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Abstract

Existing approaches to Reasoning Video Ob-
ject Segmentation (ReasonVOS) typically gen-
erate mask sequences based on implicit instruc-
tions combined with external world knowledge.
However, these instructions often focus on
static or isolated visual elements (e.g., “Which
pants are gray”’), neglecting the spatiotemporal
dynamics intrinsic to video data. In this work,
We introduce DualReasonVOS, a new bench-
mark for ReasonVOS that combines temporal
reasoning over object dynamics with semantic
reasoning over implicit language, leveraging
both visual context and world knowledge. To
this end, we redesign the CReaVOS dataset by
incorporating carefully curated implicit instruc-
tions that emphasize spatiotemporal reasoning.
Furthermore, we propose Complex Video Rea-
soning Segmentation Framework (CVRS), a
novel framework that introduces an adaptive
reasoning mechanism to decompose implicit
instructions into hierarchical reasoning chains.
This enables context-aware identification of
query-relevant objects across diverse video sce-
narios. Experimental results demonstrate that
CVRS significantly enhances both temporal
and spatial reasoning capabilities, achieving
superior mask quality compared to state-of-
the-art methods on the CReaVOS and ReVOS
benchmarks.

1 Introduction

Reasoning Video Object Segmentation (Reason-
VOS) (Yan et al., 2024; Zheng et al., 2024; Bai
et al., 2024) has recently emerged as a challeng-
ing extension of traditional video object segmenta-
tion, which aims to generate a sequence of segmen-
tation masks based on implicit natural language
queries. Unlike Referring Video Object Segmenta-
tion (RVOS) (Khoreva et al., 2018; Seo et al., 2020;
Botach et al., 2022; Wu et al., 2022), which focuses
on resolving explicit queries (e.g., “identify the
fish”) through direct visual matching, ReasonVOS
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Figure 1: Comparison between existing instructions
in ReasonVOS and our redefined DualReasonVOS.
The first case shows objects in static scene with no tem-
poral progression. The second involves a dynamic video,
but the instruction lacks temporal reasoning. In con-
trast, our case combines temporal object evolution with
instructions requiring both spatiotemporal and world
knowledge reasoning.

addresses unspecified queries such as “identify the
animal that breathes with gills”, requiring reason-
ing grounded in both world knowledge and video
context. By integrating semantic reasoning with
precise spatial localization, ReasonVOS unlocks
the potential for interactive Al agents to understand
natural language instructions and engage with com-
plex environments.

However, a closer look of existing ReasonVOS
datasets (Yan et al., 2024) exposes a fundamental
limitation: the reasoning required is primarily an-
chored in the query text and relies heavily on world
knowledge, rather than on the temporal dynamics
of the video itself. In most cases, the target ob-



ject can be accurately identified within any single
frame, rendering temporal modeling unnecessary.
This limitation largely stems from two factors, as
illustrated in Figure 1: (1) the video scenes tend
to be simplistic and lack contextual diversity, and
(2) the objects of interest are typically static or
exhibit minimal motion. As a result, the task re-
duces to matching static visual cues with semantic
knowledge inferred from the query, rather than en-
gaging in true video-based reasoning across time.
While such datasets serve as an important first step,
their limited temporal complexity constrains the
development and evaluation of models designed to
reason over time, thus falling short of realizing the
full potential of ReasonVOS to drive progress in
dynamic scene understanding.

To address the above shortcomings, we intro-
duce DualReasonVOS, a new benchmark for Rea-
sonVOS that requires dual reasoning—temporal
reasoning over object dynamics across frames, and
semantic reasoning over implicit natural language.
Specifically, Specifically, we first curate a diverse
set of videos where either the scene context or the
target object exhibits noticeable changes over time.
Next, we identify target objects whose states or
behaviors evolve throughout the video, ensuring
that temporal reasoning is essential for accurate
interpretation. Based on these dynamics, we manu-
ally craft implicit textual instructions that incorpo-
rate both world knowledge and the spatiotemporal
behaviors of the target. Finally, we annotate the
targets across all frames to produce precise mask
sequences, capturing their complete spatiotempo-
ral trajectories. By integrating both temporal and
semantic reasoning, DualReasonVOS provides a
challenging and realistic testbed for evaluating a
model’s ability to perform temporally grounded
visual reasoning and object identification.

Moreover, we propose Complex Video Reason-
ing Segmentation (CVRS) framework, a novel
framework inspired by the Chain-of-Thought
(CoT) paradigm (Wei et al., 2022; Fei et al., 2024).
CVRS emulates human reasoning behavior by
adaptively decomposing implicit natural language
instructions into hierarchical reasoning steps. This
decomposition enables context-aware identification
of relevant visual cues and target objects across di-
verse and dynamic video scenarios. The generated
reasoning chains not only enhance interpretabil-
ity but also progressively guide multimodal large
language models (MLLMs) toward more precise
segmentation by explicitly modeling spatiotempo-

ral dependencies. In contrast to prior methods (Yan
et al., 2024; Bai et al., 2024; Zheng et al., 2024),
which rely on heavy encoder-decoder architectures
and require extensive fine-tuning, CVRS is entirely
training-free, offering greater flexibility and ease of
deployment. Extensive experiments demonstrate
the effectiveness of our method on both Reason-
VOS and DualReasonVOS. Overall, our contribu-
tions are as follows:

* We introduce DualReasonVOS, a challeng-
ing and realistic benchmark for video object
segmentation that requires both the temporal
reasoning over videos and semantic reasoning
over implicit text queries.

* We propose CVRS, a training-free framework
with an adaptive reasoning mechanism that de-
composes implicit instructions into hierarchi-
cal chains, enabling adaptive target identifica-
tion and guiding fine-grained spatiotemporal
reasoning for precise segmentation.

* CVRS achieves state-of-the-art performance
on CReaVOS and ReVOS, demonstrating
strong spatia-temporal awareness and reason-
ing capabilities.

2 Related Work

2.1 Referring and Reasoning Video Object
Segmentation

RVOS is designed to bridge the vision-language
gap by segmenting video objects based on natu-
ral language queries (Khoreva et al., 2018; Ding
et al., 2023a; Wu et al., 2022; Bellver et al., 2023;
Botach et al., 2022). Its effectiveness primarily
stems from the use of explicit queries, which en-
able a direct alignment between textual and visual
modalities. To address the limitations of RVOS
in handling implicit queries, ReasonVOS extends
the task by incorporating world knowledge and
video context, enabling more robust and context-
aware object segmentation. Early efforts such as
VISA (Yan et al., 2024) formulated the Reason-
VOS task and established a benchmark for reason-
ing video segmentation. VideoLISA (Bai et al.,
2024) further advanced this direction by introduc-
ing a sparse-dense sampling strategy to capture
fine-grained spatiotemporal information. ViLLa
(Zheng et al., 2024) enhanced temporal context
modeling through a temporal-aware encoder and
a video-frame decoder. While these approaches
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Figure 2: Illustration of a CReaVOS example. The presented sample (e.g., “The car with the highest passenger
capacity”) demonstrates a dual reasoning requirement: spatiotemporal inference over scene and object changes
across the video, and semantic understanding involving external world knowledge. This highlights the core design
of CReaVOS—grounding complex, dynamic queries within real-world video contexts.

have shown promising results in interpreting im-
plicit queries, they often fall short in fully leverag-
ing the spatiotemporal dynamics of target objects.
This work focuses on modeling the spatiotemporal
dynamics of target objects to better exploit video-
specific features, while incorporating world knowl-
edge to enable more robust and context-aware rea-
soning.

2.2 Multimodal Chain-of-Thought

Multimodal Chain-of-Thought (MCoT) reasoning
has recently emerged as a powerful paradigm in
vision-language research, enhancing model inter-
pretability and reasoning ability by generating in-
termediate, step-by-step inferences. Early works
(Zhang et al., 2024b) laid the groundwork for in-
tegrating CoT into large multimodal models. Sub-
sequent approaches such as CoCoT (Zhang et al.,
2024a) and RelationLMM (Xie et al., 2025) ex-
panded this capability by modeling visual simi-
larities and inter-object relationships, simulating
human-like cognitive strategies. MCoT has also
shown strong potential in fine-grained tasks. For
instance, CoTDet (Tang et al., 2023) and CPSeg
(Li, 2024) significantly improved object detection
and segmentation by introducing reasoning chains
at the instance level. In the video domain, works
like CaVIR (Lietal., 2023) and VideoAgent (Wang
et al., 2024) addressed long-form video understand-
ing through zero-shot MCoT, while VoT (Fei et al.,
2024) proposed a structured five-stage pipeline en-

compassing task identification, object tracking, and
action analysis. Despite these advancements, ex-
isting MCoT research has primarily focused on
image-level or general video understanding tasks.
To the best of our knowledge, no prior work has
explored Chain-of-Thought reasoning in the con-
text of ReasonVOS. To fill this gap, we propose an
adaptive reasoning mechanism that constructs tai-
lored, hierarchical reasoning steps for each video,
enabling fine-grained and context-aware segmenta-
tion grounded in world knowledge.

3 A Challenging ReasoningVOS
Benchmark

3.1 Task Defination and Formulation

ReasonVOS can be formally defined as follows:
given a video Xy € RT>3XHXW comprising T
frames of spatial resolution H x W, and an im-
plicit textual instruction Xy, the objective is to
learn a model M that outputs a sequence of binary
masks {Y;}7_,, where each V; € {0, 1}7*W indi-
cates the mask of target in frame ¢. Unlike existing
datasets ReVOS, which incorporate world knowl-
edge through implicit queries (e.g., “objects for pro-
tecting athletes”), these queries primarily empha-
size semantic reasoning but fall short in capturing
the spatiotemporal dynamics of object throughout
the video. ReasonVOS poses significant challenges
by requiring integration of world knowledge with
robust spatiotemporal and multimodal reasoning
capabilities. To support this challenging, we intro-
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Figure 3: Overview of the CVRS framework. The CVRS consists of three stages: (1) Video Perception — the
MLLM parses video content and extracts candidate objects; (2) Adaptive Reasoning — the TLM performs text-based
reasoning to select the target and generate an enhanced prompt; (3) Target Grounding and Tracking — the MLLM
grounds the target using the enhanced prompt, and SAM2 generates the final mask sequence.

duce the CReaVOS dataset, which preserves the
implicit nature of instructions (e.g., “the vehicle
with the highest passenger capacity”) while em-
phasizing spatiotemporal object evolution. It fea-
tures dynamic appearances and interactions, requir-
ing joint reasoning over space, time, and external
knowledge for accurate segmentation.

3.2 Benchmark

To assess the benchmarking effectiveness of
CReaVOS, we construct a standardized evalua-
tion suite comprising implicit reasoning instruc-
tions and the corresponding high-quality mask se-
quences. The benchmark is aligned with the VISA
protocol and leverages the ReVOS (Yan et al.,
2024) validation set for consistent evaluation. De-
tails of the validation setup are included in Ap-
pendix A.

Data Source ReVOS is the first available dataset
that collects a diverse set of videos from LV-VIS
(Wang et al., 2023), MOSE (Ding et al., 2023b),
OVIS (Liu et al., 2022), TAO (Dave et al., 2020),
and UVO (Wang et al., 2021). Considering that
videos in the TAO dataset are typically several min-
utes long, significantly increasing the complexity of
analysis and computational cost, we exclude TAO
during the construction of CReaVOS and sample
videos only from the remaining four datasets.

Video Selection and Instruction Design De-
spite the volume and diversity of ReVOS, most
videos with instruction can be resolved from a sin-
gle frame, thereby simplifying the task to static

object recognition rather than spatiotemporal rea-
soning. To address these limitations, we construct
the CReaVOS dataset from two key criterias: video
selection and instruction design. First, we ensure
that the selected videos contain non-trivial scene
dynamics—either through changing environments
that lead to evolving object behaviors, or through
temporally distinct object states even within static
scenes. This ensures that identifying the target
requires understanding its temporal trajectory or
behavioral evolution. Second, based on the video
content, we carefully design implicit instructions
that require external world knowledge to identify.
These instructions are crafted to refer to objects
whose identities can only be inferred by reason-
ing over their spatial and temporal characteristics
across the video. Each video is annotated with cor-
responding segmentation masks that reflect these
temporally grounded targets. Through this ap-
proach, CReaVOS not only emphasizes the tem-
poral evolution and contextual variation of target
objects, but also integrates rich world knowledge
into the instruction design, fostering deeper and
more realistic reasoning in video understanding
tasks. Figure 2 illustrates examples in CReaVOS.

Data Statistic Following the above construction
criteria, we ultimately collected 137 videos from
four datasets, each annotated with implicit text in-
structions and high-quality target mask sequences.
Specifically, we collect 76 videos from LV-VIS, 27
from MOSE, 25 from OVIS, and 9 from UVO. Ta-
ble 1 presents a comparison of the data distribution



between ReVOS and our constructed CReaVOS
dataset.

Dataset ReVOS CReaVOS Percentage
LV-VIS 388 76 19.58%
MOSE 208 27 12.98%
OVIS 140 25 17.85%
Uvo 255 9 3.50%

Table 1: Distribution of ReVOS and CReaVOS samples
across different datasets. Percentage indicates the ratio
of CReaVOS to ReVOS samples.

4 The Proposed Framework

4.1 Framework Overall

As shown in Figure 3, Our CVRS framework con-
sists of three main components: a MLLM for video
content parsing, object extraction and identifica-
tion; a text-only language model (TLM) for text-
level video reasoning, and Segment Anything 2
(SAM2) as the object tracking model. Specifi-
cally, CVRS includes three stages when processing
videos. Firstly, Video Perception: The MLLM
takes the video input and generates a detailed de-
scription, from which the objects present in the
scene are extracted (4.2). Secondly, Adaptive Rea-
soning: The TLM performs reasoning over the
video content based on the video description, ex-
tracted objects, and the query. This reasoning pro-
cess involves three key steps: (1) Target Object Se-
lection, (2) Query-Aware Feature Analysis, and (3)
Formulating an Enhanced Prompt for the MLLM
(4.3). Finally, Target Grounding and Tracking:
the video, query, and enhanced prompt are input
into the MLLM to identify and localize the target
object, which is then tracked across frames using
Segment Anything 2 (SAM?2) to generate the corre-
sponding mask sequence (4.4).

4.2 Video Perception

In this stage, we employ Qwen2.5-VL as the mul-
timodal large language model to facilitate video
perception and the generation of structured textual
output. Given an input video Xy comprising T’
frames, a structured prompt template is designed
(see Appendix B.1 for details) to derive a com-
prehensive textual description, denoted as Xgegc,
along with a list of detected objects, referred to
as Xqpjs. Consequently, this process yields rich,
high-level video representations that capture scene
context, environmental attributes, object presence,

and the temporal dynamics associated with each
object throughout the video.

4.3 Adaptive Reasoning

The complexity of video understanding by tempo-
ral progression, contextual variability, and semantic
ambiguity calls for a human-like reasoning strategy
that can adaptively interpret visual content in align-
ment with abstract task objectives. To tackle the
challenges posed by evolving object behaviors and
complex spatiotemporal interactions in video data,
we introduce an Adaptive Reasoning mechanism
inspired by human cognitive strategies. This mech-
anism enables interpretable and efficient reason-
ing by guiding the model through structured steps
aligned with the query semantics. To achieve this in
a lightweight and generalizable manner, we incor-
porate a TLM, which facilitates adaptive reasoning
across diverse videos with minimal additional pa-
rameters. comprises three key components:

(a) Target Object Selection. From the video per-
ception stage, a diverse set of candidate objects
Xobjs 1s obtained. However, many of these are ir-
relevant to the query and may introduce noise. To
reduce complexity, we filter this set to obtain Xy,
a subset of objects semantically aligned with the
query. For instance, given the query “Which ship
needs to be rescued?”’, we retain relevant objects:
{white boat, red boat} and discard unrelated ele-
ments like “sky” or “water”.

(b) Query-Aware Feature Analysis. Given the
inherent complexity and diversity of video targets
and scenes, direct alignment between queries and
visual content becomes non-trivial. After iden-
tifying a set of potential targets, we leverage a
lightweight TLM to perform semantic analysis be-
tween the candidate objects and the query. Specifi-
cally, the TLM reasons about the attributes and tem-
poral behaviors of each object in context, extract-
ing the key discriminative features most relevant
to the query intent. This enables adaptive align-
ment across diverse video scenarios and provides
the most informative cues for target identification.

(c) Prompt Construction for MLLM. Since
MLLMs are sensitive to prompt design, we con-
struct an enhanced prompt that fuses the visual con-
text and the reasoning output. This adaptive prompt
directs the MLLM to focus on temporally and se-
mantically relevant aspects of the video, guiding
accurate object localization and segmentation with-



out additional fine-tuning. The formal formulation
is given as follows:

Xprompt = TLM(Xdescv Xobjsa Xt) (1)

This stage significantly improves reasoning effi-
ciency and generalization by aligning the model’s
attention with high-level semantics and temporal
cues. Detailed prompt structures are provided in
Appendix B.2.

4.4 Target Grounding and Tracking

Methods like VISA, which use LLaMA-Vid to lo-
calize targets via keyframes, fall short in scenar-
10s requiring temporal reasoning. Their reliance
on isolated frames overlooks the spatiotemporal
dependencies essential for complex video under-
standing. In contrast, our CReaVOS dataset empha-
sizes targets whose identification hinges on tem-
poral evolution and contextual dynamics, making
single-frame resolution insufficient. To tackle this
challenge, our adaptive reasoning stage distills the
temporal behavior of potential targets and extracts
query-relevant discriminative features. These are
encoded into an enhanced prompt that explicitly
guides the MLLM to focus on critical objects and
salient cues, enabling accurate grounding of the
target in the video, denotes as X;,;. Leveraging
SAM?2, we then produce a complete and precise
tracklet sequence across the video frames.

tht = M(Xv, Xta Xprompt) (2)
Y; = SAM2(Xyv, Xigt) 3

5 Experiments

5.1 Dataset and Metrics

To ensure a fair evaluation of our proposed bench-
mark, we select 800 expression-object pairs from
the validation of ReVOS, filtering only those cases
where each expression corresponds to a single tar-
get object within the video. Additionally, we curate
a zero-shot set comprising 137 videos from ReVOS,
for which we reconstruct implicit text instructions,
ensuring that each expression is aligned with ex-
actly one target object in the video. We evaluate
ReasonVOS using region similarity (7), contour
accuracy (F), and their mean score (J & F).

5.2 Implementation Details

Previous end-to-end approaches rely on decoder
integration and fine-tuning, leading to high com-
putational costs and limited ability to capture spa-
tiotemporal target dynamics. To overcome these

limitations, we introduce CVRS, a fully training-
free framework. It leverages the Qwen2.5-VL
series for video parsing, target extraction, and
grounding, and incorporates the text-only language
model Qwen2.5 in the Adaptive Reasoning stage
for efficient, high-level semantic reasoning. This
stage incrementally generates structured prompts
to guide the MLLM toward critical objects and
salient cues, enabling accurate and interpretable
grounding. Finally, SAM?2 is used to produce spa-
tiotemporal tracklets of the identified targets. All
experiments run on a single NVIDIA A10 GPU (24
GB VRAM).

5.3 Comparison Results

To showcase the robust video-level, pixel-level per-
ception and generalization of CVRS, we conduct
evaluations across ReVOS, CReaVOS datasets. Ta-
ble 2 illustrates the performance comparison with
previous methods on the ReVOS and CReaVOS
benchmark. = CVRS demonstrates significant
improvements over the previous state-of-the-art
across three metrics. Since LISA was originally
proposed for image reasoning and lacks inherent
video reasoning capabilities, we reproduce it by
incorporating XMem for video reasoning in this
experiment. Remarkably, in terms of J&F, our
CVRS generally achieves over 6.47% J&F im-
provements with LISA in CReaVOS and 16.85%
in ReVOS, indicating that LISA can only perform
reasoning on static images and is unable to handle
continuously changing objects in videos. Moreover,
CVRS surpasses VISA by 7.14% in CReaVOS
and 13.95% in ReVOS, over VideoLISA by 6.92%
in CReaVOS and 16.51% in ReVOS, respectively.
These improvements highlight the efficacy of the
proposed Adaptive Reasoning CoT module and
its dynamic reasoning chains, which substantially
enhances the ability of visual perceptino and rea-
soning of MLLM by directing attention toward
semantically relevant aspects of the query, thereby
facilitating a more accurate target object.

5.4 Ablation

Ablation of Adaptive Reasoning. The ablation
analysis of the Target Object Selection component
in the Adaptive Reasoning is presented in Table 3,
line 2. Precisely filtering of objects irrelevant to
the query improves the prediction of target accu-
racy (e.g. J&F increases from 38.98% to 46.57%)
by reducing interference from unrelated objects,
thereby effectively narrowing the search space and



Method CReaVOS(ours) ReVOS

gt Ft JEFT gt Ft J&F1
LISA+XMem (Lai et al., 2024) 37.07 43.13  40.10 37.87 43.09 4048
VISA (Yan et al., 2024) 36.87 4199 3943 40.56 46.19 43.38
VideoLISA (Bai et al., 2024) 3732 4197 39.65 3894 4190 40.42
Ours 4550 47.65 46.57 53.81 60.85 57.33

Table 2: Performance comparison on CReaVOS and ReVOS datasets. Metrics include region similarity (), contour

accuracy (F), and their average (J & F).

M @ | Jr Fr J&F?
v v v | 4550 47.65 46.57
v v | 3721 4074 3898
v v | 3585 39.12 3748
v v 3250 3537 3393

Table 3: Ablation study on different components for
CReaVOS. (1): Target Object Selection, (2): Query-
Aware Feature Analysis, (3): Formulating Enhanced
Prompt.

Model Variant JrT Ft J&F1
Qwen2.5-VL-3B 30.00 32.10 31.55
Qwen2.5-VL-7B 4550 47.65 46.57
Qwen2.5-VL-32B  73.53 71.68 72.61

Table 4: Ablation study on the parameter scale of
Qwen2.5-VL for CReaVOS.

significantly reducing reasoning complexity. To
assess the impact ofQuery-Aware Feature Analy-
sis, we compare two variants of our framework,
as shown in Table 3, line 3. The results indicate
that identifying crucial features related to the query
enhances the reasoning chain in human-like think-
ing, guiding the MLLM to analyze from the most
relevant perspective and yielding a 9.09% improve-
ment in J&F (from 37.48%). Furthermore, Table
3, line 4 evaluates the effect of customized prompt
construction for the MLLM. Compared to directly
querying the MLLM, enhanced prompt tailored
with potential targets and query-relevant features
enable the MLLM to more effectively distinguish
the target and enhance its reasoning capabilities
based on the provided visual and semantic cues,
leading to a 12.64% gain in J & F performance.
Ablation of parameters scale of MLLM. Table
4 presents a performance comparison of Qwen2.5-
VL models at varying parameter scales: 3B, 7B,
and 32B. Results indicate that larger model sizes
consistently yield notable improvements in the
J&F metric. Specifically, Qwen2.5-VL-3B, tai-
lored for edge Al deployment, surpasses the sim-

Method Jt Ft J&F1
Qwen2.5-0.5B 3580 3832  37.06
Qwen2.5-1.5B 42.73 44.72  43.73
Qwen2.5-3B 4550 47.65 46.57

Table 5: Ablation study on different TLM parameters
scale for the CReaVOS dataset

ilarly sized VideoLISA-3B by 8.1% (39.65% vs.
31.55%). Compared to VISA-7B, Qwen2.5-VL-
7B achieves a 7.14% gain (46.57% vs. 39.43%).
Furthermore, Qwen2.5-VL-32B delivers a sub-
stantial 26.04% improvement over the 7B vari-
ant (72.61% vs. 46.57%). These results under-
score the critical role of model capacity in enhanc-
ing video perception and understanding—enabling
more comprehensive scene interpretation, fine-
grained object discrimination, and accurate spa-
tial localization across temporal sequences. While
larger models offer superior performance, they
come with increased computational and latency
costs. To strike a balance between accuracy and
efficiency, we select the 7B model as our default
configuration for all subsequent experiments.
Ablation of parameters scale of TLM. In the
Adaptive Reasoning Phase, we conduct an ablation
experience on the parameter scale of the TLM us-
ing Qwen2.5 series models with 0.5B, 1.5B, and
3B. Table 5. demonstrate that although the 0.5B
model achieves an extremely lightweight configu-
ration, it struggles to perform fine-grained reason-
ing chain, leading to a performance drop of 9.51%
in J&F compared to the 3B variant. The 1.5B
model achieves a 6.67% improvement over 0.5B
and shows only a 2.84% gap from the 3B model,
despite having half the parameters. While larger
versions of Qwen2.5 (e.g., 7B, 14B) are available,
employing such scales contradicts the design phi-
losophy of our Adaptive Reasoning CoT, which
aims to achieve optimal reasoning performance
with minimal model capacity. Based on this trade-
off between performance and efficiency, we adopt
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the 3B model as the final choice for the TLM.

5.5 Qualitative Comparison

Visualization Analysis. The qualitative compari-
son between our proposed CVRS framework and
existing benchmarks on the CReaVOS dataset
across diverse scenarios is shown in Figure 4. the
target to be inferred is: the blue truck, which
does not appear explicitly throughout the entire
video. This necessitates global video-level per-
ception to identify all candidate objects before
reasoning. LISA, originally developed for image-
level reasoning, lacks the architectural capacity to
model temporal dynamics inherent in video data,
thereby limiting its applicability in scenarios that
require spatiotemporal understanding. Although
VideoLISA and VISA are both tailored for the Rea-
sonVOS task and support video-level perception,
they still exhibit notable limitations. Specifically,
VideoLISA demonstrates ambiguity in spatial lo-
calization and overlooks semantically important
objects, revealing a shallow understanding of vi-
sual semantics. VISA successfully detects a truck
appearing later in the video but incorrectly identi-
fies the surrounding sand as the target object. In
contrast, our method accurately identifies and local-

izes the relevant entities in the video. It first filters
out potential targets (i.e., the sand), and through the
Adaptive Reasoning mechanism, extracts the most
crucial features with respect to the input query, ul-
timately determining the correct target.

6 Conclusion

We redefine the ReasonVOS task with DualReason-
VOS, a benchmark requiring both temporal reason-
ing over object dynamics and semantic reasoning
over implicit language. To support this, we recon-
struct the CReaVOS dataset, emphasizing queries
that reflect spatiotemporal variations and require
world knowledge. Building on this, we introduce
CVRS, a zero-shot reasoning framework that in-
tegrates structured textual reasoning with multi-
modal grounding to segment target objects from
implicit queries. Additionally, we design a multi-
step Adaptive Reasoning process guided by a TLM,
enabling precise and interpretable reasoning infor-
mation that support MLLMSs in understanding and
perceiving complex video content. Extensive ex-
periments on CReaVOS and ReVOS demonstrate
the effectiveness and generalization capability of
CVRS, achieving state-of-the-art performance on
ReasonVOS tasks.



Limitations

Although our model demonstrates strong perfor-
mance across various benchmarks, it still exhibits
certain limitations, which we discuss in this section
to inform and motivate future research directions.
As illustrated in Figure 5, the inability to locate all
chess in the video through text leads to failure in
identifying which chess will be moved. The ex-
ample highlight a core limitation of our method:
the inability to localize multiple homogeneous enti-
ties in the video solely through textual descriptions.
Intuitively, to address this challenge, leveraging
a vision encoder pre-trained on video data could
significantly enhance the model’s spatiotemporal
perception for video object understanding. More-
over, integrating multimodal large models with
object-aware perception, tracking, and reasoning
CoT mechanisms presents a promising direction
for future research.
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A Validation of VISA

In the construction of the ReVOS dataset, each
video is associated with multiple instructions, some
of which correspond to multiple objects within the
video. In contrast, our proposed CReaVOS dataset
is deliberately designed such that each video is
paired with a single implicit textual instruction re-
ferring to a specific target object. To ensure fairness
in evaluation, we selected 800 instructions from the
VISA validation set, each corresponding to a single
target object within the video.

B Prompt Design on Each Stage

We provide the template for the prompt used at
each stage below.

B.1 Video Perception

Prompt for generating the detailed description and
objects with an input video

Provide a detailed description of the video. List all
objects or entities in the video. For each entity in
the video, provide a corresponding textual descrip-
tion to distinguish its reference in the video. This
description should include appearance and spatial
position. Assign a unique identifier to each entity
in the following format: [Entity Name: Entity De-
scription]. The output should be in JSON format
as follows: { video description: description, entity
list:[ { entity name: name, entity description: entity
description }, ... ] }

B.2 Adaptive Reasoning

Prompt for selecting potential targets from the ob-
jects extracted during the video perception stage.

B.2.1 Target Object Selection

To mitigate interference from irrelevant objects, the
TLM filters the most semantically relevant candi-
date target with respect to the query, based on all
extracted objects from the video. The correspond-
ing prompt is:
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You will receive three pieces of information: Video
Description: A description of the overall scene
in the video. { X4es.} Video Question: The ques-
tion that needs to be answered about the video.
{ X:} Entity List: A list of extracted entities from
the video, each containing an entity name and de-
scription. { X555} Objective: Filter the Entity List
based on the Video Question, retaining only entities
(denotes as { X4 }) directly relevant to the ques-
tion while removing background or environmental
details that are unrelated. The selected objects
should be returned in JSON format.

B.2.2 Query-Aware Feature Analysis

For each potential target, we examine the key fea-
tures most relevant to the query semantics. The
corresponding prompt is as follows:

After identifying the potential targets: {Xygs},
which aspects of their characteristics need to be
focused on to better address this question: { X}

B.2.3 Enhanced Prompt

After obtaining the potential targets and their query-
aware features, we structure this information into
an enhanced prompt following the template below
and feed it into the MLLM:

Task Description:

You will receive a video, a user question, a list of
potential targets related to the video, and the key
features of each target.

Your Objective:

Based on the video, user question, and target de-
scriptions, select exactly one most appropriate tar-
get from the provided potential target list.

Very Important Constraints:

e You must select one and only one target from the
"Potential Target List” below.

e You must not generate or infer any entity outside
of the given target list.

e Do not return "None”, "Unknown”, or similar
invalid responses.

e Your response must be exactly in this format (no
extra text): <p>entity name</p> where entity
name is copied exactly from the list.

1. Potential Target List: { X; .}

2. User Question (question): { X;}

3. Key Features to Focus On: {target_features}
Carefully analyze the video content, the user’s in-
tent, and compare it with the key features to select
the best-matching entity.
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B.3 Target Grounding and Tracking

After the MLLM identify the target object, we use
the following prompt to obtain its grounding infor-
mation, which is then used by SAM2 to generate
the corresponding mask sequence.

Outline the position of {ob-
ject_name}:{object_description} and output
the coordinates in JSON format. Position item
should be as form with ["bbox_2d": [x1, y1, x2,
y2],"label": {object_name}], these coordinates
represent the top-left corner (x1, yl) and the

bottom-right corner (x2, y2) of the bounding box.

C Visualizations

Figure 6 presents several visualization examples
from CReaVOS.

‘ Query: Which bird drank the water from the plate

The video shows two large birds, likely vultures, standing on the ground inside an enclosed area with a dirt floor
and some scattered debris. They are positioned near two metal bowls filled with water. The background includes a
green fence and some bare trees, suggesting it might be late autumn or winter. The birds appear to be inferacting
with each other, possibly in a feeding or social behavior.

Potential Targets Query-Aware Feature Analysis

Bird 1 ' P .
B“:; 2 Observe the Beak Movement: Look for signs that one bird is using its beak to access
y the water.
Metal Bowl 1

Check for Head Tilts: A bird filting its head down to the bowl might be attempting
to drink from it.

Look at Posture: A bird standing close to a bowl while facing it might be preparing to
drink.

Interaction Details: If one bird is seen picking up the bowl, it might be the one that
X (dronk the water.

Metal Bowl ZJ
ce

‘ Query: Who moved the chess piece? ‘

A chess game is taking place between two players seated at a table. The player on the left is wearing a light blue
hoodie and appears fo be deep in thought, resting their chin on their hand. The player on the right is dressed in
black and is also focused, with one hand near their face. The chessboard is set up with pieces in their starting
positions, and a digital clock is visible on the table showing the time remaining for each player. The setting appears
to be indoors, possibly in a fournament environment, given the presence of another chessboard and chairs in the
background.

Potential Targets Query-Aware Feature Analysis

Player in Blue
Player in Black f/

Chessboard

Posture and Actions: Observe if either player is visibly making a move (e.g., lifting a
piece from one square to another). If Player in Blue is actively making a move, they
would typically lift a piece from their side of the board.

Movement of Pieces: Look for any visual confirmation of a piece being lifted and
moved. This might be subtle but crucial.

Timing: Use the digital clock to check the exact time. If a move is made after
certain period (e.g., after 10 minutes), it could point towards the player who made the

‘ Query: Which penguin felt the pain?

The video captures a group of penguins walking along a rocky shoreline. The scene is set against a backdrop of
waves crashing onto the shore, creating a dynamic and natural environment. The penguins are seen moving in a line,
their black and white plumage contrasting sharply with the gray rocks and blue water.

Potential Targets Query-Aware Feature Analysis

Positioning in the Scene: Penguins at the front or edge of a group may show pain-

Penguin 1 ; r h
Penguin 2 related behaviors due to greater exposure o environmental threats or disturbances.
Penguin 3 Body Language and Posture: Observing the posture and any signs of distress or
Penquin 4 | discomfort can help determine which perguin might be feeling pain. For instance, if

one penguin appears o be holding its flippers differently or seems to be waddling
awkwardly, it might suggest pain.

Context of the Video: Environmental threats like rough water, ice breakage, or
predators may cause pain-related behaviors in penguins, such as frantic movement or
avoidance.

Rocky Shoreline

Figure 6: Visualization of examples from CReaVOS.
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