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Summary. Epigenetic variability is an essential modulator of phenotypic plasticity. To better
understand complex epigenetic signals, we introduce Hygeia – a new framework for discovering
DNA methylation patterns in whole-genome bisulfite sequencing (WGBS) data. Hygeia utilises
a Bayesian statistical model, designed to match empirically observed methylation patterns. The
model selects a regime for the methylation propensity at each cytosine-guanine dinucleotide (CpG)
site, with regime changes permitted at any position. Thus, conventional means-based methods are
replaced by probability-based MEthylaTion changE pOint Regimes (METEORs). Hygeia fits the
model to WGBS data to produce METEOR annotation at the CpG level. We applied Hygeia to
WGBS EpiATLAS data (N=445) from the International Human Epigenome Consortium (IHEC)
to enrich the EpiATLAS resource with METEOR annotation. Hygeia is packaged as a Nextflow
pipeline available on GitHub.

Epigenetic modifications are key modulators of DNA and RNA activity. At the DNA level, the most
common modification is the addition of a methyl group to the carbon-5 position of CpGs, giving rise
to 5-methylcytosine (5mC) which acts as a signaling module in many biological processes (Bird,
2002). Although binary at the single molecule level, CpG methylation patterns become extremely
complex at the cellular and tissue levels and highly dynamic at the temporal and spatial levels,
where they shape phenotypic plasticity in health and disease (Robertson, 2005). Measurement and
analysis of DNA methylation (DNAm) variability has recently been the focus of intense research.
While there is a gold standard for generating and preprocessing sequencing-based methylome data,
no such standard has yet been defined for the downstream analysis for the learned representations.
Since the first whole human methylomes were published in 2008-09, many analysis methods have
been developed that have greatly advanced our understanding about the methylome. WGBS data
provide counts of DNA molecules in which methylation is observed for a single CpG site. These
counts are provided across all CpG sites, for a given depth per site, i.e. over the number of DNA
molecules aligned and analysed for each single CpG site.

Most current methods for the analysis of WGBS data are based on the identification of mean dif-
ferences only, thus a large number of approaches based on such a principle have been suggested
to detect differentially methylated positions (DMPs) and differentially methylated regions (DMRs),
see e.g. the review in Shafi et al. (2018), with less work aimed at detecting representations be-
yond the first moment, such as variability (Teschendorff et al., 2016b;a). The popular BSmooth
method (Hansen et al., 2012) smoothes the methylation proportions and then tests for group dif-
ferences using t-tests for each site, but does not allow for a control of Type I error rates when
performing multiple-hypotheses testing across sites or regions. Various beta-binomial models have
been suggested (Burger et al., 2013; Feng et al., 2014; Park et al., 2014; Sun et al., 2014; Wu et al.,
2015), but they tend to allow for only limited spatial dependence, as do most approaches that rely
on logistic regressions (Akalin et al., 2012), linear mixed models (Jaffe et al., 2012) or established
statistical tests Stockwell et al. (2014). Our approach generalises methods based on hidden Markov
models such as Kuan & Chiang (2012); Yu & Sun (2016); Sun & Yu (2016); Shen et al. (2017);
Shokoohi et al. (2019); Molaro et al. (2011); Saito et al. (2014) and hidden Semi-Markov models
(Du et al., 2014). In particular, it avoids the limitation of the latter that the sojourn time in a particular
state is bounded above by some known (and typically relatively small) constant.

In summary, current methods often fail to: (i) allow for flexible methylation patterns that capture
variability beyond the mean methylation level; (ii) take into account that methylation of neighbor-
ing sites is correlated but also occasionally changes abruptly; (iii) work with a single replicate and
missing reads; or (iv) allow for scalable inference on a genome-wide level. Our Hygeia framework
addresses these limitations by developing Bayesian change-point models to capture flexible methy-
lation patterns along with the provision of advanced computational algorithms for efficient analysis
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of methylome data. Hygeia provides flexible Bayesian change-point models for DNAm and asso-
ciated inference algorithms that yield a detailed probabilistic description of methylation signatures.
The inferred methylation patterns come with uncertainty quantification and can be leveraged for
hypothesis-based discoveries with improved power and false discovery rate (FDR) control.

Detection of diverse DNAm patterns. Hygeia replaces current means-based analytics with more
powerful probability-based METEORs. The resulting METEOR annotation can be defined by the
user and can be tested for any type of differential methylation patterns, enabling the detection of
complex DNA methylation dynamics, including spatial and temporal signatures, all within a sin-
gle framework. Our method can be used to probabilistically segment the methylome into regions
of interest, whilst also incorporating domain or expert knowledge in the specification of different
METEORs based on known or expected patterns.

Computational efficiency. State-of-the-art Sequential Monte Carlo (SMC) methods enable effi-
cient Bayesian calibration of change-point models in many application domains, including whole
genome analysis (Fearnhead & Clifford, 2003; Fearnhead & Liu, 2007; Fearnhead & Vasileiou,
2009; Whiteley et al., 2010; Caron et al., 2012; Yildirim et al., 2013). Within Hygeia, SMC al-
gorithms permit inference on a genome-wide scale because their computational complexity grows
only linearly with the number of CpG sites – an attribute regarded as a great challenge for previous
Bayesian approaches.

Statistical assessment and differential DNAm patterns. A series of works in multiple testing
(Sun & Cai, 2007; Sun & Tony Cai, 2009; Sun & Wei, 2011; Sun et al., 2015) have established op-
timal testing procedures that maximise the power subject to a constraint on the FDR in case-control
scenarios. These procedures are based on the posterior probability of the latent signal, and auto-
matically take into account the spatial dependency of the underlying signal process. Our Bayesian
inference strategy provides an effective approximation to the optimal procedure that tightly con-
trols the FDR. In contrast, multiple-testing approaches based on p-values can be overly conservative
or challenging to derive under dependence assumptions. In a case-control setting, Hygeia obtains
greater statistical efficiency by simultaneously modelling the regimes of the case and control groups.
In contrast, some existing methods lose efficiency by fitting independent models to each group.

Open source and user-friendliness. Hygeia has been developed on GitHub with a permissive,
open-source license to encourage the creation of an open-source community surrounding it. Hygeia
is available in a cloud environment using Nextflow and Seqera Platform, providing a user-friendly
web-based solution for launching and monitoring Hygeia analyses at scale.

METEOR annotation of the IHEC EpiATLAS The EpiATLAS is the most comprehensive
epigenomic resource. It comprises 19566 datasets consisting of six different histone modifications,
RNA-seq and DNA methylation, including the largest single collection of WGBS data. The addition
of METEOR annotation to 445 WGBS datasets of this resource will enable researchers to investigate
the interplay between DNA methylation and other epigenetic modifications in unprecedented detail.

MEANINGFULNESS STATEMENT

Life is a complex biological process defined by high plasticity at various levels, including devel-
opment, well-being, and aging, to name just a few. On a molecular level, this plasticity can be
measured and quantified over time and space, for instance, through the changing patterns of DNA
methylation. DNA methylation is one of many epigenetic modifications that act as regulatory mod-
ulators at the intersection of genetics, the environment, and disease. Hygeia is a robust statistical
framework that facilitates the analysis of such changing DNA methylation patterns at unprecedented
granularity and scale, thus providing novel insights into the plasticity of life.
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