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Abstract—The emerging field of Federated Learning (FL) is
reshaping privacy-preserved data analysis and decision support
mechanisms within several critical infrastructure (CIs) sectors
such as autonomous transportation, energy, and healthcare. To
shield sensitive operational and client data from privacy attack-
ers, Differential Privacy (DP) has been proposed to integrate
on top of the FL process. Yet, we identify that integrating
Gaussian noise for achieving DP guarantee can inadvertently
create a new vector for differential model poisoning attacks in
FL. Moreover, exploiting the variance in Gaussian noise enables
attackers to camouflage their activities within the legitimate noise
of the system, a significant yet largely overlooked security flaw in
the differentially private federated learning (DPFL) framework.
Addressing this research gap, we introduce a novel adaptive
model poisoning through episodic loss memorization (o«—MPELM)
technique. This method enables attackers to dynamically inject
adversarial noise into the differentially private local model
parameters. The technique has a dual purpose: hindering the
optimal convergence of the global FL. model and simultaneously
avoiding detection by the anomaly detectors. Our evaluation
of the a—MPELM attack reveals its capability to deceive Norm,
Accuracy, and Mix anomaly detection algorithms, surpassing the
conventional random malicious device (RMD) attacks with attack
accuracy improvements of 6.8%, 12.6%, and 13.8%, respectively.
Additionally, we introduce a reinforcement learning-based DP
level selection strategy, rDP, as an effective countermeasure
against ¢—-MPELM attack. Our empirical findings confirm that
this defense mechanism steadily progresses to an optimal policy.

Impact Statement—The need for trustworthy AI/ML applica-
tions at the edge is now more critical than ever, necessitating
secure and privacy-conscious systems. Federated Learning (FL)
emerges as a beacon in this context, offering a decentralized
approach to AI/ML that enhances data privacy while leveraging
the collective intelligence of diverse datasets. However, this
study unveils a critical vulnerability in the differentially private
federated learning process, regarded as a promising learning
technique in next-generation critical infrastructures. It reveals
how differential privacy (DP) mechanisms while enhancing
privacy, inadvertently open doors to stealthy model poisoning
attacks. By devising a novel adaptive model poisoning technique,
we demonstrate how attackers can exploit DP noise to evade
advanced anomaly detection and hinder FL. model convergence.

This work was partially funded by the U.S. National Science Foundation
(NSF) under grants: NSF-CAREER: 1846513, and NSF-PFI-TT: 1919127.
The views, opinions, findings, and conclusions reflected in this publication
are solely those of the authors and do not represent the official policy or
position of the NSF.

Md Tamjid Hossain is with the Department of Computational, Engineering,
and Mathematical Sciences at the Texas A&M University-San Antonio, USA.

Shahriar Badsha is with the General Motors, USA.

Hung La is with the Department of Computer Science and Engineering at
the University of Nevada, Reno, USA.

Shafkat Islam is with the Department of Computer Science at Purdue
University, USA.

Ibrahim Khalil is with the School of Computing Technologies, RMIT
University, Australia.

To counteract this, we also propose a reinforcement learning-
assisted privacy level selection strategy. This research not only
exposes a significant security vulnerability in edge computing but
also charts a path for strengthening AI/ML defenses.

Index Terms—Edge Computing, Differential Privacy, Feder-
ated Learning, Reinforcement Learning, Artificial Intelligence,
Model Poisoning, and Anomaly Detection.

I. INTRODUCTION

N the fast-evolving landscape of artificial intelligence (AI)-

enabled edge computing, federated learning (FL) [1] has
emerged as a game-changer in protecting critical infrastruc-
tures (CIs) [2] such as transportation, energy, and healthcare
industries. FL’s rise to prominence is largely attributed to its in-
herent ability to safeguard sensitive mission-critical data, thus
facilitating privacy-preserved learning and decision-making
within these vital sectors [3]. Distinguished from traditional
centralized machine learning (ML) methods, FL enables the
training of a global model directly at the network’s edge.
Each edge node shares only its trained model parameters
(e.g., weights and biases), instead of transmitting sensitive
raw data to a central server. This approach ensures that the
training data remains securely within the original edge node,
thereby significantly reducing the risks of exposing sensitive
data. Numerous research efforts have been made to integrate
FL and its variants into next-generation AI/ML-driven ClIs
[4]1, [5], [6], [7], which have increasingly become targets for
adversarial attacks, evidenced by the Stuxnet attack [8] and the
Dragonfly alert [ICS-ALERT-14-176-02A]. For example, the
energy industry, crucial to the functionality of other CIs, can
benefit from FL in applications such as energy consumption
forecasting, state estimation, and generator synchronization.

However, despite FL’s ability to minimize the exposure
of sensitive operational data, vulnerabilities still exist. A
prominent threat is the man-in-the-middle (MITM) attack,
where an adversary could potentially intercept and extract
valuable information from the in-transit model parameters [9].
To mitigate this, a significant body of research including data-
driven privacy-preservation methods [10], [11], [12], [13] has
been carried out lately. Particularly, differential privacy (DP)
[14]- a standard privacy specification— has been proposed in
the literature to safeguard FL’s training, testing, and parameter-
sharing processes. DP utilizes a randomized noise-adding
mechanism following well-known statistical distributions to
keep individual contributions indistinguishable. In particular,
the DP-noise allows for aggregate data analysis where patterns
and insights can still be accurately extracted without exposing
sensitive information [14]. This balance between privacy and
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data utility is vital in contexts where data-driven decisions are
made, such as in CI applications. For example, in the energy
sector, DP can enable the analysis of power consumption data
to optimize energy distribution and manage demand more
effectively while ensuring the privacy of individual users
[15], [16]. Due to its provable privacy guarantee and low
computational cost, DP is proposed to be integrated into
various FL-based applications across CIs [17], [18], [19], [7].

Yet, our adversarial analysis in this paper indicates a striking
vulnerability of differentially private FL (henceforth referred
to as DPFL) methods: the very differential noise, added to
achieve data privacy guarantee, can be exploited to conduct
poisoning attacks in FL. In particular, an intelligent attacker
can exploit the inherent characteristics of DP to orchestrate
model poisoning attacks, a threat not widely recognized in
current DPFL. implementations. Such poisoning attacks can
put any system in an unsafe operating condition and cause
severe hazards in CIs. For instance, poisoned information can
mislead an autonomous vehicle to take unsafe maneuvers (e.g.,
sharp turns, sudden lane changes, etc.).

The significance of addressing this identified research gap
lies in its potential to improve the resilience of DPFL systems
against sophisticated adversarial attacks. Understanding the
security implications of integrating DP with FL allows us
to develop advanced countermeasures that are specifically
designed to detect and mitigate these novel vulnerabilities.
This, in turn, informs the creation of more robust privacy-
preserving mechanisms that can effectively balance the dual
objectives of maintaining data privacy and ensuring model
integrity. By closing this research gap, we can enhance the
overall security posture of DPFL systems, making them more
trustworthy and reliable for deployment in CI sectors.

A. Motivations

The motivation behind our research primarily comes from a
largely unexplored, yet increasingly important area: maintain-
ing verifiable security at the edge. This includes the potential
exploitation of DP in compromising the security and integrity
of systems. While numerous studies have highlighted how DP
can protect data privacy [14], [17], [18], [19], [20], [7], [6],
[21], [22], [23], a limited effort has been made on how it
can be exploited as a tool for conducting covert security and
integrity attacks. More specifically, only a few recent research
on the privacy and security challenges of CIs [24], [15], [16],
[25] point out the exploitation opportunity of DP.

Integrating Gaussian noise to achieve DP in FL systems can
introduce a new attack window, which threat actors can exploit
for poisoning attacks. Specifically, an attacker can disguise
malicious activity as legitimate DP noise by subtly adjusting
the DP noise parameters, allowing harmful noise to be in-
jected into compromised model parameters without triggering
anomaly detection systems. Since exploiting this vulnerability
can have catastrophic consequences for DPFL-based ClIs, the
development of more robust privacy-preserving mechanisms
is crucial. These vulnerabilities underscore the necessity for
mechanisms capable of detecting and counteracting adaptive
adversarial strategies. Our research explores how such adaptive
poisoning can occur.
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Fig. 1 illustrates the attack vectors in the context of a
DPFL process. We differentiate between two types of attacks:
data poisoning, where adversarial noise is introduced into the
training data, and the more complex yet potent model poison-
ing, where the noise is integrated into the model parameters
themselves. Our primary focus is on model poisoning, given
its heightened potential for disruption and the subtlety required
for its execution. The specifics of these adversarial strategies
are further elaborated in section IV-A of our paper.
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Fig. 1. DP-exploited data and model poisoning attacks in FL.

B. Research Gap

While several model poisoning attacks and defense models
have been proposed in the literature in this direction, several
limitations are observed. For instance, Byzantine-robust aggre-
gation [26], along with algorithms like Krum [27], Bulyan [28],
Trimmed Mean [29], Median [29], have been developed to
counteract poisoning attacks that exploit the vulnerabilities in
FL aggregation rules. However, these methods often overlook
two critical aspects: (1) the subtlety of maintaining attack
stealthiness and (2) the specific exploitation of DP noise.

In a notable advancement, a novel DP-exploited false data
injection attack is introduced in [15], which successfully
evades standard anomaly detection classifiers. This study also
proposes a log-likelihood ratio test-based anomaly detector as
a countermeasure against such DP-exploited attacks. Yet, the
performance of these DP-exploited attacks in federated settings
remains unexplored, and the strategies used by attackers to
adjust the intensity of poisoning are not adequately addressed.

A separate study [25] has explored DP exploitation in
FL, formulating a global DP (GDP) exploited stealthy model
poisoning attack. However, it leaves open the question of how
such attacks achieve persistence in a Local DPFL (henceforth
referred to as L£-DPFL) environment. We seek to fill this
gap by analyzing these research problems and employing
comparative analysis and empirical evidence to enhance the
understanding of DP exploitation in the FL context.

C. Our Work

We perform the first systematic study on the exploitation
of the differential Gaussian noise to craft stealthy local model
poisoning attacks within the DPFL framework. In particular,
we devise a persistent and stealthy model poisoning attack
that exploits the local DP (LDP) technique to evade the state-
of-the-art anomaly detectors, while simultaneously degrading
the FL model utility. The core contributions are as follows:

o We perform the first in-depth analysis on exploiting dif-

ferential Gaussian noise to conduct stealthy local model
poisoning attacks in FL-driven CIs.
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TABLE I
LIST OF MAJOR SYMBOLS AND THEIR DESCRIPTION USED IN THIS PAPER
[[ Symbols  Description Symbols  Description Symbols  Description Symbols  Description I
fa Adversarial distribution Na Adversarial noise profile Na Adversarial noise Ha Attack impact
A Action space R Average global reward B2 Accuracy benchmark fo Benign Gauss. distribution
i Benign noise (0] Balancing param. C Clipping threshold 3 Clipping technique
R Detection range T Detection threshold v Deviation of model updates ¥ Degree of poisoning
¢ Discount factor k Edge node Awe Expected update Awyg Global update
n Gaussian DP-noise P Factor of proportionality fi Historical federated loss « Learning rate
D Local training data k1 Lagrange multiplier Vv Local validation set l Loss function
R Loss ratio Aw Model update 9 Mini batch of local data 0 Mean
n Max DP-noise 7 Modified detection threshold w Max £2-norm 51 Norm detection benchmark
b No. of benign models a No of malicious models [l Objective function 1) Probability of privacy leakage
11 Privacy accountant e Privacy loss Q Q-table AQ* Q-table converged
t episode Aw, Received update T Reward B Reward function
N Set of total nodes S Sensitivity Awm Set of malicious updates M Set of compromised nodes
B Set of benign nodes 13 Set of noisy clipped updates S State space my Set of attacker’s loss
s State d Square of Lo distance K Total available nodes t Total participating nodes
m Total compromised nodes T Total communication episodes a? Variance L Validation loss

e We propose and design an adaptive model poisoning
method utilizing episodic loss memorization technique,
which we refer to as a—MPELM, that ensures (a) attack
persistence while maintaining (b) attack stealthiness in
DPFL environments. Our comprehensive evaluation of
this novel approach against leading-edge anomaly detec-
tion algorithms demonstrates its significant capability to
evade these detection systems.

o We innovate in limiting the attack surface by strategi-
cally determining the DP-noise levels at the nodes using
reinforcement learning (RL) [30]. This defense approach,
referred to as an RL-assisted DP level selection algorithm
(zDP), shows promising results in our evaluations, effec-
tively converging to an optimal policy that disincentivizes
the adversarial motivations.

Roadmap, Notation, and Keywords. Section II, covers
the preliminaries. Section III outlines some contrasting points
between this work and state-of-the-art literature. Section IV
outlines the threat model and the basic mechanism of a DP-
exploited poisoning attack. We present our proposed attack-
defense strategies in section V and VI. Section VII provides
empirical evaluations of the attack-defense strategies while
section VIII serves as a conclusion and future research direc-
tion. Table I describes the major symbols used in this paper.
We use ‘smart meters’, ‘clients’, ‘edge nodes’, and ‘nodes’
interchangeably throughout the rest of the article. Also, ‘ag-
gregator’ & ‘remote station’ have been used interchangeably.

II. PRELIMINARIES

In ClIs, the sensory data hold the private and confidential
information of the clients and organizations. Typically, CI
authorities gather this data for storage on central servers,
utilizing it to enhance the performance of their Machine
Learning (ML) applications and optimize operational states.
For instance, an electric utility company might analyze energy
consumption data to refine load balancing and project future
demands. However, this practice poses a risk: adversaries
could potentially extract and exploit sensitive information,
such as client whereabouts and energy usage patterns, from
ML training data. Furthermore, critical operational details of
a CI could be inferred and manipulated by altering model
parameters like weights and biases [5], [31].

A. Mechanism of Federated Learning (FL)

Federated Learning (FL), proposed by McMahan et al.
[1] offers a solution to data privacy concerns in Machine
Learning (ML) by employing a multi-node environment. In
this approach, the model is trained on a diffuse network of
edge nodes, each using its local data. This setup ensures that
clients’ private data remain confined to the edge nodes, thereby
providing a degree of privacy protection. The FL process
unfolds over several episodes, each comprising three key steps.

Step I: The global aggregator shares the parameters of the
global model with all participating edge nodes.

Step II: Using their local data and the global model param-
eters, the nodes train their local models. Various optimization
algorithms, such as batch gradient descent (BGD), stochas-
tic gradient descent (SGD), or mini-batch gradient descent
(mBGD), can be employed for this purpose, with mBGD being
particularly suitable in this context. For instance, the kth node
(where & € N) updates its local model Aw,(:) at episode
t = 1,2,...,T as: Aw,(f) ) w_((,t). Here wét) is the
global model and w,(f) is the optimized local model. Here, w,(:)
is computed by taking a step towards the mini-batch gradient
descent as follows:

— o

aé(wét)7 ;it)) 1)
’ (t)
Owyg

w,(:) — wét) -«

(%)

where « is the learning rate, jkt is the mini batches of

the local training data (2y) and @(wét), ],575)) is the objective
function to be minimized. The updated local models are then
communicated back to the global aggregator.

Step III: The global aggregator integrates these trained local
models using advanced aggregation rules, such as FedAvg,
FedSGD, Krum, Trimmed Mean, or Median. For example,
the naive mean aggregation rule updates the global model (

w_gtﬂ)) at the end of each episode, ¢ as:

1 n
(t+1) 0 4 L Aw®

)

However, this simple aggregation rule is vulnerable under
an adversarial setting, as an attacker can manipulate the global
model through a single edge node [29], [13]. Therefore, we
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adopt a more robust averaging-based aggregation approach
(detailed in section V-A). While some methods (e.g., [32])
recommend stochastic client selection processes to enhance
convergence and accuracy, our study focuses on the adversarial
impacts on privacy-enhancing FL processes. Consequently, we
employ general random sampling methods [33] for simplicity,
as detailed in section V-A. This decision aligns with our
primary objective of investigating the security aspects of FL,
rather than developing accuracy-enhanced FL processes.

B. Local Differential Privacy (LDP) with Gaussian Noise

Despite the inherent data privacy protection, FL is found to be
vulnerable to membership inference attacks (MIAs) [18]. To
address this vulnerability and protect the client’s confidential-
ity, DP has been proposed to integrate with FL processes [7],
[18]. DP employs noise-adding mechanisms, such as Gaussian
noise, to perturb data before it is shared or aggregated [18].
This ensures that individual data points remain confidential
even if the data is intercepted [7], [34]. By preserving privacy
at the data collection stage and providing quantifiable privacy
guarantees, DP enhances the reliability and trustworthiness of
data analysis and decision support mechanisms [20]. It allows
analysts to derive meaningful insights and make informed
decisions without compromising individual privacy.

Two primary approaches of DP are— (1) global DP (GDP)
[17], [34], and (2) local DP (LDP) [22], [23]. GDP perturbs
models during aggregation, whereas LDP perturbs models at
the edge nodes before transmission. Given its stricter privacy
standards, LDP is increasingly favored in FL to protect client
privacy [35]. Nonetheless, many variants of both GDP and
LDP can be found in the literature [36], [7], [18], [34], [23],
[19], [6], [20], each employing different DP mechanisms,
including randomized response (satisfies e-DP) [6], [19], [36],
Laplace (satisfies ¢-DP), Gaussian (satisfies (e,d)-DP) [18],
[71, [34], [20], Exponential (satisfies €-DP) [23], Geometric
(satisfies e-DP) [22] and Binomial (satisfies (¢, d)-DP) mech-
anisms. In general, their underlying principles are the same:
adding randomized noise or responses to the original data to
protect the sensitive information of the clients [37].

The Gaussian mechanism is particularly popular due to two
advantages: (a) additive noise, which allows for straightfor-
ward statistical analysis, and (b) natural noise, which mimics
the statistical properties of typical database query noise. Here,
noise is drawn from a zero-mean Gaussian distribution, with
its probability density function (PDF) as

LS 3)
R
\V2mo,

where 6 is the mean and o2 is the variance. However, (¢, d)-
DP only satisfies if o > ¢S/e where ¢? > 21n(1.25/6). Here,
¢ is the permitted privacy loss or simply, privacy budget, ¢ is
the probability of exceeding the privacy budget, and S is the
local sensitivity. This can be formally defined as [38]:

Definition 1: Let X be a set of possible values and ) the
set of noisy values. A local randomizer M is (g, d)-locally
differentially private (LDP) if Vz,2’ € X and Yy € Y-
PrM(z)=y] <e* x Pr(M(x)=y]+d

f()(T)
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Privacy loss is a key metric in DP that evaluates the potential
risk of identifying an individual’s data from the output of a
randomized algorithm. It assesses the change in the likelihood
of two possible outcomes depending on whether a specific data
point is included or excluded from the dataset. More formally,
in DP, the privacy loss function quantifies the influence of
adding or removing a single data point on the output of
a differentially private mechanism, governed by the privacy
parameter &, often referred to as the privacy budget. Under
the aforementioned constraint and definition, in our £-DPFL
approach, keeping track of the spent privacy budget is crucial,
especially with multiple queries, as § accumulates over time.
As a solution, we employ a moments accountant technique,
akin to [17], to monitor and control this budget, ceasing
training when a predefined threshold is reached. The final local

—(t
model update of the kth edge node is Aw,(c) — Aw,(:)

+ .
After episode ¢, the global model update is
(t+1) @ LI ®
wy —wg’ + - Z Awy, 4)
k=1

III. LITERATURE REVIEW
A. Model Poisoning in Federated Learning (FL)

Recent developments in the ML community have introduced
numerous model poisoning attack-defense methods applica-
ble to advanced FL mechanisms [26], [27], [28], [29], [7],
[39], [40], [9], [13]. Most of these methods focus on ad-
dressing Byzantine failures, where a group of curious/semi-
honest/malicious nodes manipulates local raw data (data poi-
soning) or model parameters (model poisoning) before sending
updates to the global aggregator. A notable solution to Byzan-
tine failures is the Krum algorithm [27], which uses majority-
based and squared-distance approaches for computing local
models. Specifically, it computes n — f — 2 local models
for each local model wy, where n is the total participating
models and f is the Byzantine models and provides theoretical
guarantees for the convergence if f < (n — 2)/2. However,
Krum’s effectiveness is limited in environments with a large
number of nodes, common in CIs.

Additionally, Krum [27]- even though effective against
obvious outliers since it selects a single model update that
is most consistent with others— can reject legitimate updates,
particularly when they contain Differential Privacy (DP)-
induced noise. More specifically, Gaussian noise introduces
variability in local updates, increasing their inconsistency with
other updates. Krum [27] may mistakenly interpret this incon-
sistency as evidence of malicious intent. This result in higher
global loss even in non-attack scenarios. The a—MPELM attack
amplifies this limitation by crafting malicious updates that ex-
ploit the noise threshold and camouflage adversarial updates—,
eventually misleading Krum [27] into misclassifying benign
updates as adversarial. This dual misclassification raises both
attack and non-attack losses. Likewise, the other Byzantine-
robust aggregation methods are designed to discard extreme
values (Trimmed Mean [29], Median [29]) or aggregate only
consistent subsets of updates (Bulyan [28]). They reduce
the attack’s relative impact by rejecting outliers, including
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malicious updates. However, the rejection of legitimate noisy
updates increases absolute loss across all scenarios.

Two defense techniques against local model poisoning in
Byzantine-robust FL are introduced in [26], focusing on di-
rected deviation and deviation goals for attackers. Following
the directed deviation goal, the attacker aims to deviate a
global model parameter the most towards the inverse of the
before-attack direction. Under the deviation goal, the direction
change of the global model parameter is not considered. The
study reveals vulnerabilities in Krum, Trimmed Mean, and
Median, and proposes ERR and LFR as countermeasures,
generalizing earlier techniques like RONI [41] and TRIM [42].
A mixed detection method (ERR + LFR) is also effective
in some scenarios. However, these approaches only focus
on attaining maximum degradation in model utility and do
not address the stealthiness aspect of attacks nor the privacy
concerns often required by FL users [15].

A closely related study [7] explores both data and model
poisoning attacks in FL, proposing a weight-based detection
method using a validation dataset. This method, consisting
of Norm and Accuracy detection mechanisms, resembles the
ERR and LFR approaches from [26] in operational principles.
Nonetheless, unlike [26], they introduce ~ as a degree of
influence for their Mix detection technique (remark: we use the
symbol + in this paper for describing the degree of poisoning
which bears a different meaning than this). They evaluate their
Norm, Accuracy, and Mix detection approaches in the presence
of randomized malicious devices (RMD). They also propose a
multi-layer (g, §)-GDP technique for balancing privacy-utility
trade-offs in DP. In contrast, to realize a stringent definition
of privacy without loss of generality, we make use of LDP
in this paper. Our work differs as we focus on protecting
local model parameters rather than raw training data and
consider DP-noise not only as a privacy tool but also as a
means for model poisoning attacks. We argue that the in-transit
model parameters are more vulnerable to inference attacks
than the raw training data. Thereby model poisoning attacks
are more likely to cause irrevocable utility damages than data
poisoning attacks. Later, we show that our proposed attack can
deceive their anomaly detection techniques more effectively
than conventional RMD attacks.

Similarly, [43] introduces LoMar, a two-phase defense
algorithm against FL poisoning attacks, utilizing kernel density
estimation to score and filter local model updates. However,
LoMar does not account for attacks leveraging additional DP-
noise. In contrast, our approach considers malicious noise
drawn from an adversarial distribution resembling benign
Gaussian distribution, making it challenging for techniques
like LoMar to distinguish between malicious and benign
updates. Fig. 2 illustrates the mechanism of Gaussian DP-noise
exploitation in our proposed attack model. It demonstrates the
process where LDP is applied to node updates, incorporating
noise that could cause the anomaly detection to incorrectly
classify certain anomalous updates (7,) as non-anomalous,
owing to the adjusted anomaly detection range, R’'.

B. Exploitation of Differential Privacy (DP)

Research has explored the potential misuse of DP in classi-
fication settings, with studies like [24], [15], [16] examining
how DP-noise can be used to diminish system utility. These
works introduce optimal adversarial distributions for generat-
ing noise and propose bad data detection (BDD) mechanisms
as a defense. A game-theoretic framework is employed to
evaluate such defenses, with solutions framed as Nash equi-
libria. However, the application of these models in multi-agent
systems like FL and the control of poisoning intensity remain
unaddressed, as do preemptive attack surface reduction issues
that our rDP algorithm in this paper aims to resolve.

Our investigation extends beyond existing studies by focus-
ing on a meticulous challenge— keeping the attack persistent,
and stealthy. We introduce methods to maintain persistent, ro-
bust, and stealthy attacks across FL. communication episodes.
The random node selection prevalent in FL can neutralize
adversarial efforts if not consistently applied. The comparative
analysis with related works is detailed in Table II.

TABLE 11
COMPARATIVE ANALYSIS AMONG DPFL SYSTEMS. SYMBOL:
ADDRESSED(v), NOT ADDRESSED([J). “F”EDERATED LEARNING.
“PO”ISONING ATTACKS. “D”IFFERENTIAL PRIVACY (“£”0CAL DP OR
“G”LOBAL DP). “E”XPLOITATION OF DP TO CONDUCT POISONING
ATTACKS. “T”RACKING OF PRIVACY BUDGET SPENDING. “I”NTELLIGENT
“P”RIVACY “L”EVEL “S”ELECTION STRATEGY

D

=
S

System IPLS

Fang et al., 2020 [26]
Giraldo et al., 2020 [15]
Zhao et al., 2020 [19]
Hu et al., 2020 [20]
Wen et al., 2021 [6]
Zhou et al., 2022 [7]
Li et al., 2022 [21]
Zhu et al., 2023 [3]
Lu et al., 2023 [13]
Chen et al., 2024 [9]
This work
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IV. PROBLEM FORMULATION

This section outlines the Gaussian noise exploitation mech-
anism and formulates the adversarial noise crafting challenges.

A. Basic Mechanism of Gaussian Noise Variance Exploitation

DP not included. In a non-DP scenario, anomaly detectors
expect local model updates within a certain range, R =
[Awgt) + 7|, where Awét) is the expected update and 7 is
a predefined threshold. An update from kth node (Aw(?) that
exceeds R triggers an alarm.

DP included. Now, consider that the authority enforces DP
as a privacy-preservation tool. Hence, the local update adjusts
to accommodate Gaussian noise =+7), resulting in a modified
update as K{uif — Aw,(c? =+17). Then, to prevent false positives,
the anomaly detector also needs to adjust its detection range
as, R = [Awgt) + 7'] where the new detection threshold,
7/ = (7 + 7). This little adjustment in the detection range

Authorized licensed use limited to: Purdue University. Downloaded on July 13,2025 at 22:37:09 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2025.3540030

potentially opens an additional (false) noise injection window
for the attacker. The range is as follows:

Lower : {0, (Aw,(fr) —7) — (Aw® — TI)}

= [O, Aw,(fr) — Aw + T:| = [0,7 —v]
&)
Upper : [0, (Awl +7) = (Awf + )]

= [o, Aw® — Awf) + T} = [0,7 +v]

where v is the deviation of the local update from the expected
update, i.e., v = Aw,(fr) — Awgt). The adversary can exploit
this false noise injection or poisoning window (i.e., [0, 7 +v])
to craft an adversarial noise profile, 1, < N (ta, f) where
g 1s the desired deviated mean or simply attack impact. Here,
adversarial noise profile describes the intentional disturbances
generated by attackers to interfere with the training process of
federated learning systems. Unlike arbitrary or random noise,
adversarial noise is strategically designed to achieve specific
goals, such as impairing model accuracy or evading detection
mechanisms. In this context, an adversarial noise profile 7,
represents the attacker’s method of injecting noise into the
system to disrupt the learning process while mimicking legit-
imate privacy-preserving noise, such as DP-induced noise, to
avoid detection. If noise is increased, deviation v increases
which in turn expands the poisoning window. Larger DP-
noise correlates with increased v and a wider attack window,
implying more privacy leads to greater attack surfaces and
utility degradation.

Fig. 2 visualizes this concept. Without DP, updates like wg?
are deemed non-anomalous if within R. With LDP, Gaussian

AWIEK) AW,Et) AW,Et) \
Y el ety
i Non-DP ! | Benign LDP i ! Adversarial LDP
i (..t 0) (1) P (et 1q) j

1 7
N

® L Ap®
‘\ 1, qwzr Awy A
i Non-anomalous | Non-anomalous g Non-anomalous
1
Anomalous B Anomalous Anomalous

/" Modified Detection Condition

Original Detection Condition

Non-anomalous

Non-anomalous

Anomalous

Fig. 2. Gaussian noise exploitation: A non-adjusted anomaly detection range
(R) incorrectly flags valid LDP updates (Awétr)) as anomalous. Conversely,
an adjusted anomaly detection range (R'), meant to reduce false positives,
may mistakenly classify adversarial updates (Awg?) as non-anomalous.
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noise 1 may push v beyond R, causing benign updates (wé?)
to appear anomalous. Adjusting R’ to incorporate 7 opens a
poisoning window ([0, (7 % v)]) for attackers, as malicious up-
dates like wg(t) might not be distinguishable from benign ones
when they fall within the modified range. Thus, the detector
faces a dilemma: it cannot differentiate between benign and
malicious updates if the adversarial noise magnitude remains
within the newly accommodated window.

B. Challenges in Crafting Adversarial Noise Profile

Crafting an adversarial noise profile presents multiple chal-
lenges due to the hidden parameters within the anomaly de-
tection mechanisms. For instance, it is not feasible to presume
that an attacker can straightforwardly determine the value of
Na» as the parameters 7 and v are secured and concealed within
the anomaly detection system. To understand the problem
more clearly, let us consider that ¢ is a particular compromised
edge node and M is the set of all compromised nodes having
cardinality of m (i.e., i € M and |M| = m) in a L-DPFL
setting. Then the number of benign edge nodes is b=n —m
where n is the total number of participating edge nodes (i.e.,
|N| = n). Let us also consider j is an individual benign edge
node while the set of benign nodes is B (i.e., j € B and
|B| = b). Now, if the malicious noise is ni’? and the benign

(t)

—(t
DP-noise is 7, > then 4’s adversarial local update (Awl(. )), 7’s

benign local update (ANw;t)), and aggregated global update

(t+1)

(wg ") can be represented by (6), and (7) respectively.

—(t —(t
Ay e A® 40 Ao e Aw® £ )

1 | & — b ()
t+1 t } : E :
i=1 j=1

However, the major challenge for the attacker here is to
craft the adversarial noise profile, N (q, g) and choose the
magnitude of the adversarial noise, 7, for subsequent FL
episodes. To tackle this adversarial challenge, [26] followed a
maximum utility degradation approach, where a large amount
of noise was injected into the model parameters through
subsequent FL episodes. Nonetheless, this large adversarial
noise may potentially lead to easier attack detection— thus
violating the stealthiness objective of the attack.

Another potential attack strategy involves mimicking the
benign Gaussian noise distribution. Specifically, the attacker
could draw 7, from an adversarial distribution (f,;) similar to
a benign Gaussian distribution (fy) and, then inject 7, into
total m compromised local models. In other words, if 7 is
a compromised edge node (i € N- set of all participating
nodes) out of the total m compromised nodes, then the set of
the malicious local model at episode ¢ is

Awl) = {Aw” + 1) }ic1 2 m Vi€ NIEO<m <n (8)

Such optimal attack distribution, f.¥, and the optimal attack
impact, p are derived and presented in [15] by solving a
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multi-criteria optimization problem that addresses two con-
flicting adversarial goals: (1) maximum damage, and (2) min-
imum disclosure. The goals are contradicting in nature from
the adversarial point of view since maximum damage can lead
to easier attack detection whereas minimum disclosure limits
the damage. The optimal adversarial distribution, f, and the
optimal attack impact, p; for the Gaussian mechanism are
expressed as:

. 1 _ (m—e—z ﬁ?am?
f a ($ ) = \/ﬂ(]’w € °

where 6 is the mean, afc is the variance, and v is the
stealthiness parameter (i.e., degree of poisoning). The choice
of ~ is critical; too high a value increases detectability, while
too low leads to negligible impact (y = 0, f¥ = fo and
wh =6, comparing (3) and (9)). Thus, the attacker must fine-
tune v for each episode to ensure the attack remains covert
while still inflicting significant damage. Now, this raises below
research questions that we subsequently answer through our
theoretical and empirical analysis, as detailed in section V-B,
VI-B, and VII-B of this paper.

o How does the attacker tune v at every FL episode?
o What are the attack impacts in £-DPFL based Cls?
« What could be an effective defense against this attack?

and p; =0+ +/2vy0, (9)

C. Threat Model

1) Attacker’s Capability: We consider an attacker who
falsifies model parameters returned to the aggregator. This
attack could be launched by an insider compromising vul-
nerable edge nodes (insider threat) or an outsider intercepting
communication paths to the aggregator (outsider threat). As
we are agnostic to how the attacker can modify the model
parameters, our proposed attack model covers both insider
and outsider threats. Particularly, we assume that the attacker
gets unauthorized access to a few local models irrespective of
the attack vector. We assume the attacker gains unauthorized
access to a selected number of local models; if too many are
compromised, the attack would trivially manipulate the global
model and be easily detectable [26]. The attacker’s knowledge
of benign participants is minimal, and direct control over the
FL aggregation algorithm is out of their reach, especially since
the aggregator is typically a secure, benign server.

2) Attacker’s Background Knowledge: For an insider threat,
the attacker could access both local training data and model
parameters, whereas an outsider might only access in-transit
model parameters. Following a conservative approach, we
assume the attacker’s background knowledge is only limited
to a few local model parameters for both threat models. We
argue that our proposed attack algorithm would perform much
better if the attacker gets access to the local training data. In
alignment with established practices in DP implementations
[44], [45], we assume that attackers have access to the publicly
disclosed privacy budget (¢) and noise distribution mecha-
nisms. This assumption reflects the transparency commonly
adopted in FL systems to maintain trust among participants.
DP parameters, including € values and noise distributions (e.g.,
Gaussian, Laplace), are often shared publicly as part of system

documentation. Cynthia Dwork, one of the pioneers of DP, has
advocated for the establishment of an “Epsilon Registry”—a
communal repository to promote awareness and adoption of
robust DP implementations [45]. Similarly, [46] emphasized
that user trust and willingness to share data improve when ¢
values are transparently disclosed. Major organizations such
as Apple, the US Census Bureau, and Google have already
publicized ¢ values for their DP systems, with ranges such as
Apple’s 2-16, the US Census Bureau’s 19.61, and Google’s
2.64 [47]. These disclosures illustrate a growing trend in
transparency— reinforcing the feasibility of our assumption that
attackers in real-world FL systems could gain knowledge of
Gaussian noise parameters.

3) Attacker’s Goal: The attacker’s primary goal is to
achieve (a) maximum damage while (b) avoiding detection in
any stage of the attack. Achieving significant damage requires
introducing very large (or very small) adversarial noise, which
risks detection by conventional anomaly detectors. Conversely,
to avoid detection, the noise should closely align with the
boundaries of the poisoning range (5), potentially compromis-
ing damage. Hence, the attacker must strike a balance between
these conflicting goals to optimize damage and stealth.

V. PROPOSED MODEL POISONING ATTACK

In this section, we outline our model poisoning attack
strategy within the £-DPFL framework.

A. L-DPFL Architecture

The L£-DPFL structure we employ, akin to a smart metering
network (Fig. 3), is represented by a two-layer network where
edge nodes serve as FL clients and the remote station acts
as the FL server or aggregator. This simplification, while
practical, does not diminish the realism of a multi-layer
network as highlighted by [7], where aggregation occurs at
multiple layers, but FL training and LDP integration are
primarily at the edge layer. The potential for additional DP
noise in successive layers, creating new attack vectors, is
acknowledged but not the focus of our model. The entire £-
DPFL process is pseudocoded in Algorithm 1.

1) Training Phase: In our L£-DPFL method, one remote
station collaborates with n randomly selected edge nodes from
a total of K nodes. These edge nodes, with similar neural
network structures, are initialized with shared global model
parameters wét). Next, the nodes perform local optimization
that involves mini-batch gradient descent on sampled datasets
,’/,Et) from local training datasets Dy, resulting in trained param-
eters w,(f) and subsequent local updates Aw,(:) = w,(:) - ws(,t).

2) Update Clipping Phase: Let w = (wq, wa, ...,wq) is a
weight vector, and ||p|| denotes the ¢5-norm of a g-dimensional
vector p = (p1,P2, - Pg)s 1€ [Ipll = /Dot p7. Assume
that 9/ is the maximum /s-norm value of all weights for any
given weight vector w,(f) and sampled dataset ],it), ie, W=

maxw,(ct)eRJ’it)eﬂk]E [le(f) U}?))H} To keep the model usable
and prevent over-fitting, each edge node clips its local model
updates by a clipping threshold value C € (0, W] as

|Aw |

C ) (10)

Aw,(:)z lip Awl(;)/max(l,
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Algorithm 1: £-DPFL Protocol. N: Set of edge nodes
with cardinality K, o: variance, C: Clipping param.,
T Total episode, «: Learning rate, : Privacy loss, J:
Privacy leakage probability, S: Sensitivity, D: Training
dataset, 7: Max {y-norm, &: Noisy clipped local
model updates, n: Gaussian noise, A: Noise profile,
II: Privacy accountant, w: Model parameter

Inmput: N, o0,C, T, «

Output: New global model parameters, wét)

Data: Mini batch of training set, {7, C Dy }}_,

Privacy Guarantee: satisfies (¢, d)-LDP with Gaussian
noise NV(0, S%031,)

wgt) < random initialization

1
2 Initialize privacy accountant, II(e, K)
3 for eacht =1,2,...,T episode do
4 6+ H(nt, O't)
5 if § > 75 then return wg(,t)
6 else () « NoisyUpdates(N,o,C, wét)
t+1 t
w§,+ ) :ws(i) + %22215“)
7 end
8 Function NoisyUpdates (N, o, C, wét)) :
9 for each edge node k € N do
w® 5 ®
10 w,(:) — wgt) — 04.78@(89(;)]’“ )
Wy
1 Awl(:) — w,(:) - wét)
t t
12 W maxwkeR,y,g”e@kE [||w,(C )(];5 ))H}
13 Set clipping threshold C € (0, W]
14 Clip the local model updates as
- (t+1)

Aw,(:')z pAL Aw,(:)/mam(l, 7HAUJ’E ”)
15 Add Gaussian noise to obtain

—~— ()

Awyy + Awl) + 1 ~ N (0, 8%071,)
16 end

—(t

17 | Set £® {Aw;;}zzl
18 return ¢(*)

where x denotes the clipping technique.

3) LDP Integration Phase: After clipping the local model
updates by clipping threshold C, the kth node implements the
(e,9)-LDP by adding a Gaussian noise component 7). Since,
Aw,(f; is bounded by C and can be changed at most by C, the

Transmission Distribution

Sub-station

Generation

Fig. 3.

i
fO—O) \_LDP Noise
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local sensitivity, S of the aggregation operation is equivalent to
C. Therefore, the Gaussian noise variance of each dimension is
proportional to S2,ie., e ~ N (0, 820,%11(1) for some 0']% >0,
where [, is the ¢ x g identity matrix. Then, the noisy clipped
local model updates can be represented as

Auy) = Awf?

Y

The noisy cligaped local model updates from all edge nodes
—(t
€W {Aw,(cx}zzl are sent to the server for aggregation.

4) Aggregation Phase: The remote station aggregates these
noisy clipped updates to form the new global model. It can be
formally expressed as

+me ~ N(0,5%031,)

1 G — (1)
t+1) _ . (t
wé )—w!(])—l—gg Awkx (12)
k=1

B. The Adaptive Model Poisoning through Episodic Loss
Memorization (a«—MPELM) Attack

In £-DPFL, we consider an attacker targeting m com-
promised nodes. The attacker aims to achieve the optimal
balance of attack impact u} = 6 + /2v0, and stealthiness
by adjusting the degree of poisoning v in each FL episode
and drawing adversarial noise 1, ~ N, (tq, g) from f;, as
expressed in (9). To understand how an intelligent attacker
can compute the required episodic degree of poisoning, v*) at
every t episode in FL, we introduce the concept of the adaptive
model poisoning process through episodic loss memorization
(a-MPELM) technique. Here, the episodic loss memorization
is an adaptive attack technique where the attacker adjusts
the poisoning intensity based on the validation losses across
episodes. «—MPELM enables attackers to deceive anomaly
detection algorithms by first calculating the FL. model loss
for any arbitrary -y value, and then adjusting  based on the
losses of subsequent episodes. By leveraging the memorization
of episodic loss patterns, attackers can dynamically fine-tune
their strategies. Specifically, the attacker increases the value of
v (i.e., increasing attack intensity) if the loss is relatively low
and decreases when the loss remains the same as previous.
When the loss increases, a—MPELM instructs the attacker to
halt injecting malicious noise temporarily to avoid triggering
early detection by anomaly detection systems. This adaptive
approach allows the attacker to systematically alter the attack’s

- w®

> AAwl()?

LDP-Local/

Edge Devices: Local Training ' Remote Server: Aggregation

Local differentially private federated learning (£-DPFL) architecture in smart grid network.
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intensity based on the observed model loss— making the mali-
cious activity blend seamlessly with legitimate operations. By
continuously adapting to the model’s performance, «—MPELM
can maintain the attack over multiple episodes without raising
suspicion. This method of episodic loss memorization and
adaptive poisoning is detailed in the following steps and the
pseudocode of a—MPELM is given in algorithm 2.

1) Choosing the Initial Degree of Poisoning: In the early
stages of Federated Learning (FL) training, model losses are
typically high but decrease as the system converges. Anomaly
detection systems may either exclude all models with high
losses or accept all, assuming the fluctuations are normal.
To exploit this, the attacker sets the initial degree of poi-
soning 7y close to the privacy budget ¢, ensuring poisoned
updates blend with benign ones and avoid detection. Unlike
static attacks, which apply a fixed poisoning level throughout
training, episodic loss memorization dynamically adjusts the
poisoning intensity + based on model loss patterns. This
approach balances the need to prevent an excessive surge in
gradient values in subsequent episodes while also retaining
a significant portion of the adversarial influence Eventually,
this adaptability allows the attack to evade detection by
continuously monitoring and fine-tuning ~ in response to the
evolving state of the model, contrasting with the predictable
nature of static attacks.

2) Calculating Episodic Loss: At the start of each FL
episode, the attacker calculates the validation loss for each
compromised node using its local dataset, ‘Vi(t), and global
model parameters, wét). The average validation loss across all
m compromised nodes at episode ¢ is:

Z [ (t)

This average is then used to compute the loss ratio,
which compares the current episode’s performance to previous
episodes to guide the attack’s next steps.

3) Computing Loss Ratio: The loss ratio ® is computed by
comparing the current average validation loss Z,(fl) with the
average of all previous validation losses Eﬁ; t), where (—t)
represents all episodes before ¢. The loss ratio is formally
expressed as:

R = E&Q/Zm VLY #£0;t>1 (13)
This ratio helps determine how the attack progresses based
on model loss changes over time, hence it is referred to as
the episodic loss memorization (ELM) process. Essentially, the
ELM is a strategy used by adversaries to iteratively adapt their
poisoning attacks based on feedback from the FL system. The
attacker records and analyzes the loss incurred across multiple
training episodes to refine the attack parameters for maximum
impact.

4) Updating Episodic Degree of Poisoning (v*)): The loss
ratio R serves as a crucial indicator of how much the current
global model’s performance deviates from previous episodes.
If & >> 1, it indicates significant divergence in the model

Algorithm 2: a—MPELM Technique. : degree of poi-
soning, 7(*): Episodic degree of p01son1n ‘V: Vali-
dation dataset, Egn). Current valid. loss, £): Current
avg. valid. loss, L : Previous avg. valid. loss, R:
Loss ratio, p: proportlonality factor

Input: w()
Output: y(t)
Data: {1} v o) % ("
1 initialize: v < 7o where Yo R €
2 for each t =1,2,...,T episode do
3 set: Eg,tl)<—0;£7{<—0
for each compromised node i = 1,2, ...,
measure: E,Et) — ﬂ(wét), ‘Vi(t))

calculate: £ = £ + EZ(.t)

m do

end
L)
Avg(mg )

750;15>1

current avg. loss: EsrtL) =

e X N e

avg. of episodic losses: E"f
10 Loss ratio: ® = Z,@/ES;”
11 episodic degree of poisoning:
0, if R >>1
Y+p-R-y, R <<1

¥—p-R -7, otherwise

12 Then, save 7 for the next episode as follows:

13 if v(®) £ 0 then v < () else

14 call: sub-processes to inject false noise with v(*)
into [25,?]?:‘1” to obtain [L( )]5;)1

4 =

15 append: Eﬁ,?
16 end

parameters, likely caused by excessive noise or other disrup-
tions. In this situation, further poisoning would worsen the
deviation, making the attack more detectable. Therefore, the
attacker halts the poisoning for that episode (7(*) = 0) and
resumes only when the model loss stabilizes.

Conversely, if ® << 1, it suggests the attack is too weak,
and the model continues to converge normally. In response,
the attacker increases the degree of poisoning according to the
loss ratio (y() =~ + p- & - 7). The proportionality factor p
ensures that the increase in poisoning is controlled, preventing
a drastic change that might raise suspicion.

For cases where ® =~ 1, the attacker slightly reduces the
poisoning intensity, aligning the updates more closely with
benign ones. This strategy ensures that the attack remains
stealthy, while gradually degrading the global model’s perfor-
mance over time- making detection difficult but still effective
in weakening the model.

VI. PROPOSED RL-ASSISTED DIFFERENTIAL PRIVACY
LEVEL SELECTION (rDP) TECHNIQUE

Drawing from the analysis of optimal DP-exploited attacks
in sections IV and V, it becomes evident that enhancing data
privacy through the DP mechanism, particularly by employing
substantial noise, could inadvertently create vulnerabilities
for extensive model poisoning attacks. To counter this, one
approach is to adopt a lower DP level, but this strategy
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might lead to diminished data privacy, thereby increasing
susceptibility to privacy breaches. Therefore, an optimal value
of privacy is desirable within a DPFL framework. We propose
to navigate this trade-off by intelligently adjusting the privacy
loss parameter, ¢, utilizing the RL technique.

A. Defense Objectives

The primary goal for defenders, or designers of Cls, is
to design a learning process that is resilient against the
types of attacks we have proposed. This requires a detailed
comprehension of DP parameters and the associated threat
landscape. Concurrently, it is crucial to identify and establish
an optimal value for the privacy loss parameter (¢*). Achieving
this balance is key to diminishing the potential attack surface
and curtailing the attack impact (uq).

We leverage DP parameters (e.g., privacy loss, information
leakage probability, etc.) and historical federated loss to model
our rDP defense as a countermeasure against a—MPELM
attack. The rDP technique aims to enhance FL system security
by dynamically adjusting DP noise. To accomplish this, it
focuses on— (1) dynamic adjustment: continuously monitors
and adjusts DP noise levels based on performance and attack
patterns, (2) optimal policy learning: leverages RL to find the
optimal DP levels that counteract attacks while maintaining FL
performance, and (3) detection of stealthy attacks: anticipates
adaptive attacks through loss calculation.

B. The Reinforcement Learning-based Differential Privacy
Level Selection (rDP) Algorithm

The proposed rDP process, pseudocoded in algorithm 3,
adopts a Q-learning approach [30]. Q-learning is based on an
action-value function, which predicts the expected utility or
benefit of executing a particular action in a given state.

1) State Space: We assume that the state is initialized as
soon the learning starts. We define the state space, denoted
as S = (my,fi,e), where m; encapsulates the array of
losses incurred by the attacker, f; represents the historical
federated loss data, and ¢ signifies the set of privacy loss.
In the context of designing the rDP algorithm, the attacker’s
loss set (my) is determined through a series of pre-conducted
experiments adhering to the attack methodology described
in section V-B. To ensure the representativeness of m;, we
utilize various values of the episodic degree of poisoning (7))
throughout the experiments. Conversely, the federated loss ( f;)
is computed by evaluating the global federated model in a
non-adversarial environment. Importantly, for the efficacy and
precision of the rDP algorithm, we measure both m; and f;
under consistent values of ¢ within the predefined loss set.

2) Action Space: Our approach adopts an event-driven
paradigm where the defensive agent is programmed to respond
upon the occurrence of new events. This agent continuously
monitors the current state of the federated environment, s € S,
to inform its decision-making process. We define the action
space, symbolized as A, which comprises three possible ac-
tions: increase, decrease, and static. To enhance the precision
of the agent’s decision-making capabilities, we allow for the
modulation of the privacy loss parameter, ¢, either by a single
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Algorithm 3: rDP process. m;: Attacker’s loss, fi:
Federated loss, e: Privacy loss set, S: State set, A:
Action set, 5: Reward func., r: Reward, a: Learning
rate, : Q-table, i: Action, s: State, 7: Policy
Input: my, f1,£,5,08
Output: Optimal privacy loss, €* < ¢
1 Function rDP (my, fi,€):
for ¢ in € do
Set of States, S; = (my, f1,€0)
Choose ¢ € A using epsilon-greedy policy
Observe Reward, 7,41 and State, s441
Compute: Q™% (s, i) + (1 — a) . Q(s¢,1¢)
+a.[re+ ¢ Qse41,9)]
Policy, 7(s) = "9 Q* (s, 1)

L —I-LREEN DR N7 B NS R ]

end
return i < 7*(s)

—
=5

or double unit increment or decrement, contingent upon the
prevailing state s € S. The agent then executes an action ¢
from the defined set of actions A.

3) Reward Space: In RL, the reward function plays a crucial
role in guiding the defensive agent towards achieving the
desired learning outcomes. It dynamically adjusts in each
episode based on the input data received. With regards to
safeguarding against the proposed attack, the defender’s goal is
twofold: (a) to minimize the maximum accuracy of the attack
while simultaneously (b) maximizing the accuracy of the
federated model. We assume that the maximum and minimum
thresholds are predetermined and regulated by the £-DPFL
system designer. The reward function, crucial for directing
the agent’s decisions, is formalized as follows:

max max
B =ty
m i
where m;"** and f;"" represent the maximum values of the
attack loss and federated loss, respectively, while 1, 12, and
13 are parameters that balance these factors. We acknowledge
that the reward function could theoretically be different than
(14). Nonetheless, our choice of [ is based on empirical
validation and theoretical considerations. It has been tailored
to our specific scenario to ensure robustness and effectiveness
in achieving the desired learning outcomes. Specifically, 3 is
designed in such a way that it can balance the objectives
of minimizing the attack’s accuracy while maximizing the
federated model’s performance. It dynamically adjusts the
reward in each episode based on the input data received.

The balance between exploration and exploitation is man-
aged through an epsilon-greedy policy [48], starting with
an exploration probability of 1.0 and gradually decreasing
this probability across episodes to a minimum threshold,
set at 0.05 in this study. The exploration probability of 1.0
ensures extensive initial exploration, allowing the RL agent to
gather diverse experiences and avoid premature convergence
to suboptimal policies. This probability is gradually decreased
to 0.05 to balance exploration and exploitation, enabling the
agent to leverage the knowledge it has acquired to make more
informed decisions. Moreover, for simplicity, we select the
maximum number of episodes as the stopping criterion.

1
+ 93— (14)
S
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Fig. 4. Adversarial impact for varying privacy loss (), degree of poisoning (v), and the number of malicious models (m).
TABLE III TABLE IV
DATASET DESCRIPTION HYPERPARAMETERS
Dataset Description Parameters Values Parameters Values
Number of measurement | 2,075,259 Optimizer Adamax K {100, 1000, 10000}
Data collection range Dec 2006-Nov 2010 Loss metric MSE n {30, 300, 3000}
Data missing percentage 1.25% Hidden layers 1) m {2.7. 70}
Data recording frequency | per minute Batch size 32 - 105, 0.7, 1.0}
C. Convergence Analysis of tDP Process Valid. size 20% 0 0.001
. . Activation ReLU ~ {1, 2, 3}
The convergence of our rDP algorithm is assessed by Early stop Enabled o 0.001

examining the average changes in the Q-values, denoted as
AQ(s, 1) for all AQ = Q™" (sy,4t) — Q(s¢,1t), where s € S
and i € A. The objective is to demonstrate that the Q)-value
in the rDP process converges to the optimal Q-value (Q*) as
defined by the Bellman equation in a stochastic environment:

Q*(s,8) = r(s,8) + C ™8> Plsyals, )Q" (se1,4) (15)

St+1

where 7(s,i) is the reward for taking the action i € A
that yields the highest expected return, and P(s;41]|s,4) is the
state transition probability. The expectation E(Q"" (s¢,it))
should converge to the optimal value Q*(s,) as defined in
(15). For simplicity, we focus on the deterministic case where
Q"™ (s, 1¢) converges to Q*(s,4), which is formulated as:

Q*(S,’L) = T(Sai) + C mgw Q*(St-i-hi)

If the average of AQ(s,i) approaches zero, the rDP process
is considered to be stable and effectively converging.

(16)

VII. EXPERIMENTAL ANALYSIS

This section presents an empirical evaluation of our pro-
posed a-MPELM attack model and its implications on FL
within an important CI framework: smart grid.

A. Dataset and Experimental Setup

For our empirical investigation, we utilize the Individ-
ual Household Electric Power Consumption dataset [49], a
comprehensive smart grid dataset. Essential attributes of this
dataset are outlined in Table III. Despite comprising approxi-
mately 1.25% missing entries, the dataset’s substantial volume
(2,075,259 records) renders it suitable for a practical demon-
stration of our model. The £-DPFL environment parameters
selected for experimentation are detailed in Table IV.

To experimentally evaluate our proposed attack and defense
policy, we use a smart grid dataset (Individual household
electric power consumption dataset [49]). Table III enlist
some of the important features of the dataset. For £-DPFL
environment, we select the parameters as stated in Table IV.
Experimental trials are conducted on a high-performance com-
puting setup, featuring a Lambda Tensorbook equipped with
an 11th Gen Intel(R) Core(TM) i7-11800H CPU operating at
2.30 GHz, an RTX 3080 Max-Q GPU, 64 GB RAM, and 2 TB
of storage. For software and programming environment, we
employ Python version 3.9.7 and PyTorch version 1.10.0+cpu.

B. Adversarial Impact Analysis

Fig. 4 demonstrates the impact of adversarial actions in
the absence of an anomaly detector, while Figs. 5-7 detail
the impacts under an anomaly detector. Fig. 4(a) indicate an
increase in validation loss (£) with enhanced privacy levels,
i.e., reduced privacy loss €, even in the absence of an attacker.
This observation reinforces the theoretical understanding that
adding more DP noise to enhance privacy leads to an increase
in loss. The presence of an adversarial agent further escalates
this effect, as shown in Fig. 4(b). Here, a global model with
a single compromised local model (i.e., m = 1) exhibits a
higher loss compared to a model with no compromised nodes
(m = 0), given the same number of clients and e-level.
This empirical data substantiates the hypothesis that system
performance deteriorates, marked by elevated loss when even
one malicious entity contributes adversarial DP noise.

1) Impact of the Degree of Poisoning: Fig. 4(c) and 4(d)
demonstrate that a higher degree of poisoning (y) increases the
validation loss (£), making the model sub-optimal. A lower
v (e.g., v = 2) results in minimal impact, akin to a non-
adversarial scenario (m = 0), while higher « values noticeably
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escalate the loss. However, excessively high ~ values render
the malicious models easily detectable by anomaly detectors.
To balance the attack impact and detection risk, the attacker
fine-tunes  to obtain () for each FL episode using the
a-MPELM process from section V-B. This adaptive attack
approach is tested against state-of-the-art anomaly detection
methods [26], [7]. We focus on recent detection techniques
(i.e., Norm, Accuracy, and Mix (Norm+Accuracy) detection
from [7]) for their operational similarity to earlier methods
(i.e., ERR, LFR, and Mix (ERR+LFR) detection in [26]), aim-
ing to validate the effectiveness of our attack model. We find
that the proposed a—MPELM attack outperforms a conventional
random malicious device (RMD) attack [7] in terms of detec-
tion accuracy and validation loss, particularly when evaluated
against Norm, Accuracy, and Mix (Norm+Accuracy) anomaly
detection algorithms, as illustrated in Fig. 5, Fig. 6, and Fig. 7.
In the evaluation, «—MPELM demonstrates a higher success
rate in evading detection and degrading system performance
over RMD attacks across these detection algorithms. In this
context, the greater the decrease in detection accuracy due to
a particular attack technique, the higher its efficiency.
Deceiving Norm detection. Norm detection, as defined by
[7], involves the aggregator calculating a comparison standard
for each local update. This standard is derived by averaging

all local model updates, excluding the update in qlzesti)on. For
t+1

JOURNAL OF IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, 2025

where d,,q; 1s the maximum squared Lo distance. The Norm
. — (),
detection accuracy for a model update Aw,, is:

norm

rate; =1—maz(0,e; — 51), (20)
where [3; is a predefined Norm detection benchmark. A model
update is classified as non-anomalous if ratel™™ = 1,

and anomalous otherwise. Detected anomalous models are
excluded from the aggregation into the global model.

In their evaluation of Norm detection, [7] utilized RMD
attack, where malicious participants submit randomly gener-
ated local model parameters. However, they did not define the
parameter boundary for these RMD updates. If this boundary
is very large, detection becomes more straightforward, poten-
tially leading to a high average Norm detection accuracy D7....
Conversely, a narrower parameter boundary may result in a
lower D7,.. To realize a practical RMD attack, we set this
boundary equal to the clipping threshold, C in our experiment.

In our experiments shown in Fig. 5, the Norm detection
accuracy (D7,..) decreases under our proposed attack with a
privacy loss of ¢ = 0.7. For example, with 30% malicious
participants (m = 0.3(n)) and a Norm detection benchmark
B1 = 1, DI, drops to 85.4% in our attack, compared to

92.2% in an RMD attack, thereby achieving an attack accuracy
improvement of (92.2% — 85.4% = 6.8%) (Fig. 5(a)). This

a specific noisy clipped local model update Aw iy, its pattern 151 cons1s(tlent for 102wer m\iglcmush paI\IItlclpa(rllt rat.los
comparison standard (Aw(t)zst) is computed as (m = 0. (n).an. m = 0.2(n)). en the Norm eteCt.lon
threshold f; is increased to 3, the pattern largely remains,
Aw X (t) ( ) except for m = 0.3(n), where initially high adversarial noise
ist o — 1 Z ix)- (7" makes our anomalous models easily detectable. However, as
adversarial noise growth slows down, the validation losses (L)
The process then involves calculating the squared Lo distance in our attack surpass those in the RMD attack (Fig. 5(g).
dz(-t) and determining a reference value e; as follows: Lower D7, correlates with higher £. This increase in loss
for 10%, 20%, and 30% malicious devices with both 8; =1
(f) ||A sz(tz 2 (18) and 31 = 3 is shown in Fig. 5(b)-(g). In all cases, our proposed
attack results in higher £ than both the ‘No Attack’ and
d” if d(t) d AwD 12 ‘RMD’ scenarios, signifying the effectiveness of a—MPELM
s i dy < dmaaAw; || :
e; = { lawi (19) attack technique to hamper the DPFL process.
dmaz, if d(t) > dmaz ||Aw(t) 2, Deceiving Accuracy detection. Accuracy detection, similar
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Fig. 5. Deceiving Norm detection: RMD attack vs our attack (¢ = 0.7).
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to Norm detection, computes a standard for comparison usin detection rate ratel°c is computed as
3
the same formula (17) as defined by [7]. However, instead of 1 £ 09
. . . — € 1T e
calculating the Norm distance, Accuracy detection measures ratelcCUTY — 2 > P (22)
. . . . . . T H
the difference in accuracy using a validation dataset. In this 1 if €2 < fa,

case, two global models are derived from the local model
@) . . .
update Aw;, and its comparison standard Awftf, and their
performance is assessed on the validation dataset. Given that
our experiment focuses on a regression task, we replace

accuracy tests with loss tests (mean squared error). Therefore,

. Ao ®) (t) (t) (t)
if the loss test results of Aw;, and Aw;; are £, and L,
respectively, then the loss difference is

0
" 1)

) o
AL = (imfﬁm Ml < L
i

(
it £ > £

7

The reference value ey is determined based on the maximum
loss difference: e; = maxr (AL®). Finally, the Accuracy

where (3o is a predefined Accuracy detection benchmark. A

local model update EDE;) is classified as non-anomalous if
rate;°® = 1, and anomalous otherwise. To test Accuracy
detection, [7] conducted a specialized malicious end device
(SMD)-based attack, where a group of malicious participants
returns trained local model parameters to modify the sample
label of a certain data category. However, our focus on
untargeted poisoning in a regression context led us to adopt the
RMD attack, setting its boundary to match our clipping thresh-
old for a more stringent comparison. Our results in Fig. 6(a)
show that the Accuracy detection algorithm’s accuracy (D5,
decreases more significantly under a—MPELM attack (with
v = 0.7) than the RMD attack. Particularly, we observe a
(86.8% — 74.2% = 12.6%) attack accuracy improvement for
a-MPELM attack over RMD attack in deceiving Accuracy
detection algorithm (refer to Fig. 6(a), m = 0.1(n) and
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B2 = 0.1). Concurrently, Fig. 6(b)-(g) illustrates an increase
in £ due to a higher rate of misclassification of local models.

Deceiving Mix (Norm+Accuracy) detection. In Mix detec-
tion, the methodologies of both Norm and Accuracy detections
are integrated. This approach entails the aggregator excluding
any local models flagged as anomalous by either the Norm
or Accuracy detection systems. Fig. 7 presents the efficacy
of Mix detection in the context of both our proposed attack
model and the RMD attack. The impact of our attack on the
Mix detection accuracy (D7 ) mirrors the effects observed in
both the standalone Norm and Accuracy detection scenarios.
For instance, «—MPELM achieves a (94.6% — 80.8% = 13.8%)
attack accuracy improvement as compared to RMD attack in
deceiving Mix detection algorithm, as illustrated in Fig. 7(a)
when m = 0.1(n), f1 = 3, and 2 = 0.3.

Changes in the degree of poisoning. Fig. 8 presents the
dynamic adjustments in the degree of poisoning () across
different FL episodes while countering the Norm, Accuracy,
and Mix detection methods. As depicted, v typically shows a
downward trend after several episodes. This decrease aligns
with the adaptive a—-MPELM process, particularly when the
loss ratio ® >> 1, leading to v(t) being set to zero, as outlined
in Algorithm 2 (lines 11-13). This results in some instances
where ~y remains constant across consecutive episodes. For
instance, in Fig. 8(a) (blue curve), there is no change in ~y
between episodes ¢ = 10 and ¢ = 14, illustrating the adaptability
of our poisoning strategy to the learning environment and de-
tection mechanisms. This adjustment of v is key to sustaining
the effectiveness of the attack while avoiding detection.

2) Impact of Attacker-Client Ratio: The ratio of attackers
to clients (m/n) in the network plays a crucial role in the
impact of an attack. A lower ratio means the global model
remains relatively close to its optimal state. Conversely, as this
ratio increases, the global model increasingly diverges from its
optimal configuration, and in some cases, may even begin to
diverge completely. This trend is evident in Fig. 5, Fig. 6, and
Fig. 7. In these figures, it is noticeable that the red lines, repre-
senting higher m /n ratios, diverge progressively from the cyan
lines, which depict scenarios with lower ratios of attackers
to clients. This observation highlights the significance of the
attacker-client proportion in determining the degree of impact
an attack has on the global model.

C. Performance Analysis of rDP Technique

In mitigating DP-exploited stealthy model poisoning at-
tacks, selecting the appropriate privacy level for nodes during
the design phase is crucial. Excessive privacy can deteriorate
model performance and enlarge the poisoning window, while
insufficient privacy may risk exposing sensitive operational
data. We conducted several experiments with varying RL
parameters to illustrate these effects, with the findings detailed
in Table V. The results indicate that for most discount factors ¢
(except ¢ = 1.00), the change in Q-value AQ(s, a) approaches
zero as learning concludes, regardless of the learning rate c.
However, the average global reward, R, significantly fluctuates
with changes in {. Optimal rewards are observed at a learning
rate « = 0.001 and a discount factor ¢ = 0.50, suggesting a
balanced consideration of both immediate and future rewards.
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TABLE V

PERFORMANCE ANALYSIS OF THE rDP TECHNIQUE

Learning rate, « | Discount factor, rDP values
Reward, R | Delta, AQ(s, 1)
¢=1.00 8475.33 4.13e — 00
o = 0.0l ¢ =0.50 13019.58 2.86e — 07
¢=0.20 11726.13 4.25e — 08
¢=0.15 10368.59 3.32e — 08
¢=1.00 9718.91 2.92e — 00
o = 0.001 ¢ =0.50 13142.54 6.24e — 04
¢=0.20 10190.45 1.63e — 04
¢=0.15 11249.85 2.94e — 04
¢=1.00 9246.74 2.14e — 01
o = 0.0001 ¢ =0.50 11803.06 1.77e — 04
¢=0.20 10974.27 9.15e — 05
¢=0.15 11031.96 1.05e — 04

1) Reward Evaluation: The average global reward is cal-
culated using the formula R = 22:1 r’. Fig. 9(a) shows the
accumulated reward with a discount factor of ( = 0.50 and
a learning rate of o = 0.001. As the number of episodes
increases, the RL agent gradually learns and converges to an
optimal policy, achieving a balance between privacy, utility,
and security. The results demonstrate that the policy stabi-
lizes around episode 100, maintaining a high reward level
(approximately 13142.54) thereafter. This suggests that the
agent consistently makes optimal decisions beyond this point.
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2) Q-value Evaluation: In alignment with the convergence
analysis outlined in section VI-C, the stability of our proposed
process is indicated by the average of AQ(s,a) approaching
zero. The results presented in Fig. 9(b) demonstrate that
AQ(s,a) gradually converges to zero after about 60,000
episodes, suggesting a stable learning process over time.

3) Assisting Attack Detection: The reward function 3, as
formulated in (14), incorporates variables like the attacker’s
loss (my), federated loss (f;), and privacy loss (g). Given
that the RL agent selects an action for each state, a standard
federated loss value f;’ for that state can be determined. When
the observed federated loss f{ for a particular state diverges
notably from f}, it can imply one of two scenarios:

e f7 < ff: This indicates the presence of large-scale
attacks, characterized by a high degree of poisoning (7).

o f > f7: This suggests either an uncompromised system
state or a poisoning attack of negligible intensity.

Thus, the rDP algorithm serves a dual purpose: (a) intel-
ligently selects the optimal privacy level during the design
phase, thereby reducing the attack surface, and (b) aids in de-
tecting attacks. Importantly, the privacy level selection via the
rDP technique can be performed offline through experiments
in the design phase of the £-DPFL process, enhancing its
utility in safeguarding CI operations against potential threats.

4) Comparative analysis with Byzantine-robust Aggregation
Technique- Krum [27]: Existing defense techniques (e.g.,
Krum, Trimmed Mean, Median) operate during the training
or learning phase by filtering outliers in local model updates
before aggregation. In contrast, the rDP mechanism operates
at the design phase of the FL process. Thus, rDP and aggre-
gation techniques like Krum, Trimmed Mean or Median are
not direct substitutes but complementary strategies addressing
different aspects of the problem. To address this, we con-
ducted experiments integrating Krum with rDP, demonstrating
how rDP complements existing Byzantine-robust aggregation
methods. Particularly, we compare the losses for “No Attack”
and “Attack (a—MPELM)” scenarios in both “With Krum” and
“Without Krum” FL environments, as shown in Fig. 10(a)
and (b). As can be perceived, the loss gap between attack
and non-attack scenarios narrows with Krum [27] due to their
outlier mitigation mechanisms. However, the absolute loss
increases across all scenarios due to the rejection of helpful
noisy updates. At lower privacy budgets (high noise levels),
this effect is amplified— highlighting the trade-off between
robustness and DP-induced performance degradation.

We then apply rDP in both "With Krum” and “Without
Krum” scenarios, as illustrated in Fig. 10(c) and Fig. 10(d).

When rDP is applied, it successfully identifies the optimal
privacy level (¢*) based on the designer’s requirements. Par-
ticularly, for the scenario ’[Without Krum]+rDP” (refer to
Fig. 10(c)), the trained rDP policy reinforces the conclusion
that ¢ ~ 0.9776 and ¢ ~ 1.3053 are two optimal choices,
where ¢ == 0.9776 offers high privacy and € =~ 1.3053 achieves
minimal ”No Attack” and “Attack («—MPELM)” loss. This
demonstrates that xrDP can mitigate the impact of a—MPELM
even without relying on additional robust aggregation tech-
niques. A similar trend can also be observed for the scenario
”[With Krum]+rDP” in Fig. 10(d).

In summary, without rDP, the designer cannot effectively
balance privacy and utility because there is no clear guidance
on which ¢ level to choose. By introducing rDP, we system-
atically analyze historical losses across different ¢ levels.

D. Limitations and Future Recommendations

A potential challenge in the DPFL process is the introduc-
tion of randomized noise for each client in every episode,
which can cause significant fluctuations in the learning process
compared to a non-DP environment. This may affect the
stability and convergence of the real-world FL systems. One
potential solution could be to limit model updates within a cer-
tain threshold, but excessive clipping might compromise DP’s
privacy protections. Therefore, further research is required to
explore methods to balance model update clipping without
undermining privacy to minimize these fluctuations.

Another potential limitation of this study is the timing of
the attacks. We initiated attacks on compromised models from
the outset of the learning process for simplicity. However,
real-world attacks could occur at various stages, potentially
adhering to similar adversarial principles. Future research
should investigate the impact of attacks initiated at different
stages of the learning process and develop strategies to detect
and mitigate these late-stage attacks.

The field of DPFL is rapidly evolving with numerous
advanced algorithms and future developments are anticipated.
Attackers might exploit new methods that employ Gaussian
noise for privacy in FL models. Consequently, defense strate-
gies must be continually updated and adapted to counteract
emerging threats as new DPFL techniques are developed.

VIII. CONCLUSION

In this paper, we investigate model poisoning attacks in
the context of Federated Learning (FL) and Differential Pri-
vacy (DP). We uncover that Gaussian noise, added for DP,
can be exploited by attackers to conduct stealthy, persis-
tent model poisoning in FL settings. Our proposed L£-DPFL
attack effectively reduces the accuracy of current detection
methods. In response, we introduce a novel defense strategy,
rDP, demonstrating its effectiveness in achieving optimal
policy convergence. This study is an effort to address model
poisoning threats in DPFL-driven ClIs, potentially catalyzing
further research in adversarial FL. Future work aims to explore
targeted model poisoning attacks using non-IID data.
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Fig. 10. Comparative analysis of rDP over Krum [27] (Attacker-Client Ratio (m/n) = 6.67%) . (a) No Attack v. Attack (a«—MPELM) without Krum, (b) No
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