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Abstract001

Existing approaches to Reasoning Video Ob-002
ject Segmentation (ReasonVOS) typically gen-003
erate mask sequences based on implicit instruc-004
tions combined with external world knowledge.005
However, these instructions often focus on006
static or isolated visual elements (e.g., “Which007
pants are gray”), neglecting the spatiotemporal008
dynamics intrinsic to video data. In this work,009
We introduce DualReasonVOS, a new bench-010
mark for ReasonVOS that combines temporal011
reasoning over object dynamics with semantic012
reasoning over implicit language, leveraging013
both visual context and world knowledge. To014
this end, we redesign the CReaVOS dataset by015
incorporating carefully curated implicit instruc-016
tions that emphasize spatiotemporal reasoning.017
Furthermore, we propose Complex Video Rea-018
soning Segmentation Framework (CVRS), a019
novel framework that introduces an adaptive020
reasoning mechanism to decompose implicit021
instructions into hierarchical reasoning chains.022
This enables context-aware identification of023
query-relevant objects across diverse video sce-024
narios. Experimental results demonstrate that025
CVRS significantly enhances both temporal026
and spatial reasoning capabilities, achieving027
superior mask quality compared to state-of-028
the-art methods on the CReaVOS and ReVOS029
benchmarks.030

1 Introduction031

Reasoning Video Object Segmentation (Reason-032

VOS) (Yan et al., 2024; Zheng et al., 2024; Bai033

et al., 2024) has recently emerged as a challeng-034

ing extension of traditional video object segmenta-035

tion, which aims to generate a sequence of segmen-036

tation masks based on implicit natural language037

queries. Unlike Referring Video Object Segmenta-038

tion (RVOS) (Khoreva et al., 2018; Seo et al., 2020;039

Botach et al., 2022; Wu et al., 2022), which focuses040

on resolving explicit queries (e.g., “identify the041

fish”) through direct visual matching, ReasonVOS042

instruction:the wolf(s) on the snowy ground      ->     too explicit with state cues
instruction:carnivorous animals from the canine family -> can infer from any frame

 State Scene 

 Dymanic Scene 

instruction:vehicle facing right            ->          explicit with directional cues
instruction:the vehicle part(s) consisting of tires and rims ->  attribute reasoning

Objects without Temporal Progression  

Instructions lacking Temporal Reasoning 

Our Case

instruction: Which person runs the farthest while holding the baton

Target with Temporal Dynamics 

Instruction Reasoning with Spatiotemprol Stage and World Knowledge 

Figure 1: Comparison between existing instructions
in ReasonVOS and our redefined DualReasonVOS.
The first case shows objects in static scene with no tem-
poral progression. The second involves a dynamic video,
but the instruction lacks temporal reasoning. In con-
trast, our case combines temporal object evolution with
instructions requiring both spatiotemporal and world
knowledge reasoning.

addresses unspecified queries such as “identify the 043

animal that breathes with gills”, requiring reason- 044

ing grounded in both world knowledge and video 045

context. By integrating semantic reasoning with 046

precise spatial localization, ReasonVOS unlocks 047

the potential for interactive AI agents to understand 048

natural language instructions and engage with com- 049

plex environments. 050

However, a closer look of existing ReasonVOS 051

datasets (Yan et al., 2024) exposes a fundamental 052

limitation: the reasoning required is primarily an- 053

chored in the query text and relies heavily on world 054

knowledge, rather than on the temporal dynamics 055

of the video itself. In most cases, the target ob- 056
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ject can be accurately identified within any single057

frame, rendering temporal modeling unnecessary.058

This limitation largely stems from two factors, as059

illustrated in Figure 1: (1) the video scenes tend060

to be simplistic and lack contextual diversity, and061

(2) the objects of interest are typically static or062

exhibit minimal motion. As a result, the task re-063

duces to matching static visual cues with semantic064

knowledge inferred from the query, rather than en-065

gaging in true video-based reasoning across time.066

While such datasets serve as an important first step,067

their limited temporal complexity constrains the068

development and evaluation of models designed to069

reason over time, thus falling short of realizing the070

full potential of ReasonVOS to drive progress in071

dynamic scene understanding.072

To address the above shortcomings, we intro-073

duce DualReasonVOS, a new benchmark for Rea-074

sonVOS that requires dual reasoning—temporal075

reasoning over object dynamics across frames, and076

semantic reasoning over implicit natural language.077

Specifically, Specifically, we first curate a diverse078

set of videos where either the scene context or the079

target object exhibits noticeable changes over time.080

Next, we identify target objects whose states or081

behaviors evolve throughout the video, ensuring082

that temporal reasoning is essential for accurate083

interpretation. Based on these dynamics, we manu-084

ally craft implicit textual instructions that incorpo-085

rate both world knowledge and the spatiotemporal086

behaviors of the target. Finally, we annotate the087

targets across all frames to produce precise mask088

sequences, capturing their complete spatiotempo-089

ral trajectories. By integrating both temporal and090

semantic reasoning, DualReasonVOS provides a091

challenging and realistic testbed for evaluating a092

model’s ability to perform temporally grounded093

visual reasoning and object identification.094

Moreover, we propose Complex Video Reason-095

ing Segmentation (CVRS) framework, a novel096

framework inspired by the Chain-of-Thought097

(CoT) paradigm (Wei et al., 2022; Fei et al., 2024).098

CVRS emulates human reasoning behavior by099

adaptively decomposing implicit natural language100

instructions into hierarchical reasoning steps. This101

decomposition enables context-aware identification102

of relevant visual cues and target objects across di-103

verse and dynamic video scenarios. The generated104

reasoning chains not only enhance interpretabil-105

ity but also progressively guide multimodal large106

language models (MLLMs) toward more precise107

segmentation by explicitly modeling spatiotempo-108

ral dependencies. In contrast to prior methods (Yan 109

et al., 2024; Bai et al., 2024; Zheng et al., 2024), 110

which rely on heavy encoder-decoder architectures 111

and require extensive fine-tuning, CVRS is entirely 112

training-free, offering greater flexibility and ease of 113

deployment. Extensive experiments demonstrate 114

the effectiveness of our method on both Reason- 115

VOS and DualReasonVOS. Overall, our contribu- 116

tions are as follows: 117

• We introduce DualReasonVOS, a challeng- 118

ing and realistic benchmark for video object 119

segmentation that requires both the temporal 120

reasoning over videos and semantic reasoning 121

over implicit text queries. 122

• We propose CVRS, a training-free framework 123

with an adaptive reasoning mechanism that de- 124

composes implicit instructions into hierarchi- 125

cal chains, enabling adaptive target identifica- 126

tion and guiding fine-grained spatiotemporal 127

reasoning for precise segmentation. 128

• CVRS achieves state-of-the-art performance 129

on CReaVOS and ReVOS, demonstrating 130

strong spatia-temporal awareness and reason- 131

ing capabilities. 132

2 Related Work 133

2.1 Referring and Reasoning Video Object 134

Segmentation 135

RVOS is designed to bridge the vision-language 136

gap by segmenting video objects based on natu- 137

ral language queries (Khoreva et al., 2018; Ding 138

et al., 2023a; Wu et al., 2022; Bellver et al., 2023; 139

Botach et al., 2022). Its effectiveness primarily 140

stems from the use of explicit queries, which en- 141

able a direct alignment between textual and visual 142

modalities. To address the limitations of RVOS 143

in handling implicit queries, ReasonVOS extends 144

the task by incorporating world knowledge and 145

video context, enabling more robust and context- 146

aware object segmentation. Early efforts such as 147

VISA (Yan et al., 2024) formulated the Reason- 148

VOS task and established a benchmark for reason- 149

ing video segmentation. VideoLISA (Bai et al., 150

2024) further advanced this direction by introduc- 151

ing a sparse-dense sampling strategy to capture 152

fine-grained spatiotemporal information. ViLLa 153

(Zheng et al., 2024) enhanced temporal context 154

modeling through a temporal-aware encoder and 155

a video-frame decoder. While these approaches 156
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  Temporal  

CReaVOS
Instruction: The car with the highest passenger capacity

 S
pa

ti
al
 

Spatiotemprol: Extract all cars appear in the video Reasoning: analysis and comparison the types and function of these vehicles

Figure 2: Illustration of a CReaVOS example. The presented sample (e.g., “The car with the highest passenger
capacity”) demonstrates a dual reasoning requirement: spatiotemporal inference over scene and object changes
across the video, and semantic understanding involving external world knowledge. This highlights the core design
of CReaVOS—grounding complex, dynamic queries within real-world video contexts.

have shown promising results in interpreting im-157

plicit queries, they often fall short in fully leverag-158

ing the spatiotemporal dynamics of target objects.159

This work focuses on modeling the spatiotemporal160

dynamics of target objects to better exploit video-161

specific features, while incorporating world knowl-162

edge to enable more robust and context-aware rea-163

soning.164

2.2 Multimodal Chain-of-Thought165

Multimodal Chain-of-Thought (MCoT) reasoning166

has recently emerged as a powerful paradigm in167

vision-language research, enhancing model inter-168

pretability and reasoning ability by generating in-169

termediate, step-by-step inferences. Early works170

(Zhang et al., 2024b) laid the groundwork for in-171

tegrating CoT into large multimodal models. Sub-172

sequent approaches such as CoCoT (Zhang et al.,173

2024a) and RelationLMM (Xie et al., 2025) ex-174

panded this capability by modeling visual simi-175

larities and inter-object relationships, simulating176

human-like cognitive strategies. MCoT has also177

shown strong potential in fine-grained tasks. For178

instance, CoTDet (Tang et al., 2023) and CPSeg179

(Li, 2024) significantly improved object detection180

and segmentation by introducing reasoning chains181

at the instance level. In the video domain, works182

like CaVIR (Li et al., 2023) and VideoAgent (Wang183

et al., 2024) addressed long-form video understand-184

ing through zero-shot MCoT, while VoT (Fei et al.,185

2024) proposed a structured five-stage pipeline en-186

compassing task identification, object tracking, and 187

action analysis. Despite these advancements, ex- 188

isting MCoT research has primarily focused on 189

image-level or general video understanding tasks. 190

To the best of our knowledge, no prior work has 191

explored Chain-of-Thought reasoning in the con- 192

text of ReasonVOS. To fill this gap, we propose an 193

adaptive reasoning mechanism that constructs tai- 194

lored, hierarchical reasoning steps for each video, 195

enabling fine-grained and context-aware segmenta- 196

tion grounded in world knowledge. 197

3 A Challenging ReasoningVOS 198

Benchmark 199

3.1 Task Defination and Formulation 200

ReasonVOS can be formally defined as follows: 201

given a video XV ∈ RT×3×H×W comprising T 202

frames of spatial resolution H × W , and an im- 203

plicit textual instruction Xt, the objective is to 204

learn a model M that outputs a sequence of binary 205

masks {Yt}Tt=1, where each Yt ∈ {0, 1}H×W indi- 206

cates the mask of target in frame t. Unlike existing 207

datasets ReVOS, which incorporate world knowl- 208

edge through implicit queries (e.g., “objects for pro- 209

tecting athletes”), these queries primarily empha- 210

size semantic reasoning but fall short in capturing 211

the spatiotemporal dynamics of object throughout 212

the video. ReasonVOS poses significant challenges 213

by requiring integration of world knowledge with 214

robust spatiotemporal and multimodal reasoning 215

capabilities. To support this challenging, we intro- 216
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1.Target Object Selection

{'entity_name': 'High-Speed Boat' ... },
{'entity_name': 'Other Boats', ... },
                              ...
{'entity_name': 'Water', ... }

{'High-Speed Boat'},
{'Other Boats'},

Xtgts

2.Query-Aware Feature Acquisition

To address the question ... based on ...
Here are some key characteristics and aspects to consider:
1. Condition and Safety
2. Environmental Factors
...
6. Emergency Procedures:
7. Location and Surroundings

3. Formulating an Enhanced Prompt
    You will receive a ...
    Your objective: ...
    Based on the ...
               1. Potential Target List: ...
               2. User Question: ...
               3. Key Features to Focus On: ...  
    Given the description of the ...
    To summarize, while the provided ...
    Carefully analyze the video content, the user’s intent,
and     compare it with the key features to select the best
matching entity.

Xprompt

  Reasoning Info  

Qwen2.5-VL

Xobjs

Qwen2.5

Target location on key frames

13

 Stage II 

    :Which ship needs rescue?tX    VX

  Stage I  

2

Stage III 

    
VX
tX

 Video Perception 

 Adaptive Reasoning 

Xobjs

Xdesc

Qwen2.5-VL

Grounding Target

SAM2

frame 0:[105,420,188,452]
frame 1:[119,442,228,470]

frame N-2:[304,498,775,586]
frame N-1:[609,473,905,568]

...

 Grounding and Tracking 

Xprompt

Y t

X tgts

Figure 3: Overview of the CVRS framework. The CVRS consists of three stages: (1) Video Perception – the
MLLM parses video content and extracts candidate objects; (2) Adaptive Reasoning – the TLM performs text-based
reasoning to select the target and generate an enhanced prompt; (3) Target Grounding and Tracking – the MLLM
grounds the target using the enhanced prompt, and SAM2 generates the final mask sequence.

duce the CReaVOS dataset, which preserves the217

implicit nature of instructions (e.g., “the vehicle218

with the highest passenger capacity”) while em-219

phasizing spatiotemporal object evolution. It fea-220

tures dynamic appearances and interactions, requir-221

ing joint reasoning over space, time, and external222

knowledge for accurate segmentation.223

3.2 Benchmark224

To assess the benchmarking effectiveness of225

CReaVOS, we construct a standardized evalua-226

tion suite comprising implicit reasoning instruc-227

tions and the corresponding high-quality mask se-228

quences. The benchmark is aligned with the VISA229

protocol and leverages the ReVOS (Yan et al.,230

2024) validation set for consistent evaluation. De-231

tails of the validation setup are included in Ap-232

pendix A.233

Data Source ReVOS is the first available dataset234

that collects a diverse set of videos from LV-VIS235

(Wang et al., 2023), MOSE (Ding et al., 2023b),236

OVIS (Liu et al., 2022), TAO (Dave et al., 2020),237

and UVO (Wang et al., 2021). Considering that238

videos in the TAO dataset are typically several min-239

utes long, significantly increasing the complexity of240

analysis and computational cost, we exclude TAO241

during the construction of CReaVOS and sample242

videos only from the remaining four datasets.243

Video Selection and Instruction Design De-244

spite the volume and diversity of ReVOS, most245

videos with instruction can be resolved from a sin-246

gle frame, thereby simplifying the task to static247

object recognition rather than spatiotemporal rea- 248

soning. To address these limitations, we construct 249

the CReaVOS dataset from two key criterias: video 250

selection and instruction design. First, we ensure 251

that the selected videos contain non-trivial scene 252

dynamics—either through changing environments 253

that lead to evolving object behaviors, or through 254

temporally distinct object states even within static 255

scenes. This ensures that identifying the target 256

requires understanding its temporal trajectory or 257

behavioral evolution. Second, based on the video 258

content, we carefully design implicit instructions 259

that require external world knowledge to identify. 260

These instructions are crafted to refer to objects 261

whose identities can only be inferred by reason- 262

ing over their spatial and temporal characteristics 263

across the video. Each video is annotated with cor- 264

responding segmentation masks that reflect these 265

temporally grounded targets. Through this ap- 266

proach, CReaVOS not only emphasizes the tem- 267

poral evolution and contextual variation of target 268

objects, but also integrates rich world knowledge 269

into the instruction design, fostering deeper and 270

more realistic reasoning in video understanding 271

tasks. Figure 2 illustrates examples in CReaVOS. 272

Data Statistic Following the above construction 273

criteria, we ultimately collected 137 videos from 274

four datasets, each annotated with implicit text in- 275

structions and high-quality target mask sequences. 276

Specifically, we collect 76 videos from LV-VIS, 27 277

from MOSE, 25 from OVIS, and 9 from UVO. Ta- 278

ble 1 presents a comparison of the data distribution 279
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between ReVOS and our constructed CReaVOS280

dataset.281

Dataset ReVOS CReaVOS Percentage

LV-VIS 388 76 19.58%
MOSE 208 27 12.98%
OVIS 140 25 17.85%
UVO 255 9 3.50%

Table 1: Distribution of ReVOS and CReaVOS samples
across different datasets. Percentage indicates the ratio
of CReaVOS to ReVOS samples.

4 The Proposed Framework282

4.1 Framework Overall283

As shown in Figure 3, Our CVRS framework con-284

sists of three main components: a MLLM for video285

content parsing, object extraction and identifica-286

tion; a text-only language model (TLM) for text-287

level video reasoning, and Segment Anything 2288

(SAM2) as the object tracking model. Specifi-289

cally, CVRS includes three stages when processing290

videos. Firstly, Video Perception: The MLLM291

takes the video input and generates a detailed de-292

scription, from which the objects present in the293

scene are extracted (4.2). Secondly, Adaptive Rea-294

soning: The TLM performs reasoning over the295

video content based on the video description, ex-296

tracted objects, and the query. This reasoning pro-297

cess involves three key steps: (1) Target Object Se-298

lection, (2) Query-Aware Feature Analysis, and (3)299

Formulating an Enhanced Prompt for the MLLM300

(4.3). Finally, Target Grounding and Tracking:301

the video, query, and enhanced prompt are input302

into the MLLM to identify and localize the target303

object, which is then tracked across frames using304

Segment Anything 2 (SAM2) to generate the corre-305

sponding mask sequence (4.4).306

4.2 Video Perception307

In this stage, we employ Qwen2.5-VL as the mul-308

timodal large language model to facilitate video309

perception and the generation of structured textual310

output. Given an input video XV comprising T311

frames, a structured prompt template is designed312

(see Appendix B.1 for details) to derive a com-313

prehensive textual description, denoted as Xdesc,314

along with a list of detected objects, referred to315

as Xobjs. Consequently, this process yields rich,316

high-level video representations that capture scene317

context, environmental attributes, object presence,318

and the temporal dynamics associated with each 319

object throughout the video. 320

4.3 Adaptive Reasoning 321

The complexity of video understanding by tempo- 322

ral progression, contextual variability, and semantic 323

ambiguity calls for a human-like reasoning strategy 324

that can adaptively interpret visual content in align- 325

ment with abstract task objectives. To tackle the 326

challenges posed by evolving object behaviors and 327

complex spatiotemporal interactions in video data, 328

we introduce an Adaptive Reasoning mechanism 329

inspired by human cognitive strategies. This mech- 330

anism enables interpretable and efficient reason- 331

ing by guiding the model through structured steps 332

aligned with the query semantics. To achieve this in 333

a lightweight and generalizable manner, we incor- 334

porate a TLM, which facilitates adaptive reasoning 335

across diverse videos with minimal additional pa- 336

rameters. comprises three key components: 337

(a) Target Object Selection. From the video per- 338

ception stage, a diverse set of candidate objects 339

Xobjs is obtained. However, many of these are ir- 340

relevant to the query and may introduce noise. To 341

reduce complexity, we filter this set to obtain Xtgts, 342

a subset of objects semantically aligned with the 343

query. For instance, given the query “Which ship 344

needs to be rescued?”, we retain relevant objects: 345

{white boat, red boat} and discard unrelated ele- 346

ments like “sky” or “water”. 347

(b) Query-Aware Feature Analysis. Given the 348

inherent complexity and diversity of video targets 349

and scenes, direct alignment between queries and 350

visual content becomes non-trivial. After iden- 351

tifying a set of potential targets, we leverage a 352

lightweight TLM to perform semantic analysis be- 353

tween the candidate objects and the query. Specifi- 354

cally, the TLM reasons about the attributes and tem- 355

poral behaviors of each object in context, extract- 356

ing the key discriminative features most relevant 357

to the query intent. This enables adaptive align- 358

ment across diverse video scenarios and provides 359

the most informative cues for target identification. 360

(c) Prompt Construction for MLLM. Since 361

MLLMs are sensitive to prompt design, we con- 362

struct an enhanced prompt that fuses the visual con- 363

text and the reasoning output. This adaptive prompt 364

directs the MLLM to focus on temporally and se- 365

mantically relevant aspects of the video, guiding 366

accurate object localization and segmentation with- 367
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out additional fine-tuning. The formal formulation368

is given as follows:369

Xprompt = TLM(Xdesc, Xobjs, Xt) (1)370

This stage significantly improves reasoning effi-371

ciency and generalization by aligning the model’s372

attention with high-level semantics and temporal373

cues. Detailed prompt structures are provided in374

Appendix B.2.375

4.4 Target Grounding and Tracking376

Methods like VISA, which use LLaMA-Vid to lo-377

calize targets via keyframes, fall short in scenar-378

ios requiring temporal reasoning. Their reliance379

on isolated frames overlooks the spatiotemporal380

dependencies essential for complex video under-381

standing. In contrast, our CReaVOS dataset empha-382

sizes targets whose identification hinges on tem-383

poral evolution and contextual dynamics, making384

single-frame resolution insufficient. To tackle this385

challenge, our adaptive reasoning stage distills the386

temporal behavior of potential targets and extracts387

query-relevant discriminative features. These are388

encoded into an enhanced prompt that explicitly389

guides the MLLM to focus on critical objects and390

salient cues, enabling accurate grounding of the391

target in the video, denotes as Xtgt. Leveraging392

SAM2, we then produce a complete and precise393

tracklet sequence across the video frames.394

Xtgt = M(XV , Xt, Xprompt) (2)395

396 Yt = SAM2(XV , Xtgt) (3)397

5 Experiments398

5.1 Dataset and Metrics399

To ensure a fair evaluation of our proposed bench-400

mark, we select 800 expression-object pairs from401

the validation of ReVOS, filtering only those cases402

where each expression corresponds to a single tar-403

get object within the video. Additionally, we curate404

a zero-shot set comprising 137 videos from ReVOS,405

for which we reconstruct implicit text instructions,406

ensuring that each expression is aligned with ex-407

actly one target object in the video. We evaluate408

ReasonVOS using region similarity (J ), contour409

accuracy (F), and their mean score (J&F ).410

5.2 Implementation Details411

Previous end-to-end approaches rely on decoder412

integration and fine-tuning, leading to high com-413

putational costs and limited ability to capture spa-414

tiotemporal target dynamics. To overcome these415

limitations, we introduce CVRS, a fully training- 416

free framework. It leverages the Qwen2.5-VL 417

series for video parsing, target extraction, and 418

grounding, and incorporates the text-only language 419

model Qwen2.5 in the Adaptive Reasoning stage 420

for efficient, high-level semantic reasoning. This 421

stage incrementally generates structured prompts 422

to guide the MLLM toward critical objects and 423

salient cues, enabling accurate and interpretable 424

grounding. Finally, SAM2 is used to produce spa- 425

tiotemporal tracklets of the identified targets. All 426

experiments run on a single NVIDIA A10 GPU (24 427

GB VRAM). 428

5.3 Comparison Results 429

To showcase the robust video-level, pixel-level per- 430

ception and generalization of CVRS, we conduct 431

evaluations across ReVOS, CReaVOS datasets. Ta- 432

ble 2 illustrates the performance comparison with 433

previous methods on the ReVOS and CReaVOS 434

benchmark. CVRS demonstrates significant 435

improvements over the previous state-of-the-art 436

across three metrics. Since LISA was originally 437

proposed for image reasoning and lacks inherent 438

video reasoning capabilities, we reproduce it by 439

incorporating XMem for video reasoning in this 440

experiment. Remarkably, in terms of J&F , our 441

CVRS generally achieves over 6.47% J&F im- 442

provements with LISA in CReaVOS and 16.85% 443

in ReVOS, indicating that LISA can only perform 444

reasoning on static images and is unable to handle 445

continuously changing objects in videos. Moreover, 446

CVRS surpasses VISA by 7.14% in CReaVOS 447

and 13.95% in ReVOS, over VideoLISA by 6.92% 448

in CReaVOS and 16.51% in ReVOS, respectively. 449

These improvements highlight the efficacy of the 450

proposed Adaptive Reasoning CoT module and 451

its dynamic reasoning chains, which substantially 452

enhances the ability of visual perceptino and rea- 453

soning of MLLM by directing attention toward 454

semantically relevant aspects of the query, thereby 455

facilitating a more accurate target object. 456

5.4 Ablation 457

Ablation of Adaptive Reasoning. The ablation 458

analysis of the Target Object Selection component 459

in the Adaptive Reasoning is presented in Table 3, 460

line 2. Precisely filtering of objects irrelevant to 461

the query improves the prediction of target accu- 462

racy (e.g. J&F increases from 38.98% to 46.57%) 463

by reducing interference from unrelated objects, 464

thereby effectively narrowing the search space and 465
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Method CReaVOS(ours) ReVOS

J ↑ F ↑ J&F ↑ J ↑ F ↑ J&F ↑

LISA+XMem (Lai et al., 2024) 37.07 43.13 40.10 37.87 43.09 40.48
VISA (Yan et al., 2024) 36.87 41.99 39.43 40.56 46.19 43.38
VideoLISA (Bai et al., 2024) 37.32 41.97 39.65 38.94 41.90 40.42
Ours 45.50 47.65 46.57 53.81 60.85 57.33

Table 2: Performance comparison on CReaVOS and ReVOS datasets. Metrics include region similarity (J ), contour
accuracy (F), and their average (J&F ).

(1) (2) (3) J ↑ F ↑ J&F ↑

✓ ✓ ✓ 45.50 47.65 46.57
✓ ✓ 37.21 40.74 38.98

✓ ✓ 35.85 39.12 37.48
✓ ✓ 32.50 35.37 33.93

Table 3: Ablation study on different components for
CReaVOS. (1): Target Object Selection, (2): Query-
Aware Feature Analysis, (3): Formulating Enhanced
Prompt.

Model Variant J ↑ F ↑ J&F ↑

Qwen2.5-VL-3B 30.00 32.10 31.55
Qwen2.5-VL-7B 45.50 47.65 46.57
Qwen2.5-VL-32B 73.53 71.68 72.61

Table 4: Ablation study on the parameter scale of
Qwen2.5-VL for CReaVOS.

significantly reducing reasoning complexity. To466

assess the impact ofQuery-Aware Feature Analy-467

sis, we compare two variants of our framework,468

as shown in Table 3, line 3. The results indicate469

that identifying crucial features related to the query470

enhances the reasoning chain in human-like think-471

ing, guiding the MLLM to analyze from the most472

relevant perspective and yielding a 9.09% improve-473

ment in J&F (from 37.48%). Furthermore, Table474

3, line 4 evaluates the effect of customized prompt475

construction for the MLLM. Compared to directly476

querying the MLLM, enhanced prompt tailored477

with potential targets and query-relevant features478

enable the MLLM to more effectively distinguish479

the target and enhance its reasoning capabilities480

based on the provided visual and semantic cues,481

leading to a 12.64% gain in J&F performance.482

Ablation of parameters scale of MLLM. Table483

4 presents a performance comparison of Qwen2.5-484

VL models at varying parameter scales: 3B, 7B,485

and 32B. Results indicate that larger model sizes486

consistently yield notable improvements in the487

J&F metric. Specifically, Qwen2.5-VL-3B, tai-488

lored for edge AI deployment, surpasses the sim-489

Method J ↑ F ↑ J&F ↑

Qwen2.5-0.5B 35.80 38.32 37.06
Qwen2.5-1.5B 42.73 44.72 43.73
Qwen2.5-3B 45.50 47.65 46.57

Table 5: Ablation study on different TLM parameters
scale for the CReaVOS dataset

ilarly sized VideoLISA-3B by 8.1% (39.65% vs. 490

31.55%). Compared to VISA-7B, Qwen2.5-VL- 491

7B achieves a 7.14% gain (46.57% vs. 39.43%). 492

Furthermore, Qwen2.5-VL-32B delivers a sub- 493

stantial 26.04% improvement over the 7B vari- 494

ant (72.61% vs. 46.57%). These results under- 495

score the critical role of model capacity in enhanc- 496

ing video perception and understanding—enabling 497

more comprehensive scene interpretation, fine- 498

grained object discrimination, and accurate spa- 499

tial localization across temporal sequences. While 500

larger models offer superior performance, they 501

come with increased computational and latency 502

costs. To strike a balance between accuracy and 503

efficiency, we select the 7B model as our default 504

configuration for all subsequent experiments. 505

Ablation of parameters scale of TLM. In the 506

Adaptive Reasoning Phase, we conduct an ablation 507

experience on the parameter scale of the TLM us- 508

ing Qwen2.5 series models with 0.5B, 1.5B, and 509

3B. Table 5. demonstrate that although the 0.5B 510

model achieves an extremely lightweight configu- 511

ration, it struggles to perform fine-grained reason- 512

ing chain, leading to a performance drop of 9.51% 513

in J&F compared to the 3B variant. The 1.5B 514

model achieves a 6.67% improvement over 0.5B 515

and shows only a 2.84% gap from the 3B model, 516

despite having half the parameters. While larger 517

versions of Qwen2.5 (e.g., 7B, 14B) are available, 518

employing such scales contradicts the design phi- 519

losophy of our Adaptive Reasoning CoT, which 520

aims to achieve optimal reasoning performance 521

with minimal model capacity. Based on this trade- 522

off between performance and efficiency, we adopt 523
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Which object will the soil on the bulldozer ultimately be transported to?

Figure 4: Visualization comparison between the CVRS framework and other benchmark methods on the CReaVOS
dataset. Rows from top to bottom represent LISA, VISA, VideoLISA, and Ours.

Which chess was moved?

Figure 5: Visualization of limitations.

the 3B model as the final choice for the TLM.524

5.5 Qualitative Comparison525

Visualization Analysis. The qualitative compari-526

son between our proposed CVRS framework and527

existing benchmarks on the CReaVOS dataset528

across diverse scenarios is shown in Figure 4. the529

target to be inferred is: the blue truck, which530

does not appear explicitly throughout the entire531

video. This necessitates global video-level per-532

ception to identify all candidate objects before533

reasoning. LISA, originally developed for image-534

level reasoning, lacks the architectural capacity to535

model temporal dynamics inherent in video data,536

thereby limiting its applicability in scenarios that537

require spatiotemporal understanding. Although538

VideoLISA and VISA are both tailored for the Rea-539

sonVOS task and support video-level perception,540

they still exhibit notable limitations. Specifically,541

VideoLISA demonstrates ambiguity in spatial lo-542

calization and overlooks semantically important543

objects, revealing a shallow understanding of vi-544

sual semantics. VISA successfully detects a truck545

appearing later in the video but incorrectly identi-546

fies the surrounding sand as the target object. In547

contrast, our method accurately identifies and local-548

izes the relevant entities in the video. It first filters 549

out potential targets (i.e., the sand), and through the 550

Adaptive Reasoning mechanism, extracts the most 551

crucial features with respect to the input query, ul- 552

timately determining the correct target. 553

6 Conclusion 554

We redefine the ReasonVOS task with DualReason- 555

VOS, a benchmark requiring both temporal reason- 556

ing over object dynamics and semantic reasoning 557

over implicit language. To support this, we recon- 558

struct the CReaVOS dataset, emphasizing queries 559

that reflect spatiotemporal variations and require 560

world knowledge. Building on this, we introduce 561

CVRS, a zero-shot reasoning framework that in- 562

tegrates structured textual reasoning with multi- 563

modal grounding to segment target objects from 564

implicit queries. Additionally, we design a multi- 565

step Adaptive Reasoning process guided by a TLM, 566

enabling precise and interpretable reasoning infor- 567

mation that support MLLMs in understanding and 568

perceiving complex video content. Extensive ex- 569

periments on CReaVOS and ReVOS demonstrate 570

the effectiveness and generalization capability of 571

CVRS, achieving state-of-the-art performance on 572

ReasonVOS tasks. 573
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Limitations574

Although our model demonstrates strong perfor-575

mance across various benchmarks, it still exhibits576

certain limitations, which we discuss in this section577

to inform and motivate future research directions.578

As illustrated in Figure 5, the inability to locate all579

chess in the video through text leads to failure in580

identifying which chess will be moved. The ex-581

ample highlight a core limitation of our method:582

the inability to localize multiple homogeneous enti-583

ties in the video solely through textual descriptions.584

Intuitively, to address this challenge, leveraging585

a vision encoder pre-trained on video data could586

significantly enhance the model’s spatiotemporal587

perception for video object understanding. More-588

over, integrating multimodal large models with589

object-aware perception, tracking, and reasoning590

CoT mechanisms presents a promising direction591

for future research.592
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A Validation of VISA 741

In the construction of the ReVOS dataset, each 742

video is associated with multiple instructions, some 743

of which correspond to multiple objects within the 744

video. In contrast, our proposed CReaVOS dataset 745

is deliberately designed such that each video is 746

paired with a single implicit textual instruction re- 747

ferring to a specific target object. To ensure fairness 748

in evaluation, we selected 800 instructions from the 749

VISA validation set, each corresponding to a single 750

target object within the video. 751

B Prompt Design on Each Stage 752

We provide the template for the prompt used at 753

each stage below. 754

B.1 Video Perception 755

Prompt for generating the detailed description and 756

objects with an input video 757

758
Provide a detailed description of the video. List all
objects or entities in the video. For each entity in
the video, provide a corresponding textual descrip-
tion to distinguish its reference in the video. This
description should include appearance and spatial
position. Assign a unique identifier to each entity
in the following format: [Entity Name: Entity De-
scription]. The output should be in JSON format
as follows: { video description: description, entity
list:[ { entity name: name, entity description: entity
description }, ... ] }

759

760

B.2 Adaptive Reasoning 761

Prompt for selecting potential targets from the ob- 762

jects extracted during the video perception stage. 763

B.2.1 Target Object Selection 764

To mitigate interference from irrelevant objects, the 765

TLM filters the most semantically relevant candi- 766

date target with respect to the query, based on all 767

extracted objects from the video. The correspond- 768

ing prompt is: 769

770

10

https://doi.org/10.48550/ARXIV.2304.01715
https://doi.org/10.48550/ARXIV.2304.01715
https://doi.org/10.48550/ARXIV.2304.01715
https://doi.org/10.1109/ICCV48922.2021.01060
https://doi.org/10.1109/ICCV48922.2021.01060
https://doi.org/10.1109/ICCV48922.2021.01060
https://doi.org/10.1007/978-3-031-72989-8_4
https://doi.org/10.1007/978-3-031-72989-8_4
https://doi.org/10.1007/978-3-031-72989-8_4
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1109/CVPR52688.2022.00492
https://doi.org/10.1109/CVPR52688.2022.00492
https://doi.org/10.1109/CVPR52688.2022.00492
https://doi.org/10.1109/TPAMI.2025.3531452
https://doi.org/10.1109/TPAMI.2025.3531452
https://doi.org/10.1109/TPAMI.2025.3531452
https://doi.org/10.1109/TPAMI.2025.3531452
https://doi.org/10.1109/TPAMI.2025.3531452
https://doi.org/10.1007/978-3-031-72633-0_6
https://doi.org/10.1007/978-3-031-72633-0_6
https://doi.org/10.1007/978-3-031-72633-0_6
https://doi.org/10.48550/ARXIV.2401.02582
https://doi.org/10.48550/ARXIV.2401.02582
https://doi.org/10.48550/ARXIV.2401.02582
https://openreview.net/forum?id=y1pPWFVfvR
https://openreview.net/forum?id=y1pPWFVfvR
https://openreview.net/forum?id=y1pPWFVfvR
https://openreview.net/forum?id=y1pPWFVfvR
https://openreview.net/forum?id=y1pPWFVfvR
https://doi.org/10.48550/ARXIV.2407.14500
https://doi.org/10.48550/ARXIV.2407.14500
https://doi.org/10.48550/ARXIV.2407.14500


You will receive three pieces of information: Video
Description: A description of the overall scene
in the video. {Xdesc} Video Question: The ques-
tion that needs to be answered about the video.
{Xt} Entity List: A list of extracted entities from
the video, each containing an entity name and de-
scription. {Xobjs} Objective: Filter the Entity List
based on the Video Question, retaining only entities
(denotes as {Xtgts}) directly relevant to the ques-
tion while removing background or environmental
details that are unrelated. The selected objects
should be returned in JSON format.

771

772

B.2.2 Query-Aware Feature Analysis773

For each potential target, we examine the key fea-774

tures most relevant to the query semantics. The775

corresponding prompt is as follows:776
777

After identifying the potential targets: {Xtgts},
which aspects of their characteristics need to be
focused on to better address this question: {Xt}

778

779

B.2.3 Enhanced Prompt780

After obtaining the potential targets and their query-781

aware features, we structure this information into782

an enhanced prompt following the template below783

and feed it into the MLLM:784
785

Task Description:
You will receive a video, a user question, a list of
potential targets related to the video, and the key
features of each target.
Your Objective:
Based on the video, user question, and target de-
scriptions, select exactly one most appropriate tar-
get from the provided potential target list.
Very Important Constraints:
• You must select one and only one target from the
"Potential Target List" below.
• You must not generate or infer any entity outside
of the given target list.
• Do not return "None", "Unknown", or similar
invalid responses.
• Your response must be exactly in this format (no
extra text): <p>entity name</p> where entity
name is copied exactly from the list.
1. Potential Target List: {Xtgts}
2. User Question (question): {Xt}
3. Key Features to Focus On: {target_features}
Carefully analyze the video content, the user’s in-
tent, and compare it with the key features to select
the best-matching entity.

786

787

B.3 Target Grounding and Tracking 788

After the MLLM identify the target object, we use 789

the following prompt to obtain its grounding infor- 790

mation, which is then used by SAM2 to generate 791

the corresponding mask sequence. 792
793

Outline the position of {ob-
ject_name}:{object_description} and output
the coordinates in JSON format. Position item
should be as form with ["bbox_2d": [x1, y1, x2,
y2],"label": {object_name}], these coordinates
represent the top-left corner (x1, y1) and the
bottom-right corner (x2, y2) of the bounding box.

794

795

C Visualizations 796

Figure 6 presents several visualization examples 797

from CReaVOS. 798

 Query: Which bird drank the water from the plate

Bird 1
Bird 2

Metal Bowl 1
Metal Bowl 2

Green Fence
Bare Trees
Dirt Floor

Bricks

Potential Targets Query-Aware Feature Analysis

Observe the Beak Movement: Look for signs that one bird is using its beak to access
the water.
Check for Head Tilts: A bird tilting its head down to the bowl might be attempting
to drink from it.
Look at Posture: A bird standing close to a bowl while facing it might be preparing to
drink.
Interaction Details: If one bird is seen picking up the bowl, it might be the one that
drank the water.

The video shows two large birds, likely vultures, standing on the ground inside an enclosed area with a dirt floor
and some scattered debris. They are positioned near two metal bowls filled with water. The background includes a
green fence and some bare trees, suggesting it might be late autumn or winter. The birds appear to be interacting
with each other, possibly in a feeding or social behavior.

 Query: Who moved the chess piece?

Player in Blue
Player in Black

Chessboard
Digital Clock

Table
Chair (Player in Blue)
Chair (Player in Black)

Chess Pieces
Background Chessboard

Potential Targets Query-Aware Feature Analysis

Posture and Actions: Observe if either player is visibly making a move (e.g., lifting a
piece from one square to another). If Player in Blue is actively making a move, they
would typically lift a piece from their side of the board.
Movement of Pieces: Look for any visual confirmation of a piece being lifted and
moved. This might be subtle but crucial.
Timing: Use the digital clock to check the exact time. If a move is made after a
certain period (e.g., after 10 minutes), it could point towards the player who made the
move.

A chess game is taking place between two players seated at a table. The player on the left is wearing a light blue
hoodie and appears to be deep in thought, resting their chin on their hand. The player on the right is dressed in
black and is also focused, with one hand near their face. The chessboard is set up with pieces in their starting
positions, and a digital clock is visible on the table showing the time remaining for each player. The setting appears
to be indoors, possibly in a tournament environment, given the presence of another chessboard and chairs in the
background.

 Query: Which penguin felt the pain?

Penguin 1
Penguin 2
Penguin 3
Penguin 4

Rocky Shoreline
Waves

Ocean Water

Potential Targets Query-Aware Feature Analysis

Positioning in the Scene: Penguins at the front or edge of a group may show pain-
related behaviors due to greater exposure to environmental threats or disturbances.
Body Language and Posture: Observing the posture and any signs of distress or
discomfort can help determine which penguin might be feeling pain. For instance, if
one penguin appears to be holding its flippers differently or seems to be waddling
awkwardly, it might suggest pain.
Context of the Video: Environmental threats like rough water, ice breakage, or
predators may cause pain-related behaviors in penguins, such as frantic movement or
avoidance.

The video captures a group of penguins walking along a rocky shoreline. The scene is set against a backdrop of
waves crashing onto the shore, creating a dynamic and natural environment. The penguins are seen moving in a line,
their black and white plumage contrasting sharply with the gray rocks and blue water.

Figure 6: Visualization of examples from CReaVOS.
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