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Abstract

The accurate representation of soil particle morphology is crucial for understand-
ing its granular characteristics and assembly responses. However, incorporating
realistic and diverse particle morphologies into modeling presents challenges, often
requiring time-consuming and expensive X-ray Computed Tomography (XRCT).
This has resulted in a prevalent issues in modeling: morphological particle gen-
eration. On this topic, we introduce the Metaball Variational Autoencoder. This
method leverages deep neural networks to generate new 3D particles in the form
of Metaballs while preserving essential morphological features from the parental
particles. Furthermore, the method allows for shape control through an arithmetic
pattern, enabling the generation of particles with specific shapes. We validate the
generation fidelity by comparing the morphologies and shape-feature distributions
of the generated particles with the parental data. Additionally, we provide examples
to demonstrate the controllability of the generated shapes. By integrating these
methods into the Metaball-based simulation framework proposed by the authors
previously, we enable the incorporation of real particle shapes into simulations.
This could facilitate the simulation of a large number of soil particles with varying
shapes and behaviors, providing valuable insights into the properties and behavior
of actual soil particles.

1 Introduction

On elucidating the impact of particle shape on the granular soil, simulation schemes based on micro-
mechanical models, especially the discrete element method (DEM) [1], have prevailed in the past
few decades. In original DEM, the particle is simplified as circles or spheres, which is hard to reflect
the impact of shape, e.g. the resistance to rolling. Under this context, the key issue is how to fully
reconstruct the morphology of granular matters in DEM simulations.

With the inspiring development of X-ray Computed Tomography (XRCT) and computer vision
techniques, opportunities are provided to bring more accurate and sophisticated shape features into
DEM simulations. Various reconstruction methods, which are called shape descriptors in this paper,
are developed to compress realistic particle morphologies into a uniform mathematical representation
for simulations. A good example is the Fourier descriptor, which is developed to capture particle
shapes based on the average normalized Fourier spectrum of main contours from the targeted
particle [2, 3]. Through similar pattern, the Spherical-Harmonic (SH) descriptor can also be used
to capture various shapes features [4–7]. However, these methods are limited to tackling star-like
particles, of which all line segments between particle-center and particle-surface points are located
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within the particle body [6]. Many particles, such as lunar soils and concave sand, do not follow such
constraints. Recently, the Metaball descriptor was introduced by [8] to reconstruct non-spherical
particle shapes. With proper function form, the contact detection of it can be tackled at a low cost,
which enables a more efficient simulation framework [9]. Such framework is further coupled with
Lattice Boltzmann Method for simulations of more complicated physical processes in fluid-particle
systems [10].

However, although XRCT can be used to scan all involved particles in the application, particle
scanning and image processing can be economy-costly and time-consuming. In practical engineering
applications, it is typical that only a small fraction of particles can be analyzed due to limited
resources, as reported in [11–13]. Direct simulation with them will suffer from repetitive particle
morphologies. This makes it necessary to generate realistic particles with coessential morphological
features. With the development of the aforementioned shape descriptors, many attempts have been
inspired to tackle generation tasks. Among them, the SH-based technique is a popular choice [14, 15].
It first incorporates geometric features into specific SH coefficients. Then, different algorithms
like random field [16], fractal dimension [17], Nataf transformation [11], and principal component
analysis [18, 13] are applied on the distilled SH coefficient to add small variances following the
morphological pattern of parental particles for generation. But the above schemes suffer from some
problems, including 1) underfitting and overfitting problems on shape-feature distributions of the
generated particles, e.g. the distributions of surface area and volume [12, 18]. 2) Hard to obtain
particles with specific morphological features [19, 14], e.g. generating non star-like particles with
angled features. 3) Involving complex mixture models, which treat particle generation as a high-
dimensional, multi-parameter estimation problem [20, 21]. Such a method can achieve an advance
in performance, but still has a reliance on computational and human resources, which can not be
obtained easily by all individuals or institutions [12]. 4) Requiring bridging or transformation into
other descriptors before practical simulations, which often results in a trade-off between accuracy
and efficiency [22, 23]. Thus, a framework with a more flexible shape descriptor, to tackle the above
problems, is needed.

On the above dilemmas, this paper presents Metaball-based two-step solutions. We first utilize a
Metaball-Imaging (MI) algorithm to capture complex particle morphologies from XRCT images with
the Metaball descriptor. Then, we develop a Metaball-based Variational Autoencoder (MetaballVAE).
It can learn from the XRCT image of targeted grains and generate random Metaball-based particles
retaining major morphological features from a regularized latent space, where complex calculations
are converted into one-step solutions. Note that MetaballVAE can learn not only the geometric
features of the single particle but also feature distributions of the particle group. The regularized
latent space also makes it possible to modify particle morphologies in an arithmetic pattern, allowing
for obtaining particles with specific shapes. Examined with two groups of particles different in
sample number and geometric characteristics, the proposed generation algorithm has proved to be
robust and effective.

2 Our Method

The variational autoencoder (VAE) [24] is a neural-network based generative model. The framework
of it is to first learn the distribution P of the targeted data x and then generate through sampling
with some unobserved variable z, which is called the latent variable. And the collection of them
is named the latent space. In implementation, the learning of P (x) is carried out with an assumed
distribution

∫
Q(z | x)Q(x)dz (Q is the assumed distribution of two parts. Since these two parts

are implemented in one neural network system, they share the same notation) , which is in the form
of neural network. This distribution corresponds to two important components of VAE: the encoder
z = E(x)(For Q(z | x)) and decoder x̄ = D(z)(For Q(x)), where x represents the input, x̄ for
the generated(reconstructed). For particle generation, x and x̄ refer to the shape representation, for
example, the Metaball descriptor M or XRCT images. The encoder and decoder consist of the major
steps in VAE: encoding and decoding. In encoding, the input shape representation x is compressed
and mapped into the latent variable z, a multidimensional shape-representation tensor. Then z is
decoded to reconstruct the input particle x̄. Through minimizing the difference between x and x̄,
morphologies and shape-feature distribution of input particles can be learned effectively (The theory
behind this is briefly stated in Appendix A). Then, the trained decoder x̄ = D(z) can be applied to
generate particles by inputting random z. Assisted by the powerful learning ability of neural network,
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Figure 1: MetaballVAE for generation of complex-shaped particles. Serilizer: interpreting and
transforming XRCT images of granular matters. Style-learner: analysing the serilized Metaball
descriptor and learning the morphological characteristics and distribution. Generator: generating
style-similar granular media in Metaball form

VAE can inference new particles, which are not included in the training set but maintain coessential
morphological features and distributions with the parental particles. This make it have the potential
to provide a more practical solution to the particle generation task than previous studies.

It is worth noting that latent variables z in VAE are regularized (chosen to be multivariable normal
distribution) to encourage similar input samples compress at closer positions in the latent space.
This property allows the model to learn a more flexible and general distribution, rather than simply
adapting to the specific patterns present in the training data. As a result, generation by sampling from
sperate, regularized z can help to avoid overfitting and underfitting problems on the shape-feature
distributions of generated particles [21, 12]. More importantly, it enables high-level controls on the
generated particle morphologies [25].

Based on VAE, we propose a Metaball-based particle generation framework called Metaball Vari-
ational Autoencoder (MetaballVAE). It can resolve the correlation between XRCT images and
morphologies of input particles with a regularised latent space, where complex computations are
transformed into one-step solutions, reducing variance in generated models and improving control
over the generation process. This model requires no prior knowledge (e.g. particle shape-feature
distributions), but only XRCT images of the target particles to generate non-existent style-similar
avatars, particles in the form of metaballs, which can be used directly in simulations. Note that style
learning is not limited to morphology, but also to shape-feature distributions.

The MetaballVAE consists of three major parts as illustrated in Figure 1: serializer, style-learner and
generator. The serializer interprets and transforms XRCT images of target granular-particles into
Metaball descriptors. Then, the style-leaner analyses those distilled descriptors, capture major shape
characteristics, conducts inference on feature distribution and devise style-similiar avatars. In the end,
the generator outputs designed style-similar, Metaball-based avatars.

2.1 The serializer

The serializer is designed to abstract the particle morphology, extract shape-feature distributions and
code them structurally. It can significantly reduce the dimension of XRCT images while keeping all
the vital morphological information for generation. The reasons for implementing it are two-fold.
On the one hand, structured data are more suitable for generation tasks [26], which can improve the
generation quality. On the other hand, this enables a direct generation of particles in Metaball function
form, which can be put into simulations without bridging or transformation, avoiding unnecessary
information loss and computational cost.
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Figure 2: Visualizations of the direct sampling and reparameterization trick. The solid line stands
for a relationship capable of backpropagation. The dashed line represents a relationship where
backpropagation can not be carried out.

In this paper, the serialization is accomplished with the Metaball-Imaging technique as introduced in
Appendix A. The serilized particle is in MI avatar form, which is noted as Ms.

2.2 The style-learner

The style-learner is a modification of the aforementioned VAE. It can digest the structured data S and
learn how to generate particles. Main components involved are: encoder, decoder, reparameterizator,
loss function and distribution annealer.

Encoder and Decoder are multi-layer perceptions, which are connected in a bottle-neck form as
shown in Figure 1. They are implemented to approximate the real distribution P (x) as a learnable,
assumed distribution

∫
Q(z | x)Q(x)dz. On the topic of particle generation, x refers to the Ms.

The encoder takes serialized particles Ms as input and outputs parameters(µ - the mean, σ - the
standard deviation) of the corresponding latent variable z, mapping morphologies and shape-feature
distributions of particles into a regularized latent space. On the contrary, the decoder interprets
z to restore M̄s, reconstructing particle morphologies and shape-feature distributions from that
regularized space.

Reparameterizator locates halfway between the encoder and decoder. It is designed to regularize the
latent space by creating a map between the encoded information and a normal distribution. Instead of
direct sampling (Fig, 2, a), a more deterministic pattern is utilized:

z = µ+ σ ⊙ ϵ (1)

where the ϵ is the assumed normal distribution. This enables continuous gradient calculation on the
mapping relationship, making MetaballVAE a learnable system.

The loss function is the global optimization objective for MetaballVAE:

L(Ms) =
1

d

d∑
k=1

∥Ms − M̂s∥
2

︸ ︷︷ ︸
Reconstruction Item

+
1

2

d∑
k=1

(
µ2
(k)(Ms) + σ2

(k)(Ms)− lnσ2
(k)(Ms)− 1

)
︸ ︷︷ ︸

Distribution Item

(2)

where d is the dimension of Ms. This function is modified from the original VAE theory based on
the particle generation problem. The deduction of it is stated in Appendix B. It consists of two items:
the distribution item and reconstruction item. The distribution Item measures the difference between
real and learned distributions of particle morphologies. The Reconstruction Item evaluates the quality
of learned morphological characteristics. The combination of them forces MetaballVAE to learn not
only morphologies but also shape-feature distributions of the input particles.

The distribution annealer is proposed to tackle the training challenge of VAE. A well-trained model
possesses a relatively small reconstruction item and a non-zero distribution item. However, most
direct training will yield a model with a zero distribution item. Such tendency in learning is caused
by the sensitivity of decoder to variation introduced by the mapping process of reparameterizator.
This makes the decoder ignore the latent variable provided by the encoder and output the average
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Figure 3: The impact of the distribution annealer on the loss value of different items in the training of
cobblestone dataset

optimal with distribution item equal to zero. For this reason, the distribution annealer is implemented
by adding a weight to the distribution item of the loss function(Eq. 2). This weight starts from
zero, where the weighted loss function equals the reconstruction loss. Then, the weight is increased
gradually to one, where this weighted function satisfies the true loss function definition. With such
a process, the model will be forced to use the learned latent space to achieve good likelihood in
prediction.

Figure 3 is an example of the distribution annealer in the training of the cobblesteone dataset during
the first 20k steps. It can be observed that the distribution item first spikes as the reconstruction
item drops significantly, where the model is encoding shape features into the latent space cheaply.
Then, the distribution item starts to decrease rapidly as more attention is paid to the divergence
penalty. Correspondingly, the decrease of reconstruction item slows down. Finally, the distribution
item gradually converges and the reconstruction item enters fluctuation, where more morphological
information is compressed into the model.

2.3 The generator

Before formal generation, the decoder of style-learner should be well-trained. The generation task
requires the trained decoder and a normal distribution N(0, 1), which represents the regularized
latent space. A typical generation process is illustrated in Figure 1. The latent variable z is sampled
from a normal distribution, serving as the input matrix to the decoder. Then, the decoder can devise
style-similar particles unseen in the training dataset. The distribution of shape features can be well
reconstructed when the number of generated particles is large enough. It is worth noting that the
generated particle is in the form of Metaball descriptor, which can be applied directly into simulations.

3 Experiments

3.1 The setting of serializer and style-learner

In this evaluation, we apply the following hyper-parameter setting. In serializer, the control point
number, n, is set to be 40 for both cobblestone and Ottawa sand samples. The learning rate for the
gradient update is set to be 0.001. In style-learner, the encoder is a 4 layer full-connected network
with leaky ReLU activation function. The size of it is: 160×1024×512×256×128. The decoder is
also a 4 layer full-connected network with leaky ReLU activation function yet in reverse form. The
reparameterizator is set to be one fully connected layer with size 128. The above networks are trained
by Adam [22] with learning rate η = 0.0001.

Since the setting of hyper-parameters is not a focus of this paper, how to obtain them is not included
here for the sake of brevity. A detailed procedure can be referenced in [12].

3.2 Dataset and Metrics

Previous studies on particle generation are often carried out on hundreds of thousands of samples [12,
20, 25]. However, particle reconstruction with XRCT requires considerable time and computational
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resources. In actual engineering, it is very often to have only a dozen scanned particles. Therefore,
it’s crucial to evaluate the performance of algorithms on smaller datasets. To this end, we tested the
effectiveness of the MetaballVAE model on four distinct sets of XRCT data, which included particles
of different types and sizes: 290, 100, and 10 samples of Ottawa sands, as well as 20 cobblestones.
For better learning performance, data augmentation are implemented on training datasets, where
slightly modified synthetic data is introduced based on the real one. Here, particle rotating and
parameter shuffling are implemented. Particle rotating is a popular strategy based on rotational-
invariant property. For example, Shi et al. [12] applied nine rotations to each particle and enlarged his
dataset by ten times in a particle generation task, which effectively enhanced the model performance.
Parameter shuffling means random recombination of {ki,xi} in the serialized particle Ms. This is
because the sequence change of control spheres will not modify the corresponding Metaball model.
Such processing can effectively avoid the overfitting problem and enhance convergence performance.

Accurate evaluation is a challenge for particle generation tasks. Apart from the rationality of particle
shape, another important content of evaluation is the quantitative difference between parents and
clones. We select seven shape factors for evaluation: surface area A, volume V , Corey Shape Factor
CSF , nominal diameter Dn, surface-equivalent-sphere diameter Ds, sphericity ϕ and circularity C.

The Corey Shape Factor CSF [27] reveals the dimension feature of the studied particle, as given by:

CSF =
Ls√
LiLl

(3)

where Ls, Li and Ll are the shortest, intermediate and longest axis lengths of particles.

The nominal diameter Dn and surface-equivalent-sphere diameter Ds are two widely used
parameters[28, 29]. The Dn is defined as the diameter of the volume-equivalent sphere. And
the Ds takes the following form:

Ds =

√
4Ap

π
(4)

where Ap = the maximum projected area of the particle. Here, they are combined as Dns = Dn/Ds

to form a dimensionless quantity.

The sphericity ϕ [30] is the measure of similarity between the studied particle and the sphere, which
is defined as:

ϕ =
Ave

A
(5)

where Ave = the surface area of the volume-equivalent sphere to the studied particle; A = the surface
area of the studied particle.

Another frequently used metric is the circularity C [28], which evaluates the roundness of non-
spherical particle:

C =
πDs

Pp
(6)

where Pp is the the perimeter of the particle’s projected-area.

3.3 Particle Generation

In validation, the training datasets are denoted as "Parents". And 1000 particle avatar are devised
by the generator, denoted as "Clones". The number of generated particles is set to larger for better
evaluation on the morphological distribution.

Figure 11 and Figure 12 displays several cloned examples of each type. It can be concluded that these
clones exhibit reasonable shape features of both Ottawa sands (angled features) and cobblestones
(round features). Note that these particles are in Metaball function form and the meshes are only for
visualization.

To further exam the regeneration ability of the proposed method on shape-feature distributions,
probability density functions (PDF) of selected metrics are calculated on both parents and their clones.
A satisfying match can be observed (See details in Appendix B.)
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Figure 4: Comparison of generated par-
ticles before and after addition of Gaus-
sian noise in the latent variables. (a) and
(b) are Ottawa sand examples. (c) and
(d) are cobblestone examples. The vari-
ance of Gaussian noise is noted as σ.

Figure 5: Comparison of generated particles of inter-
polated latent variables. (a) and (b) are cobblestone
examples of the same z1. (c) and (d) are Ottawa sand
examples of the same z1. The interpolated coefficient
is noted as α.

3.4 Latent space arithematic

A well-trained MetaballVAE can achieve integration of discrete training samples into continuous,
regularized latent space, where the number of generated particles can be infinite. Such regularized
latent space avoids overfitting and underfitting problems in generation, ensuring the rationality of
generated morphologies [12]. More importantly, it also realizes a certain control on the generated
geometric feature [31].

Figure 4 illustrates that the addition of Gaussian random noises δ into the latent variable z can
introduce morphological changes of different degrees into generated avatars. Here, δ is set to have
the same dimension of z, with zero mean value and different variance σ. Then, δs are added to a
randomly selected latent variable z to produce modified ones z + δ. Finally, these latent variables
are fed into the generator as inputs. From the corresponding generated results, it can be observed
that the addition of δs with small σ can slightly adjust the particle morphologies. As the increase
in σ, the degree of modification becomes larger, resulting in less similar avatars to the original
one. This is from the property of regularized latent space. The addition of δs can create new latent
variable adjacent to the original one, while the σ of δs decides distances between them in the latent
space. Since the latent space is regularized, such adjacent relationships control the shape similarity
in generated avatars. This phenomenon is also observed in generating digital sand particles with
VAE [12]. It can be very useful when particles in certain morphologies are needed in simulations.
We can first select the template avatars and then add δs of small magnitude into its latent variables.
In this way, slightly modified avatars can be generated, avoiding repetitive particle morphologies in
simulation.

Figure 5 indicates that interpolation between latent variables can produce smooth shape transitions
in corresponding generated avatars. In these examples, two latent variable z1 and z2 are randomly
selected to create interpolations z1 + α(z2 − z1). Then, these latent variables are fed as input to the
generator. It is clear that as the increase of α, those interpolated avatars gradually transform from
z1 avatar to z2 avatar. Note that such a change occurs simultaneously in multiple characteristics
including shape, volume and surface area. This is also result of the regularized latent space. Those
interpolated variables possess adjacent locations in the latent space with z1 and z2, resulting in avatars
of similar shape. With change in the location of latent variables, the generated avatars show smooth
modification in shape from z1 to z2 avatars. This phenomenon can be applied to obtain avatars
of combined features. We can first select two template avatars of specific morphologies then do
interpolation between them.
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Figure 6: Manipulation of particle shape through
addition and subtraction in latent variables. Top:
adding angled features into a smooth cobblestone.
Bottom: removing flattening features from a thin
cobblestone.

Figure 6 shows that the avatar shape can be mod-
ified by applying addition or subtraction in the
latent space. Here, arithmetic operations are
implemented on latent variables, z1 and z2, cor-
responding to avatars of distinct shapes. Under
such operation, specific shape features can be
added or removed from the generated avatar
of z3. This also results from regularized la-
tent space. The proper mapping between latent
variables and morphological features provides a
powerful method to modify the shape. Through
proper arithmetic operation, avatars of specific
features can be generated according to need.

4 Conclusion

We present a variational-autoencoder (VAE) based particle generation algorithm called MetaballVAE.
It can generate style-similar particles in Metaball function form with XRCT images of parental
particles. The MetaballVAE was evaluated through a comparison of two groups of particles with
different sizes. It was found that the parental and cloned particles exhibited good agreement in
terms of their morphologies and shape-feature distributions. These results provide evidence that
MetaballVAE is a reliable and practical tool for characterizing particles with varying sizes and
morphologies. The regularized latent space of MetaballVAE allows for control over the generation
process. Particles with specific morphologies can be generated through arithmetic operations on the
latent space. This feature makes MetaballVAE a versatile and useful tool for generating particles with
desired characteristics. With previously developed metaball-based simulation frameworks that have
proven to be a powerful tool in comprehending the intricacies of fluid-particle systems involving
realistic soil particles [10, 8]. With the addition of reconstruction and generation methods proposed
in this paper, the integration of these tools has the potential to unveil new insights into soil mechanics
and provide valuable information for a wide range of applications, including soil erosion modeling,
soil contamination analysis, and soil moisture modeling.
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Figure 7: The algorithm flow of the Genetic-based Gradient Search algorithm.

Appendix A. The Metaball-Imaging based on genetic algorithm

Here we design a Metaball-Imaging (MI) algorithm to to transform the XRCT image of irregular-
shaped particle into an explicit, Metaball-function based mathematical representation, which is called
avatar in this paper. This task can be simplified into an optimization problem, searching for the set of
parameters {k̂i, x̂i} for a Metaball model which can minimize the following function:

arg min
k̂i,x̂i

 n1∑
i=1

n2∑
j=1

k̂i

(xj − x̂i)
2 − 1

2

(7)

where {k̂i, x̂i} is the parameter set of the targeted Metaball model; xj stands for the input, coordinates
of hull points from XRCT; n1 and n2 refer to the number of control points and input samples
seperately.

The proposed algorithm involve three steps as shown in Figure 7. (1) Data preprocessing of the
XRCT cloud points (Figure 7 a). (2)Capturing the principal outer contour with genetic algorithm
(Figure 7 b). And (3) Refining the distilled outer contour with gradient search (Figure 7 c).

.1 Data preprocessing of the XRCT image

This preprocessing consists of two operations, the specification of interested regions (SOIR) and
the transformation of coordinates (TOC). SOIR is to specify those points on outer contour from
the XRCT result. This is because the fitting of the Metaball only requires the point hull. TOC is
implemented to translate the specified region of interest into the coordinate system centered at the
origin. Such an operation can avoid abnormal fitted parameters caused by XRCT coordinates. The
point hull obtained through SOIR and TOC is noted as H = {Hxi, Hyi, Hzi} (i ∈ [1,m], where m
represents the number of hull points).

.2 Capturing the principal outer contour with genetic algorithm

Considering the superiority of GA in global search, the ability to locate the range of the optimal
accurately, it is used to capture the rough outer contour, i.e. a sufficiently good solution for Eq. 7.

In the capture of principal outer contour by GA, five segments are included: population initialization,
mutation, crossover, evaluation and selection. Generations of these segments will be carried out as
shown in Algorithm 1.

Population Initialization: This process refers to the initialization of N individuals as a population.
Each individual represents a possible parameter set M = {Mki

,Mxi
,Myi

,Mzi} (i ∈ [1, n]) to the
fitted Metaball model (See Figure 8). An individual consists of a series of strings defined as Genes,
standing for a certain parameter in the set. The number of genes in each initialization is set to be a
constant.

In this segment, all individuals are randomized with control points inside targeted point hull H . Such
an operation is to satisfy the geometric constraint of the Metaball. The judgment of whether a point
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Algorithm 1 The Genetic Algorithm for capture of the principal outer contour
Input: the preprocessed point hull H , the number of generations Ega, the number of individuals

in the population NI , the number of genes in each individual NG, the mutation coefficient Cm, the
crossover coefficient Cc.

Output: the Metaball model of the principal outer contour Mga.
1: Initialization - NI individuals are randomly initialized with a string of NG genes. The control

points in each individual are set to be inside H;
2: for i = 1, 2, ..., to Ega do
3: Mutation - For each indivudial, performing muatation with coefficient Cm;
4: Crossover - For random pair of individuals, performing crossover with coefficient Cc;
5: Evaluation - For each individual, calculating the fittness score;
6: Selection - Selecting the fittest NI individuals for next generations;
7: end for
8: Return: The fittest individual in the population Mga.

Figure 8: Population, individual and gene.

P is inside H is completed by linear programming. This problem is defined as the following:

Minimize
A

CA

Subject to HTA = NT
(8)

Where C = [1, 1, · · · 1]︸ ︷︷ ︸
m

; A = [a1, a2, · · · am]︸ ︷︷ ︸
m

T ; HT =

∣∣∣∣∣∣∣
Hx1, Hx2, . . . Hxm

Hy1, Hy2, . . . Hym
Hz1, Hz2, · · · Hzm
1, 1, . . . 1

∣∣∣∣∣∣∣,
{Hxm, Hym, Hzm} is the coordinate of points from the preprocessed hull H ; N = [Px, Py, Pz, 1]

T ,
(Px, Py, Pz) is the coordinate of the studied point P.

If the point P is inside the studied point hull H , there will be a solution A to Eq. 8, satisfying:

a1 + a2 + ...+ am = 1, ai > 0 (9)

Mutation and Crossover: Mutation and Crossover are strategies to produce offsprings. They are the
most vital segments in GA and the key to finding the optimal solution.

Mutation refers to random change in the value of genes with a probability Cm, which stands for
the change probability (Figure 9 I). This strategy is designed to control the exploration breadth and
convergence rate. Crossover means the exchange of genes between two different individuals with
a coefficient Cc, which determines the crossover point (Figure 9 II). This strategy is dedicated to
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Figure 9: Mutation and Crossover.

filtering out better genes and promote positive diversity. A proper setting of Cm and Cc can maintain
population diversity and prevent overfitting problems.

Evaluation: Evaluation involves the concept of fitness functions. It gives a fitness score, which
determines the ability of this individual to compete with others in the population, to each individual.
Here, the fitness function is defined as the following:

F (M) =

m∑
i=1

(f l
Hi

(M)− 1)2 (10)

where f l
Hi

(M) =
∑n

j=1

Mkj

(Hxi
−Mxj )

2
+(Hyi

−Myj )
2
+(Hzi

−Mzj )
2 , Hi stands for a control point in the

point hull H .

Selection: Selection is based on the fitness score calculated in Evaluation. It is implemented to filter
the fittest N individuals and pass them to the next generation. It is generally performed after mutation,
crossover and evaluation. This makes individuals with higher fitness more likely to survive and
reproduce.

.3 Gradient Search for refinement of outer contour

In the refinement of outer contour by GS, two segments are included in GS: Gradient Descent and
the anomaly detection. The flowchart of GS is detailed in Algorithm 2.

Algorithm 2 The Gradient Search for refinement of outer contour
Input: the preprocessed point hull H , the number of generations Egs, the learning rate η, the

Metaball model of the principal outer contour Mga.
Output: the metaball model for the refined outer contour Mgs.

1: Mga is taken as the inital parameter M0;
2: for i = 1, 2, ..., to Egs do ▷ 1st Gradient Descent
3: M0 ←M0 − η · ∇M0

L(M0);
4: end for
5: Anomaly Detection - Performing clearning on M0 for two types of the anomaly points: control

point overflow and sign abnormality. Sending the cleaned parameters M1 into the next step;
6: for i = 1, 2, ..., to Egs do ▷ 2nd Gradient Descent
7: M1 ←M1 − η · ∇M1

L(M1);
8: end for
9: Return: The searched paramter set θ̂.
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Figure 10: The value range objective function of MSE is depicted by the objective solid line in the
graph, while the dashed line represents the loss function with Mean Square Error and of Eq. 12form.
The latest later one increases the loss function value for points outside the point hull, improving the
GS performance.

Gradient Descent: Gradient Descent is an optimization algorithm based on gradient information,
which is readily available from the Metaball functions. For an objective function L(M), its parameters
can be updated iteratively to find the optimal:

M ←M − η · ∇ML(M) (11)

where M represents the parameters for Gradient Descent, here is the parameter set of the fitted
Metaball model; η is the learning rate; ∇ML(M) is the gradient of the L(M) to the parameter M .

In this segment, the objective function for contour refinement is defined as a piecewise function
instead of Eq. 7:

L(M) =


∑m

i=1(f
l
Hi

(M)− 1)2, f l
Hi
∈ [2,+∞]∑m

i=1 |f l
Hi

(M)− 1|, f l
Hi
∈ [1, 2]∑m

i=1

[
(f l

Hi
(M)− 1)2 + 1

f l
Hi

(M)
− 1

]
, f l

Hi
∈ [0, 1]

(12)

This is because many attempts have shown that a loss function in Mean Square Error(MSE) form
can often result in distorted models with control points outside the targeted hull. This is related to
the property of Metaball function. When the study point is internally close to or externally far from
the Metaball hull, its corresponding function value will all be very small. This results in the value
range of Eq. 7 as shown by lines in Figure 10, which makes the direct GS fall into the local optimal
solution easily. This defect can be avoided through the implementation of Eq. 12. Under this form,
the loss value of points outside and close to the Metaball hull can all be enlarged greatly (Dash lines
in Figure 10). Such implementation can not only improve fitting efficiency but also adaptability to
complex geometry of GS.

For gradient update, we adopt a pattern that the gradient for the whole dataset, the entire point hull H,
will be calculated once for each round of iteration. This is because sufficient attention to all points on
the targeted hull can endow the trained model with higher fidelity [32].

Anomaly Detection: Since the search of GS is strictly based on the gradient relationship, redundant
control points can be merged reasonably in this process. But this also raises two other problems:
control point overflow and sign abnormality. The control point overflow refers to solution with control
points outside the target point hull H . And the sign abnormality means solution with control points
of negative k values. Those anomaly points will be cleared out by assigning a zero weight during this
stage.

Appendix B. The particle generation result.

All shape features of parents and clones in four datasets of Ottawa-sand and cobblestone datasets
share similar distributions. In term of ϕ, we observe deviation errors of 2.54%, 1.33%, 1.09% and
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Figure 11: Examples of cloned Ottawa sands

0.92% on means between parents and clones, for the four datasets separately. In the case of standard
deviation, errors of 3.12%, 5.90%, 3.77% and 4.45% are obtained. For C of the Ottawa sand and
cobblestone, the distribution means are off with errors of 0.03%, 0.01%, 0.10% and 0.25%. While
errors in standard deviation are 2.56%, 8.32%, 4.41% and 3.46% separately. In the case of Dns,
errors of 2.57%, 0.67%, 1.29% and 0.98% are observed on the mean misalignments for the Ottawa
sand and cobblestone. And the errors coming from the standard deviation are 2.69%, 1.53%, 9.35%
and 5.87%. As for CSF , the distributions have errors of 3.87%, 5.31%, 2.80% and 3.25% on the
mean, as well as errors of 11.58%, 10.70%, 1.94% and 4.88% on the standard deviations. Finally, we
obtain errors of 2.77%, 6.49%, 3.72% and 0.66% from V , as well as errors of 4.22%, 7.45%, 3.50%
and 1.41% from A on means of distributions of the Ottawa sand and cobblestone. In the case of
standard deviation, the errors are 20.61%, 9.87%, 1.88% and 5.64% given by V , as well as 24.21%,
14.94%, 6.5% and 10.65% given by A.

Note that the MetaballVAE is capable of learning and representing non-Gaussian shape-feature
distributions. Examples of this can be seen in the histogram of the feature V and A of the 10 Ottawa
sands and 20 cobblestone(Figure 16 and 15), where multiple peaks are observed in the distribution
(although they may not be clear in the PDF curve due to limited samples). The MetaballVAE capture
this feature effectively and generate particles with similar distributions, demonstrates the effectiveness
of the MetaballVAE in cloning grains of complex shape-feature distributions. While an interesting
phenomenon arises in the smalleset dataset of 10 Ottawa sand (Figure 15). It can be observed that
the distributions of shape features of parental particles are discrete and discontinuous. Although the
shape-feature distributions of the clones match well with the parents, theirs distribution are continuous
with peaks around the discrete values of the parents. This is because MetaballVAE is designed to
interpret and map the discrete particle morpholgoies into continuous latent space. Such architecture
can not only facilitates the generation of a large variety of particles with similar shape-feature
distributions and allows for more efficient exploration and manipulation of the generated particles,
which will be discussed in Section 3.4.
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Figure 12: Examples of cloned cobblestone

Figure 13: Comparison of feature distributions between parental and cloned particles in the Ottawa
sand dataset of size 290
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Figure 14: Comparison of feature distributions between parental and cloned particles in the Ottawa
sand dataset of size 100

Figure 15: Comparison of feature distributions between parental and cloned particles in the Ottawa
sand dataset of size 10
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Figure 16: Comparison of feature distributions between parental and cloned particles in the cobble-
stone dataset of size 20
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