
Under review as submission to TMLR

Word Embeddings as Statistical Estimators

Anonymous authors
Paper under double-blind review

Abstract

Word embeddings are a fundamental tool in natural language processing. Currently, word
embedding methods are evaluated on the basis of empirical performance on benchmark
data sets, and there is a lack of rigorous understanding of their theoretical properties. This
paper studies word embeddings from the theoretical perspective of statistical inference,
which is essential for formal inference and uncertainty quantification. We propose a copula-
based statistical model for text data and show that under this model, the now-classical
Word2Vec method can be interpreted as a statistical estimation method for estimating the
theoretical pointwise mutual information (PMI). Next, by building on the work of Levy &
Goldberg (2014), we develop a missing value-based estimator as a statistically tractable and
interpretable alternative to the Word2Vec approach. The estimation error of this estimator
is comparable to Word2Vec and improves upon the truncation-based method proposed by
Levy & Goldberg (2014). The proposed estimator also compares favorably with Word2Vec
in a benchmark sentiment analysis task on the IMDb Movie Reviews data set.

1 Introduction

In natural language processing (NLP) the notion and construction of an embedding (i.e., a mapping of a
linguistic object such as a word, sentence, or entire document to a vector in Euclidean space) is the essential
link for making precise the features of language that we hope to learn or understand with statistical or
machine learning tools. Word embeddings, arguably introduced by Deerwester et al. (1990), have grown
greatly in popularity since their utility in downstream tasks were demonstrated by Collobert & Weston
(2008). Specifically, the Word2Vec algorithm (Mikolov et al., 2013) greatly influenced the use of word
embeddings by providing a fast and effective unsupervised approach to constructing word embeddings. This
was quickly followed by the GloVe algorithm (Pennington et al., 2014), which had performance comparable
to Word2Vec. More modern deep learning word embedding algorithms, such as ELMo (Peters et al., 2018),
BERT (Devlin et al., 2019), and GPT-3 (Brown et al., 2020), have further pushed the performance of word
embeddings to state-of-the-art levels on a variety of downstream tasks such as masked language modelling,
part-of-speech tagging, analogy completion, and text generation. Though these powerful techniques have
already demonstrated far-reaching societal impacts, it remains important to understand the nature of the
embeddings that underlie their success.

All of the aforementioned embedding techniques employ some strategy to generate word embeddings from
a corpus based on some intuited feature of natural language, theoretically giving the word embeddings
relational meaning. Some examples of such strategies include the order of words in a sentence, how often
pairs of words appear near one another, and the number of times certain words occur in various documents.
However, these algorithms are not ultimately evaluated on how well they represent the intuited features of
natural language that they are designed to learn; NLP algorithms are typically only judged by their success
on downstream tasks. In fact, due to a lack of any precise mathematical formulation of theoretical features
that govern the meaning of natural languages, it is not clear that embeddings have any significance beyond
auxiliary data features that are useful for training NLP models on downstream tasks (such as those tested
by the GLUE benchmark of Wang et al., 2019, evaluating on sentiment classification, semantic equivalence
evaluation, text similarity evaluation, and recognition of textual entailment, among others).

1



Under review as submission to TMLR

We argue that to begin to understand the natural language features that embeddings represent, we must
first mathematically formalize the precise features of natural language that we conjecture to make inference
on. Second, we must be able to generate synthetic natural language data that exhibit the precise features
that have been formulated (i.e., there must exist a generative model). And third, we must be able to demon-
strate theoretical and/or empirical statistical consistency of estimation procedures designed to learn the
features. Without any understanding of how natural language can be generated, attempting to gain insight
into learned features—much less gain statistical guarantees on estimation properties for “true" underlying
linguistic features—is hopeless.

The contributions of our paper are as follows:

• We consider a theoretical formulation of the skip-gram algorithm used for training unsupervised
word embeddings, as in Word2Vec. It is established in Levy & Goldberg (2014) that the skip-gram
algorithm minimizes its loss function at the pointwise mutual information (PMI), but the statistical
properties of the estimated embedding features are not investigated. We investigate the statistical
properties via simulation studies by proposing a copula-based statistical model for natural language
data that truly has a given PMI matrix as a feature of the generative model.

• We provide a solution to the problem of constructing a singular value decomposition (SVD) of the
PMI matrix from real natural language text data, which exhibits many infinite-valued components.
Levy & Goldberg (2014) propose ad hoc truncation rules, but we adapt recent developments in
missing values SVD (MVSVD) algorithms that rely on expectation-maximixation based imputation
and estimation for matrices with missing components. Moreover, the right and left singular vec-
tors resulting from the SVD of a PMI matrix can be used as embedding vectors with comparable
meaning to the embedding vectors trained from the skip-gram algorithm and with similar perfor-
mance in training on downstream tasks, but with improved interpretability. This is implicit in the
fact that matrix decompositions such as SVD are relatively well-understood mathematically, unlike
unsupervised learning algorithms.

• The copula-based statistical model that we propose is motivated by linguistic literature on theoretical
distributional features of data from natural language, namely that ordered word frequencies in text
corpora are often Zipffian distributed. We illustrate that it is possible to build generative models for
natural language data that can be used to study theoretical features not limited to the PMI matrix.

• While the construction of embedding vectors in NLP contexts is almost exclusively driven by training
models for optimized performance on downstream tasks, our work forces the question of whether
embedding vectors have inherent meaningfulness for representing features of natural language.

The organization of our paper is as follows. An overview of existing language modelling approaches is given
in Section 2. This is followed by a brief discussion of the theoretical properties of the Word2Vec algorithm
and our proposed model for natural language in Section 3. In Section 4, we discuss various estimators
that can act as alternatives to skip-gram embeddings, examining previously used proposals as well as our
new algorithm. Section 5 analyses Word2Vec and its alternatives in terms of their abilities as statistical
estimators. Finally, Section 6 analyzes the performance of these algorithms on a standard sentiment analysis
task to illustrate that similar behavior as statistical estimators yields similar performance in downstream
tasks.

2 Existing Approaches

A great deal of work has already been done in the area of natural language generation and language mod-
elling. A standard model for text generation is the n-gram model, in which words are generated using an
nth order Markov chain. These n-gram models are popular due to their simple nature allowing for ease
of statistical analysis; however, a naive n-gram model, creating transition probabilities by using observed
frequencies from a training corpus, often fails to capture desirable linguistic features. To remedy this limita-
tion, a variety of methods have been proposed. A common approach to creating more sophisticated n-gram

2



Under review as submission to TMLR

models is smoothing—adjusting maximum likelihood estimates for probabilities by making the distribution
of word occurrence probabilities more uniform (Chen & Goodman, 1999). Examples include Good-Turing
estimation (Good, 1953), Jelinek-Mercer smoothing (Jelinek & Mercer, 1980; Brown et al., 1992a), and
Bayesian smoothing (Nádas, 1984; MacKay & Bauman Peto, 1995), among others. However, most attempts
at smoothing still fail to take into account how similar words occur in similar contexts; class-based n-gram
models (Brown et al., 1992b) address this by separating words into distinct classes based on frequency of
co-occurrence with other words. The primary limitation of such an approach is in the difficulties encountered
when words can have disparate meanings and appear in wildly different contexts.

Other approaches more sophisticated than the n-gram model also exist. Neural network approaches to lan-
guage modelling, such as those inspired by Bengio et al. (2003), address many of these issues and perform
admirably in generating reasonably likely text (as measured in Bengio et al. (2003) by the perplexity met-
ric). However, jumping to neural networks again decreases interpretability of the model and makes proving
theoretical results difficult. Another approach is found in the log-linear models of Mnih & Hinton (2008)
and Arora et al. (2016). These models do provide sophisticated statistical models for language that yield
interesting theoretical results, but are tailored to capturing specific linguistic features and do not generalize
easily to multiple features.

3 Statistical Framework

3.1 Word2Vec and Pointwise Mutual Information

Given a training corpus, Levy & Goldberg (2014) proved that the Word2Vec algorithm, using a skip-gram
algorithm with one negative sample, implicitly factors the empirical PMI matrix, given by

PMI(w, c) = log Pr(w, c)
Pr(w) Pr(c)

where w and c together form a word-context pair, Pr(w, c) is the probability of drawing (w, c) as a word-
context pair from the corpus, and Pr(w) and Pr(c) are the probabilities of drawing w and c respectively
from the corpus. That is, Word2Vec generates a matrix W of word embeddings and a matrix C of context
embeddings, and its objective function attains a global maximum whenW and C are such thatWC> = PMI.
More generally, Word2Vec with k negative samples factors the empirical Shifted PMI (SPMI) matrix

SPMI = PMI− log(k) · J

where J is the all-ones matrix. Note that neither the empirical PMI nor SPMI matrix is guaranteed to have
only finite entries. In a finite corpus, most words do not co-occur with each other, leading to Pr(w, c) = 0
for any such non-co-occuring pair and hence log Pr(w, c) = −∞. The presence of many −∞ entries in the
empirical PMI matrix limits the mathematical and statistical techniques that can be used to interpret the
matrix directly, as most linear algebra techniques require the entries of a matrix to come from a ring or
field, but R ∪ {±∞} fails to even form a semigroup. Thus, a mathematical analysis of the PMI matrix and
Word2Vec will require a deeper understanding of these infinite entries.

3.2 Two Settings for Natural Language Modelling

We identify two mutually exclusive possibilities for the nature of a language that produces infinite entries for
an empirical PMI matrix: a sparse setting and a dense setting. In both settings, we interpret the observed
corpus as a sample which is obtained from a hypothetical, infinite population of text data. This population-
sample framework is a fundamental building block of statistics. In any statistical inference problem, the goal
is to learn something about the population, e.g., the population mean. However, it is impossible to actually
observe the entire population, so we use the statistical sample as a representative and finite subset of the
population on which calculations can be carried out in a feasible manner, e.g., computing the sample mean.
We then use the sample metric as an estimate of the unknown population metric of interest.

We now carry this intuition to text data and more specifically, co-occurrence and PMI, under sparse and
dense settings. In practice, the sample co-occurrence matrix, i.e., the co-occurrence matrix computed from

3



Under review as submission to TMLR

the observed corpus, is almost always sparse, with most of its entries being zero. This implies that the
corresponding terms of the PMI matrix are −∞. However, this does not necessarily mean that the population
version of the co-occurrence matrix and the PMI matrix suffer from the same issues.

In the sparse setting, there do indeed occur words (say w and c) that never appear in the same context in
the population itself; therefore, any corpus will have an infinite entry for (w, c) in its corresponding empirical
PMI matrix. On the other hand, the dense setting allows for any two words to appear with each other in
some context in the population (though this context may be very rarely seen); thus, for any two words,
there is a positive probability of their co-occurrence. In other words, there is a corpus that contains a finite
entry in the empirical PMI matrix for the word-context pair. Note that even under the dense setting, we
are likely to observe many zero entries in the observed co-occurrence matrix, since the sample might not be
large enough for observed frequencies to be non-zero even though the underlying probabilities are.

Both of these settings have an underlying notion of the “truth" of the language that Word2Vec intends to train
on. However, discussing “truth" in a statistical sense is hard, if not impossible, without any understanding
of how the data itself is generated. Indeed, the lack of a data-generating model for NLP data contributes
to the need for the use of performance on downstream tasks for various NLP methods. To draw an analogy,
suppose that a new method for regression is proposed. Rather than measuring the efficacy of this new
method using downstream tasks, the designers could either directly prove results or at least test the method
using simulated data (Xi, Yi)ni=1 from Yi = f(Xi) + εi for some function f , covariates X, and random errors
εi from some distribution. With a data-generating model for natural language, we can proceed similarly
with NLP methods.

Thus, choose some data-generating model for natural language. Then in the dense setting, the sparsity (in
the sense of having many infinite entries) of the empirical PMI is an artifact of sampling from the model
rather than a consequence of theoretical sparsity. On the other hand, in the sparse setting, the sparsity is
an inherent attribute of language (i.e. the data generating model) itself.

Under a sparse model, many traditional mathematical approaches to interpreting the PMI are fruitless, since
infinite entries are inherent to the data itself: There necessarily exists a pair (w, c) such that Pr(w, c) = 0,
and thus log Pr(w, c) = −∞ in both the population and empirical PMI matrix. Indeed, the objective function
of Word2Vec itself (without normalization of word and context vectors) would require these words to have
infinitely large dot products with each other, so even direct analysis of the algorithm proves difficult. It is
due to these complications that the remainder of this paper primarily focuses on a dense model for language.

3.3 A Text Generation Framework

In light of the need for a data-generating model for natural language, we provide the following theoretical
framework: Let C be an infinite sequence of tokens given by (ti)∞i=−∞. We assume that C is “stationary"
in the sense that any corpus (i.e. a finite substring from C ) we draw would form a representative sample—
compare this to a non-stationary C that adjoins a fantasy textbook with a medical textbook, where which
section of C we draw from to sample a corpus would matter. This is inspired by the statistical framework
of time series analysis, where the observed data is assumed to be a finite, continuous subset of an infinite
temporal sequence. Every finite sequence of tokens can be assigned some probability of occurrence based on
their frequency in C ; the n-gram model assigns the probability of the sequence of tokens (wi)mi=1 to be

Pr(w1, . . . , wm) =
m∏
i=1

Pr
(
wi |wi−(n−1), . . . , wi−1

)
.

Hence, an nth order Markov chain can be used to generate data if the transition probabilities are specified
(e.g. via a transition probability matrix or tensor); for simplicity, we restrict ourselves in this paper to a
unigram (first order) model. It then still remains to answer the question of how the transition probabilities
should be specified to match the distributional properties of natural language.

A natural distributional property that the model’s transition probabilities should match is the marginal dis-
tribution for word frequencies (i.e. the probability of occurrence for individual words). It is well-established
that words in the English language tend to follow a Zipfian distribution with Zipf parameter approximately 1

4



Under review as submission to TMLR

(Moreno-Sánchez et al., 2016). To illustrate this phenomenon, we display the empirical frequencies of words
from the Brown Corpus (Francis & Kucera, 1979) and overlay the expected frequencies from a Zipfian distri-
bution in Figure 1. Thus, in a fixed vocabulary of V unique words, the distribution of the word probabilities

Figure 1: The empirical word frequencies from the Brown Corpus and expected word frequencies from a
Zipf(1, V ) distribution, where V ≈ 104. Infrequent words (with < 10 occurrences) have been omitted.

should follow a Zipf(1, V ) distribution (though our methodology can be extended to any distribution). This
thus gives us the marginal distributions for a V × V word co-occurrence matrix; however, this does not give
all the information necessary to construct the co-occurrence matrix in its entirety.

The problem of constructing a bivariate distribution when only the marginals are known is solved using
copula distributions. Sklar’s Theorem (Sklar, 1959) states that every multivariate cumulative distribution
function fX(x1, . . . , xd) can be expressed in terms of its marginal cdfs Fi(xi) and a copula function C:

fX(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

A function C : [0, 1]d → [0, 1] is a copula function if it is a joint cumulative distribution function of a
d-dimensional random vector on the unit cube [0, 1]d with uniform marginals.

Though Sklar’s Theorem only holds for continuous distributions, many discrete multivariate distributions
can still be closely approximated using copula functions. In particular, given Zipfian marginals with a Zipf
parameter near 1, a Gaussian copula with correlation matrix R,

CR(u) = ΦR(Φ−1(u1),Φ−1(u2)),

where Φ denotes a normal cumulative distribution function, does well empirically in generating a bivariate
Zipfian distribution with the desired marginal distributions. This thus allows us to construct a dense co-
occurrence matrix, and hence (by normalizing rows to sum to unity) a transition probability matrix to
generate a corpus.

Note that though this data-generating model is limited as-is, it easily extends to other, more complex
situations. The current model simply generates words via a first-order Markov chain; a straightforward
extension would be to use a higher order chain. This of course comes at a cost of having to work with
tensors rather than matrices and greatly increases the computational cost of computing copulas. Another
extension would be to use more sophisticated copulas than the Gaussian copula, allowing for more complex

5



Under review as submission to TMLR

structures in a language to be replicated in the model; see Ibragimov & Prokhorov (2017) for an in-depth
treatment of appropriate copulas for heavy-tailed distributions such as the Zipffian distribution. Different
copulas also allow for a choice between the dense and sparse settings referenced in Section 3.2.

4 Embedding Algorithms to Estimate the SPMI Matrix

In our theoretical framework introduced in Section 3.3, a corpus is an observed finite sample from a population
of infinite length. In light of this, the empirical SPMI matrix from a corpus is simply a point estimate for the
SPMI matrix associated to the population. The only reason Word2Vec factors an empirical SPMI matrix
rather than the population SPMI matrix is due to the limitation of having to train on a finite corpus. Though
impossible in practice, Word2Vec would ideally factor the population SPMI matrix, as this would allow for
the most generally applicable word embeddings. Thus, in order to theoretically understand Word2Vec, we
need methods that are easier to analyze mathematically but still approximate Word2Vec in its ability to
implicitly factor the population SPMI matrix as well as in its performance on downstream tasks.

4.1 Truncating the SPMI

As stated in section 3.1, the objective function of Word2Vec with k negative samples aims to find matrices
W and C such that WC> = SPMI. Hence, one can bypass the need to perform the Word2Vec algorithm
by directly factorizing the empirical SPMI matrix; the simplest way to do so would be to use singular value
decomposition (SVD) on the matrix

SPMI = UΣV >

and use UΣ1/2 and V Σ1/2 as our word and context embeddings respectively. However, the infinite entries
of the empirical PMI matrix prevent SVD from being used directly.

To circumvent the problem of the infinite entries of the empirical SPMI matrix, Levy & Goldberg (2014)
instead perform SVD on the empirical positive SPMI (SPPMI) matrix

SPPMI(w, c) = max(SPMI(w, c), 0)

which truncates all negative entries to 0. Though the SPPMI metric is shown to perform well empirically on
semantic similarity tasks, it has the significant downside of “throwing away" a large amount of data regarding
negative associations. Indeed, Table 2 of Levy & Goldberg (2014) illustrates that as the number of negative
entries increases (e.g. via an increase in negative sampling for the Word2Vec procedure), performance of
SVD on the SPPMI generally decreases. Similarly, Table 1 of Levy & Goldberg (2014) demonstrates that as
the number of negative entries increases, SVD of the SPPMI matrix continues to deviate further from the
empirical PMI. Thus, a better approach to dealing with missing co-occurrence frequencies is necessary.

4.2 Missing Values SVD

In the dense setting, it makes sense to look into MVSVD algorithms in order to work around the sparsity
of the empirical PMI matrix. Several such algorithms are presented in Kurucz et al. (2007). One particular
algorithm, yielding an Expectation-Maximization (EM) approach to MVSVD, is shown in Algorithm 1. This
algorithm essentially imputes missing values by minimizing the Frobenius norm between the imputed matrix
and the given matrix with missing values on the non-missing values.

These methods typically excel in the case of data that is missing completely at random; this is not the case
for the empirical PMI matrix, where the smallest values are the entries most likely to be missing. Indeed,
this limitation is a special case of the primary downside of the EM-MVSVD algorithm: It only aims to
minimize the error on the known, non-missing values, so no information regarding the missing values is
incorporated. As a result, if the matrix entries come from a known distribution, the EM-MVSVD algorithm
may yield a factorization that is incompatible with the generating distribution on the missing values. This
thus motivates the need to incorporate distributional information into the EM-MVSVD algorithm in certain
problems.

6



Under review as submission to TMLR

Algorithm 1 EM-MVSVD Algorithm from Kurucz et al. (2007)
Require: W , a matrix with missing values
Require: d, the number of singular values to keep

R← {(i, j) |Wij is missing}
for (i, j) ∈ R do

Wij ← initial guess
end for
U,Σ, V > ← SVD(W,d)
Ŵ (0) ← UΣV >
for (i, j) ∈ R do

Wij ← Ŵ
(0)
ij

end for
for t = 1, 2, 3, . . . do

if converged then
return U , Σ, V >

end if
U,Σ, V > ← SVD(W,d)
Ŵ ← UΣV >

λ← arg min
∑

(i,j) 6∈R

[
Wij − (λ · Ŵij + (1− λ) · Ŵ (t−1)

ij )
]2

Ŵ (t) ← λ · Ŵ + (1− λ) · Ŵ (t−1)

for (i, j) ∈ R do
Wij ←W

(t)
ij

end for
end for

Algorithm 2 DD-MVSVD Algorithm
Require: W , a matrix with missing values
Require: W̃ , a matrix approximating the “true" matrix from a distribution
Require: d, the number of singular values to keep
R← {(i, j) |Wij is missing}
for (i, j) ∈ R do

Wij ← initial guess
end for
U,Σ, V > ← SVD(W,d)
Ŵ (0) ← UΣV >
for (i, j) ∈ R do

Wij ← Ŵ
(0)
ij

end for
for t = 1, 2, 3, . . . do

if converged then
return U , Σ, V >

end if
U,Σ, V > ← SVD(W,d)
Ŵ ← UΣV >

λ← arg min
∑

(i,j)6∈R

[
W̃ij−(λ·Ŵ+(1−λ)·Ŵ (t−1))ij

]2

W̃ij

Ŵ (t) ← λ · Ŵ + (1− λ) · Ŵ (t−1)

for (i, j) ∈ R do
Wij ←W

(t)
ij

end for
end for

7



Under review as submission to TMLR

Thus, our proposed methodology to factorize the population SPMI matrix is thus as follows: Given a corpus
of finite length with V unique words, compute the empirical co-occurrence matrix; sort the rows and columns
by marginal frequencies and then normalize the matrix to form a bivariate probability distribution. Now
identify each word with its rank (1 through V , with 1 being most frequent and V being least frequent); this
allows us to compute the correlation terms to use in the Gaussian copula. The copula then gives us a dense
estimate for the “true" co-occurrence probabilities, which can then be transformed into an estimate for the
population SPMI matrix with no missing values. We then use this estimate as the input W̃ to Algorithm
2, a distribution-dependent MVSVD algorithm. This modifies EM-MVSVD (Algorithm 1) by minimizing a
Chi-Square Goodness-of-Fit statistic with the estimated population SPMI as opposed to merely trying to
match the empirical SPMI on non-missing entries.

5 Simulation Study

To study the effectiveness of these methods in estimating the population SPMI matrix, we generated text
and compared the matrices generated by Word2Vec, SVD of the SPPMI, EM-MVSVD (Algorithm 1), and
DD-MVSVD (Algorithm 2) to the population SPMI matrix.

To do so, we read in words from the Brown Corpus and sampled 500 words uniformly from the set of unique
words; analogously to our proposed methodology from Section 4.2, we then created a positive transition
probability matrix to generate text as well as the associated dense SPMI matrix for this set of words
via a Gaussian copula. We then ran Word2Vec, EM-MVSVD, DD-MVSVD, and SVD on the empirical
SPPMI matrix; each algorithm was asked to create 100-dimensional word embeddings based on a shift of
10 negative samples. The factorizations produced were then multiplied back together to form an estimate
of the population SPMI matrix; the root mean square errors (RMSE) of these algorithms compared to the
population SPMI matrix are shown in Figure 2.

Evidently, the SVD of the empirical SPPMI matrix is an increasingly worse approximation to the population
PMI as the corpus size increases, and it yields approximations far worse than any of the other algorithms.
On the other hand, the two MVSVD algorithms perform essentially identically to Word2Vec in terms of
RMSE from the population SPMI matrix. This thus demonstrates, without the need to check performance
on downstream tasks, that MVSVD algorithms will yield word embeddings much more similar to Word2Vec
(and thus perform similarly to Word2Vec) than SVD on the empirical SPPMI matrix does.

6 Real Data Analysis

To provide more evidence of our claim from the end of Section 5, we now compare the performance of
Word2Vec, the MVSVD algorithms, and SVD on the SPPMI matrix on a sentiment analysis task. We
trained a simple sentiment analysis classifier on the IMDB movie review data set (Maas et al., 2011), which
is comprised of 50,000 anonymized movie reviews split evenly between bad reviews (1-4 star ratings) and
good reviews (7-10 star ratings). The goal of the task is to train a model to predict how a review rated any
given movie when given that review’s text. We randomly split the data set into test-train partitions, trained
each embedding technique using the training partition, then trained Bidirectional Long Short-Term Memory
Networks (BiLSTMs) on movie sentiment analysis. This experiment was repeated twenty times. The input
to each two-layer BiLSTM (with 100 units) was a sequence of embeddings corresponding to the words
contained in the review. Each model’s output was a binary-classification layer using a binary-cross entropy
loss function and a sigmoid activation function. To keep computations feasible, we removed stopwords as
well as words with fewer than 300 occurrences, reducing the corpus to 3104 distinct words. Additionally, we
zero-padded or truncated all reviews to 500 words. The use of truncation avoided the problem of vanishing
or exploding gradients in long BiLSTM chains without severely compromising the data, as 95% of reviews
required no truncation.

Table 1 shows the performance of each model across five distinct embedding algorithms and negative sampling
levels of one, two, and five. In addition to the previously discussed algorithms, we included a one-hot
encoding of the input words followed by a dense layer with 100 nodes, which serves the purpose of acting

8



Under review as submission to TMLR

Figure 2: The RMSE of Word2Vec, the MVSVD algorithms, and SVD on the SPPMI matrix with respect
to the population SPMI matrix. The RMSEs plotted are the average over 20 independent trials. Error bars
are not clearly visible, as all standard errors are < 0.5.

One-Hot Word2Vec SPPMI EM-MVSVD DD-MVSVD
Acc. S.E. Acc. S.E. Acc. S.E. Acc. S.E. Acc. S.E.

Negative
Samples

1 0.86 0.0047 0.79 0.0072 0.82 0.0087 0.82 0.0070 0.82 0.0146
2 0.86 0.0065 0.80 0.0138 0.78 0.0103 0.81 0.0096 0.84 0.0034
5 0.86 0.0028 0.79 0.0173 0.70 0.0133 0.80 0.0109 0.82 0.0114

Table 1: Model accuracies in positive/negative sentiment analysis on the IMDB data ste across multiple
levels of negative sampling.

9



Under review as submission to TMLR

as a benchmark for roughly how well the “perfect" embedding overfits to the data can do in this task. All
algorithms produced 100-dimensional embeddings.

As expected, the one-hot embedding performed the best, achieving 86% accuracy regardless of the amount of
negative sampling. We see that the MVSVD algorithms perform comparably to Word2Vec across all levels of
negative sampling, with DD-MVSVD performing the best amongst the three. We see that these algorithms
still perform decently in comparison to the one-hot embeddings, achieving accuracies of roughly 80%. This
is in stark contrast to the performance of SVD on the SPPMI, which matches the MVSVD algorithms at one
negative sample, but quickly decreases in accuracy to 70% as the number of negative samples increases. This
phenomenon occurs because the sparsity of the SPPMI matrix increases rapidly as the number of negative
samples increases, so the embeddings contain less and less information to allow the BiLSTM to make a
well-tuned classifier.

7 Conclusions

Through the use of our data-generating model for natural language, we find that the MVSVD algorithms
perform similarly to Word2Vec in estimating the population PMI matrix, whereas SVD on the SPPMI matrix
does not. This is reflected in the algorithms’ performances on the downstream task of sentiment analysis,
suggesting that an embedding algorithm’s ability to estimate this population parameter strongly correlates
to its performance in this particular downstream task, and perhaps to others as well. As such, the MVSVD
algorithms can be seen to be quite reasonable approximations to Word2Vec that still remain tractable to
mathematically analyze.

In the future, we hope to develop theory for our proposed DD-MVSVD algorithm, such as proving con-
vergence properties of the algorithm. We also plan to investigate other more complex NLP methods and
build upon our generating model to allow for more expressive modelling of language features. We also hope
to be able to determine what other population parameters of natural language, if any, are correlated with
performance on various downstream tasks of interest.

References
Sanjeev Arora, Yingyu Liang Yuanzhi Li, Tengyu Ma, and Andrej Risteski. A latent variable model approach
to PMI-based word embeddings. Transactions of the Association for Computational Linguistics, 4:385–299,
2016. doi: 10.1162/tacl_a_00106.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–1155, 2003.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Jennifer C. Lai, and Robert L. Mercer.
An estimate of an upper bound for the entropy of English. Computational Linguistics, 18(1):31–40, 1992a.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jennifer C. Lai, and Robert L. Mercer. Class-
based n-gram models of natural language. Computational Linguistics, 18(4):467–479, 1992b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. In 34th Conference on Neural Information Processing System, volume 33, pp.
1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling.
Computer Speech & Language, 13(4):359–394, 1999. ISSN 0885-2308. doi: https://doi.org/10.1006/csla.
1999.0128. URL https://www.sciencedirect.com/science/article/pii/S0885230899901286.

10

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0885230899901286


Under review as submission to TMLR

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural net-
works with multitask learning. In Proceedings of the 25th International Conference on Machine Learning,
pp. 160–167, 2008. doi: 10.1145/1390156.1390177.

Scott Deerwester, Susan T. Dumais, , George W. Furnas, Thomas K. Landauer, and Richard Harshman.
Indexing by latent sentiment analysis. Journal of the American Society for Information Science, 41(6):
391–407, 1990. doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 4171–4186,
2019. doi: 10.18653/v1/N19-1423.

W. N. Francis and H. Kucera. Brown corpus manual. Technical report, Department of Linguistics, Brown
University, Providence, Rhode Island, US, 1979. URL http://icame.uib.no/brown/bcm.html.

I. J. Good. The population frequencies of species and the estimation of population parameters. Biometrika,
40(3/4):237–264, 1953. ISSN 00063444. URL http://www.jstor.org/stable/2333344.

Rustam Ibragimov and Artem Prokhorov. Heavy Tails and Copulas: Topics in Dependence Modelling in
Economics and Finance. World Scientific Publishing Co. Pte. Ltd., 2017.

Frederick Jelinek and Robert L. Mercer. Interpolated estimation of Markov source parameters from sparse
data. In Proceedings of the Workshop on Pattern Recognition in Practice, 1980.

Miklós Kurucz, András A Benczúr, and Károly Csalogány. Methods for large scale SVD with missing values.
In Proceedings of KDD cup and workshop, volume 12, pp. 31–38. Citeseer, 2007.

Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. Advances in neural
information processing systems, 27:2177–2185, 2014.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-1015.

David J. C. MacKay and Linda C. Bauman Peto. A hierarchical Dirichlet language model. Natural Language
Engineering, 1(3):289–308, 1995. doi: 10.1017/S1351324900000218.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word representations
in vector space. In International Conference on Learning Representations, 2013.

Andriy Mnih and Geoffrey Hinton. A scalable hierarchical distributed language model. In Advances in
Neural Information Processing Systems 21, 2008.

Isabel Moreno-Sánchez, Francesc Font-Clos, and Álvaro Corral. Large-scale analysis of Zipf’s law in English
texts. PLOS ONE, 11(1), 2016.

Arthur Nádas. Estimation of probabilities in the language model of the IBM speech recognition system.
IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-32(4):859–861, 1984.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vectors for word
representation. In Empirical Methods in Natural Language Processing, pp. 1532–1543, 2014. URL
http://www.aclweb.org/anthology/D14-1162.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. Deep contextualized word representations. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
2227–2237. Association for Computational Linguistics, 2018. doi: 10.18653/v1/N18-1202.

11

http://icame.uib.no/brown/bcm.html
http://www.jstor.org/stable/2333344
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/D14-1162


Under review as submission to TMLR

Abe Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut Statistique de
l’Université de Paris, pp. 229–231, 1959.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural language understanding. In Seventh International
Conference on Learning Representations, 2019.

12


	Introduction
	Existing Approaches
	Statistical Framework
	Word2Vec and Pointwise Mutual Information
	Two Settings for Natural Language Modelling
	A Text Generation Framework

	Embedding Algorithms to Estimate the SPMI Matrix
	Truncating the SPMI
	Missing Values SVD

	Simulation Study
	Real Data Analysis
	Conclusions

