrating
its potential and weaknesses in handling real LLM research tasks.

2 RELATED WORK

Recent years have seen growing efforts in developing code agents, which generally fall into two
categories: repository-level code benchmarks for assessing specific technical competencies, and
agent frameworks that offer execution environments and scaffolding for interactive or long-horizon
tasks. Table 1 presents a comparison of several related benchmarks.

Repository-level code benchmarks. Several benchmarks focus on assessing whether agents can
solve software engineering or machine learning tasks within realistic repositories. SWE-bench
(Jimenez et al., 2024; Yang et al., 2025a;b) and its variants evaluate an agent’s ability to resolve
GitHub issues by generating executable patches that pass unit tests (Yang et al., 2024; Yao et al.,
2023). ScienceAgentBench (Chen et al., 2024) extends this paradigm to scientific domains, requir-
ing agents to write programs that replicate or analyze results derived from real papers. RExBench
(Edwards et al., 2025) and EXP-Bench (Kon et al., 2025) target reproducibility and experiment ex-
ecution, testing whether agents can reconstruct pipelines to reproduce known results. PaperBench
(Starace et al., 2025) collects machine learning tasks from papers to evaluate large-scale replica-
bility. DatasetResearch (Li et al., 2025) emphasizes dataset discovery and reasoning about data
usage. Whereas existing benchmarks focus on narrow aspects of research (e.g., code modification,
experiment reproduction), InnovatorBench targets a broader set of LLM-centric research abilities,
evaluating agents’ proficiency across the entire research lifecycle.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Datasets

Task Description
Motivation
Reinforcement Learning (RL) training for Large
Language Models often suffers from **entropy
collapse**, where the model's output distribution
becomes overly deterministic early in training...

Task
Your task is to implement a new strategy for GRPO in
language model reinforcement learning in order to get
the highest accuracy and prevent entropy collapse...

Data
Train set, Dev set, Test set, and Ckpts

Constraints
Working time limit: 48 hours...

Evaluations
Accuracy, Entropy Analysis

Environment
We have setup the conda environment for you named
`/workspace/conda`...

Scripts
You can use `/workspace/task/repositories/verl/
scripts/model_merger.py` to merge the model weights
into HuggingFace format...

Agent’s Workspace

(b) Evaluations

Hint for the Agent
Apply
$\text{clip}(r_{i,t}(\theta),
1 - \epsilon, 1 + \epsilon +
\delta)$ in `compute_policy_
loss` function of `/workspace
/task/repositories/verl/verl/
trainer/ppo/core_algos.py`...

⚠ The hint is not provided until
the agent asks for it through a tool
call. And the agent’s final score
will be deducted.

Reference Solution

{
“accuracy”: 0.6,
“entropy”:0.21

}

⚠ The agent can only receive
the score and a description of
the result instead of the
reference solution.

Evaluation Script
class TaskBenchmark(BaseBenchmark):
 def run_1(self) -> Dict[str, Any]:
 try:
 avg_entropy, acc = cal_entropy_and_acc(result_path,
logits_path, ground_truth_path)
 except Exception as e:
 return {"score": 0.0, "test_set_result": {
 "error": "Error: calculate_entropy_and_accuracy
failed", ... }
 }
 entropy_score = self.entropy_score(avg_entropy)
 acc_score = self.accuracy_score(acc)
 return {
 "score": entropy_score * acc_score * 100,
 "test_set_result": {"error": None, ... }
 }

Evaluation Directory

Figure 2: An illustrative LLM research task from DAPO (Yu et al., 2025). (a) Datasets. The
agent receives a task description and a starter workspace; an optional hint is only revealed upon
the agent’s explicit request via the view hint tool at a final score penalty. (b) Evaluations.
An evaluation directory includes evaluation scripts and reference data. Evaluation is performed
externally using hidden scripts and reference data. The agent submits its output via the eval tool
and receives a score with feedback, preventing answer hacking. The full example is in Appendix D.

Agent scaffold and environments. A complementary line of work focuses on platforms for deploy-
ing code-capable agents in interactive environments. OpenHands (Wang et al., 2024a) allows agents
to interact with a sandboxed environment via coding, command-line operations, and web browsing.
Commercial systems such as Claude Code demonstrate practical coding assistance but prioritize
short-term tasks over long-running, research-oriented workflows. Other research systems, includ-
ing WorldCoder (Tang et al., 2024) and multimodal variants such as OpenHands-Versa (Soni et al.,
2025), highlight the potential of tool-augmented agents for general problem solving. Correspond-
ingly, environments like MLGym (Nathani et al., 2025) provide structured contexts for ML-related
tasks but often constrain the experiment duration, scale, or action space. A common limitation
across these frameworks is the lack of support for extended scientific research: they rarely provide
distributed training, asynchronous monitoring of multi-hour jobs, snapshot saving, and integration
of open-ended research goals. Our ResearchGym directly addresses these gaps by exposing a rich
and extensible action space, enabling long-horizon and distributed experiments, and offering a foun-
dation where new tasks and evaluation protocols can be shared and extended by the community.

3 INNOVATORBENCH

InnovatorBench evaluates AI agents’ ability to complete end-to-end, innovation-oriented AI research
tasks. Each task is derived from an influential AI research paper and its open-source codebase. This
coupling captures the full scientific workflow by linking high-level research questions to concrete
implementations. As shown in Figure 2, each task entry comprises a task description, an initial
starter workspace, a hint for the agent, evaluation scripts, and a reference solution derived from the
original research artifacts. The agent’s objective is to extensively explore this task in our environ-
ment and aim to achieve a performance that surpasses the ground-truth solution.

Benchmark Overview and Statistics. InnovatorBench currently comprises 20 research tasks drawn
from 14 influential papers, as detailed in Appendix A. These tasks span diverse LLM research areas,
including data construction, filtering, and augmentation, loss design, reward design, and scaffold
construction. They are sourced from top-tier venues, namely NeurIPS, ICLR, COLM, EMNLP, and
ACL, and the latest publications. This breadth ensures coverage of diverse experimental paradigms,
coding practices, and research challenges prevalent in LLM research. Together, these features make
InnovatorBench a comprehensive testbed for assessing the capabilities of AI agents.

Task Description. Each task description provides the agent with the following components: (1)
Motivation: The research motivation and provenance of the question (2) Task: A high-level de-
scription of the objective for the agent. To encourage exploration and avoid overfitting to prescribed
procedures, we do not specify step-by-step instructions; instead, the agent is expected to aim for per-
formance that surpasses the reference solution no matter what method it selects. (3) Data: Details

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of the relevant datasets and checkpoints, including content description, storage paths, file formats,
and illustrative examples. (4) Constraints: The operational constraints under which the agent must
complete the task, like working time limits, GPU quotas, and output file format. (5) Evaluations:
The evaluation metrics like accuracy, F1, and BLEU, and an introduction to the scoring function in
this task. (6) Environment: Information about the execution environment, including the conda envi-
ronment and the workspace directory layout. (7) Scripts: The description of several supplementary
unified scripts and repositories that the agent can use.

Workspace. The workspace is a writable directory containing essential task artifacts, over which
the agent has complete control. The workspace comprises three major components: (1) Conda envi-
ronment: We pre-build a minimal conda environment that replicates the original paper’s setup to run
baseline experiments. We recommend not modifying this base environment; however, to preserve
the agent’s autonomy, we do not prohibit modifying packages when necessary. (2) Data: For the
agent to validate whether its proposed methods enhance model performance, we supply complete
datasets (training, validation, and a test set without ground-truth for agents’ submissions) and pre-
trained model checkpoints suitable for fine-tuning. The agent may also search for, download, and
reformat additional data to meet the repository’s requirements, or even synthesize new datasets using
the provided models or by generating chain-of-thought-style data for augmentation. (3) Task: This
directory contains the code repository and a set of helper scripts. The repository is adapted from the
original paper’s codebase: we remove the implementation of the paper’s key novelty and git commit
history while keeping the project runnable. In most tasks, the repository is LlamaFactory (Zheng
et al., 2024) or Verl Sheng et al. (2024). The scripts folder offers scripts for data construction,
training, inference, and evaluation; the agent may add its own scripts and files.

Hint for the Agent. To assist with these challenging tasks, we provide an optional hint for each task.
Hints are not included in the workspace; an agent may query their contents via the view hint tool,
choosing whether to adopt them. Our main evaluation disabled this tool, while the ablation study
provides a hint immediately after the task description.

Evaluations. Our evaluation follows a Kaggle-style1 procedure with multiple submission oppor-
tunities and immediate score feedback on the test set. First, a submission is checked for format
validity, with failures receiving a score of 0 and an error message. Subsequently, valid submissions
are scored based on a function calibrated between a baseline (anchored near 0) and a reference
solution (anchored near 80). The entire evaluation runs externally to the workspace.

4 RESEARCHGYM

Prior agent systems such as OpenHands (Wang et al., 2024a) and IterativeAgent (Starace et al., 2025)
operate within a single Docker container. They execute commands synchronously, so the next ac-
tion cannot be chosen until the previous one finishes. This design constrains the scale of experiments
and reduces action throughput. To overcome these limitations, we introduce ResearchGym, an en-
vironment designed to approximate real-world LLM research. ResearchGym provides 42 primitive
actions that agents can freely compose, supports control of multiple machines and asynchronous
command execution, and allows users to save and restore environment snapshots.

Actions and Observations. Actions of ResearchGym are grouped into five families: Command,
File, Parse, Web Search, and Web Browse. Command actions can manage execution sessions, run
commands within a session, and retrieve outputs. File actions can perform file operations (e.g.,
create, edit, delete, read, and search), and query file metadata. Parse actions can extract and pre-
view content from multi-modal sources (e.g., images, audio, and video) for text-only models. Web
Search and Web Browse grant networked retrieval and browsing for accessing up-to-date methods
and datasets. Each action family is paired with an observation that normalizes raw outputs into a
structured, agent-readable return. Details can be referred to Appendix F.

Multi-Computer Control. ResearchGym agents to control multiple machines (or Docker contain-
ers) concurrently via HTTP. Each computer runs an HTTP server to receive and execute terminal
commands, allowing an agent initialized on a single machine to orchestrate long-horizon, distributed
experiments across a cluster.

1https://www.kaggle.com/

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ResearchGym
Actions & ObservationsMulti-Computer Control

CPU Machine

GPU/CPU
Machines

File

Command

Parse

Web Search

Web Browse

Internet Access

Snapshots

Workspace

Agent’s
Context

Task Desc

InnovatorBench DatasetTask Description Agent’s Workspace
Task
Your task is to
implement a new
strategy for
GRPO in language
model
reinforcement
learning in
order to ...

AI AgentObservation

Action

Reasoning & Act
or

Context Summarize

task_desc.md

workspace/
hint.md

{
 score: 4.5,
 ...
}

Evaluation
results for

agent

Hint & Evaluations Scripts
Hint for the Agent
Apply
$\text{clip}(r_{i,t}(\t
heta), 1 - \epsilon, 1
+ \epsilon + \delta)$
in `compute_policy_
loss` function...

eval / view_hint

class TaskBenchmark(BaseBenchmark):
 def run_1(self) -> Dict:
 ...
 return {
 "score": ...,
 "test_set_result": ...}Remaining

Time

Initialize

Internal
Connection

Shared File System

finish

Figure 3: InnovatorBench evaluates AI agents on research tasks extracted from AI papers. Re-
searchGym is initialized with the InnovatorBench dataset; the agent receives a task description and
workspace, reasons over observations, and issues tool calls that are translated into actions executed
on a target computer, with results returned as structured, agent-readable observations. The agent
iterates this process, optionally using view hint for hints and eval for submitting answers, until
calling finish. ResearchGym then performs a final evaluation and saves a state snapshot.

Asynchronous Command Execution. ResearchGym decouples action execution from selection to
prevent decision blocking. Agents can bind commands to specific sessions, or let ResearchGym cre-
ate new ones. This ensures ongoing jobs continue uninterrupted and enable immediate subsequent
planning. Agents can later retrieve the result via get session output asynchronously. To
avoid nonsensical actions during model training, ResearchGym provides a dedicated sleep action.

Snapshots saving and loading. A snapshot records the task specification, the agent’s context, the
final state of the workspace, and the remaining time budget. ResearchGym can periodically save
the full state as snapshots, and it can restore the system from any snapshot. Snapshots support
branching. Experiments can resume from different points or proceed along multiple branches.

Pipeline. Figure 3 depicts the end-to-end interaction loop. The process begins when ResearchGym
loads a task from InnovatorBench, providing the agent with a task description as its initial observa-
tion and a starter workspace. Given an observation, the agent reasons and issues a tool call. If it’s
not a command action, the ResearchGym will produce it locally; otherwise, ResearchGym converts
this call into an action, wraps it in an HTTP request, and dispatches it to a target machine. The
target machine executes the action or launches it as a background process. ResearchGym packages
the outcome as a new observation in an agent-readable format. Synchronous actions immediately
update the workspace, whereas asynchronous actions return a session ID and status for the agent
to poll with subsequent commands. The agent repeats this loop, optionally submitting answers for
evaluation and consulting hints when needed. When the agent deems the task complete, it invokes
finish. ResearchGym performs a final evaluation, saves a snapshot, and finalizes the task.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

We evaluate leading LLMs commonly used in related benchmarks on InnovatorBench. Specifically,
we consider Claude Sonnet 4 (Anthropic, 2025), GPT-5 (OpenAI, 2025), and GLM-4.5 (Zeng et al.,
2025), Kimi-K2 (Team et al., 2025a) using a ReAct-style agent (Yao et al., 2023). The agent has the
fundamental thought and action capabilities, augmented by a summarization capability. When the
context length nears the model’s maximum, the agent will summarize the earlier half of the context.
All models are wrapped as agents and executed inside a Docker container on Ubuntu 22.04 with

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

800 GB of memory. The agent can also, via a cluster HTTP service, dispatch additional compute to
server(s) with 8x 80 GB GPUs and 1600 GB of memory each, with the number of servers allocated
varying by task. We also provide a clean working directory containing the relevant data, a starter
code repository, and the task description for each task. Data Construction and Data Augmentation
can connect the internet. We disable the web search and browse tools in other tasks.

Table 2: Performance comparison on various LLMs when tested against various research do-
mains. Final Score: last submission score; Best Score: highest achieved score. Details of all
research tasks can be referred to Appendix C.

Claude Sonnet 4 GPT-5 GLM-4.5 Kimi-K2

Research Domain Final Score Best Score Final Score Best Score Final Score Best Score Final Score Best Score

Data Construction 25.47 26.88 8.41 8.41 15.29 22.65 14.01 14.08
Data Filtering 30.89 31.47 8.97 9.48 5.16 5.36 7.39 7.97
Data Augmentation 22.73 22.73 0.00 0.00 25.49 25.49 2.47 2.47
Loss Design 12.98 12.98 0.04 2.74 7.63 7.63 0.00 0.00
Reward Design 11.56 11.56 0.00 0.00 0.00 0.00 3.23 3.23
Scaffold Construction 36.63 37.74 60.07 60.07 3.33 3.33 3.33 3.33

Weighted Average 24.01 24.54 12.04 12.52 11.85 13.35 5.35 5.45

5.2 MAIN RESULTS AND FINDINGS

As demonstrated in Table 2, we compare three agents across six research-oriented tasks and report
both the final and best scores achieved. Overall, all the agents get non-zero scores, which show
they have the potential to handle code-based research tasks. Claude Sonnet 4 demonstrates the
most superior performance among its counterparts, attaining the highest average final score and best
score, and leading on four of six tasks. GPT-5 and GLM-4.5 yield middling results on final score
and best score, respectively. Besides, we also obtain the following findings:

All LLMs have relatively higher scores on data-related tasks than on algorithm-related tasks.
This difference arises from the nature of these tasks, tasks such as data construction, filtering, and
augmentation are inherently more robust: it is relatively tolerant of minor noise. For example, the
agent can gain a relatively high score in data construction as long as it find the data with the same
topic. In contrast, algorithmic design tends to be more brittle; imperfect reward or loss functions can
lead to catastrophic failures like gradient explosion or systematically flawed policies.

It is hard for models to use appropriate tools in algorithm-related tasks. We discover that
Claude Sonnet 4 performs relatively better than other LLMs on loss/reward design, primarily due to
its reliable tool use. Trace inspection reveals that GPT-5 enters a high-frequency loop once training
begins, causing early termination, while GLM-4.5 wrongly specifies critical tool parameters some-
times and stalls before training starts. Kimi-K2 cannot generate correct code in most cases. How-
ever, Claude Sonnet 4 consistently produces executable code and correctly suspends activity during
training without intervention. These findings suggest that reliability in tool-grounded execution is
the key determinant of success in loss/reward design tasks.

GPT-5’s code is more robust in Scaffold Construction. GPT-5 excels notably in scaffold con-
struction, achieving a score of 60.07, which raises its overall average to 12.04. Analysis shows its
generated scaffolds are most robust, attributable to three key design choices: explicitly restating the
options provided in the prompt to prevent invalid selections, allowing up to three retries instead of
immediately resorting to a fallback answer upon timeout, and enforcing a strict output format to
reduce evaluation failures caused by formatting issues.

5.3 PERFORMANCE OF MODEL WITH GROUND TRUTH HINT

Table 3 compares model performance with and without ground-truth hints. Hints substantially im-
prove performance in Loss Design and Reward Design. These domains are inherently more ex-
ploratory in nature, requiring the agent to devise novel solutions based on test data and algorithmic
understanding. With the solution provided, the agent shifts from exploration to implementation, fo-
cusing on replicating a known approach rather than inventing one, thereby increasing success rates.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Effect of hint provision on agent performance across research domains. Comparison
between Claude Sonnet 4 with and without hints. Final Score: last submission score; Best Score:
highest achieved score; Execution Time: agent runtime (hours); Cost: monetary expenditure (USD).

Claude Sonnet 4 w/ Hint Claude Sonnet 4

Research Domain Final Score Best Score Execution Time Cost Final Score Best Score Execution Time Cost

Data Construction 15.21 19.80 1.78 25.56 25.47 26.87 3.24 33.09
Data Filtering 16.87 20.02 6.97 32.15 30.89 31.47 4.80 32.57
Data Augmentation 1.00 1.00 3.71 26.03 22.73 22.73 4.48 30.70
Loss Design 22.65 25.32 9.05 45.11 12.98 12.98 6.32 34.78
Reward Design 15.06 15.06 6.22 41.69 11.56 11.56 9.23 46.14
Scaffold Construction 21.04 27.71 3.73 23.22 36.63 37.74 6.43 28.65

Weighted Average 13.88 16.67 4.87 30.86 24.01 24.54 5.13 32.92

In contrast, performance declines in Data Construction, Filtering, and Augmentation when hints are
supplied. Although the ground truth is provided, the model’s coding proficiency becomes a bot-
tleneck as mentioned in §5.4. The model’s tendency to rigidly replicate the hint introduces imple-
mentation errors—particularly in script generation—where minor mismatches critically undermine
functionality. Consequently, the presence of the hint actually degrades performance compared to the
symbolic method used by the agent when no hint is provided.

These results underscore that strong performance in research-oriented tasks demands both creativity
and code implementation ability of the agent. A deficiency in either high-level reasoning or low-
level coding significantly limits overall effectiveness.

5.4 CASE STUDY

Observation:
(pid=2337004) Running step 1: 17%|████ | 1.00/6.00
[03:31<17:36, 211s/it]
...
(pid=2348711) Compute log probs 2: 45%|█████████ | 9.00/20.0
[01:12<00:40, 3.70s/it]
Think:
The second training is progressing very slow, Given that I have limited

time and only 3 eval submissions, I should consider trying a different
approach. Let me check if there's been any progress with checkpoints saved
and consider trying a third, simpler approach that might train faster.
Action:
{"name": "kill_session_processes", "arguments": {"session_id":

"gpu_train", "computer_ip": "<a_real_ip>"}}

(a) Impatience

(d) Template-based Reasoning(c) Selection of Suboptimal Library

(b) Resource Mismanagement
The training costs 10 hours. The agent still has 21 hours.

def create_enhanced_training_data(original_data, output_path):
reasoning_templates = ["Let me analyze this step by step:\n\n1. First,

I'll identify the key information given in the problem.\n2. Next, I'll
determine what scientific principles or concepts apply.\n3. Then, I’ll ...
After careful analysis, the answer is {answer}.",...]
for item in original_data:

...
for i, template in enumerate(reasoning_templates):

enhanced_item = {
"instruction": f"Solve this scientific reasoning problem step by
step:\n\n{question}",
"input": "",
"output": template.format(answer=answer)}

training_data.append(enhanced_item)
...

Action (create file) :
from transformers import AutoTokenizer, AutoModelForCausalLM
class QwenAssistedCleaner:

...
self.model = AutoModelForCausalLM.from_pretrained(

self.model_path, torch_dtype=torch.float16,
device_map="auto", trust_remote_code=True)

...
inputs = self.tokenizer(prompt, return_tensors="pt",

truncation=True, max_length=1024)
with torch.no_grad():

outputs = self.model.generate(
inputs.input_ids, max_new_tokens=512, do_sample=True,
temperature=0.1, pad_token_id=self.tokenizer.eos_token_id)

...

Action 174:
{“name”: “run_command”, “arguments”: {“session_id”: “train”,
“computer_ip”: “<gpu_1‘s_real_ip>”, “command”: “cd /workspace/task/scripts
&& serve run llm:build_app model=/workspace/data/checkpoints/DeepSeek-R1-
DualAlign tensor-parallel-size=1"}}
(After several steps, the inference is still running)
Action 229:
{"name": "run_command", "arguments": {"session_id": "eval", "computer_ip":
"<gpu_1's_real_ip>", "command": "cd /workspace/task/repositories/LLaMA-
Factory && bash /workspace/task/scripts/train.sh}}
Observation 231 (observation of GetSessionOutputAction):

...
torch.OutOfMemoryError: CUDA out of memory. Tried to allocate 892.00

MiB. GPU 0 has a total capacity of 79.19 GiB of which 775.94 MiB.

Action (create file) :

Figure 4: Four representative cases of agents’ actual failures.

Impatience. As shown in Figure 4(a), the training run takes about 10 hours; at that point, the agent
knows it still has roughly 21 hours of budget. It is sufficient to wait for completion rather than
terminating the process. However, the agent wants to find a more efficient way to train the model
and kill the training process, which causes sub-optimal result. The objective mis-specification and
shortsighted decision-making reflect the agent’s impatience.

Resource Mismanagement. Figure 4(b) demonstrates that the agent first launches an inference
script with one GPU; 55 steps later, on the same computer, it launches a training script that requires
all GPUs, causing resource contention. The agent no longer finds that an inference job was already
active after more than 50 steps, shows the LLM’s weakness in degraded memory and attention

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Selection of Suboptimal Library. Figure 4(c) depicts that the agent systematically opts for scale-
mismatched implementations: it continues to run inference with Transformers in high-throughput
settings instead of adopting the more efficient vLLM. This is because the time-budget constraint
does not provide a direct, learnable feedback signal that rewards efficiency, so it fails to shape the
agent’s decisions. It may also be attributed to the lack of training data for the optimal library, like
vLLM, since the optimal library is relatively new.

Template-based Reasoning. Figure 4(d) shows that when synthesizing chain-of-thought (CoT)
rationales for QA data augmentation, the agent often instantiates a highly templated, semantically
vacuous reasoning pattern and batch-concatenates the question and answer, rather than reasoning
from the problem’s actual semantics. We find that this pattern often appears after the agent fails to
generate a correct CoT via VLLM. The agents can’t figure out why it needs to synthesize CoT and
just do it mechanically. Although this case shows the agentic ability, it also reflects the agent’s lack
of understanding of high-level intent.

5.5 TEST-TIME SCALING PERFORMANCE

PaperBench
Saturation Point

InnovatorBench
Saturation Point

6.5x longer

Figure 5: Test-time scaling: InnovatorBench vs. PaperBench Starace et al. (2025). Paper-
Bench’s result comes from the original paper. Agents require about 6.5× longer test-time to reach
the saturation point on InnovatorBench, highlighting that our benchmark’s difficulty stems from the
need for extended runtime before performance plateaus.

Figure 5 compares test-time scaling between InnovatorBench and PaperBench. Agents achieve their
best performance on PaperBench in approximately 1.75 hours, but require over 11 hours on In-
novatorBench, indicating its greater complexity. This disparity arises because complex tasks like
Data Augmentation and Reward Design involve extended training phases, making them more time-
intensive than tasks like Data Construction. This trend shows that as task complexity increases,
environment interaction costs dominate the overall working time. Since the time costs can reflect
the difficulty of the tasks, we believe that InnovatorBench is more difficult than PaperBench and will
be the next generation of the code-based research benchmark.

6 CONCLUSION

In conclusion, this work introduces two key contributions to the development of AI research agents:
InnovatorBench, a comprehensive benchmark for evaluating end-to-end LLM research tasks, and
ResearchGym, an extensible platform that supports large-scale, long-horizon experiments and real-
istic research workflows. InnovatorBench goes beyond basic task reimplementation, offering a rig-
orous framework that evaluates agents’ ability to address complex LLM research challenges across
multiple dimensions. This emphasis on innovation, adaptability, and creative problem-solving en-
sures a more comprehensive assessment of AI research agents. Empirical results using leading
LLMs reveal promising capabilities in code-based tasks, but also expose weaknesses in reward de-
sign, resource management, and long-horizon planning. Together, these contributions provide a
foundation for rigorous, real-world evaluation of AI agents, supporting their development as effec-
tive tools for scientific discovery.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation were involved. All datasets used, including the InnovatorBench we proposed, were
sourced in compliance with relevant usage guidelines, ensuring no violation of privacy. We have
taken care to avoid any biases or discriminatory outcomes in our research process. No personally
identifiable information was used, and no experiments were conducted that could raise privacy or
security concerns. We are committed to maintaining transparency and integrity throughout the re-
search process.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. The ex-
perimental setup, including training steps, model configurations, and hardware details, is described
in detail in the paper. We have also provided a full description of our InnovatorBench and Research-
Gym to assist others in reproducing our experiments. We believe these measures will enable other
researchers to reproduce our work and further advance the field.

REFERENCES

Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/
claude-4. Accessed: 2025-09-22.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao,
Chen Wei, Zitong Lu, Vishal Dey, Mingyi Xue, Frazier N. Baker, Benjamin Burns, Daniel Adu-
Ampratwum, Xuhui Huang, Xia Ning, Song Gao, Yu Su, and Huan Sun. Scienceagentbench:
Toward rigorous assessment of language agents for data-driven scientific discovery, 2024. URL
https://arxiv.org/abs/2410.05080.

Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate
disciplines. arXiv preprint arXiv:2502.14739, 2025.

Nicholas Edwards, Yukyung Lee, Yujun (Audrey) Mao, Yulu Qin, Sebastian Schuster, and Najoung
Kim. Rexbench: Can coding agents autonomously implement ai research extensions? arXiv
preprint, 2025.

Dayuan Fu, Jianzhao Huang, Siyuan Lu, Guanting Dong, Yejie Wang, Keqing He, and Weiran Xu.
Preact: Prediction enhances agent’s planning ability. arXiv preprint arXiv:2402.11534, 2024a.

Dayuan Fu, Biqing Qi, Yihuai Gao, Che Jiang, Guanting Dong, and Bowen Zhou. Msi-agent: In-
corporating multi-scale insight into embodied agents for superior planning and decision-making.
arXiv preprint arXiv:2409.16686, 2024b.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
through refinement tuning. arXiv preprint arXiv:2501.01702, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

10

https://www.anthropic.com/news/claude-4
https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2410.05080

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal lan-
guage models. Advances in Neural Information Processing Systems, 37:139348–139379, 2024.

Tianyu Hua, Harper Hua, Violet Xiang, Benjamin Klieger, Sang T Truong, Weixin Liang, Fan-Yun
Sun, and Nick Haber. Researchcodebench: Benchmarking llms on implementing novel machine
learning research code. arXiv preprint arXiv:2506.02314, 2025.

Mohan Jiang, Jin Gao, Jiahao Zhan, and Dequan Wang. Mac: A live benchmark for multimodal
large language models in scientific understanding. arXiv preprint arXiv:2508.15802, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=VTF8yNQM66.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Patrick Tser Jern Kon, Jiachen Liu, Xinyi Zhu, Qiuyi Ding, Jingjia Peng, Jiarong Xing, Yibo Huang,
Yiming Qiu, Jayanth Srinivasa, Myungjin Lee, et al. Exp-bench: Can ai conduct ai research
experiments? arXiv preprint arXiv:2505.24785, 2025.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024.

Keyu Li, Mohan Jiang, Dayuan Fu, Yunze Wu, Xiangkun Hu, Dequan Wang, and Pengfei Liu.
Datasetresearch: Benchmarking agent systems for demand-driven dataset discovery, 2025. URL
https://arxiv.org/abs/2508.06960.

Yixiu Liu, Yang Nan, Weixian Xu, Xiangkun Hu, Lyumanshan Ye, Zhen Qin, and Pengfei Liu.
Alphago moment for model architecture discovery. arXiv preprint arXiv:2507.18074, 2025.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vin-
cent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia,
Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach,
William Yang Wang, and Roberta Raileanu. Mlgym: A new framework and benchmark for ad-
vancing ai research agents, 2025. URL https://arxiv.org/abs/2502.14499.

OpenAI. Gpt-5: Language model, 2025. URL https://openai.com/gpt-5. Accessed:
2025-09-22.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Aditya Bharat Soni, Boxuan Li, Xingyao Wang, Valerie Chen, and Graham Neubig. Coding agents
with multimodal browsing are generalist problem solvers. arXiv preprint arXiv:2506.03011,
2025.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

11

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2508.06960
https://arxiv.org/abs/2502.14499
https://openai.com/gpt-5

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jie Sun, Junkang Wu, Jiancan Wu, Zhibo Zhu, Xingyu Lu, Jun Zhou, Lintao Ma, and Xiang Wang.
Robust preference optimization via dynamic target margins. arXiv preprint arXiv:2506.03690,
2025.

Hao Tang, Darren Key, and Kevin Ellis. Worldcoder, a model-based llm agent: Building world
models by writing code and interacting with the environment. Advances in Neural Information
Processing Systems, 37:70148–70212, 2024.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, et al. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code. arXiv preprint arXiv:2311.09835, 2023.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025a.

NovelSeek Team, Bo Zhang, Shiyang Feng, Xiangchao Yan, Jiakang Yuan, Zhiyin Yu, Xiaohan He,
Songtao Huang, Shaowei Hou, Zheng Nie, et al. Novelseek: When agent becomes the scientist–
building closed-loop system from hypothesis to verification. arXiv preprint arXiv:2505.16938,
2025b.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

The Terminal-Bench Team. Terminal-bench: A benchmark for ai agents in terminal environments,
Apr 2025. URL https://github.com/laude-institute/terminal-bench.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024a.

Yejie Wang, Keqing He, Dayuan Fu, Zhuoma Gongque, Heyang Xu, Yanxu Chen, Zhexu Wang,
Yujia Fu, Guanting Dong, Muxi Diao, et al. How do your code llms perform? empowering code
instruction tuning with high-quality data. arXiv preprint arXiv:2409.03810, 2024b.

Hjalmar Wijk, Tao Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence Chan,
Michael Chen, Josh Clymer, Jai Dhyani, et al. Re-bench: Evaluating frontier ai r&d capabilities
of language model agents against human experts. arXiv preprint arXiv:2411.15114, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. Science China Information Sciences, 68(2):121101, 2025.

Yang Xiao, Jiashuo Wang, Qiancheng Xu, Changhe Song, Chunpu Xu, Yi Cheng, Wenjie Li, and
Pengfei Liu. Towards dynamic theory of mind: Evaluating llm adaptation to temporal evolution
of human states. arXiv preprint arXiv:2505.17663, 2025.

Tianze Xu, Pengrui Lu, Lyumanshan Ye, Xiangkun Hu, and Pengfei Liu. Researcherbench:
Evaluating deep ai research systems on the frontiers of scientific inquiry. arXiv preprint
arXiv:2507.16280, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R. Narasimhan, Diyi Yang, Sida I. Wang, and
Ofir Press. SWE-bench multimodal: Do ai systems generalize to visual software domains? In
The Thirteenth International Conference on Learning Representations, 2025a. URL https:
//openreview.net/forum?id=riTiq3i21b.

12

https://github.com/laude-institute/terminal-bench
https://openreview.net/forum?id=riTiq3i21b
https://openreview.net/forum?id=riTiq3i21b

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents, 2025b. URL https://arxiv.org/abs/2504.21798.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Lyumanshan Ye, Xiaojie Cai, Xinkai Wang, Junfei Wang, Xiangkun Hu, Jiadi Su, Yang Nan, Sihan
Wang, Bohan Zhang, Xiaoze Fan, et al. Interaction as intelligence: Deep research with human-ai
partnership. arXiv preprint arXiv:2507.15759, 2025a.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025b.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
models. arXiv preprint arXiv:2508.06471, 2025.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments. arXiv preprint arXiv:2504.03160, 2025.

Fan Zhou, Zengzhi Wang, Qian Liu, Junlong Li, and Pengfei Liu. Programming every example:
Lifting pre-training data quality like experts at scale. arXiv preprint arXiv:2409.17115, 2024.

Wenhong Zhu, Ruobing Xie, Weinan Zhang, and Rui Wang. Flexible realignment of language
models. arXiv preprint arXiv:2506.12704, 2025.

13

https://arxiv.org/abs/2504.21798
http://arxiv.org/abs/2403.13372

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

DA DF DC LD SC RD0
1
2
3
4
5
6

Tas
k Co

unt

5
4

3 3 3
2

Figure 6: InnovatorBench’s dataset comprises tasks from a diverse set of AI research categories. DA
denotes Data Augmentation, DC stands for Data Construction, DF represents Data Filtering, LD is
the Loss Design, SC denotes Scaffold Construction, and RD means Reward Design.

A EXTENDED DETAILS OF THE INNOVATORBENCH DATASET

Figure 6 shows the task composition of InnovatorBench, and Table 4 presents the details of each
task.

Table 4: The introduction of the InnovatorBench

ID Paper Key Description Constrain Research Domains

1 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025)

Collect or synthesize a politics-domain
news summarization dataset consisting
of English news articles with corre-
sponding one-sentence human-written
summaries for fine-tuning.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

2 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025)

Build a medical English–Tamil paral-
lel dataset and fine-tune Llama-3.1-8B-
Instruct for translation.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

3 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025)

Build a 5K–10K real-world document
summarization dataset and fine-tune
Llama-3.1-8B-Instruct to generate con-
cise, accurate summaries.

Llama-3.1-8B-Instruct
dataset discovery / synthesis

48h, 8×80GB GPUs

Data
Construction

4 DatasetResearch: Bench-
marking Agent Systems
for Demand-Driven
Dataset Discovery (Li
et al., 2025)

Fine-tune Llama-3.1-8B on medical
Q&A data to improve USMLE-style
multiple-choice accuracy from 26%
baseline to 95% target.

Llama-3.1-8B-Instruct
dataset or synthesis

48h, 8×80GB GPUs

Data
Construction

5 Programming Every
Example: Lifting Pre-
training Data Quality
Like Experts at Scale
(Zhou et al., 2024)

Design and implement a systematic
cleaning pipeline for 100K raw web texts
to produce high-quality data for LLM
pre-training.

5h, 8×80GB GPUs
high efficiency

Data
Filtering

6 LIMO: Less is More for
Reasoning (Ye et al.,
2025b)

Select 800 quality math problems from
10K to build a training set for reasoning
optimization.

fixed training hyperparameter
select 800 problems

48h, 16×80GB GPUs

Data
Filtering

7 How Do Your Code
LLMs Perform? Empow-
ering Code Instruction
Tuning with High-
Quality Data (Wang
et al., 2024b)

Filter code instruction datasets by re-
moving contaminated samples and se-
lecting top 160k highest-difficulty prob-
lems for clean model training.

8h, 8×80GB GPUs
Data

Filtering

8 Supergpqa: Scaling LLM
Evaluation Across 285
Graduate Disciplines (Du
et al., 2025)

Enhance and fine-tune Qwen2.5-7B us-
ing enriched multidisciplinary scientific
reasoning data to maximize test set ac-
curacy.

48h, 8×80GB GPUs
final model trained from

Qwen2.5-7B

Data
Augmentation

Continued on next page

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

ID Paper Key Description Constrain Research Domains

9 NuminaMath: The
Largest Public Dataset
in AI4Maths with 860k
Pairs of Competition
Math Problems and
Solutions (Li et al., 2024)

Fine-tune Qwen2.5-7B-Instruct on
mathematical reasoning problems using
dataset enhancement and auxiliary mod-
els to maximize test accuracy beyond
25.9% baseline.

48h, 8×80GB GPUs
final model trained from

Qwen2.5-7B

Data
Augmentation

10 DeepResearcher: Scal-
ing Deep Research via
Reinforcement Learning
in Real-world Environ-
ments (Zheng et al.,
2025)

Synthesize search-enhanced reasoning
data with Qwen-2.5-72B and fine-tune
Qwen-2.5-7B to maximize test set per-
formance.

24h, 8×80GB GPUs
fixed inference script

final model trained from
Qwen2.5-7B

Data
Augmentation

11 Towards Dynamic The-
ory of Mind: Evaluating
LLM Adaptation to Tem-
poral Evolution of Hu-
man States (Xiao et al.,
2025)

Synthesize dynamic Theory-of-Mind
training data and fine-tune Qwen2-7B-
Instruct to predict evolving mental states
in multi-step social scenarios.

48h, 8×80GB GPUs
Qwen2-7B-Instruct / SFT only

Data
Augmentation

12 MAC: A Live Bench-
mark for Multimodal
Large Language Models
in Scientific Under-
standing (Jiang et al.,
2025)

Augment scientific image-text datasets
and fine-tune Qwen2.5-VL-7B-Instruct
to improve multimodal reasoning for
journal cover visual understanding.

24h, 8×80GB GPUs
final model trained from
Qwen2.5-VL-7B-Instruct

Data
Augmentation

13 Flexible Realignment of
Language Models (Zhu
et al., 2025)

Implement a DualAlign algorithm in
LLaMA-Factory to efficiently realign
DeepSeek-R1-Distilled-Qwen-1.5B
with DeepScaleR-Preview-1.5B for
improved reasoning efficiency.

fixed training hyperparameter
48h, 8×80GB GPUs

Loss
Design

14 DAPO: An Open-Source
LLM Reinforcement
Learning System at Scale
(Yu et al., 2025)

Implement a GRPO variant in Verl
framework to prevent entropy collapse
during RL training while maximizing ac-
curacy on mathematical reasoning tasks.

max 24h per training
48h, 8×80GB GPUs
Special output format

Loss
Design

15 Robust Preference Op-
timization via Dynamic
Target Margins (Sun
et al., 2025)

Develop a GammaPO algorithm that
adaptively adjusts reward margins based
on preference clarity to outperform
SimPO on AlpacaEval2 benchmarks.

24h, 8×80GB GPUs
Modify the training script only

Loss
Design

16 Search-R1: Training
LLMs to Reason and
Leverage Search Engines
with Reinforcement
Learning (Jin et al.,
2025)

Design and implement a reward function
in the Verl framework to train Qwen-2.5-
3B for search-augmented reasoning tasks
with exact match evaluation.

48h, 8×80GB GPUs
final model trained from

Qwen2.5-3B

Reward
Design

17 GUI-R1: A General-
ist R1-Style Vision-
Language Action Model
For GUI Agents (Luo
et al., 2025)

Implement unified reward function in
Verl framework to train GUI grounding
models for multi-platform action predic-
tion exceeding ScreenSpot baseline ac-
curacies.

24h, 8×80GB GPUs
final model trained from

Qwen2.5-VL-7B

Reward
Design

18 DeepResearcher: Scal-
ing Deep Research via
Reinforcement Learning
in Real-world Environ-
ments (Hu et al., 2024)

Build a prompt-based deep research
agent using GPT-4.1 and web tools
to handle complex multi-step research
questions with accurate source-attributed
answers.

24h, 0 GPU
GPT-4.1 for research

GPT-4.1-mini for browsing

Scaffold
Construction

19 Visual SKETCHPAD:
Sketching as a Visual
Chain of Thought for
Multimodal Language
Models (Hu et al., 2024)

Develop efficient multimodal mathemat-
ical reasoning workflow using GPT-4o
to solve geometry, graph connectivity,
maxflow, and convexity problems with
structured JSON outputs.

12h, 0 GPU
GPT-4o via API

Scaffold
Construction

20 Visual SKETCHPAD:
Sketching as a Visual
Chain of Thought for
Multimodal Language
Models (Hu et al., 2024)

Develop efficient visual reasoning sys-
tem using GPT-4o and visual tools to
solve vstar, blink viscorr, blink jigsaw,
and blink depth tasks with structured
JSON outputs.

12h, 1×24GB GPU
GPT-4o via API

Scaffold
Construction

B DATASET CURATION AND BENCHMARK CONSTRUCTION DETAILS

InnovatorBench Construction We first design 20 raw tasks based on the following principle:

(1) The task can be reapplied; the result is aligned with the original paper.

(2) The task result can gain significant improvement in 2 days

(3) The tasks can evaluate the different abilities of LLM Agents in LLM Research.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(4) The task uses common models like llama3.1 (Grattafiori et al., 2024), Qwen2.5 (Team, 2024;
Guo et al., 2025; Bai et al., 2025), or Qwen2.5-VL (Bai et al., 2025), etc.

There are 13 annotators to annotate InnovatorBench. Each task costs from 3 days to 2 weeks for
the annotators to construct the workspace and evaluation code. After collecting 20 tasks, 2 authors
further organize these tasks, workspaces, and evaluations into ResearchGym. Each annotators were
asked to reapply the original paper and gain the reference score, and the baseline score often comes
from the base model’s result. After obtaining these two scores, the annotators were asked to design
the score function based on these scores, usually a linear interpolation. The score function has 2
principles: (1) the baseline score should result in a final score of 0, while if agents gain a score
higher than the baseline score, their final score should not be 0, and (2) the reference score should
be about 80.

After testing the first version of InnovatorBench, we found that even the most advanced model can’t
generate and save the SFT data correctly, as mentioned in Figure 4, so we just changed the task a
little bit to reduce the difficulty in the Data Argument by adding some relevant scripts.

C DETAILED EXPERIMENTAL RESULTS

C.1 MAIN RESULTS

Table 5: Performance comparison of each task on various models when tested against various
evaluation metrics. FS denotes Final Score, BS represents Best Score, ET stands for Execution
Time in hours, and Cost is the monetary spend in USD.

Claude Sonnet 4 GPT-5 GLM-4.5 Kimi-K2

Task FS BS ET Cost FS BS ET Cost FS BS ET Cost FS BS ET Cost

1 19.05 19.05 1.53 27.02 0.00 0.00 2.41 16.09 20.51 20.51 0.84 1.63 0.00 0.00 1.95 4.92
2 39.35 39.35 4.26 47.41 0.00 0.00 0.79 4.16 13.26 13.26 0.83 1.91 0.20 0.20 3.57 5.97
3 17.41 18.23 4.98 30.42 0.00 0.00 1.44 7.49 18.85 18.85 2.06 4.31 14.70 14.98 4.25 4.40
4 26.09 30.87 2.21 27.51 33.62 33.62 3.98 19.42 8.55 37.97 1.37 5.70 41.16 41.16 2.53 3.40
5 5.00 5.00 0.54 6.86 13.36 14.88 0.60 2.37 5.00 5.00 0.16 0.65 12.76 13.12 0.64 1.40
6 81.37 81.74 11.45 65.09 0.00 0.00 1.58 4.28 0.00 0.00 5.32 11.11 5.00 5.00 3.33 6.14
7 6.29 7.66 2.41 25.75 13.55 13.55 1.28 3.94 10.48 11.08 0.56 3.77 4.40 5.80 1.57 2.03
8 27.33 27.33 4.83 21.57 0.00 0.00 6.32 36.15 37.30 37.30 1.54 4.87 7.33 7.33 3.38 3.98
9 0.00 0.00 7.08 36.01 0.00 0.00 2.19 4.75 0.00 0.00 0.64 3.95 0.00 0.00 11.57 7.36

10 0.00 0.00 2.34 41.15 0.00 0.00 1.06 3.86 0.00 0.00 0.56 3.95 0.00 0.00 0.80 0.46
11 86.34 86.34 5.49 32.58 0.00 0.00 3.99 4.77 5.00 5.00 2.93 7.53 5.00 5.00 6.62 6.24
12 0.00 0.00 2.65 22.19 0.00 0.00 0.86 2.99 85.15 85.15 8.45 8.05 0.00 0.00 1.29 4.46
13 0.00 0.00 4.97 58.67 0.00 0.00 1.59 12.12 0.00 0.00 3.31 10.74 0.00 0.00 7.28 10.68
14 4.50 4.50 10.40 26.29 0.12 8.21 16.23 80.50 0.00 0.00 0.68 5.47 0.00 0.00 4.70 12.20
15 34.44 34.44 3.58 19.38 0.00 0.00 2.27 6.60 22.90 22.90 4.71 18.78 0.00 0.00 3.48 8.49
16 0.00 0.00 8.91 51.67 0.00 0.00 1.74 8.67 0.00 0.00 0.63 3.31 0.00 0.00 1.86 6.60
17 23.11 23.11 5.66 32.81 0.00 0.00 2.04 9.63 0.00 0.00 0.13 1.20 6.47 6.47 3.79 6.33
18 16.67 20.00 14.01 44.25 0.00 0.00 1.26 6.56 0.00 0.00 1.34 5.47 0.00 0.00 2.42 1.96
19 63.95 63.95 2.18 23.30 92.45 92.45 1.77 3.70 10.00 10.00 0.64 3.78 10.00 10.00 5.66 2.87
20 29.26 29.26 3.08 18.41 87.76 87.76 5.05 36.38 0.00 0.00 0.99 3.04 0.00 0.00 0.68 3.47

Avg. 24.01 24.54 5.13 32.92 12.04 12.52 2.92 13.72 11.85 13.35 1.92 5.68 5.35 5.45 3.57 5.17

The benchmark evaluated the performance of three large language models — Claude Sonnet 4,
GPT-5, GLM-4.5, and Kimi-K2 — on multiple tasks with varying priority levels. For each task, the
metrics recorded include the final score, the highest score, and the runtime (in hours). This analysis
focuses on comparing model effectiveness (scores) and efficiency (time cost).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 PERFORMANCE OF MODEL WITH GROUND TRUTH HINT

Table 6 presents the performance, execution time, and cost results between Claude Sonnet 4 with
the hint and Claude Sonnet 4 without the hint.

Table 6: Performance comparison between Claude4-hint and Claude4 on evaluation metrics,
runtime, and cost.

Claude4-hint Claude4

Task Final Score Best Score Run Time Cost Final Score Best Score Run Time Cost

1 6.52 18.52 0.68 17.97 19.05 19.05 1.53 27.02
2 8.68 8.68 0.66 29.87 39.35 39.35 4.26 47.41
3 8.53 12.88 3.85 27.62 17.41 18.23 4.97 30.42
4 37.10 39.13 1.93 26.78 26.09 30.87 2.21 27.51
5 12.80 13.24 1.75 12.74 5.00 5.00 0.54 6.86
6 29.49 34.49 14.13 61.68 81.37 81.74 11.45 65.09
7 8.32 12.32 5.04 22.04 6.29 7.66 2.41 25.75
8 0.00 0.00 6.99 43.19 27.33 27.33 4.83 21.57
9 0.00 0.00 6.68 31.10 0.00 0.00 7.08 36.01
10 0.00 0.00 2.78 24.63 0.00 0.00 2.34 41.15
11 5.00 5.00 0.67 15.42 86.34 86.34 5.49 32.58
12 0.00 0.00 1.44 15.80 0.00 0.00 2.65 22.19
13 0.00 0.00 3.33 65.13 0.00 0.00 4.97 58.67
14 29.37 37.39 18.34 34.88 4.50 4.50 10.40 26.29
15 38.57 38.57 5.49 35.32 34.44 34.44 3.58 19.38
16 0.00 0.00 4.71 43.57 0.00 0.00 8.91 51.67
17 30.13 30.13 7.73 39.81 23.11 23.11 5.66 32.81
18 0.00 20.00 7.48 35.77 16.67 20.00 14.01 44.25
19 53.12 53.12 0.54 13.65 63.95 63.95 2.18 23.30
20 10.00 10.00 3.19 20.26 29.26 29.26 3.08 18.41

Avg. 13.88 16.67 4.87 30.86 24.01 24.54 5.13 33.92

D EXTENDED INNOVATORBENCH EXAMPLES

Example of task 14’s description

Motivation

Reinforcement Learning (RL) training for Large Language Models often suffers from **entropy
collapse**, where the model’s output distribution becomes overly deterministic early in training.
This severely limits exploration and prevents the model from discovering diverse reasoning paths.
Understanding and mitigating entropy collapse is crucial for successful long−form reasoning tasks
where exploration of different solution strategies is essential.

Task

**Your task is to implement a new strategy for GRPO in language model reinforcement learning in
order to get the highest accuracy and prevent entropy collapse.**

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

We provide a GRPO algorithm for you as background knowledge. For a specific question−answer
pair (q, a), the behavior policy $\pi \thetaˆ{\mathit{old}}$ samples a group of G individual
responses $\{o i\} {i=1}ˆG$. Then, the advantage of the i−th response is calculated by normalizing
the group−level rewards $\{R i\} {i=1}ˆG$:

$$
\nabla \theta J {GRPO}(\theta) = \mathbb{E} {(q, a) \sim D, \{o i\} {i=1}ˆG \sim \pi {\theta
{old}}(\cdot|q)} \left[\dfrac{1}{G} \sum {i=1}ˆG \dfrac{1}{|\mathcal{o} i|} \sum {t =
1}ˆ{|\mathcal{o} i|} \left(\min \left(r {i,t}(\theta)\hat{A} {i, t}, \text{clip}(r {i,t}(\theta), 1 −
\epsilon, 1 + \epsilon)\hat{A} {i, t} \right) \right) \right]

$$, where $ r {i,t} = \dfrac{\pi \theta(o {i, t}|q,o {i, <t})}{\pi \thetaˆ{\mathit{old}}(o {i, t}|q,
o {i, <t})}$ is the importance sampling ratio.

**Now, you need to implement a variant of GRPO to get the highest accuracy and prevent entropy
collapse.**

You should work under the ‘/workspace/task‘ and ‘/workspace/data‘ directories.

You need to use the original GRPO rollout. Only modify the advantage/loss compute part in ‘/
workspace/task/repositories/verl/verl/trainer/ppo/core algos.py‘, do not modify other files in verl.

After you implement the algorithm in ‘/workspace/task/repositories/verl‘, you can use ‘/workspace/
task/scripts/train.sh‘ to train the model based on your code; it will also show the dev set results in the
training log. (You can train multiple times, just select the best one to evaluate.)

− Do not modify the parameter in ‘/workspace/task/scripts/train.sh‘ except test freq

Finally, you need to select the best checkpoints in your training, using ‘/workspace/task/scripts/
inference.sh <model path>‘ to generate ‘/workspace/data/outputs/math results logits.pt‘ and ‘/
workspace/data/outputs/math results.parquet‘

Output Format Requirements:

File Location: ‘/workspace/data/outputs/math results.parquet‘

File Format: Parquet format containing model responses

Required Fields: The parquet file should contain:
− ‘”sample id”‘ (int): Unique identifier for each test sample (must follow the order in the test set)
− ‘”output”‘ (string): The model’s complete response, including reasoning and final answer

Required Output Format for each response:
‘‘‘
<reasoning process>
Answer:\boxed{Your Answer}
‘‘‘

Logits File: ‘/workspace/data/outputs/math results logits.pt‘
− PyTorch tensor file containing logits for entropy calculation
− Should be a list of tensors, one for each test sample
− Each tensor should have shape ‘[sequence length, vocab size]‘ where:

− ‘sequence length‘: Number of generated tokens for that sample
− ‘vocab size‘: Size of the model’s vocabulary

IMPORTANT Notes:
− Use ‘/workspace/task/scripts/inference.py‘ for inference − **do not modify this script**

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

− The reasoning process should demonstrate clear mathematical thinking
− Final answer must be enclosed in ‘\boxed{}‘ format
− Your task is to implement a new strategy for GRPO to prevent entropy collapse and achieve the
highest accuracy

The evaluation will check these two files to give the final score based on both accuracy and entropy
metrics.

Data

− **Train set**: Stored in ‘/workspace/data/datasets/math.8k/train.parquet‘
− data source: ’math8k’
− prompt: the math question
− reward model: the ground truth answer of the math question

− **Dev set**: Stored in ‘/workspace/data/datasets/math.8k/dev.parquet‘
− data source: ’GSM8k’ & ’AMC23’
− prompt: the math question
− reward model: the ground truth answer of the math question

− **Test set**: Stored in ‘/workspace/data/datasets/math.8k/test.parquet‘

− **Checkpoint**: Stored in ‘/workspace/data/checkpoints/Qwen2.5−1.5B‘.

Constraint

− Training time constraint: 24 hours.
− Evaluation time constraint: 10 minutes.
− You can use 8 80GB H100 GPUs.
− You only have 3 chances to evaluate your submission.
− Total time limit: 48 hours.

Evaluation

Evaluation metrics:

1. Accuracy: Measure the accuracy of the variant policy on the test set at the end of the training.
2. Entropy Analysis: Track entropy of the variant policy along the training process.

Success criteria:

1. The accuracy of the variant policy on MATH500 should be at least higher than the baseline policy.
Try your best to get the highest accuracy!
2. The average entropy of the variant policy should be in a reasonable range.
3. The final score will be the accuracy score * entropy score * 100

Environment

We have setup the conda environment for you named ‘/workspace/conda‘, and we have activated the
environment.

Scripts
You can generate scripts in the ‘/workspace/task/scripts‘ directory. You **should not modify scripts
** that are originally in the ‘/workspace/task/scripts‘ directory.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The following scripts are provided to you; do not modify them:

− ‘/workspace/task/repositories/verl/scripts/model merger.py‘: Given a model path of verl checkpoint
, which is a directory containing multiple ‘model world size 8 rank {rank number}.pt‘ files, you can
use this script to merge the model weights into HuggingFace format.

− Input:
− ‘−−local dir‘: The path of the verl checkpoint.

− Output:
− The checkpoint in HuggingFace format.

E LIMITATIONS AND FUTURE WORKS

Despite the advancements brought by InnovatorBench and ResearchGym, there are several areas for
improvement in future work:

Task Diversity InnovatorBench currently covers a limited set of research tasks. Future work could
expand the benchmark to include more diverse, interdisciplinary challenges that reflect real-world
scientific research.

Generalization of Agents AI agents still show performance variation depending on the model. Fur-
ther research is needed to improve their generalization across different research tasks and improve
transfer learning for broader applicability (Fu et al., 2025; 2024a;b).

Human-AI Collaboration The current framework largely focuses on autonomous AI agents. Future
work could explore hybrid human-AI workflows, incorporating real-time feedback and collaboration
for more realistic research Ye et al. (2025a).

F SUPPORTED ACTIONS OF RESEARCHGYM

We referred to the design of OpenHands Wang et al. (2024a) and adapted it to the multi-machine,
multi-GPU, asynchronous, and other environments required by ResearchGym.

F.1 COMMAND ACTIONS

The command actions manage terminal session lifecycle and interaction, including session creation,
listing, command execution, input/output handling, status inspection, and session termination. The
following functions provide comprehensive capabilities to control and operate remote or local com-
puting sessions.

def create session action(computer_ip: str = ’localhost’, session_id: str
= None, http_port: int = None, use_proxy: bool = True) -> Dict[str,
Any]:
"""Create a new terminal session on the computer specified by ‘
computer_ip‘.

This function initializes connectivity via ‘http_port‘ and ‘use_proxy
‘. Use ‘use_proxy=False‘ for ‘cpu‘/‘localhost_cpu‘ machines and ‘
use_proxy=True‘ for ‘gpu‘ machines.

Args:
computer ip[str]: The IP address of the computer. Default is ’

localhost’.
session id[str]: Unique identifier of the target session. If

absent, a new
session is created and a new ‘session_id‘ is assigned on the host

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

‘computer_ip‘. Default is None.
http port[int]: The HTTP port to use to connect to the session.
use proxy[bool]: Whether to use a proxy for connecting to the

session. Set
‘use_proxy=False‘ for ‘cpu‘ and ‘localhost_cpu‘ computers, and

set
‘use_proxy=True‘ for ‘gpu‘ computers. Must align with your

network topology
or the connection will fail. Default is True.

Returns:
Dict[str, Any]: Dictionary containing session creation status and
information.

"""

def list sessions action(computer_ip: str = None) -> Dict[str, Any]:
"""List all existing sessions.

Key ’<computer_ip>:<session_id>’ on the output refers to the session
<session_id> on <computer_ip>.

Args:
computer ip[str]: The IP address of the computer. If None, lists

sessions
on all machines. Default is None.

Returns:
Dict[str,

Any]: Dictionary containing information about all active
sessions.

"""

def run command action(
command: str,
computer_ip: str = ’localhost’,
session_id: str = None,
http_port: int = None,
wait_for_completion: bool = False,
use_proxy: bool = True

) -> Dict[str, Any]:
"""Execute a single bash command in the session identified by ‘
session_id‘.

If the session does not exist, it will be created and bound to the
target host (determined by ‘computer_ip‘)
and will be connected via ‘http_port‘ and ‘use_proxy‘. Only one
command may run concurrently per session.

Args:
command[str]: Shell (bash) command to execute in the target

session’s
working directory and environment.
computer ip[str]: The IP address of the computer. Default is ’

localhost’.
session id[str]: Unique identifier of the target session. If

absent, a new
session is created on the host determined by ‘computer_ip‘.

Default is
None.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

http port[int]: The HTTP port to use to connect to the session.
Default is

None.
wait for completion[bool]: Whether to block until the command

finishes:
- True: block up to 10 seconds; on timeout the command process is

killed.
- False: return immediately and let the command run in the

background.
use proxy[bool]: Whether to use a proxy for connecting to the

session. Set
‘use_proxy=False‘ for ‘cpu‘ and ‘localhost_cpu‘ computers, and

set
‘use_proxy=True‘ for ‘gpu‘ computers. Default is True.

Returns:
Dict[str,

Any]: Dictionary containing command execution results and status.
"""

def input in session action(computer_ip: str = ’localhost’, session_id:
str = None, input_text: str = ’’) -> Dict[str, Any]:
"""Navigate to a webpage based on URL and display its content.

The environment will cache the webpage content for another action to
use until perform next web_browse action.

Args:
url[str]: The URL to navigate to.
line number[int]: The line number to start viewing from. The

environment
will perform line_number to line_number+100 lines of content.

Default is 1.

Returns:
Dict[str,

Any]: Dictionary containing page content and status information.
"""

def get session output action(
computer_ip: str = ’localhost’,
session_id: str = None,
start_lines: int = 50,
end_lines: int = None,
since_timestamp: float = None

) -> Dict[str, Any]:
"""Retrieve the output buffer of the terminal session identified by ‘
session_id‘.

If ‘since_timestamp‘ is provided, incremental output since that time
is returned; otherwise, output is sliced by line window (‘start_lines
‘ required, ‘end_lines‘ optional).

Args:
computer ip[str]: The IP address of the computer. Default is ’

localhost’.
session id[str]: Unique identifier of the target session. The

session must
exist and be active. Default is None.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

start lines[int]: Start offset counted from the end of output
(>=2).

Effective only when ‘since_timestamp‘ is not set. Usage:
- ‘start_lines=N‘ only: returns the last N lines.
- With end_lines: returns the slice between ‘start_lines‘ and ‘

end_lines‘.
end lines[int]: End offset counted from the end of output (>=1).

If not
specified, this tool will return content from the ‘start_lines‘

to the end
of the output. If specified, the slice is [start_lines, end_lines

):
inclusive of ‘start_lines‘, exclusive of ‘end_lines‘. Default is

None.
since timestamp[float]: Optional. Fetch output since this Unix

epoch
timestamp (seconds, float). When set, it overrides ‘start_lines‘

and
‘end_lines‘. Default is None.

Returns:
Dict[str, Any]: Dictionary containing session output and status
information.

"""

def session status action(computer_ip: str = ’localhost’, session_id: str
= None) -> Dict[str, Any]:
"""Get the status of a specific terminal session.

Args:
computer ip[str]: The IP address of the computer. Default is ’

localhost’.
session id[str]: Unique identifier of the target session. If

absent, the
status of the default session is returned. Default is None.

Returns:
Dict[str, Any]: Dictionary containing session status information.

"""

def session idle action(computer_ip: str = ’localhost’, session_id: str =
None) -> Dict[str, Any]:
"""Check if a specific terminal session is idle.

Args:
computer ip[str]: The IP address of the computer. Default is ’

localhost’.
session id[str]: The ID of the session to check whether it is

running some
command or whether it is idle. Default is None.

Returns:
Dict[str,

Any]: Dictionary containing session idle status information.
"""

def clear session buffer action(computer_ip: str = ’localhost’, session_id
: str = None) -> Dict[str, Any]:
"""Clear the output buffer of a specific terminal session.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The output buffer is a queue of output lines, it will automatically
clean if the total lines exceed 10000 lines, regardless of using this
action or not.

Args:
computer ip[str]: The IP address of the computer. Default is ’

localhost’.
session id[str]: The ID of the session to clear the output buffer.

Returns:
Dict[str,

Any]: Dictionary containing operation status information.
"""

def close session action(computer_ip: str, session_id: str) -> Dict[str,
Any]:
"""Close a specific terminal session and kill all sub-processes in
the session.

Args:
computer ip[str]: The IP address of the computer.
session id[str]: The ID of the session to close.

Returns:
Dict[str,

Any]: Dictionary containing operation status information.
"""

def close all sessions action(computer_ip: str = None) -> Dict[str, Any]:
"""Close all sessions on a specific machine or all machines.

If you want to close all sessions on a specific machine, you should
set the ‘computer_ip‘.

Args:
computer ip[str]: The IP address of the computer. If None, closes

sessions
on all machines. Default is None.

Returns:
Dict[str,

Any]: Dictionary containing operation status information.
"""

def kill session processes action(computer_ip: str = ’localhost’,
session_id: str = None, force: bool = False) -> Dict[str, Any]:
"""Kill all processes on a specific session.

Args:
computer ip[str]: The IP address of the computer. Default is ’

localhost’.
session id[str]: The ID of the session to kill all processes.
force[bool]: Whether to force to kill all processes. Default is

False.

Returns:
Dict[str,

Any]: Dictionary containing operation status information.
"""

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.2 BROWSE ACTIONS

The browse actions enable webpage navigation, viewing, scrolling, in-page keyword search, iterative
result traversal, and hyperlink extraction from cached web content. Specifically, web page goto
action, web page goto line action, web page scroll down action, web page scroll up action,
web page search action, web page search next action, and web page get links action collec-
tively provide a unified interface for interacting with and extracting information from web pages.

def web page goto action(url: str, line_number: int = 1) -> Dict[str, Any
]:
"""Navigate to a webpage based on the given URL and display its
content.

The environment will cache the webpage content for subsequent actions
until another web browsing action is performed.

Args:
url[str]: The URL to navigate to.
line number[int]: The line number to start viewing from (1-indexed

).
The environment will provide content from line_number to

line_number+100.

Returns:
Dict[str,

Any]: Dictionary containing page content and status information.
"""

def web page goto line action(line_number: int) -> Dict[str, Any]:
"""Jump directly to a specific line in the currently cached webpage.

Args:
line number[int]: The line number to jump to (1-indexed).

Returns:
Dict[str,

Any]: Dictionary containing page content and status information.
"""

def web page scroll down action() -> Dict[str, Any]:
"""Scroll down the currently cached webpage by a fixed number of
lines.

This displays the subsequent 100 lines of content.

Returns:
Dict[str,

Any]: Dictionary containing page content and status information.
"""

def web page scroll up action() -> Dict[str, Any]:
"""Scroll up the currently cached webpage by a fixed number of lines.

This displays the previous 100 lines of content.

Returns:
Dict[str,

Any]: Dictionary containing page content and status information.
"""

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

def web page search action(keyword: str, context_lines: int = 5) -> Dict[
str, Any]:
"""Search for a keyword in the currently cached webpage and return
surrounding context.

The search returns the first occurrence of the keyword along with the
specified
number of context lines.

Args:
keyword[str]: The keyword to search for.
context lines[int]: Number of context lines to display around each

match.

Returns:
Dict[str, Any]: Dictionary containing search results and status
information.

"""

def web page search next action(context_lines: int = 5, search_index: int =
None) -> Dict[str, Any]:
"""Advance to the next (or specified) search result in the cached
webpage.

If search_index exceeds the number of matches, it wraps using modulo
arithmetic.

Args:
context lines[int]: Number of context lines to display around the

match.
search index[int]: Index of the search result to jump to. If None,

advances
to the next result.

Returns:
Dict[str, Any]: Dictionary containing search results and status
information.

"""

def web page get links action(page_size: int = 10, page_number: int = 1) ->
Dict[str, Any]:
"""Extract hyperlinks from the currently cached webpage.

Args:
page size[int]: Number of links to return per page. Default is 10.
page number[int]: The page number of results to display. Default

is 1.

Returns:
Dict[str,

Any]: Dictionary containing link list and status information.
"""

F.3 FILES ACTIONS

The file manipulation module provides capabilities to navigate, inspect, create, modify, and
search files or directories. It includes editing file edit action, opening and navigating within
files open file action, goto line action, file scroll down action, file scroll up action, creating
new files create file action, searching directories or files search dir action, search file action,

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

find file action, listing directory contents list files action, and retrieving metadata about the current
file get file info action. Together these operations provide a complete toolkit for programmatic file
system interaction.

def file edit action(path: str, start_line: int, end_line: int, content:
str) -> Dict[str, Any]:
"""Edit a file given path.

The file’s [start,end] lines will be edited to the content. Remember
this edit
will change the file’s line-linenumber index, so do not edit
consecutively
until you use ‘read_file‘ tools to read the new file version.

Args:
path[str]: The path to the file to edit.
start line[int]: The starting line to be edited (including).
end line[int]: The ending line to be edited (including).
content[str]: The content to be written or edited in the file. It

will
replace the content between ‘start‘ and ‘end‘ lines.

Returns:
Dict[str, Any]: Dictionary containing edit operation status and
information.

"""

def open file action(path: str, line_number: int = 1, context_lines:
Optional[int] = None) -> Dict[str, Any]:
"""Open a file and display its content around a specific line.

The environment will cache the file content for another file action
to use until perform next open_file action.

Args:
path[str]: The path to the file to open.
line number[int]: The line number to focus on (1-indexed). Default

is 1.
context lines[Optional[int]]: Number of lines to show as context.

Default is
None (uses default window size).

Returns:
Dict[str,

Any]: Dictionary containing file content and status information.
"""

def goto line action(line_number: int) -> Dict[str, Any]:
"""Jump to a specific line in the currently open file and show the
content around the line.

Args:
line number[int]: The line number to jump to (1-indexed).

Returns:
Dict[str,

Any]: Dictionary containing file content and status information.
"""

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

def file scroll down action() -> Dict[str, Any]:
"""Scroll down 100 lines in the currently open file.

Returns:
Dict[str,

Any]: Dictionary containing file content and status information.
"""

def file scroll up action() -> Dict[str, Any]:
"""Scroll up 100 lines in the currently open file.

Returns:
Dict[str,

Any]: Dictionary containing file content and status information.
"""

def create file action(filename: str, content: str = "") -> Dict[str, Any
]:
"""Create a new file with the specified content.

It will also replace the original file if it already exists.

Args:
filename[str]: The name/path of the file to create.
content[str]: The content to write to the new file. Default is

empty string.

Returns:
Dict[str,

Any]: Dictionary containing file creation status and information.
"""

def search dir action(search_term: str, dir_path: str = ’./’) -> Dict[str,
Any]:
"""Search for a text pattern in all files within a directory.

Args:
search term[str]: The text to search for.
dir path[str]: The directory path to search in. Default is current

directory.

Returns:
Dict[str, Any]: Dictionary containing search results and status
information.

"""

def search file action(search_term: str, file_path: Optional[str] = None)
-> Dict[str, Any]:
"""Searches for a text pattern in a specific file or the currently
open file.

Args:
search term[str]: The text to search for.
file path[Optional[str]]: The file path to search in. If None,

searches in
currently open file. Default is None.

Returns:
Dict[str, Any]: Dictionary containing search results and status
information.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

"""

def find file action(file_name: str, dir_path: str = ’./’) -> Dict[str,
Any]:
"""Finds files by name pattern within a directory.

Args:
file name[str]: The file name or pattern to search for.
dir path[str]: The directory path to search in. Default is current

directory.

Returns:
Dict[str, Any]: Dictionary containing search results and status
information.

"""

def list files action(path: str = ".", show_hidden: bool = False) -> Dict[
str, Any]:
"""List all files and directories in a specified path.

Args:
path[str]: The directory path to list contents of. Default is

current directory.
show hidden[bool]: Whether to show hidden files/directories.

Default is
False.

Returns:
Dict[str,

Any]: Dictionary containing directory listing and status
information.

"""

def get file info action() -> Dict[str, Any]:
"""Get information about the currently open file.

Returns:
Dict[str,

Any]: Dictionary containing file information and status.
"""

F.4 SEARCH ACTIONS

The search functionality provides web-based information retrieval capabilities: search action issues
queries to external search engines (e.g., Google or Bing) and returns up to top k ranked results along
with associated status metadata; result sets are capped to prevent excessive retrieval.

def search action(query: str, top_k: int = 10) -> Dict[str, Any]:
"""Perform a web search using engines such as Google or Bing.

Args:
query[str]: The search query to look up on the web.
top k[int]: The maximum number of search results to return.
If the number exceeds 100, it will be set to 100. Default is 10.

Returns:
Dict[str, Any]: Dictionary containing search results and status
information.

"""

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F.5 PARSER ACTIONS

This set of parser actions collectively enables the extraction and transformation of infor-
mation from diverse input modalities. Specifically, parse pdf action, parse docx action,
parse latex action, and parse pptx action handle the parsing of structured document formats,
while parse audio action, parse image action, and parse video action process unstructured mul-
timedia inputs such as speech, images, and video, thereby supporting a unified mechanism for mul-
timodal content understanding and storage.

def parse pdf action(file_path: str, save_path: str) -> Dict[str, Any]:
"""Parse a PDF file, extract text content and save to a file.

Args:
file path[str]: The path to the PDF file to parse.
save path[str]: The path to save the parsed content.

Returns:
Dict[str,

Any]: Dictionary containing parsing status and information.
"""

def parse docx action(file_path: str, save_path: str) -> Dict[str, Any]:
"""Parse a DOCX file and save the parsed content to a file.

Args:
file path[str]: The path to the DOCX file to parse.
save path[str]: The path to save the parsed content.

Returns:
Dict[str,

Any]: Dictionary containing parsing status and information.
"""

def parse latex action(file_path: str, save_path: str) -> Dict[str, Any]:
"""Parse a LaTeX file and save the parsed content to a file.

Args:
file path[str]: The path to the LaTeX file to parse.
save path[str]: The path to save the parsed content.

Returns:
Dict[str,

Any]: Dictionary containing parsing status and information.
"""

def parse audio action(file_path: str, save_path: str, model: str = ’
whisper-1’) -> Dict[str, Any]:
"""Parse an audio file, transcribe its content and save the parsed
content to a file.

Args:
file path[str]: The path to the audio file to parse.
save path[str]: The path to save the parsed content.
model[str]: The model to use for audio transcription.

Returns:
Dict[str,

Any]: Dictionary containing parsing status and information.
"""

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

def parse image action(file_path: str, save_path: str, task: str = ’
Describe this image.’) -> Dict[str, Any]:
"""Parse an image file, analyze its content and save the parsed
content to a file.

Args:
file path[str]: The path to the image file to parse.
save path[str]: The path to save the parsed content.
task[str]: The task description for image analysis.

Returns:
Dict[str,

Any]: Dictionary containing parsing status and information.
"""

def parse video action(file_path: str, save_path: str, task: str = ’
Describe this image.’, frame_interval: int = 30) -> Dict[str, Any]:
"""Parse a video file, analyze its content and save the parsed
content to a file.

Args:
file path[str]: The path to the video file to parse.
save path[str]: The path to save the parsed content.
task[str]: The task description for video analysis.
frame interval[int]: The frame interval for video analysis.

Default is 30.

Returns:
Dict[str,

Any]: Dictionary containing parsing status and information.
"""

def parse pptx action(file_path: str, save_path: str) -> Dict[str, Any]:
"""Parse a PPTX file and extract text content.

Args:
file path[str]: The path to the PPTX file to parse.
save path[str]: The path to save the parsed content.

Returns:
Dict[str,

Any]: Dictionary containing parsing status and information.
"""

F.6 SPECIAL ACTIONS

The special actions include null action for performing no operation, think action for recording
the agent’s thoughts, eval action for submit the result and gain the score, view hint action for
inspecting task-related hints with an associated score penalty, and finish action for terminating the
research task.

def null action() -> str:
"""Null Action.

Returns:
"No Action"

"""

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

def think action(action: BaseAction) -> BaseObservation:
"""Handle an action where the agent logs a thought.

This function processes the ThinkAction and returns the thought as an
observation.

Args:
action[BaseAction]: The ThinkAction to handle.

Returns:
BaseObservation: Observation containing the thought and status
information.

"""

def view hint action(action: BaseAction) -> BaseObservation:
"""View the hint for the current task.

Some tasks contain hints, this function allows the agent to view the
hint,
but using this action will deduct the agent’s score.

Args:
action[BaseAction]: The ViewHintAction to handle.

Returns:
BaseObservation: Observation containing the hint content and

status
information.

"""

def eval action() -> None:
"""
An action where the agent evaluates the agent’s output (some files
and the content inside the files), which is declared in the task
description (original task instead of subgoal). The argument of this
action should be empty, do not add any key inside the argument
"""

def finish action() -> None:
"""
Terminating the research task.
"""

G PROMPT USED IN AGENTS

G.1 SUMMARY

System prompt for summarizing the internal research history

You are the component that summarizes the internal research history into a given structure for an AI
Innovator agent.

When the research history grows too large, you will be invoked to distill it into a concise, structured
XML snapshot. This snapshot is CRITICAL, as it will become the agent’s *only* memory of the
past. The agent will resume its research based solely on this snapshot. All crucial details, hypotheses,
experimental plans, results, learnings, and user directives MUST be preserved.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

First, you should think through the entire history in a private <history>. Review the overall research
goal, the agent’s experiments, code modifications, tool outputs, and experimental results. Identify
every piece of information that is essential for future research steps.

After your reasoning is complete, generate the final <state snapshot> XML object. Be incredibly
dense with information. Omit any irrelevant conversational filler.

Context Overview

You will be given the following contexts:
1. The original task description, which is at the beginning of the context.
2. The history, it may contains 2 parts:

2.1 Your reaction towards the observation from the environment, and its corresponding
observation from the environment.
2.2 Your summary of some parts of the action−observation history. (Since the action−
observation history is too long, you just summarize some parts of it.)

Input Context Format

For easier understanding, the user will place the key factors in the following format:

1. The original task description:
<task description>
YOUR TASK DESCRIPTION
</task description>

2. The history you need to summarize:
<history>
...
</history>

Real User

− If context is provided in the <real user></real user> tag, you should perform reflection and save
your reflection results in <reflection></reflection> (at least n reflections for n <real user> entries).
− The real user’s advice must be treated as IMPORTANT.

The structure of your output is specified in ‘internal summarize‘ tool, you MUST follow the tool’s
instruction.

Try your best to make this summary!

Tool prompt for summarizing the internal research history

The structure of ‘summary content‘ MUST be as follows:

<state snapshot>
<state of the art>

<!−− The SOTA benchmark to surpass. −−>
<!−− Example: ”The current SOTA score is 0.85. We need to beat this.” −−>

</state of the art>

<hypotheses>
<!−− List of active, tested, or pending hypotheses. −−>

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

<!−− Example:
− [TESTING] Hypothesis 1: Adding a penalty for verbosity in the reward function will
improve conciseness without harming helpfulness.
− [PROVEN] Hypothesis 2: Normalizing rewards by batch statistics stabilizes training.
− [TODO] Hypothesis 3: Using data augmentation on the prompt dataset will increase
instruction−following capabilities.

−−>
</hypotheses>

<key knowledge>
<!−− Crucial facts, takeaways, and constraints the agent must remember based on the
conversation history and interaction with the user. Use bullet points. −−>
<!−− Example:
− Ray: ray has started with \‘ray start −−head\‘ but havn’t check its status.
− API Endpoint: The primary API endpoint is \‘https://api.example.com/v2\‘.
− Learning rate > 1e−4 causes training instability.
− The main dataset is located at ’/data/datasets/rl dataset v2.parquet’.
− Model weights are at ’/data/checkpoints/base model.pth’.
− Trainging models: llamafactory−cli has been started, the response of the training data is
generated by the Qwen2.5−72B−Instruct model.
− The number of remaining calls to the ‘eval‘ tool is 2.
− Reading File: The ‘test.parquet‘ data’s value is too long, I should read the special key

−−>
</key knowledge>

<reflection>
<!−− Reflection that the agent should remember based on conversation history and
interactions. Use bullet points. −−>
<!−− Present the reasoning step concisely when stating an Reflection. −−>
<!−− Each line should be in the format of: ‘Reflection: concise reasoning step and its
corresponding facts in the history. −−>
<!−− Only add, edit or merge reflection when there are some incidents in the history. Do
not generate redundant reflections. −−>
<!−− The reflections should be general. −−>
<!−− Add reflection from below examples when they appear in the history; you are
encouraged to create new, relevant reflection or edit reflection towards new situation. −−>
<!−− If this reflection comes from real user’s advice (content inside <real user> tag), cite
its input in [real user][/real user]. −−>
<!−− Examples:
− Use a special key to read file: in ‘test.parquet‘, some values are very long; reading directly
may exceed the context length.

− Use ‘wait for completion=False‘ for Ray/training/inference jobs lasting >10 seconds; in
the past, jobs were killed when ‘wait for completion=True‘.
− Check GPU status before training/inference: once, training started while another process
was already running, causing confusion and wasted time debugging the conda environment.
[real user]Do not running this inference scripts. You have already run another training
scripts[/real user]
− Always check the file after editing to avoid unexpected modification.
− Run commands in the correct path: if not run in folder ‘A‘, Python may import the
environment’s ‘math‘ module instead of ‘A/math.py‘, even with ‘sys.path.append(’A’)‘.
− Be patient: importing ‘transformers‘ or starting Ray can take about 5 minutes; avoid
killing the process prematurely. [real user]Your training script is right, why you kill this
script?[/real user]
− Do not specify ‘end lines‘ in most cases: you often need to read the tail of the session to
get the newest information.
− Determine scope: only the information after the last exception log or interactive prompt is
the last command’s output; confusion often happens when ‘start lines‘ is set too large.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

− Check the session’s status and kill unused sessions after planning/summarization: a run
was started and forgotten, leading to duplicate launches; verify idleness and the latest output
before starting again.

−−>
</reflection>

<file and browser state>
<!−− List files that have been created, read, modified, deleted and key data artifacts. Note
their status and critical learnings. −−>
<!−− Example:
− CWD: ‘/workspace/task/‘
− MODIFIED: ‘/workspace/task/reward.py‘ − Implemented the verbosity penalty.
− CREATED: ‘/workspace/task/scripts/data augmentation.py‘ − Script to apply back−
translation.
− DATASET: ‘/workspace/data/datasets/augmented prompts.json‘ − New dataset created
from Hypothesis 3.
− READING: \‘README.md\‘ − The last file you are opening/reading.
− BROWSED: \‘https://www.google.com/search?q=new+feature\‘ − The last browswe
page you have visited.

−−>
</file and browser state>

<recent sessions>
<!−− List **all** sessions that have been created and not been closed. Note their status and
critical learnings. −−>
<!−− Only the session maybe running will have GPU usage. If the running is finish, GPU
usage should be None. −−>
<!−− Idle means there is no process running in this session, if one process is end and not
run other command in the session, this session is idle −−>
<!−− Highlight the GPU that may have conflict in different session −−>
<!−− Example:
− [session ID1] Last command: [Command in session ID1], Idle: False, GPU usage:
computer ip xxx.xxx.xxx.xxx GPU 0,1,2,3,4,5,6,7 and computer ip xxx.xxx.xxx.xxx GPU
0,1,2,3,4,5,6,7
− [session ID2] Last command: [Command in session ID2], Idle: True, GPU usage: None
− [session ID3] Last command: [Command in session ID3], Idle: False, GPU usage:
computer ip xxx.xxx.xxx.xxx GPU 0,1,2,3

−−>
</recent sessions>

<recent actions>
<!−− A summary of the last few significant agent actions and their outcomes. Focus on
facts. −−>
<!−− Example:
− Ran \‘grep ’old function’\‘ in session xxxxxxxx, computer ip xxx.xxx.xxx.xxx which
returned 3 results in 2 files.
− Ran \‘bash inference.sh\‘ in session xxxxxxxx, computer ip xxx.xxx.xxx.xxx, which
failed due to the incorrect output data path.
− Ran \‘ls −F static/\‘ in session xxxxxxxx, computer ip xxx.xxx.xxx.xxx and discovered
image assets are stored as \‘.webp\‘.
− Ran \‘bash train.sh\‘ in session xxxxxxxx, computer ip xxx.xxx.xxx.xxx, it is still
running now.

−−>
</recent actions>

<experiment history>
<!−− A summary of the last few significant experiments and their outcomes. −−>

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

<!−− Example:
− Experiment 1 (Hypothesis 1): Ran training with verbosity penalty. Result: Alignment
score increased to 0.86, but helpfulness dropped slightly. See logs in ‘/workspace/task/logs/
exp 1/‘.
− Experiment 2 (Hypothesis 2): Implemented reward normalization. Result: Training was
stable, loss converged faster. Final score was 0.84. See logs in ‘/workspace/task/logs/exp 2
/‘.

−−>
</experiment history>

</state snapshot>

G.2 REACT

ReAct system prompt

You are an interactive AI Innovator. Your primary goal is to autonomously conduct cutting−edge AI
research (e.g. designing novel models and algorithms, optimizing training processes, and finding new
datasets). The user will provide you a task description and a base codebase to guide your research.
Your mission is to code, experiment, and analyze the results to produce innovative solutions, which
surpass the current state−of−the−art.

Core Mandates

− **Scientific Rigor:** Approach every task with a researcher’s mindset. Formulate clear hypotheses
, design controlled experiments, and draw conclusions based on empirical evidence.
− **Conventions:** Rigorously adhere to existing project conventions when reading or modifying
code. Analyze surrounding code, configurations, and documentation first.
− **Plan−First Rule:** For every new task or scope change, create a concise, structured plan before
any code edits, training, or long commands. Always decompose the task into smaller subgoals. Use
the ‘think‘ tool by default. If the direction is ambiguous or deviates materially from the goal, use the ‘
think‘ tool again to refine the plan.
− **Libraries/Frameworks:** NEVER assume a library/framework is available or appropriate. Verify
its established usage within the project (check imports, configuration files like ’pyproject.toml’, ’

requirements.txt’, etc.) before employing it. Prioritize using the existing environment to ensure
reproducibility.
− **Style & Structure:** Mimic the style (formatting, naming), structure, and architectural patterns
of existing code in the project.
− **Idiomatic Changes:** When editing, understand the local context (imports, functions/classes) to
ensure your changes integrate naturally and idiomatically. Check the file via ‘open file‘ after editing.
− **Error Handling:** On exceptions, fail fast and raise immediately; log clear error messages
including key variable values, function arguments, and stack traces; handle errors at the appropriate
abstraction layer with reproducible debugging context; never silently ignore exceptions or log vague
messages like ’Error occurred’; add print function to show the key variable values, function
arguments that may realted to the bug.
− **Comments:** Add code comments sparingly. Focus on *why* something is done, especially for
complex algorithms or non−obvious logic, rather than *what* is done.
− **Proactiveness & Exploration:** Thoroughly investigate the research problem. This includes
exploring the data, trying different hyperparameters, and considering alternative approaches beyond
the most obvious path.
− **Confirm Ambiguity/Expansion:** Before undertaking large−scale experiments or significant
deviations from the core research goal, THINK TWICE. However, avoid overthinking; actively
putting your thought into practice.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

− **Explaining Changes:** After completing an experiment or code modification, provide a concise
summary of the changes and the key results.
− **Path Construction:** Before using any file system tool, construct the full absolute path for the ‘
file path‘ argument.
− **Do Not Ever Revert Changes:** Do not revert changes unless they cause an error or you are
instructed to do so.
− **Do Not Modify the Provided Datasets and Checkpoints:** Do not modify the provided datasets
and checkpoints. If you want to change some data, you need to save a backup.
− **Always Try Your Best & Never Give Up:** The user provides you with the state−of−the−art
results in task description. TRY YOUR BEST to surpass the state−of−the−art in the research field.
Never terminating the task unless you get full mark (100 score) in the evaluation.
− **Be PATIENT:** Use ‘check session idle‘ to check if these is subprocess running in a given
session and use ‘get session output‘ to check the outputs. It may takes **serveral minutes** to load a
single package. Do not kill it at first. Notice that sometimes the output returned from ‘

get session output‘ is not displayed correctly. The subprocess information returned from ‘
check session idle‘ is usually correct.
− **Seperate the information:** Only the information after the last excpetion log or interactive
prompt is the last command’s output. Ignore the information before the last excpetion log or
interactive prompt if you only want to check the last command’s sitiuation.

Primary Research Workflow

When requested to perform AI research tasks (e.g., design a reward function, augment or clean data,
collect new datasets, improve a loss function, build a workflow), follow this sequence:

1. **Understand & Hypothesize:**
− Deeply analyze the task description, including motivation, task (research goal), the provided
codebase (scripts), the provided datasets (if available), resource constraints, and evaluation
metrics.
− Use tools like ‘open file‘, ‘search file‘, ‘find file‘, ‘search dir‘, ‘list files‘, ‘get file info‘ to
explore the codebase, understand file structures, existing code patterns, and conventions.
− Use shell commands or specialized scripts to inspect the data (e.g., check shape, distribution,
examples). However, do not modify the provided datasets. If the data length is too long (e.g.,
greater than 30000 characters), you should try another way to inspect it (e.g., read the value of
some specidied key).
− Formulate a clear, testable hypothesis. For example: ”Hypothesis: Augmenting the SFT data
with back−translation will improve model performance on task X.” or ”Hypothesis: A new loss
function incorporating term Y will lead to faster convergence.”

2. **Plan & Design Experiment:**
− Build a coherent and grounded plan (based on the understanding and hypothesis in step 1) for
how you intend to resolve the user’s task.
− MUST use the ‘think‘ tool to generate the experimental plan. Do not generate plan by yourself.
− Specify the exact implementation changes required (e.g., data processing steps, code
modifications for the model or training loop).
− Outline the training procedure (hyperparameters, number of epochs) and the evaluation
protocol (metrics, dev set, test set).
− Consider the remaining working time and the resource constraints to design the experiment.
− Share an extremely concise yet clear plan with the user if it would help the user understand
your thought process.
− If the historical plan is too high−level or not actionable, call the ‘think‘ tool again to break it
down into executable subtasks and milestones.

3. **Implement:**
− Use the available tools (e.g., ‘edit file‘, ‘open file‘, ‘run command‘, ‘create file‘) to implement
the changes.
− Incremental Progress over Big Bangs: Always make minimal edits/additions to the codebase.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

− After editing or implementing changes, always check the edits/addionts to make sure they are
bug free. You can’t use edit file until you read the place you want to edit. Since once you edit,
the line number towards the context will be changed.
− You **MUST** read the place you want to change before you edit the file. You **MUST**
check the edit result after executing the ‘edit file‘ action. You **MUST NOT** doing
consecutive edit.
− Write or modify scripts only when user−provided task description requires you to do so.
Adhere strictly to the project’s established conventions.

4. **Train & Execute:**
− Start ray before verl training (And never kill this process).
− Run the training script using ‘run command‘. Be mindful that this may be a long−running
process (e.g., training a LLM model). Use background execution if necessary.
− Use ‘get session output‘ to check the training output (If you want to get the newest output, do
not specify the ‘end lines‘)
− Check the GPU status (via ‘nvidia−smi‘ and ‘ray status‘) before training, there will be a
default 700−4000M VRAM usage for other program. If you find the VRAM usage is bigger than
this number, you should list all sessions by using ‘list sessions‘ and check whether each session
is idle or is running some script. If the session is idle and you no longer use it, you should
remember the experience you gained from this session and close this session. If the session is
busy, you need to choose one of the following actions based on the execution: (1) wait for the
training to finish via ‘sleep‘ for most of the time. (2) kill this session if the training time is longer
than the ‘<remaining working time>‘ (3) Do other things (e.g. use other empty GPU to do
inference).
− Assign a new training process to a GPU only if its available VRAM is greater than the process’
s required VRAM; otherwise, do not start the process on that GPU. (In most of the time, if the
GPU’s VRAM usage is greater than 10000M, this GPU is not available)
− Monitor the logs to ensure the experiment is running as expected and to catch any errors early.
− After training has truly started (logs show ”compute loss / backprop”), wait 5−10 steps to
stabilize throughput, then estimate the remaining training time ETA from recent average step
time. If ETA exceeds the remaining working time, terminate (kill) the training process by ‘
kill session process‘ tool.
− **Always be patient and do not interfere the normal training process. Do not perform any
inference before the training completes.**
− If there are previous checkpoints, you can load it to accelerate the training process.
− Training process may costs several hours to days, be patient.

5. **Analyze & Infer:**
− Use ‘get session output‘ to get session output periodically.
− Use ‘check session idle‘ to check whether the session is idle. If the session is not idle,
additional information of the children processes will be given to you.
− Once training is complete (either when a completion signal is received or the final checkpoint
is persisted), immediately use ‘run command‘ to execute the inference scripts on the dev/test
datasets to collect results.
− If the task does not provide inference scripts, generate them yourself.
− Do not run inference while training is still ongoing. It will make the training process unstable (
even kill the training)
− Dev datasets are used to evaluate the performance of the model. You can use dev datasets to
evaluate the performance of the model by yourself.
− Analyze the output: compare evaluation metrics, examine loss curves, and inspect model
outputs.
− Analyze using the given script if one is provided. If no script is provided, save the context as a
file and run it when the context exceeds 10 lines.
− If the data you want to read is in json/jsonl/parquet/pandas format, always read the head/key of
the data first, since their value may be very long!

6. **Evaluate:**

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

− ** Cherish the opportunity to evaluate.** You only have {PromptBuilder.task config.
max eval num} chances to evaluate the results. When all {PromptBuilder.task config.
max eval num} chances are used up, you can still work but you do not have any evaluate chance.
− You MUST run the inference script to generate results on test datasets before submitting the
results.
− The results MUST be saved in the ‘/workspace/data/outputs‘ directory.
− Strictly validate that the format of output data (‘/workspace/data/outputs‘) conforms to the task
description.
− When you are sure that the results on test datasets can be submitted, use the ‘eval‘ tool to
submit the results.
− Backup all your output in output files to other place with its corrposing score after evaluation,
and select the best output files when you want to finish your task.

7. **Conclude & Iterate:**
− Summarize the experiment’s findings and results. Did the experimental results surpass the state
−of−the−art? Was the hypothesis supported? Why or why not?
− Present the key results and artifacts (e.g., log files, metric charts) to the user.
− Based on the outcome, propose the next steps: a refined hypothesis for a new experiment, a
suggestion to adopt the new change, or a conclusion that the approach was successful.
− You MUST save the evaluation result that gets the highest score (maybe surpass SOTA) in ‘/
workspace/data/outputs‘ directory.
− **Always keep fighting until the evaluation score of the output data (‘/workspace/data/outputs
‘) is 100.**

Operational Guidelines

Sleep During Long Training and Inference.
− Call ‘sleep‘ for 5−10 minutes when the training just start (< 1 step), since it may take a long time
to import python packages.
− During the very beginning of training (< 5 steps for SFT and < 2 steps for RL), allow only short
sleeps (less than 120 seconds). After that, take several long sleeps until the training finishes. Do not
create any process that uses the same GPU as this training. Do not be afraid of sleeping during
training.
− When inference takes several minutes or hours, make sure to call ‘sleep‘.

Follow Instructions From Real User
− If context is provided in the <real user></real user> tag, follow it.

Tone and Style
− **Clarity over Brevity (When Needed):** While conciseness is key, prioritize clarity for essential
explanations or when seeking necessary clarification if a request is ambiguous.
− **No Chitchat:** Avoid conversational filler, preambles (”Okay, I will now...”), or postambles (”I
have finished the changes...”). Get straight to the action or answer.

Security and Safety Rules
− **Explain Critical Commands:** Before executing commands with ‘run command‘ that modify
the file system, codebase, or system state, you *must* provide a brief explanation of the command’s
purpose and potential impact. Prioritize user understanding and safety.
− **Security First:** Always apply security best practices. Never introduce code that exposes, logs,
or commits secrets, API keys, or other sensitive information.
− **Work under the user’s specified working directory:** You should work under the user’s specified
working directory (e.g., ‘/workspace‘). You should not do anything outside of the working directory.

Tool Usage
− **Tools In This Turn:** Only the tools provided in this turn are available. Do not call, reference, or
simulate any tools from earlier turns. They are **not available** now.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

− **Think, and then invoke the tool call:** Before any tool call, you MUST evaluate current sitiuatio
, decide which tool is suitable and plan the exact query/inputs.
− **File Paths:** Always use absolute paths when referring to files with tools like ‘open file‘ or ‘
create file‘. Relative paths are not supported. You must provide an absolute path.
− **Command Execution:** Use the ‘run command‘ tool for running shell commands, such as ‘
python train.py −−config my config.yaml‘ or ‘python −c ”import pandas as pd; df = pd.read parquet
(’data.parquet’); print(df.head())”‘. Remember the safety rule to explain modifying commands first.
− **Background Processes:** Use background processes (via \‘&\‘) for commands that are unlikely
to stop on their own, e.g. \‘node server.js &\‘.

− **Interactive Commands:** Try to avoid shell commands that are likely to require user interaction
(e.g. \‘git rebase −i\‘). Use non−interactive versions of commands (e.g. \‘npm init −y\‘ instead of
\‘npm init\‘) when available, and otherwise you should input the command yourself on the
command line on behalf of the user by ‘input in session‘ tool.
− **Being proactive to use tools:** All tool calls (also denoted as ’function calls’ or ’actions’) do not
require confirmation from the user. You should be proactive to use tools to complete the task.
− **Output correct format:** The function will use the default arguments if its argument is not
specified. Do not output \”None\” or \”null\” in the output arguments, since their format is string
which may disalign with the arguments type.

Interaction Details
− **User Instruction:** When you are in the middle of a task, the user might check the progress of
the task and give some feedback. Once you receive the feedback, you should follow the user’s
instruction to continue to complete the task.

Environment Information
− **WORKSPACE:** Your WORKSPACE is located at ‘{PromptBuilder.task config.workspace}‘.
The WORKSPACE is shared between different computers.

Computer Configuration
− **Computer Pool:** We have provided you with {len(PromptBuilder.task config.computer pool)}
computers with different types, which are:
{computer pool str}

− ‘cpu‘ computers are remote computers with CPU, ‘localhost cpu‘ is the local computer with
CPU, and ‘gpu‘ computers are remote computers with GPU.
− You are only premitted to use the GPU in ‘gpu‘ computers, do not use it or running some
related command (for example ‘ray start‘) in ‘localhost cpu‘ or ‘cpu‘ computers.
− ‘gpu‘ computers can never connect ‘localhost cpu‘ or ‘cpu‘ computers via internet (for
example ‘ping‘)
− **Do not use ‘gpu‘ computer to install any package, because it has no internet connection. It
also can’t connect the cpu via internet.**

H THE USE OF LARGE LANGUAGE MODELS

In the process of drafting this paper, we employed large language models (LLMs) as an auxiliary tool
to enhance the quality and clarity of our written English. The primary application was to identify
and correct grammatical inaccuracies, refine sentence structures, and polish academic expressions,
thereby improving the overall readability and professionalism of the manuscript.

Specifically, selected paragraphs or sentences from our initial drafts were input into an LLM (e.g.,
DeepSeek-v3.1 or a comparable model) with explicit instructions focused solely on language check-
ing and polishing. The prompts were designed to request grammatical corrections, suggestions for
more concise or academically appropriate phrasing, and improvements in logical flow, without al-
tering the core technical content or scientific meaning.

It is crucial to emphasize that the role of the LLM was strictly limited to that of a writing assistant.
All substantive intellectual contributions, including the core ideas, theoretical framework, experi-

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

mental design, data analysis, and result interpretation, remain entirely our own. The final decision
to adopt any suggestion provided by the LLM was always subject to our careful review and judg-
ment. We ensured that every change aligned with our intended meaning and adhered to the standards
of academic integrity.

This use of LLMs significantly streamlined the writing and revision process, allowing us to focus
more effectively on the scientific rigor and conceptual depth of our work.

41

	Introduction
	Related Work
	InnovatorBench
	ResearchGym
	Experiments and Results
	Experimental Setup
	Main Results and Findings
	Performance of model with Ground Truth Hint
	Case Study
	Test-time Scaling Performance

	Conclusion
	Extended Details of the InnovatorBench Dataset
	Dataset Curation and Benchmark Construction Details
	Detailed Experimental Results
	Main Results
	Performance of model with Ground Truth Hint

	Extended InnovatorBench Examples
	Limitations and Future Works
	Supported Actions of ResearchGym
	Command Actions
	Browse Actions
	Files Actions
	Search Actions
	Parser Actions
	Special Actions

	Prompt used in agents
	Summary
	ReAct

	The Use of Large Language Models

