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Abstract

Markov chain Monte Carlo (MCMC) requires only the ability to evaluate the likelihood,
making it a common technique for inference in complex models. However, it can have a
slow mixing rate, requiring the generation of many samples to obtain good estimates and an
overall high computational cost. Shrek MCMC is a multi-fidelity layered MCMC method
that exploits lower-fidelity approximations of the true likelihood calculation to improve
mixing and leads to overall faster performance. Such lower-fidelity likelihoods are commonly
available in scientific and engineering applications where the model involves a simulation
whose resolution or accuracy can be tuned. Our technique uses recursive, layered chains
with simple layer tuning; it does not require the likelihood to take any form or have any
particular internal mathematical structure. We demonstrate experimentally that Shrek
MCMC achieves larger effective sample sizes for the same computational time across different
scientific domains including hydrology and cosmology.

1 Introduction

Markov chain Monte Carlo (MCMC) is a workhorse of scientific and engineering computation. Most fre-
quently, it is employed to compute the posterior distribution of model parameters, based on observations.
The calculated distributions (as represented by samples) give estimates that can be used in calibration and
uncertainty quantification to aid in the generation of new scientific experiments, clarify the observability of
the model, and resolve scientific theories.

MCMC is popular because it requires only the ability to evaluate the model’s likelihood given a parameter
setting. Yet, this is also its weakness, as it has no additional knowledge of the problem setting to guide its
sampling effectively. Therefore, its mixing time (speed of generating effectively new samples) can be slow
and the overall algorithm computationally burdensome.

Methods such as Hamiltonian Monte Carlo and its variants (Duane et al., 1987; Neal, 1996; Hoffman &
Gelman, 2014) speed up mixing by adding auxiliary momentum variables, allowing longer steps to reduce
correlations between consecutive samples. Such methods require computing the gradient of the target distri-
bution with respect to the parameters, something that could be prohibitive when the distribution is evaluated
through lengthy simulation code. For instance, the cosmological simulation we use in our experimental re-
sults cannot be modified to produce gradients; the calculation is too long and involves nondifferentiable
steps. Therefore, methods like auto-differentiation cannot be applied, nor is there an analytic form for the
gradients.

Shrek MCMC speeds up the mixing time of MCMC by exploiting lower-fidelity models of the same problem.
Many engineering or scientific computational models can be run at multiple fidelities (by tuning a temporal or
spatial resolution, for example). By recursively employing MCMC chains, we can use the coarser resolution
models to guide the higher resolution MCMC chain. The result is a sampler for the target model that
converges faster and generates more effective samples per computation time, even considering the extra time
necessary to employ the lower-fidelity computations.
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2 Background

Markov chain Monte Carlo is a class of algorithms designed to sample from a complicated target distribution
by constructing an easy-to-simulate Markov chain such that the stationary distribution of the Markov chain is
the target distribution. Commonly, this target distribution is the posterior distribution of a set of parameters,
conditioned on observations. Let D be the observations and θ ∈ Θ ⊂ RR be the parameters. Assuming a
prior distribution on the parameters p(θ), the target posterior distribution of interest, π(θ | D), is obtained
through Bayes’ theorem:

π(θ | D) = L(D | θ)p(θ)
p(D) ∝ L(D | θ)p(θ) (1)

where L(D | θ) is the likelihood of the data, which in many scientific applications requires a lengthy simulation
to evaluate. We only require the ability to evaluate π(θ | D) up to a constant of proportionality, and therefore
the denominator of p(D) is safely ignored. That π(θ | D) is a conditional distribution is largely irrelevant
for MCMC, so we will just let π(θ) denote the distribution of interest (equal to π(θ | D) if the underlying
distribution is a posterior, but it could be any distribution over θ).

2.1 Metropolis-Hastings MCMC

We focus on the Metropolis-Hastings method for MCMC (MHMCMC) (Hastings, 1970). The (i+1)th sample,
θi+1, is generated based on the previous sample in the chain, θi, in a two-step process. First, a proposed next
state, θ̃i is generated from a proposal distribution, q(θ̃i|θi). Then, θ̃i is either accepted or rejected as θi+1

according to a carefully constructed acceptance probability. If accepted, θi+1 = θ̃i, otherwise θi+1 =θi. Often,
a normal distribution centered at θi is used as the proposal distribution q(θ̃i|θi), but almost any proposal
distribution can be used, subject to mild conditions (for instance, that q(θ̃i|θi) is positive everywhere). With
a chosen q(θ̃i|θi), the acceptance probability, A, for the transition θi� θ̃i is

A(θi� θ̃i) = min(1, r(θi� θ̃i)) (2)

where
r(θi� θ̃i) = π(θ̃i)

π(θi)
q(θi|θ̃i)
q(θ̃i|θi)

. (3)

Although the standard Metropolis-Hastings MCMC algorithm can be an easy way to sample from a posterior
distribution, it requires sufficient samples to be an effective approximation of the posterior distribution. When
the chain is slow to mix (due to a less-than-optimal proposal distribution), consecutive samples are highly
dependent and more samples must be taken to achieve a set representative of the true distribution. When
the evaluation of π(θi) (necessary for the calculation of Equation 3) is computationally expensive, this is
particularly problematic.

2.2 Related Work

Like Shrek MCMC, methods such as simulated tempering and coupled MCMC (Swendsen & Wang, 1986;
Marinari & Parisi, 1992; Altekar et al., 2004) use multiple chains. Samples are accepted or rejected by
evaluating the energy of the process and adjusting the temperature of the model. Two chains are run in
parallel at different temperatures, and the system swaps between different temperatures. Reversible jump
MCMC (Green, 1995; Al-Awadhi et al., 2004) also jumps between chains (of different dimensions). While
Shrek MCMC shares the notion of multiple chains, because it solves a different problem (to take advantage
of simulations that are orders of magnitude cheaper to evaluate), the resulting structure is very different.
Methods such as sequential MCMC or particle filtering (Liu & Chen, 1998; Doucet et al., 2001) use the
notion of approximations of the target by a large number of samples called particles that are propagated
across time using importance sampling. However, those are filtering frameworks and do not converge to a
stationary distribution. Thus, though appearing related in its structure, Shrek MCMC is quite different to
these methods.

More similar to Shrek MCMC, several previous methods have shown that replacing the proposal with an
approximation with generally high acceptance probability reduces the computational cost of the standard
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Metropolis-Hastings algorithm significantly. This idea was first proposed by Christen & Fox (2005); Fox &
Nicholls (1997) as a two-level MCMC method that tests the original proposal using a cheap approximation
to find moves in the chain that are more likely to be accepted. In other words, a candidate is accepted with
the likelihood of the approximate model before it is evaluated with the more expensive model. However,
this only performs a single check with a cheap approximation, and does not exploit it to run a full MCMC
subchain.

Multilevel Markov chain Monte Carlo (MLMCMC) (Dodwell et al., 2015) extended this idea taking inspira-
tion from the multilevel Monte Carlo method (Heinrich, 2001) for high-dimensional, parameter-dependent
integrals and Multilevel Monte Carlo Path Simulation (Giles, 2008) originally in the context of stochastic
differential equations in finance by subsampling at coarser levels: If the coarse proposal from the approx-
imation is rejected by the fine level, the coarse chain continues independently of the fine chain instead of
recursively starting the next coarse chain from the current sample of the fine chain. MLMCMC uses a user-
specified variable that is internal to the likelihood computation and shared across the levels (for instance,
the predicted observations to be compared with the true observations through a noise model). The samples
drawn from the coarse approximation are used to reduce the variance of this internal variable achieving
better proposals from the coarse fidelities.

Lykkegaard et al. (2020) proposed Adaptive Multilevel Delayed Acceptance (MLDA), a recursive version of
MLMCMC over multiple levels. Here, the coarse inner subchain used to generate subsequent proposals for
the current chain is initiated from the current sample from the outer chain again instead of independently
continuing the fine chain even if coarse proposal is rejected. MLDA also applies an Adaptive Error Model
(AEM) to account for discrepancies between the different fidelities. It takes the two-level AEM from Adaptive
Delayed Acceptance Metropolis Hastings (Kaipio & Somersalo, 2007; Cui et al., 2012; 2019) and extends it
by adding a telescoping sum of differences in the model output across multiple levels.

Cai & Adams (2022) proposed a multi-fidelity Monte Carlo method (MFMC) that uses randomized fidelities
as the approximate for the target fidelity. The algorithm does not converge to the true posterior, but the
resulting samples can be used to estimate expectations through a specific “sign-correction” formula. Our
method follows a hierarchy of levels in its sampling while also sampling from the true posterior and provides
a simpler alternative to previous multilevel methods.

2.3 Our Contributions

Our multi-fidelity layered MCMC algorithm, Shrek MCMC, has a similar structure to MLDA in terms of the
recursive layers and achieves a similar amount of effective samples across multiple chains of MLDA. However,
our method for mitigating the differences between approximations is simpler in construction and implemen-
tation than that of MLDA, does not require the identification of any internal variables of the distribution
to be sampled, and generates more effective samples in a shorter amount of time and computational cost.
We demonstrate this on real-world large scientific problems. We also show theoretical convergence rates and
prove ergodicity of the adaptation in layer tuning.

3 Multi-Fidelity Layered MCMC: Shrek MCMC

We consider a series of models, ordered by fidelity. For instance, we might have a model that evaluates a
differential equation numerically as the main part of the likelihood calculation (simulating forward in time);
the resolution of the spatial or temporal grid used to evaluate the model can be tuned to change its fidelity.
The highest fidelity model is our “true” model, from whose posterior we wish to sample. Our nested chains
use the coarser fidelity models as cheap approximations of this finest fidelity model to speed up mixing.

Where the standard Metropolis-Hastings algorithm uses a distribution q that proposes the next sample,
Shrek MCMC uses nested Markov chains as the proposal distribution. In a recursive fashion, each layer
uses the result of another MCMC chain with a coarser approximation as its proposal. The recent sample in
the current chain is the starting sample in the nested chain. The coarser chain runs for M iterations, with
each proposed sample evaluated by the likelihood of the cheaper layer. The last, Mth, sample of the coarser
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Figure 1: One sampling step from the finest layer with two coarse fidelities and two iterations per nested
chain. Refer to text in Section 3.1.

chain is proposed as the candidate for the next sample in the current chain. At the coarsest fidelity/layer, a
standard proposal distribution is used, for instance a normal distribution centered on the current point.

This avoids numerous expensive likelihood calculations in the fine fidelity that might end up rejected, and
it allows the proposal to generate samples that are more likely to get accepted by the finest fidelity, since
it was accepted by an approximation already. While the coarser chains have their own computational cost,
they can often be orders of magnitude faster to evaluate, thus leading to an overall savings in the running
time of the entire algorithm, as measured by the quality of the samples generated per computational time.

3.1 Algorithm Specification

Let θ ∈ RR be the set of parameters (over which we are sampling) and let j ∈ {0, 1, ..., J} be the fidelities
ordered in a decreasingly complex fashion (0 is the “true” model and J is the coarsest fidelity). We let πj(θ)
be the posterior distribution according to the jth fidelity model and qj(θ̃|θ) be the proposal distribution for
layer j. Here, θij is the ith sample in the current chain at layer j.

Algorithm 1 Shrek MCMC(θ0,N)
1: return ShrekChain(θ0,N,0)

Algorithm 2 ShrekChain(θ0
j ,n,j)

1: for i = 0, . . . , n− 1 do
2: if j = J then ▷ coarsest layer
3: Sample θ̃ij from qj(·|θij)
4: Accept θi+1

j = θ̃ij with probability A from Equation 2
5: Otherwise, reject and θi+1

j = θij
6: else
7: θ1

j+1, . . . ,θ
M
j+1 = ShrekChain(θij , M, j+1)

8: θ̃ij = θMj+1
9: Accept θi+1

j = θ̃ij with probability Aj from Equation 5
10: Otherwise, reject and θi+1

j = θij

11: return θ1
j , . . . , θ

n
j

In Shrek MCMC, the proposal distribution qj(θ̃ij |θij) for iteration i of a chain at layer j is another MCMC
chain of M steps targeting the (coarser) posterior πj+1(·), starting this nested chain at θij . The result of M
steps using a chain with stationary distribution πj+1(·) is the proposal for θ̃ij : qj(θ̃ij |θij). More algorithmically,
to generate θ̃ij from θij , we run the (coarser) MCMC algorithm at layer j + 1. We start with θ0

j+1 = θij and
continue the coarser MCMC sampler until θMj+1. We then set θ̃ij = θMj+1. At the coarsest layer, qJ(θ̃i|θi) is
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a standard simple proposal distribution. Figure 1 pictorially demonstrates this for J = 2 inner layers, each
with M = 2 steps.

With the sampling scheme so defined, it remains to construct the acceptance probability for each layer:
A0,A1, . . . ,AJ . We follow a standard Metropolis-Hastings method for every layer and therefore Aj =
min(1, rj(θij � θ̃ij)). At the coarsest layer, the ratio rJ(θiJ � θ̃iJ) is just as in Equation 3 because qJ is a
standard proposal distribution.

When j < J , the proposal distribution is from a Markov chain that obeys detailed balance. Therefore

qj+1(θij |θ̃ij)
qj+1(θ̃ij |θij)

=
πj+1(θij)
πj+1(θ̃ij)

0 ≤ j < J (4)

and thus

Aj(θij� θ̃ij) = min
(

1,
πj(θ̃ij)
πj(θij)

·
πj+1(θij)
πj+1(θ̃ij)

)
. (5)

Note this equation does not depend on M (the number of steps for the coarser chain at layer j + 1). While
this chain has almost certainly not mixed for small M , the ratio qj(θi

j |θ̃i
j)/qj(θ̃i

j |θi
j) is the same as if the chain

had completely mixed and the proposed new state, θ̃ij , were from the true posterior of the model at layer
j + 1. The values πj+1(θ̃ij) and πj+1(θij) were already calculated as part of the chain at layer j + 1 and
therefore do not take any additional computation time. Shrek MCMC is summarized in Algorithms 1 and 2.

3.2 Convergence

Shrek MCMC convergence is assured through standard Metropolis-Hastings convergence:
Definition 3.1. Proposal distribution qj(·|·) has full support iff (πj(θ̃) > 0 and πj(θ) > 0) → (qj(θ̃|θ) > 0).

Lemma 3.1. If the support of πj+1(·) is a superset of the support of πj(·) (i.e., πj(θ) > 0 only if πj+1(θ) > 0)
and qj+1(·|·) has full support, then qj(·|·) has full support.

Proof. Because qj+1(·|·) has full support, the support of qj+1(·|θij) is a superset of πj+1(·) for all θij that
would be considered. This further implies that there is a non-zero chance of accepting the proposed state
for all proposals within the support of πj+1(·). Because the support of πj+1(·) is a superset of the support
of πj(·), this means that qj(·|·) similarly has full support.

Theorem 3.1. If qJ(·|·) has full support, and πj(·) has the same support for all 0 ≤ j ≤ J , then Shrek
MCMC converges to samples from π0(·).

Proof. If qJ(·|·) has full support, by Lemma 3.1 and induction, q0(·|·) has full support. The acceptance ratio
for level 0 is constructed exactly according to the Metropolis-Hastings formula and therefore obeys detailed
balance. Because the proposal distribution has full support, the chain is ergotic. Together with standard
Metropolis-Hastings arguments, this means that Shrek MCMC converges to the target distribution.

3.3 Convergence Rate

We show a convergence rate for Shrek MCMC. We measure the distance to the stationary in terms of total
variation distance as follows.
Definition 3.2. The total variation distance between two probability measures ν1(·) and ν2(·) is

∥ν1(·) − ν2(·)∥ = sup
A

|ν1(A) − ν2(A)|.

The minorization condition of Markov chains can be used to measure convergence rate. For any Markov
Chain with a one step transition probability of p(θi → θi+1), we let pn(θi → θi+n) denote the corresponding
n step transition probability.
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Definition 3.3. A Markov chain on Θ satisfies the minorization condition if there exists an ϵ > 0, a positive
integer n, and a probability measure ν(.) such that

pn(θ0 → θn) ≥ ϵν(θn) ∀θ0, θn ∈ Θ. (6)

This ensures that a chain has a non zero probability of jumping to any subset of the state space regardless
of the starting point. With respect to the stationary distribution, the probability of transitioning from θ to
θ′ can be minorized by a lower bound such that p1

j (θ → θ′) ≥ ϵπj(θ′).
Lemma 3.2. Assume the minorization condition holds at the innermost level (j = J): p1

J(θiJ → θi+1
J ) ≥

ξJ · πJ(θi+1
J ) for some ξJ > 0. Then, there exists a minorized lower bound on levels j < J such that

p1
j (θij → θi+1

j ) ≥ ξj · πj(θi+1
j ) ∀θij , θi+1

j (7)

where ξj = (1 − (1 − ξj+1)M ) · min
θ

(
πj+1(θ)
πj(θ)

)
.

We call ξj the minorization constant for level j. This satisfies the necessary minorization condition of Roberts
& Rosenthal (2004). We apply Theorem 8 of the same paper. This allows us to get a quantitative bound
on the distance to the stationary of every level as stated in Theorem 3.2. The proof for Lemma 3.2 can be
found in the Appendix.
Theorem 3.2. Let pnj (θ0

j → ·) be the distribution for layer j with an invariant target probability πj(·). Shrek
MCMC is uniformly ergodic and converges as

∥∥pnj (θ0
j → ·) − πj(·)

∥∥ ≤ (1−ξj)n where ξj = (1− (1−ξj+1)M ) ·
min
θ

(
πj+1(θ)
πj(θ)

)
as in Lemma 3.2. Most critically, it holds for layer j = 0.

Proof. The results follow from the minorization condition established in Lemma 3.2.

3.4 Layer Tuning
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Figure 2: Posterior of different fidelities; coarse model is the small
angle approximation. See Section 4.1.

The algorithm above uses the coarser fi-
delities to guide the finer ones. Early in
the chain, this is useful for quickly driv-
ing the samples toward high-probability
regions. However, this mismatch between
the fidelities can cause problems later be-
cause it can steer the chain away from
high-probability regions in the fine fi-
delity model that do not overlap with
high-probability regions of the coarse fi-
delity model. Figure 2 demonstrates an
example of such partial, but not com-
plete, overlap in one of our examples. To
combat this, we present a simple modifi-
cation that does not require estimation of any internal variables of the probability models, nor estimation of
means or variances from multiple chains.

Recall πj(θj) is known up to a normalizing constant: πj(θj) = π̃j(θj)/Zj where π̃j(θj) is the unnormalized
distribution and Zj is the partition function. We modify the target distributions for coarser chains (and thus
the proposal distributions for all j > 0) as

ψj(θj) =
(
π̃j(θj) + ωj

)
/ζj(ωj) ∀ 0<j≤J (8)

where ζj(ωj) is the partition function of this new distribution which depends on ωj .1

1We assume the domain of θ, Θ, is of finite volume.
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We now use ψj(θj) in place of πj(θj) in Equation 5, therefore modifying the acceptance ratio for all 0<j≤J
as

Aj(θij� θ̃ij) = min
(

1,
ψj(θ̃ij)
ψj(θij)

·
ψj+1(θij+1)
ψj+1(θ̃ij+1)

)
. (9)

For the finest layer, things remain the same (or alternatively, ω0 = 0), because we do not want to change
the distribution of the overall sampler.

This effectively mixes the stationary distribution of the jth layer with a uniform distribution (we have added
a constant to the likelihood and then renormalized), encouraging the proposal to explore more widely than
the coarser layer would normally. While unsophisticated, we found it simpler to implement and compute
than other options and just as effective.

Instead of leaving (ω1, ω2, . . . , ωJ) as hyper-parameters, we use gradient descent to adapt them over the
course of the sampling. We adjust ωj+1 to minimize the Kullback-Leibler divergence between layers ψj and
ψj+1:

KL(ψj∥ψj+1) = E
θ∼ψj

[ln(ψj)] − E
θ∼ψj

[ln(ψj+1)] . (10)

This tries to make the coarser (approximating) distribution ψj+1 more similar to the distribution ψj . Because
the first term does not depend on ωj+1, the objective function is to maximize

Hj+1 = E
θ∼ψj

[
ln(ψj+1)

]
. (11)

Using Equation 8,
∂

∂ωj+1
Hj+1 = ∂

∂ωj+1

(
E

θ∼ψj

[ln (π̃j+1(θ) + ωj+1)] − ln ζj+1(ωj+1)
)

= E
θ∼ψj

[
∂

∂ωj+1
ln (π̃j+1(θ) + ωj+1)

]
− E
θ∼ψj+1

[
∂

∂ωj+1
ln (π̃j+1(θ) + ωj+1)

]
(12)

where the second step replaces the derivative of the log-partition function with the expected derivative of
the log-probability.

The first term is an expectation with respect to the distribution at the lower layer j. We assume that
the lower layer has mixed and therefore, the starting state for the chain at layer j + 1 is a sample drawn
from ψj . The second term is an expectation with respect to the distribution at this layer, j + 1. We let
the sample at the end of this chain after M steps approximate a sample from this distribution. This is
similar to the approximation employed by M -step contrastive divergence (Hinton, 2002). Although this is
not guaranteed to converge (Sutskever & Tieleman, 2010), in practice we have found it to work well. Thus,
the total derivative for the gradient ascent update is

∂

∂ωj+1
Hj+1 ≈ 1

π̃j+1(θ0
j+1) + ωj+1

− 1
π̃j+1(θMj+1) + ωj+1

. (13)

Note that these denominators are calculated during the MCMC chain and therefore the derivative requires
very little extra computation.

A single ωj is kept for each layer and is maintained across subchains at that layer. We use a learning rate
of 10−3 to adjust ωj for all experiments. An update is made on layer j once after each M -step subchain.

To make the innermost Gaussian proposal more robust, we adaptively update the covariance of the proposal
distribution as initially proposed in the AM algorithm (Haario et al., 2001). We use the history of chains
from the coarsest layer θ0

J , θ
1
J , . . . , θ

t
J to update the covariance for the inner most proposal distribution. By

using all previous states of the coarsest layer, the proposal distribution quickly adapts using the accepted
samples. This rapid start of adaptation ensures good mixing in the inner most layer which gives higher quality
candidate samples for the finer chains. We show the recursive algorithm with layer tuning adaptation added
in Algorithm 3. Here we update the gradient after M steps of each layer and use it in the acceptance
probability with ω mixed in as a uniform distribution to the target distribution.
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Algorithm 3 ShrekWithLayerTuning(θ0
j ,n,j)

1: for i = 0, . . . , n− 1 do
2: if j = J then ▷ coarsest layer
3: Sample θ̃ij from qj(·|θij)
4: Accept θi+1

j = θ̃ij with probability A from Equation 2
5: Otherwise, reject and θi+1

j = θij
6: else
7: θ1

j+1, . . . ,θ
M
j+1 = ShrekWithLayerTuning(θij , M, j+1)

8: θ̃ij = θMj+1
9: Update gradient of ωj+1 using ∂

∂ωj+1
Hj+1 from Equation 13

10: Accept θi+1
j = θ̃ij with probability Aj from Equation 9

11: Otherwise, reject and θi+1
j = θij

12: return θ1
j , . . . , θ

n
j

3.5 Ergodicity of Layer Tuning

We show Shrek MCMC with adaptive tuning of the proposals at each layer is ergodic. This can be shown
with diminishing adaptation and simultaneous uniform ergodicity.
Lemma 3.3. For layers 0 ≤ j < J , let γj ∈ Γj be the adaptations for the proposal at layer j or the chain
at level j + 1, i.e, γj = ωj+1 ↔ ψj+1(θ) ↔ pj+1(θ → ·) where Γj ∈ R and ψj+1 is the target at layer j + 1
with the layer tuning adaptation added. Let pj,γj

(θ → ·) denote the transition distribution of chain at level j
using adaptation γj, starting in state θ. Assume ∀j, ωj ∈

[
ω, ω

]
for some 0 < ω < ω, and, at the inner most

layer, there exists a minorization constant ξJ > 0 such that
∥∥pMJ,γJ

(θ → ·) − ψJ(·)
∥∥ ≤ (1 − ξJ)M . Then,

(a) Simultaneous uniform ergodicity: For all τ > 0. there exists n = n(τ) ∈ N such that∥∥pnJ,γJ
(θ → ·) − ψj(·)

∥∥ ≤ τ (14)

for all θ ∈ Θ and γj ∈ Γj.

(b) Diminishing adaptation: The amount of adaptation diminishes in probability with the number of
steps t in the adaptation as

lim
t→∞

sup
θ

∥∥∥pj,γt
j
(θ → ·) − p

j,γt+1
j

(θ → ·)
∥∥∥ = 0. (15)

Proof for Lemma 3.3 can be found in the Appendix.
Theorem 3.3. Shrek MCMC with an adaptive layer tuning parameter is ergodic.

Proof. We use Lemma 3.3 to show the conditions necessary in Theorem 1 of Roberts & Rosenthal (2007).
This shows that the adaptive algorithm is ergodic.

4 Experiments

We measure the efficiency of the MCMC methods tested using the effective sample size (ESS) (Ripley, 1987)
estimated across multiple chains as NESS = (N · K)/

(
1 + 2

∑2m+1
k=1

ρ(k)
)

where N is the number of samples, K is
the number of chains, ρ(k) is the lag-k correlation, and m is the largest value such that ρ(2m)+ρ(2m+1) > 0.
We compute ESS for each parameter for the “bulk” (entire distribution) and “tail” (largest and smallest 5%
of the samples) of the distributions.

We compare Shrek MCMC with standard Metropolis-Hastings (with proposal adaptation of Haario
et al. (2001)) and other multi-fidelity MCMC methods: Multilevel Delayed Acceptance MCMC (MLDA)
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(Lykkegaard et al., 2020), MLDA with Adaptive Error Model (AEM) (Cui et al., 2012; Lykkegaard et al.,
2020), Multi Level MCMC (MLMCMC) (Dodwell et al., 2015; Lykkegaard et al., 2020), and Multi-fidelity
Monte Carlo (Cai & Adams, 2022). We give more detail about the different methods used for comparison:

1. MLDA without any adaptation: Introduced by Lykkegaard et al. (2020), this method uses recursive
chains of approximations as proposals. However, there is no adaptation being done to “correct" the
approximations. Even Lykkegaard et al. (2020) note that without adaptation, the chains do not mix
well, and have poor effective sample sizes.

2. MLDA with AEM: Extended by Lykkegaard et al. (2020) in the same paper, this method uses a
similar structure to the above. They also use Adaptive Error Model (AEM) as a way to deal with
the discrepancies between the different layers which uses a telescoping sum of differences in the mean
of the approximations. They demonstrate with the subsurface flow model that MLDA with AEM
leads to good mixing and high ESS. We demonstrate similar results for two of our experiments. Our
subsurface flow model experiment uses the same fidelities as set up by the original authors; however,
we run it to collect more samples using a higher number of chains.

3. Multi Level MCMC (MLMCMC): This method was proposed by Dodwell et al. (2015) and was then
applied to MLDA. A quantity of interest, Q, is proposed that is related to the parameters of the
model. The samples drawn from the posterior are used to reduce the variance of Q. Since in MLDA,
samples are not only drawn from a “true” posterior, but also approximations, the samples from the
approximate levels are used to reduce the variance of Q. They state that it thus requires fewer
samples to achieve the same variance. Using a telescopic sum, the difference of Q estimates between
levels are used to correct Q with respect to the next coarser level. For the pendulum model, Q is
the mean of the outputs. For the subsurface flow experiment used by the original authors of MLDA,
Q is the hydraulic head at some fixed point (x, y) = (0.5, 0.45); that is, the model PDE is solved at
these points at each level using samples from the coarser approximate level.

4. Multi-Fidelity Monte Carlo (MFMC): This method was proposed Cai & Adams (2022). It uses a
continuum of models with increasing fidelity and has a single Markov chain with a random choice
of the fidelity, K, at each step. The fidelity K is part of the sampled state-space and therefore also
part of the proposal distribution and acceptance probability. We map K to a reasonable range of
fidelities for each experiment. For the pendulum model, we map K to the error tolerance of the
integrator, ϵ, as ϵ = e

K/10 + 10−6. For the subsurface flow experiment, we let the grid resolution
be equal to 10K (K is the sampled fidelity of this method) in order to map the resolution to the
fidelity range expected by the algorithm’s implementation.

For the MLDA-based methods, we use the authors’ implementations in the open-source probabilistic pro-
gramming package PyMC3 (Salvatier et al., 2016) by Lykkegaard et al. (2020) For MFMC, we use the author-
provided implementation. These implementations have significant computational overhead compared with
our implementation of Shrek MCMC. Therefore, we only measure the time taken in likelihood computation
(which is the same code for all methods).

We present three different experimental posterior sampling problems across different scientific domains: a
simple pendulum, a hydrology simulation that was used by prior methods as a benchmark, and a cosmology
simulation that stresses computational limits. Because of the computational expense of the cosmology
simulation, we are not able to collect a sufficient number of samples to get a reliable estimate of the effective
sample sizes. Instead, we compare our estimates to those in the cosmology literature.

For each experimental domain, we construct three fidelities by adjusting the relevant simulation parameter.
In all cases, we measure our abilities to sample from the highest fidelity (j = 0). For methods labeled
“(single),” there is a single higher fidelity layer (J = 1). For methods labeled “(double),” there are two
higher fidelity layers (J = 2): the one from the “(single)” experiments, plus one more that is even more
coarse. For the coarsest fidelity, a Gaussian proposal distribution is used with an adaptive covariance matrix.
In the pendulum and cosmology experiments, this normal distribution is reflected to keep parameters within
their respective ranges. Shrek MCMC can be extended beyond J = 2 layers. However, just two layers
improves over the standard MCMC and other multi-level methods significantly. Layers’ costs should be
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α L
acceptance

rate total
samples

bulk
ESS/s

tail
ESS/s mean sd bulk

ESS/s
tail

ESS/s mean sd j = 0 j = 1 j = 2

MCMC 21.43 29.94 0.953 0.492 17.94 29.94 1.265 0.355 0.29 100000
Shrek MCMC(single) 52.47 58.42 1.081 0.019 45.85 54.95 1.372 0.016 0.98 0.24 60000
AEM MLDA (single) 39.41 53.91 1.064 0.062 42.20 52.24 1.371 0.051 0.98 0.27 50000
MLMCMC (single) 25.03 34.43 1.044 0.291 21.54 32.99 1.351 0.167 0.92 0.32 44500

MLDA (single) 11.64 1.49 1.059 0.041 15.36 7.73 1.361 0.022 0.91 0.31 45000
Shrek MCMC(double) 64.26 72.10 1.086 0.001 56.68 68.20 1.374 0.009 0.99 0.86 0.29 35000
AEM MLDA (double) 56.92 65.53 1.085 0.006 50.95 58.51 1.375 0.003 0.98 0.89 0.3 25000
MLMCMC (double) 33.82 37.05 1.049 0.015 33.09 39.94 1.361 0.015 0.90 0.81 0.28 25500

MLDA (double) 10.01 7.54 1.053 0.035 4.96 12.99 1.362 0.024 0.86 0.72 0.24 30000
MFMC 1.075 0.057 1.348 0.132 0.46 370000

(a) Simple Pendulum

θ1 θ2 θ3
acceptance

rates total
samples

bulk
ESS/s

tail
ESS/s mean sd bulk

ESS/s
tail

ESS/s mean sd bulk
ESS/s

tail
ESS/s mean sd j = 0 j = 1 j = 2

MCMC 5.35 7.81 -0.457 0.0037 5.49 8.04 0.466 0.0036 5.63 8.19 0.076 0.0034 0.27 10000
Shrek MCMC (single) 8.74 11.99 -0.460 0.0030 8.58 11.81 0.467 0.0036 8.63 11.58 0.076 0.0028 0.98 0.26 8365
AEM MLDA (single) 7.77 4.67 -0.459 0.0032 6.96 4.29 0.466 0.0033 8.16 6.24 0.076 0.0030 0.99 0.29 4100
MLMCMC (single) 4.35 5.86 -0.460 0.0028 4.37 3.27 0.465 0.0031 5.29 6.49 0.077 0.0021 0.93 0.32 8000

MLDA (single) 3.65 1.52 -0.463 0.0035 4.78 1.56 0.490 0.0036 3.33 3.02 0.075 0.0031 0.87 0.34 8250
Shrek MCMC (double) 15.49 21.35 -0.460 0.0026 15.141 19.69 0.469 0.0026 15.07 19.76 0.077 0.0023 0.99 0.95 0.3 6500
AEM MLDA (double) 13.29 14.70 -0.460 0.0035 12.32 13.22 0.468 0.0035 12.70 14.45 0.077 0.0033 0.99 0.93 0.24 2285
MLMCMC (double) 8.46 10.49 -0.459 0.0027 8.04 9.13 0.468 0.0030 7.47 5.81 0.077 0.0024 0.92 0.89 0.31 6000

MLDA (double) 4.48 5.05 -0.461 0.0036 5.33 6.60 0.469 0.0033 5.28 7.35 0.076 0.0030 0.93 0.91 0.27 6350
MFMC -0.475 0.026 0.418 0.041 0.102 0.003 0.39 5700

(b) Subsurface Flow model

Table 1: Mean ESS for bulk and tail distributions across 50 runs for 10 chains each, and mean value of each
parameter with std error across all 500 total runs are listed. Average acceptance rates are listed per layer
and the total samples are based on the average cost of likelihood evaluations per sample per method. Each
chain is run for a total of 1000 seconds.

roughly orders-of-magnitude different in computational costs. For these examples, J=2 is the limit of how
many layers can practically be constructed with orders-of-magnitude different computational costs.

4.1 Simple Pendulum

The equation of motion for a pendulum of length L, mass M , and initial angle α0 is α̈ = − (g/L) sinα.
Our goal is to sample from the posterior of the distribution the two parameters θ = (L,α) conditioned on
the observations of α at three irregularly spaced times during the motion: α(1) = −0.85, α(2.3) = 0.9,
α(5.0) = 0.95. Observations of these angles are assumed to be corrupted by Gaussian noise with known
standard deviation: σ = 0.1. Different fidelities correspond to adjusting the error tolerance of an adaptive
Runge-Kutta 4(5) ODE integrator (10−3 or 10−6 in our experiments) using Dormand & Prince (1980) with
stepsize control and dense output (Hairer et al., 2000). As a separate coarsest layer of approximation, we
use the small angle approximation (which does not hold for the observations), sin(α) ≈ α, reducing the
equation of motion to a simple harmonic motion which can be solved analytically as α(t) = α0 cos(t

√
g/L).

The difference between the finest fidelity posterior and this small angle approximation is shown in Figure 2.

Results We ran 10 chains of the finest fidelity for all methods. Nested subchains ran for M = 5 steps. We
replicated this experiment (of 10 chains) 50 times. Table 1a summarizes the mean effective sample size per
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Figure 3: Pendulum Model: ESS for bulk and tail across 50 runs (mean and std. dev.) for single and double
layers of nesting.

second (ESS/s) and the average mean of the parameters across all 500 chains with the standard deviation
along with the acceptance rates for every layer. Figure 3 shows ESS (across all 10 chains) as a function
of computation time for each method, with the total number of samples (N) generated in 1000 seconds.
The standard deviations are plotted as (barely visible) vertical bars. For the sake of readability, we have
separated our plots to show how each method performs with one level of nesting (single) and two levels of
nesting (double).

We note that the MFMC method obtains significantly more samples in the same time budget. This result
arises from its randomized fidelity selection, which collects samples at low-fidelity evaluations more frequently
than other methods. The samples from this method are not from the true posterior, but rather can be
corrected to estimate an expectation (like the mean). Therefore, we do not list the effective samples in the
table, as they are not samples from the true posterior. However, for comparison, the average bulk and tail
ESS/s for 50 runs of 10 chains each measured for parameters [α, l] are [24.80, 20.46] and [26.52, 30.61] for
MFMC.

All methods are able to improve by using more fidelities. Our Shrek MCMC method is consistently and
significantly better than the other methods (including the best one, MLDA with AEM as shown in the
table) in terms of ESS/s in both the bulk and tail of the distribution. The acceptance rates for the multilevel
methods indicate that while the coarsest level accepts about a third of the samples (consistent with Gelman
et al. (1996)), the proposed sample from that level is accepted by the finer levels frequently since it was
already accepted by an approximate coarse level. The mean of the parameter across different runs of the
standard MCMC has a higher standard deviation compared to the other multilevel methods suggesting that
some runs of MCMC do a poor job at finding the modes in the posterior. Shrek MCMC produces more
samples in the same amount of time compared to its competing method MLDA reflecting that our sampler
requires fewer likelihood evaluations per step.

Figure 4 shows the distributional distance to the true distribution as a function of number of samples,
averaged over 500 chains. The true mean and standard deviation are unknown for all the experiments in the
paper, and measuring the distance between a multi-dimensional distribution which can be evaluated (only
up to a normalizing constant) and a distribution represented by samples is non-trivial. However, we have
analyzed the 1-dimensional marginals of the pendulum model in the following way. We evaluate the true
unnormalized distribution on a grid, normalize it, project it to the marginal of interest and then treat it as
(weighted) samples for a sample-to-sample Wasserstein distance between it and the samples from the MCMC
methods. As we refine the grid, the distances become smaller (for almost all methods). We refine the grid
until these distances stabilize, resulting in about a 1000-by-1000 grid (1 million llh evaluations). From the
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Figure 4: Wasserstein distance to true distributions for the pendulum model.

figure, it is clear that for both the parameters, Shrek MCMC ends up with the smallest Wasserstein distance
to the true distribution.

4.2 Estimation of Soil Permeability in Subsurface Flow

We consider a simple problem in subsurface flow modeling (Dodwell et al., 2015). This model was also used
to evaluate the MLDA methods by the original authors (Lykkegaard et al., 2020), and we did not modify
the code used by MLDA (except to increase the number of chains and measure time).

The classical equations governing (steady state) single–phase subsurface flow consist of Darcy’s law coupled
with an incompressibility condition:

w + k∇p = g and ∇ · w = 0 (16)

subject to suitable boundary conditions. All quantities are fields over D = [0, 1]2 ⊂ R2 for these experiments.
Here p denotes the hydraulic head of the fluid, k is the permeability tensor, w is filtration velocity (or Darcy
flux) and g is the (known) source term.

We are interested in the permeability given observations (with known-variance Gaussian noise) of the hy-
draulic head at 16 regularly spaced points in D. k is simplified to be the gradient of a random scalar field.
The log-Gaussian scalar field is parameterized with a truncated Karhunen-Loéve (KL) expansion (to three
terms, following Dodwell et al. (2015)). These three parameters (θ) have a standard normal prior and we
sample from their posterior.

Computing the likelihood involves solving a partial differential equation (PDE) with known boundary con-
ditions for a given θ and comparing the results for p at the observation points. The fidelities correspond to
different grid resolutions for the PDE solver: 120 × 120 (highest), 30 × 30, and 10 × 10 (coarsest).

Results Table 1b summarizes the same statistics for this model with the same set-up as the pendulum
experiments. Figure 5 shows ESS (across all 10 chains) as a function of computation time for each method.
In term of ESS/s, our method improves over the standard MCMC and outperforms the multilevel methods
for the same amount of likelihood computational budget, especially in the tail of the distribution. All
methods converge to similar means of the parameters with low standard deviation among chains. We

12



Under review as submission to TMLR

0

5000

10000

Bu
lk

ES
S

θ1 θ2 θ3

500 1000
time (seconds)

0

5000

10000

Ta
il

ES
S

500 1000
time (seconds)

500 1000
time (seconds)

MCMC Shrek MCMC (single)
MLDA AEM (single)

MLMCMC (single)
MLDA (single)

(a) Single

0

10000

20000

Bu
lk

ES
S

θ1 θ2 θ3

500 1000
time (seconds)

0

10000

20000

Ta
il

ES
S

500 1000
time (seconds)

500 1000
time (seconds)

MCMC Shrek MCMC (double)
MLDA AEM (double)

MLMCMC (double)
MLDA (double)

(b) Double

Figure 5: Subsurface flow Model: ESS for bulk and tail across 50 runs (mean and std. dev.) for single and
double layers of nesting.

note that MFMC collects fewer number of samples compared to other methods since each sample requires
multiple log likelihood calculations in the same high fidelity to update K, leading to significant add up of
computational costs. For MFMC, the estimated mean ESS/s for bulk and tail for parameters [θ1, θ2, θ3] are
[0.128, 0.081, 0.710] and [0.227, 0.161, 1.107]. But, again, the samples from MFMC were never intended to by
interpreted as from the true distribution.

4.3 Structure Formation in the Universe with N-body Gravitational Simulation

An important problem in modern-day cosmology is to generate theoretical models of the Universe on very
large scales (tens of Mpc across) that can be compared to observations. Bayesian inference allows cosmologists
to measure quantities of fundamental physics significance, such as the nature of dark energy and dark
matter (Peebles, 1980). The theoretical models needed for next generation telescopes, such as euclid
(Amendola et al., 2018) and the Roman Space Telescope (wfirst) (Spergel et al., 2013), are based on
expensive numerical simulations, some of which require many days of computer time for each evaluation.
For such a computationally expensive model, we show the efficacy of Shrek MCMC as compared with the
standard Metropolis-Hastings algorithm and MLDA.

One of the most frequently used summary statistics is the galaxy power spectrum, P gg (a bold P is a power
spectrum, not a distribution): the two-point clustering of galaxies in Fourier space as a function of the
wavenumber scale, k. We use a slightly simplified model for the galaxy power spectrum for (relative) ease of
computation. We perform a forward simulation which starts from a given set of cosmological parameters and
predicts the galaxy power spectrum. It works by following the evolution of the Universe under the influence
of gravity, from its beginnings in an almost uniform density state to the diverse collection of galaxies sitting
in dark matter potentials observed today.

We sample from the posterior density of four cosmological parameters:

θ1 The dimensionless Hubble constant, h, which characterizes the Universal expansion rate and thus
the recession velocity of distant galaxies. A redshift zero galaxy at distance d Mpc recedes at a
speed v = H0d, where H0 = h × 100 km s−1Mpc−1. Measuring h is of importance to understand
dark energy.

θ2 The dimensionless total matter density, 0 < Ω0 < 1. Ω0 is the energy density of matter as a function
of the critical density. Ω0 is important because it can be used to infer the density of dark matter.
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θ3 The dimensionless scalar perturbation amplitude, As, of the primordial fluctuations at the wavenum-
ber k = 0.05 Mpc−1. As is of interest because it connects to the uncertain high energy physics of the
Early Universe. Larger values of As correspond to a clumpier early Universe and so lead to larger
P gg.

θ4 The dimensionless linear bias, b, which is used to shift the amplitude of our simulated matter power
spectrum to match the amplitude of the galaxy power spectrum. This is to account for the difference
between observed galaxies and dark matter (which is used by the forward model):

P model(θ) = b2 · P dm(h,Ω0, As), (17)

where b is the scale-independent linear bias and P dm is the simulated dark-matter power spectrum
directly computed from the output density field of FastPM.

The posterior density is conditioned on the galaxy power spectrum from SDSS-III Baryon Oscillation Spec-
troscopic Survey (BOSS) Data Release 12 (DR12) as our observational data source (Dawson et al., 2013;
Alam et al., 2017). We have used a subset of the BOSS data from the North Galactic Cap (NGC) at z = 0.38,
which includes ∼ 106 galaxies, from Ivanov et al. (2020).

The likelihood function is a multivariate Gaussian between the galaxy power spectrum from BOSS, P gg,
and the galaxy power spectrum from the forward model, P model(θ):

ln L(θ) = −1
2(P model(θ) − P gg)⊺C−1(P model(θ) − P gg) + k. (18)

C is the covariance matrix of the galaxy power spectrum, also estimated observationally.

The most expensive part of the forward model, evolution under gravitational force, is computed using FastPM
(Feng et al., 2016). FastPM has a couple of tunable fidelity parameters. The size of the region simulated
controls the amount of data available and may have a non-linear effect on the accuracy of the result. We
thus fix the size of this region to 1024 Mpc/h and instead change the number of particles. More particles in
the simulation mean higher resolution, more accurate power spectrum at higher wavenumber k, and thus the
likelihood function is higher fidelity. For N-body simulations, the compute time usually scales as N logN ,
where N is the number of particles. Thus a simulation with a 5123 number of particles is ≃ 80 times more
expensive than a 1283 simulation. We therefore set the fidelities by only adjusting the number of particles
used in the simulation to be 512 (highest), 384, and 256 (coarsest). Note this calculation is distributed across
20 cores (using MPI) and therefore a saving of 1 hour corresponds to 20 core-hours.

We compare our estimated distributional means to previous computations on the same data. For the param-
eters h and Ω0, we compare to the means reported by Ivanov et al. (2020) on the same data using their own
MCMC simulation (h = 0.661 and Ωm = 0.290). We have only a single linear bias term, compared with the
multiple such terms of Ivanov et al. (2020). Therefore, we can compare neither b nor As (which is heavily
related to b) to their results. Instead, we measure As against the best fit value from the Planck Satellite
(Aghanim et al., 2020), As = 2.09 and b = 2, consistent with comparable BOSS measurements Ivanov et al.
(2020). While these are modes (and not means), they are the best independent estimates we can obtain.

Results Figure 6 shows that the Shrek MCMC methods converge to the mean values from previous lit-
erature better than the standard Metropolis Hastings method using fewer samples and less time. The As
parameter has slightly strange behavior. We can still see better convergence of our methods. However,
note that the best-fit value of As we are taking as “ground truth” is measured (with error) from a different
dataset, and thus is likely not the true mean of our posterior. Many large scale structure experiments prefer
a lower value of this parameter than Planck, a feature known as the S8 tension (Abdalla et al., 2022). The
pairwise plots of the posterior can be found in the Appendix in Figure 9. From the posteriors, it is clear
that Shrek MCMC is better at approximating the modes of the distribution as compared to MCMC. Figure
7 shows the trace plot for a random run of MCMC and Shrek MCMC. Our method shows better mixing
than MCMC and is less likely to reject proposed samples.
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5 Summary

Many scientific and engineering problems involve simulations or solving differential equations. In this paper,
we present an efficient multi-fidelity layered MCMC that exploits the ability to reduce the accuracy of
models leading to approximations of the posterior. In a recursive, nested fashion, these approximations act
as proposals for MCMC-based inference. We add layer tuning that successfully encourages the approximate
proposals to explore the distribution well. We demonstrate with experimental results using models from three
different scientific domains with varying costs that out method, Shrek MCMC, is simple, and yet produces
more efficient samples than existing adaptive multilevel MCMC methods with the same computational
budget.
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A Convergence Rate Proofs

We show proofs for convergence rates in the main paper. We first use Lemma A.1 to show that after M
steps of a coarse chain, we can obtain a minorized lower bound that can be recursively used in its finer layer.
Lemma A.1. Let pj(· → ·) be the transition distribution of the Markov chain at level j with an invariant
target distribution πj(·). For any level j, if there exists a ξj > 0 such that p1

j (θ0
j → θ1

j ) ≥ ξjπj(θ1
j ) for all

θ0
j , θ

1
j ∈ Θ, then

pMj (θ0
j → θMj ) ≥

(
1 − (1 − ξj)M

)
πj(θMj ) ∀θ0

j , θ
M
j ∈ Θ (19)

Proof. We prove this using induction. We can verify the base case for k = 1 such that p1
j (θ0

j → θ1
j ) ≥

(1 − (1 − ξj)1)πj(θkj ) = ξjπj(θ1
j ). This is held by the assumption made in the lemma.

Assume using the induction hypothesis that, pkj (θ0
j → θkj ) ≥ (1 − (1 − ξj)k)πj(θkj ). We need to show that

pk+1
j (θ0

j → θk+1
j ) ≥ (1 − (1 − ξj)k+1)πj(θk+1

j ).

Note pkj (θ0
j → θkj ) can be written as pkj (θ0

j → θkj ) = ϕkπj(θkj )+(1−ϕk)rj(θkj | θ0
j ), where ϕk is the probability

that the chain couples to the stationary distribution in k steps, and rj(θkj | θ0
j ) is the remaining distribution

that depends on θ0
j .

pk+1
j (θ0

j → θk+1
j ) =

∫ [
pkj (θ0

j → θkj ) · p1
j (θkj → θk+1

j )
]
dθkj

=
∫
p1
j (θkj → θk+1

j )
[
ϕkπj(θkj ) + (1 − ϕk)rj(θkj | θ0

j )
]
dθkj

=
∫
ϕkπj(θkj )p1

j (θkj → θk+1
j )dθkj +

∫
(1 − ϕk)rj(θkj | θ0

j )p1
j (θkj → θk+1

j )dθkj

We know ϕk ≥ 1 − (1 − ξj)k. Thus,

≥ (1 − (1 − ξj)k)πj(θk+1
j ) + (1 − ξj)k

∫
rj(θkj | θ0

j )p1
j (θkj → θk+1

j )dθkj

Replacing p1
j (θkj → θk+1

j ) between two consecutive samples with the base assumption,

≥ (1 − (1 − ξj)k)πj(θk+1
j ) + ξj(1 − ξj)k

∫
rj(θkj | θ0

j )πj(θk+1
j )dθkj

= (1 − (1 − ξj)k)πj(θk+1
j ) + ξj(1 − ξj)kπj(θk+1

j )
= (1 − (1 − ξj)k+1)πj(θk+1

j )

Therefore using proof by induction, we have that pMj (θ0
j → θMj ) ≥ (1 − (1 − ξj)M )πj(θMj ).

Lemma 3.2. Assume the minorization condition holds at the innermost level (j = J): p1
J(θiJ → θi+1

J ) ≥
ξJ · πJ(θi+1

J ) for some ξJ > 0. Then, there exists a minorized lower bound on levels j < J such that

p1
j (θij → θi+1

j ) ≥ ξj · πj(θi+1
j ) ∀θij , θi+1

j (7)

where ξj = (1 − (1 − ξj+1)M ) · min
θ

(
πj+1(θ)
πj(θ)

)
.

Proof. The transition kernel is given by

p1
j (θij → θi+1

j ) = Aj(θij → θi+1
j ) · qj(θi+1

j |θij) + δ(θi+1
j − θij)

∫ (
1 − Aj(θij → θ′

j)
)
qj(θ′

j |θij) dθ′
j

≥ Aj(θij → θi+1
j ) · qj(θi+1

j |θij)
= Aj(θij → θi+1

j ) · pMj+1(θ0
j+1 → θMj+1)
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The sample, θi+1
j is proposed using the Mth sample from the j + 1 chain, therefore is the same as θMj+1.

Thus, from Lemma A.1,

≥ Aj(θij → θi+1
j ) · (1 − (1 − ξj+1)M ) · πj+1(θi+1

j )

= min
(

1,
πj(θi+1

j )
πj(θij)

·
πj+1(θij)
πj+1(θi+1

j )

)
· (1 − (1 − ξj+1)M ) · πj+1(θi+1

j )

Let r(θ) = πj+1(θ)
πj(θ) . Then,

= min
(

1,
r(θij)
r(θi+1

j )

)
· (1 − (1 − ξj+1)M ) · r(θi+1

j ) · πj(θi+1
j )

= (1 − (1 − ξj+1)M ) · min
(
r(θi+1

j ), r(θij)
)

· πj(θi+1
j )

≥ (1 − (1 − ξj+1)M ) · min
θ

(r(θ)) · πj(θi+1
j )

= ξj · πj(θi+1
j )

where ξj = (1 − (1 − ξj+1)M ) · min
θ

(
πj+1(θ)
πj(θ)

)
.

Lemma 3.3. For layers 0 ≤ j < J , let γj ∈ Γj be the adaptations for the proposal at layer j or the chain
at level j + 1, i.e, γj = ωj+1 ↔ ψj+1(θ) ↔ pj+1(θ → ·) where Γj ∈ R and ψj+1 is the target at layer j + 1
with the layer tuning adaptation added. Let pj,γj

(θ → ·) denote the transition distribution of chain at level j
using adaptation γj, starting in state θ. Assume ∀j, ωj ∈

[
ω, ω

]
for some 0 < ω < ω, and, at the inner most

layer, there exists a minorization constant ξJ > 0 such that
∥∥pMJ,γJ

(θ → ·) − ψJ(·)
∥∥ ≤ (1 − ξJ)M . Then,

(a) Simultaneous uniform ergodicity: For all τ > 0. there exists n = n(τ) ∈ N such that∥∥pnJ,γJ
(θ → ·) − ψj(·)

∥∥ ≤ τ (14)

for all θ ∈ Θ and γj ∈ Γj.

(b) Diminishing adaptation: The amount of adaptation diminishes in probability with the number of
steps t in the adaptation as

lim
t→∞

sup
θ

∥∥∥pj,γt
j
(θ → ·) − p

j,γt+1
j

(θ → ·)
∥∥∥ = 0. (15)

Proof. (a) Consider layer J − 1. Using Theorem 3.2,∥∥∥pMJ−1,γJ−1
(θ → ·) − ψJ−1(·)

∥∥∥ ≤ (1 − ξJ−1)M where ξJ−1 = (1 − (1 − ξJ)M ) min
θ

(
ψJ(θ)
ψJ−1(θ)

)
From the definition of layer tuning,

= (1 − (1 − ξJ)M ) min
θ

(
(π̃J(θ) + ωJ) · ζJ−1(ωJ−1)
(π̃J−1(θ) + ωJ−1) · ζJ(ωJ)

)
= (1 − (1 − ξJ)M ) min

θ

(
(π̃J(θ) + ωJ)

(π̃J−1(θ) + ωJ−1)

)(
Z + ωJ−1 · V
Z + ωJ · V

)
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where ζ is the partition function of the new distribution that depends on ω, Z is the partition
function of the original distribution, and V is the volume of Θ. With the bounds for ω from the
assumption,

≥ (1 − (1 − ξJ)M ) min
θ

(
π̃J(θ) + ω

π̃J−1(θ) + ω

)(
Z + ω · V
Z + ω · V

)
≜ ξJ−1

By induction with base case at layer J ,

∀j,
∥∥∥pnj,γj

(θ → ·) − ψj(·)
∥∥∥ ≤ (1 − ξj)n where ξj ≥ ξj . (20)

We need to show that for all τ > 0. there exists n = n(τ) ∈ N such that∥∥∥pnj,γj
(θ → ·) − ψj(·)

∥∥∥ ≤ τ

for all θ ∈ Xj and γj ∈ Γj .
From Equation 20, we want

(1 − ξj)n ≤ τ

n ≥ ln τ
ln(1 − ξj)

Since ln(1 − ξj) ≤ ln(1 − ξj),

n ≥ ln τ
ln(1 − ξj)

.

Thus, for all τ > 0, there exists n = max
τ

ln τ
ln(1−ξj)

such that
∥∥pnJ,γJ

(θ → ·) − ψj(·)
∥∥ ≤ τ .

(b) At every step t, the change in γj maps to change in ωj+1. Diminishing adaptation is guaranteed by
a gradient descent algorithm with diminishing stepsize that updates ωj+1 at each layer to minimize
the Kullback-Leibler divergence between layers ψj and ψj+1. At each step of the GD algorithm,
ωj+1 is updated as ωt+1

j+1 = ωtj+1 − ηi
∂

∂ωj+1
Hj+1. To get diminishing adaptation, the update needs

to converge as

lim
t→∞

∥∥∥∥ηt ∂

∂ωj+1
Hj+1

∥∥∥∥ ≈ 0.

Since we bound γj ↔ ωj+1 away from zero,

∂

∂ωj+1
Hj+1 = 1

π̃j+1(θ0
j+1) + ωj+1

− 1
π̃j+1(θMj+1) + ωj+1

≤ 1
π̃j+1(θ0

j+1) + ωj+1

≤ 1
π̃j+1(θ0

j+1) + ω

≤ 1
ω

Therefore, the update is

lim
t→∞

∥∥∥∥ηt ∂

∂ωj+1
Hj+1

∥∥∥∥ ≤ lim
t→∞

∥∥∥∥ηt 1
ω

∥∥∥∥
≤ 1
ω

lim
t→∞

ηt
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Figure 8: Evolution of ωj for doubly nested layers j = 1 and j = 2

If the stepsize, ηt asymptotes to 0, adapation decreases to 0 as t → ∞. Therefore
lim
t→∞

∥∥ωtj+1 − ωt+1
j+1
∥∥ = 0, and thus lim

t→∞
sup
θ

∥∥∥∥pj,γt
j
(θ → ·) − p

j,γt+1
j

(θ → ·)
∥∥∥∥ = 0.

B Uniform Smoothing Parameter

Plotted in Figure 8 is the evolution of our tuning parameter ωj as a function of samples collected for one
example chain of the doubly nested method for the pendulum model. Each sample at j = 1 starts a chain
of length M = 5 at inner layer j = 2. The inner layer j = 2 uses the small angle approximation of the
pendulum as the fidelity. Since it is a poor approximation of the posterior as shown in Fig 2, we start with
a relatively high value of ω. This helps the coarsest layer better explore the high-probability regions. As
shown, the tuning parameter ω converges close to zero after a few samples in both the layers. We use a
learning rate of 10−3 for both the layers.

C Computational Infrastructure

Our experiments were performed on a machine with 4 Intel® Xeon® Silver 4214 CPUs running at 2.20GHz
for our experiments (a total of 48 cores). The machine has 250GB of memory, but memory was never a
restriction during our experiments.

All methods use multiproccessing, that is, each chain is run in parallel using a different core. The time listed
is across one run of a single chain; however, the effective sample size is calculated across 10 different chains.

For the pendulum and hydrology models, likelihood calculations were carried out on a single core. For the
cosmology model, the likelihood calculations were carried out in parallel across 20 cores. Therefore, for the
cosmology experiments, saving a day’s worth of computation time on the graphs corresponds to saving 20
days worth of core-hours.
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Figure 9: Cosmology model: Pairwise plots for all four parameters. Plotted for a random run of samples
collected for 48 hours of MCMC (black) and Shrek MCMC (green).

D Pairwise Plot for Cosmology Model

Plotted in Figure 9 is the pairwise plot for all four parameters of the cosmology model. MCMC generates
more samples in the same period of time, yet these samples have not yet converged to the distribution and
are still scattered across the space, compared with the relatively compact Shrek MCMC samples.
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