
The Automated LLM Speedrunning Benchmark:
Reproducing NanoGPT Improvements

Bingchen Zhao⋆1,2 Despoina Magka⋆1 Minqi Jiang⋆1
Xian Li1 Roberta Raileanu1 Tatiana Shavrina1 Jean-Christophe Gagnon-Audet1

Kelvin Niu1 Shagun Sodhani1 Michael Shvartsman1 Andrei Lupu1

Alisia Lupidi1 Edan Toledo1 Karen Hambardzumyan1 Martin Josifoski1
Thomas Foster1 Lucia Cipolina-Kun1 Abhishek Charnalia1 Derek Dunfield1

Alexander H. Miller1 Oisin Mac Aodha2 Jakob Foerster1 Yoram Bachrach1

⋆Equal contribution
1Meta Superintelligence Labs 2University of Edinburgh

Original NanoGPT 

train_gpt2.py

Record 2

Descriptions

Official change log

Pseudocode (level 1)

Text description (level 2)

Mini-paper (level 3)

Descriptions

Official change log

Pseudocode (level 1)

Text description (level 2)

Mini-paper (level 3)

Record 1

Descriptions

Official change log

Pseudocode (level 1)

Text description (level 2)

Mini-paper (level 3)

Record 3

Descriptions

Official change log

Pseudocode (level 1)

Text description (level 2)

Mini-paper (level 3)

Descriptions

Official change log

Pseudocode (level 1)

Text description (level 2)

Mini-paper (level 3)

Descriptions

Official change log

Pseudocode (level 1)

Text description (level 2)

Mini-paper (level 3)

Human

Expert

Human

Expert

Human

Expert

AgentAgent

Similarity

FSR2

FSR = ΣFSRi / # records

Total Fraction of

Speedup Recovered

Similarity

FSR1

...

...

...

Code,

Code, Code,

Code,

Figure 1: The Automated LLM Speedrunning Benchmark. We create a task for each consecutive pair
of records Ri, Ri+1. The performance of the agent is evaluated by comparing the relative speedup of
the agent solution R′

i to Ri.
Abstract

Rapidly improving large language models (LLMs) have the potential to assist in
scientific progress. One critical skill in this endeavor is the ability to faithfully repro-
duce existing work. To evaluate the capability of AI agents to reproduce complex
code in an active research area, we introduce the Automated LLM Speedrunning
Benchmark, leveraging the research community’s contributions to the NanoGPT
speedrun, a competition to train a GPT-2 model in the shortest time. Each of the
19 speedrun tasks provides the agent with the previous record’s training script,
optionally paired with one of three hint formats, ranging from pseudocode to paper-
like descriptions of the new record’s improvements. Records execute quickly by
design and speedrun improvements encompass diverse code-level changes, ranging
from high-level algorithmic advancements to hardware-aware optimizations. These
features make the benchmark both accessible and realistic for the frontier problem
of improving LLM training. We find that recent frontier reasoning LLMs combined
with SoTA scaffolds struggle to reimplement already-known innovations in our
benchmark, even when given detailed hints. Our benchmark thus provides a simple,
non-saturated measure of an LLM’s ability to automate scientific reproduction,
a necessary (but not sufficient) skill for an autonomous research agent. Rapid
advancements in large language models (LLMs) have the potential to assist in

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.



scientific progress. A critical capability toward this endeavor is the ability to repro-
duce existing work. To evaluate the ability of AI agents to reproduce results in an
active research area, we introduce the Automated LLM Speedrunning Benchmark,
leveraging the research community’s contributions on the NanoGPT speedrun, a
competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun
tasks provides the agent with the previous record’s training script, optionally paired
with one of three hint formats, ranging from pseudocode to paper-like descriptions
of the new record’s improvements. Records execute quickly by design and speedrun
improvements encompass diverse code-level changes, ranging from high-level al-
gorithmic advancements to hardware-aware optimizations. These features make
the benchmark both accessible and realistic for the frontier problem of improving
LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds
struggle to reimplement already-known innovations in our benchmark, even when
given detailed hints. Our benchmark thus provides a simple, non-saturated mea-
sure of an LLM’s ability to automate scientific reproduction, a necessary (but not
sufficient) skill for an autonomous research agent.

1 Introduction

0 20 40 60 80 100
Percentage of Speedup Recovered

No
 H

in
ts

Ps
eu

do
co

de o3-mini
Claude 3.7 Sonnet
Gemini-2.5-Pro
DeepSeek-R1

Figure 2: Recent LLM agents struggle to re-
produce NanoGPT Speedrun records.

The advent of LLMs capable of succeeding in chal-
lenging math, coding, and scientific reasoning do-
mains has led to a surge of activity in applying
LLM agents to the longstanding ambition of auto-
mated scientific discovery [Simon, 1995, Langley,
1987, Waltz and Buchanan, 2009, King et al., 2009,
Steinruecken et al., 2019]. Early results suggest
LLM-based systems can improve the productivity
of human researchers, from formulating hypotheses
to implementing code-based experiments to testing
them [Romera-Paredes et al., 2024, Castro et al.,
2025, Yin, 2025, Inizan et al., 2025].

Scientific progress hinges on trustworthy results, and
the ultimate test of the truth behind a finding is whether the experiment and its outcomes can be
reproduced [Fineberg et al., 2019, Pineau et al., 2021, Henderson et al., 2018]. Thus, a critical
component of automated science is automated reproducibility: the process of automatically reimple-
menting an experiment based on a description of the experiment design, such that the implementation
reproduces previously reported outcomes. In other words, translating the description of an experiment
into its implementation [Peng, 2011, Siegel et al., 2024]. Moreover, success in reimplementing a
known study also serves as a metric for assessing the reliability with which an agent can implement
experiments via description, an ability that would enable researchers to quickly scale up the testing of
new ideas, regardless of whether they are of human or AI origin.

We study the ability of recent reasoning LLMs in combination with state-of-the-art scaf-
folds—programs that iteratively make use of an LLM for finding a solution to a given task—on
reproducing prior discoveries in the domain of LLM training. We henceforth refer to the combination
of a specific LLM and scaffold for the purpose of automated research as a research agent, and use
the more specific term AI research agent to refer to those specifically designed for automating AI
research itself. While there is much speculation that AI research agents may lead to the beginnings of
a recursive self-improvement loop for future LLM-based research agents, we set our focus on the
more modest goal of understanding whether current AI research agents can succeed at the prerequisite
task of reproducing previous scientific findings on GPT-2 [Radford et al., 2019], the first model to
demonstrate a broad capacity for zero-shot transfer to new tasks via prompting.

Towards this goal, we introduce The Automated LLM Speedrunning Benchmark, based on the series of
community-driven improvements to GPT-2 training in the NanoGPT Speedrun [Jordan et al., 2024a], a
competition based on minimizing the wall time of training an open-source PyTorch reimplementation
of GPT-2 [Karpathy, 2023] to reach a target cross-entropy loss of 3.28 on the validation set of
FineWeb [Penedo et al., 2024], using a single 8×H100 node. Since its inception in June 2024, this
community effort has driven the training time of GPT-2 from 45 minutes to below 3 minutes (as of

2



Table 1: Key motivations of our benchmark design and how it differentiates from existing ML
reproducibility benchmarks. Here, “Reproducibility” denotes whether the tasks require replicating a
given technique; “Sequential”, whether the benchmark measures reproducibility over a cumulative
series of scientific results; “LLM research”, whether the task involves language model development;
and “Agent scaffold”, whether a baseline agent scaffold is released with the benchmark.

Reproducibility Sequential LLM research Agent scaffold
MLE-bench [Chan et al., 2025] No No No No
PaperBench [Starace et al., 2025] Yes No Partially Yes
CORE-bench [Siegel et al., 2024] Yes No No Yes
RE-bench [Wijk et al., 2024] No No Yes Yes
MLAgentBench [Huang et al., 2024] No No Partially Yes
MLGym-bench [Nathani et al., 2025] No No Partially Yes

Automated LLM Speedrunning (ours) Yes Yes Yes Yes

May 2025). These improvements were driven by new algorithmic enhancements, some of which
have been shown to generalize beyond the scale of the 124M parameter GPT-2 model, with the most
notable being the invention of the Muon optimizer [Jordan et al., 2024b], later demonstrated to show
benefits for training much larger modern LLMs [Liu et al., 2025a, Shah et al., 2025]. Other speedrun
improvements include mixed precision training and more efficient attention variants [Dong et al.,
2024]. As of May 2025, the NanoGPT Speedrun includes 21 successive speedrun records. Each
record is associated with its corresponding training script (train_gpt.py), a measured training time,
a public announcement of the changes, and a high-level summary of the code changes.1

The Automated LLM Speedrunning Benchmark then tasks an AI research agent with reproducing
each successive speedrun record, starting from the previous record, with an optional set of hints of
various formats and levels of detail. The clear code-level ground-truth targets per record alongside
detailed change logs between records make this benchmark an ideal testing ground for the ability of
agents to reproduce not only a single experimental finding, but also a series of cumulative research
findings—a distinct affordance compared to prior reproducibility benchmarks. Here, all tasks share
the same success metric of training time to reach the target validation loss, measured on a fixed
hardware configuration (a single 8xH100 node), making exact reproduction, fair comparisons, and
cross-task comparisons straightforward. Lastly, perhaps the most compelling aspect of this benchmark
is its focus on reproducing discoveries directly relevant to real-world LLM development.

Our experiments show that even when given a description of the difference between two consecutive
speedrun records in various formats, recent agents based on DeepSeek-R1 [DeepSeek-AI et al., 2025]
and o3-mini [OpenAI, 2025] combined with a state-of-the-art search scaffold, still struggle to improve
ground-truth records to match the speedups of the next ground-truth record (see Figure 2).

We believe the Automated LLM Speedrunning Benchmark can spur development of AI research
agents that can automate reproducibility studies, paving a critical step on the way towards more
capable AI research agents that can realize the aspiration of accelerating the pace of scientific
discovery via automated science. However, our results show that before such lofty goals can be
realized, automated reproducibility remains a central challenge that must be addressed.

2 Related works

Automated reproducibility. Recent works have devised benchmarks for evaluating the ability of
LLM agents to reproduce code-based experiments from published papers. CORE-Bench measures
an agent’s ability to correctly install, execute, and interpret a paper’s associated codebase and
its outputs [Siegel et al., 2024]. Other benchmarks, including PaperBench [Starace et al., 2025],
Papers2Code [Seo et al., 2025], AutoP2C [Lin et al., 2025], and SciReplicate [Xiang et al., 2025]
test the agent’s ability to convert a research paper to a codebase that replicates the reported findings
or the agent’s ability to formulate and test hypotheses [Chen et al., 2025, Liu et al., 2025b]. Instead
of evaluating on a wide set of, often, unrelated papers as in these previous works, the Automated
LLM Speedrunning Benchmark focuses on a single important overarching task of speeding up LLM
training. This focus allows for a unified success metric across a diverse gradation of task complexity,

1https://github.com/KellerJordan/modded-nanogpt?tab=readme-ov-file#
world-record-history

3

https://github.com/KellerJordan/modded-nanogpt?tab=readme-ov-file#world-record-history
https://github.com/KellerJordan/modded-nanogpt?tab=readme-ov-file#world-record-history


defined by the natural path of innovation previously discovered by human researchers. This grounding
allows for not only comparison to granular, ground-truth code-level changes, but also opens the door
to evaluating an LLM agent’s ability to reproduce an entire research arc over multiple compounding
innovations against human performance. Moreover, the benchmark’s multiple hint levels allow for
controlled study of how performance varies across different forms of background information.

Code generation with LLMs. Code is inherently reproducible via repeated execution and requires
no additional equipment to run beyond a computer. Thus, many automated scientific reproducibility
benchmarks, including ours, focus primarily on virtual, code-based experiments. In this domain,
research agents directly benefit from and build upon the rapid progress in coding and computer-use
agents, such as a growing set of complex, sandboxed software-engineering agent benchmarks [Yang
et al., 2024, Wang et al., 2024, Fourney et al., 2024, Mialon et al., 2023, Yoran et al., 2024, Zhou
et al., 2023, Koh et al., 2024] and scaffold designs [Zhang et al., 2024], such as AIDE [Jiang et al.,
2025], which we both use as a baseline and extend in our experiments.

LLMs for automated ML. Recent advances enabling LLMs to exploit chain-of-thought outputs
during inference have led to drastic improvements in their performance on reasoning tasks in domains
like math, coding, and science. These improvements have led to a surge in LLM programs seeking to
automate the key parts of machine learning itself, encompassing iterated hypothesis generation and
testing and the writing of reports detailing the findings, in the form of end-to-end agents [Lu et al.,
2024, Huang et al., 2025, Yamada et al., 2025a], agents focused on hypothesis generation [Gottweis
et al., 2025, O’Neill et al., 2025], as well as agents that can interact with a human-in-the-loop to
jointly formulate and test hypotheses [Intology AI, 2025, Autoscience Institute, 2025]. However,
early results suggest these systems, while capable of optimizing code-level improvements, often fall
short in executing on experiments that faithfully reflect their intended goals [Yamada et al., 2025b].
Thus, while LLM-based reasoning models can generate, at times, novel hypotheses [Gu et al., 2024],
their ability for scientific reproduction remains a crucial bottleneck in automating scientific research.

3 The Automated LLM Speedrunning Benchmark

The Automated LLM Speedrunning Benchmark seeks to evaluate an LLM agent’s ability to reproduce
the wall-time speedup associated with each record transition from the NanoGPT Speedrun, both with
and without access to hints describing the corresponding changes at varying levels of abstraction.
Table 1 summarizes how our work compares to existing ML reproducibility benchmarks.

3.1 Reproducibility tasks from existing records

For each transition from record Ri−1 to record Ri for i = 2, ..., 21, excluding i = 7, whose speedup
is purely due to upgrading PyTorch, we define the following components:
Ri Training script for the i-th record in the speedrun,
ti Wall-clock time (in seconds) required by Ri to reach the target validation loss,

∆1
i Level 1 hint: A pseudocode description of code change from the previous record,

∆2
i Level 2 hint: A natural-language description of the code change from the previous record,

∆3
i Level 3 hint: A mini-paper summarizing the code change from the previous record.

All hints were first drafted by R1, manually verified, and, where necessary, edited for correctness and
relevance. See Appendix F for further details on our hint creation process. We provide a categorized
listing of all ground-truth records in Appendix G and example hints in Appendix H.

For convenience, we denote the set of ground-truth speedrun records (which excludes record 6)
as I. We define a record task as a tuple ⟨Ri−1,Ri, ti,m⟩, where R1 corresponds to the initial
NanoGPT training script, and where m is any subset of the set of hint levels, {0, 1, 2, 3}, where level
0 corresponds to no hint. Depending on the presence of hints, we categorize the possible tasks in our
benchmark into two types:

Record reproduction tasks. Given hints that describe the subsequent record, i.e. m ̸= {0}, the
LLM agent must reproduce record Ri+1 given Ri and the set of corresponding hints. Here the key
metric of interest is the fraction of speedup recovered (FSR), defined as

FSRi =
ti − t′i+1

ti − ti+1
. (1)

4



coder

executor

analyzer

v*

Select

next 

version

results

template

results.json
solution.py

v0

v1 v2 ...

...

Initialize root node

copy template into root version

Draft

create N0 initial solutions

Improve

produce N improved solutions from parents


based on some selection criterion

Debug

debug  version with probability pdebugbuggy

knowledge

paper.md
facts.md

vN0

vN0+1 vN0+1 vN0+N

vN0+N+1

Figure 3: Overview of our flexible search scaffold. Search starts from a root node containing code
for the starting record Ri from which N0 initial solutions are generated. Subsequently, each search
iteration debugs a buggy leaf node with probability pdebug and otherwise greedily selects the best
node to improve, with debug and improvement each branching N solutions. At each search step, the
coder submodule implements the solution, with optional access to external knowledge (e.g. hints).

where t′i+1 is the training time achieved by the agent to reach the target validation loss. The full
benchmark performance is then the mean FSR over the set of all included records, I:

FSR =
1

|I|
∑
i

ti − t′i+1

ti − ti+1
. (2)

Record optimization tasks. Without any hints, i.e. m = {0}, the LLM agent must produce a new
training script solution R′

i+1 with a minimal training time t′i+1 to reach the target validation loss,
given Ri. Here we consider both the raw wall time t′i+1 of the solution produced, in addition to
FSRi. Similar to the setting of record reproduction, we consider the mean of these metrics over all
ground-truth records in the benchmark as an overall measure of performance. This allows the agent
to explore its own improvements given the same SoTA starting point that humans had when each
record was produced.

3.2 Agent scaffolds

We provide a flexible search scaffold implementation that extends AIDE [Jiang et al., 2025] into a
more general parameterization. In this setup, visualized in Figure 3, each node in the search tree
represents a solution instance contained in a directory with relevant scripts, performance metrics,
and an LLM-generated execution summary. For instance, in NanoGPT training, a solution node
consists of a single train_gpt2.py script and a results file describing its performance and execution
outcome. The fitness of each node is evaluated based on these metrics—such as wall time to reach
the target validation loss—with each new search initialized using a ground-truth script from the
benchmark and proceeding by branching into up-to-multiple child solutions.

Each search step follows three stages: implementation, execution, and analysis. During implementa-
tion, the agent generates working code from a prompt that includes the task description and optionally,
a set of associated hints. We use Aider [Gauthier, 2025] to make diff-based edits to the initial solution,
producing modified versions for execution. These solutions are then run on an 8xH100 node, and the
output is summarized in natural language via the analysis stage, capturing key performance indicators
and insights from standard outputs. Custom prompts guide each stage and are detailed in Appendix F.
The search begins with N0 initial modifications to the root node. At each step, a new node branches
from either a randomly chosen buggy node (with probability pdebug) or the highest-performing node.
To avoid redundant debugging, we cap retries at Dmax per node. This scaffold design supports
multiple search variants, outlined in Table 2, with each receiving the same budget M of search steps
to ensure fair comparison.

5



Table 2: Search variants and their corresponding scaffold parameterizations.

Method Initial branch factor Branch factor Debug probability Max debug depth
Tree 1 N 0 0
Forest N0 N 0 0
AIDE N0 1 pdebug Dmax
Multi-AIDE N0 N pdebug Dmax
Flat (Best-of-M) M — — —

0 1 2 3 1+2
1+2+3

0.0

0.2

0.4

0.6

0.8

FS
R

Flat

0 1 2 3 1+2
1+2+3

Tree

0 1 2 3 1+2
1+2+3

Forest

0 1 2 3 1+2
1+2+3

AIDE

0 1 2 3 1+2
1+2+3

Multi-AIDE
DeepSeek-R1 o3-mini Gemini-2.5-Pro Claude 3.7 Sonnet

Figure 4: Mean FSR across five search variants and four frontier models for six hint regimes: no hint
(0), pseudocode (1), text (2), mini-paper (3) and combinations thereof (1 + 2, 1 + 2 + 3).

4 Experiments and results

We now evaluate the performance of several baseline agents across a range of scaffolds, hint formats,
and model backbones for all NanoGPT Speedrun records. We report results using the normalized
runtime improvement metric (FSR) from Equation 2, as well as measures of code similarity between
agent and human solutions. For fair comparisons, we use training times for human records based
on rerunning each ground-truth record on the same hardware configuration as agent solutions.
Appendix C reports the near exact reproduction of training times for human records on our cluster.

4.1 Baselines

We compare a number of LLM agents based on DeepSeek-R1, o3-mini, Gemini-2.5-Pro, and Claude-
3.7-Sonnet, using instances of the search scaffolds listed in Table 2. Our choice of parameters are
N0 = 3 for the initial pool of root hypotheses (forest, AIDE and multi-AIDE), N = 3 for the
branching factor (tree, forest and multi-AIDE), pdebug = 0.5 and Dmax = 5 for the debug probability
and maximum debug depth respectively (AIDE and multi-AIDE), and a search budget of M = 20
nodes. Taken together, these scaffolds cover a range of branching factors, search depth, and debug
logic.

For each pair of model and search scaffold, we assess the mean FSR across all 19 tasks for each of the
following hint levels: no hint (level 0), pseudocode (level 1), text description (level 2), and mini-paper
(level 3). Each solution is executed under a maximum runtime of 60 minutes (i.e. a maximum of 20
hours per agent run). We observe an average run time of ≈10 hours per agent run, across a total of
6,840 agent runs (19 records × 6 hint regimes × 5 search variants × 4 models × 3 seeds), for a total
of 6,840 × 8 H100 (internal cluster) hours spent executing the generated solutions.

4.2 Reproducing individual records

We report the mean FSR for each model, search scaffold, and hint-level combination across 3 full
search runs in Figure 4, including the case of no hints. It is evident that hints are necessary for
inducing greater values of FSR, with all agents failing to recover more than 20% of the speed-up
achieved by human solutions on average without hints. Appendix D further reports the mean FSR for
each individual record transitions per agent variation across 3 runs per variation.

We observe that o3-mini generally achieves equal or better results than other models in mean FSR for
all hint levels, but sees slightly worse performance with no hints. Notably, flat search (i.e. best-of-M),
generally matches or outperforms iterated search scaffolds across the individual hint levels (levels
1–3), while matching their performance in the case of no hints. Moreover, tree and forest methods,
which lack debug steps, perform on par with AIDE-based search scaffolds, suggesting that explicit
debug steps do not provide a significant benefit on top of iterative improvement steps. Overall, the

6



0.00 0.05 0.10 0.15 0.20

FSR

0

1

2

3

1 + 2

1 + 2 + 3

Hint Level

0.00 0.05 0.10 0.15 0.20

FSR

Flat

Tree

Forest

AIDE

MultiAIDE

Scaffold

0.00 0.05 0.10 0.15 0.20

FSR

DeepSeek-R1

o3-mini

Gemini-2.5-Pro

Claude-3.7-Sonnet

Model

Figure 5: Interquartile Mean (IQM) evaluation results. Scores are aggregated across multiple runs
with the same hint level, scaffold, and model.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FS
R

R²=0.00
R²=0.00
R²=0.00
R²=0.03

Level 0
R²=0.06
R²=0.07
R²=0.07
R²=0.05

Level 1
R²=0.00
R²=0.07
R²=0.07
R²=0.06

Level 2

0.4 0.2 0.0 0.2 0.4
L2 distance recovered

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FS
R

R²=0.17
R²=0.16
R²=0.08
R²=0.08

Level 3

0.4 0.2 0.0 0.2 0.4
L2 distance recovered

R²=0.03
R²=0.07
R²=0.05
R²=0.23

Level 1+2

0.4 0.2 0.0 0.2 0.4
L2 distance recovered

R²=0.27
R²=0.18
R²=0.01
R²=0.00

Level 1+2+3

DeepSeek-R1 o3-mini Gemini-2.5-Pro Claude 3.7 Sonnet

Figure 7: Correlation of FSR with L2 distance recovered for each hint level, showing a modest
correlation between similarity to the human solution and FSR for most hint types and models.

gap between the best models (o3-mini and Claude-3.7-Sonnet) and the open-weights (R1) is wider
for the search scaffolds incorporating branching logic (tree, search, and AIDE variants), suggesting
that models like o3-mini can better iterate on their previous solutions. Figure 6 further shows how
agents tend to have more difficulty in reproducing later records.

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Starting Record Index

0.0

0.2

0.4

0.6

0.8

FS
R

0.00

0.05

0.10

0.15

0.20

0.25

L2
 D

ist
an

ce
 R

ec
ov

er
ed

Figure 6: FSR and embedding distance per
record for o3-mini with text description hints
(mean and std over 3 seeds). Later records
tend to be harder for agents, leading to lower
recovered embedding distance and speedups.

Out of the various hint formats, the most useful are
the pseudocode and the combinations of pseudocode
with text and mini-papers hints, which enable o3-
mini to recover approximately 40% and 46%, respec-
tively, of the speed-up attained by human solutions
on average. Surprisingly, R1 agents seem to worsen
with the presence of the individual hints, generally
achieving lower FSR compared to the no-hint setting,
suggesting that attempting to implement the complex
changes in these hints results in buggy code. With
hints, R1 produces solutions with lower FSR than
simply making no changes to the code, a common
outcome with no hints, as indicated by the cluster
around a recovered L2 embedding distance of 0.0 in
Figure 7 (Section 4.6 details this similarity analysis).

4.3 Combining multiple hints

We further investigate the impact of combining hint formats, and also include these results for each
agent variation in Figure 4. We observe that providing the text description or mini-paper together

7



Table 3: Performance comparison across different hint formats (mean and std over 3 runs). Color-
coded values are differences relative to the best-performing individual hint in the combination.

Hints Model Flat Tree Forest AIDE Multi-AIDE
L1 (pseudocode) o3-mini 0.40±0.02 0.43±0.02 0.40±0.02 0.41±0.02 0.43±0.02
L2 (text) o3-mini 0.22±0.04 0.16±0.03 0.26±0.04 0.18±0.02 0.17±0.03
L3 (mini-paper) o3-mini 0.17±0.03 0.13±0.03 0.15±0.04 0.12±0.01 0.25±0.04

L1+L2 o3-mini 0.27±0.03 (-0.13) 0.38±0.02 (-0.05) 0.31±0.04 (-0.09) 0.34±0.03 (-0.07) 0.37±0.03 (-0.06)
L1+L2+L3 o3-mini 0.24±0.05 (-0.16) 0.35±0.05 (-0.08) 0.39±0.03 (-0.01) 0.36±0.04 (-0.05) 0.46±0.04 (+0.03)

L1 (pseudocode) DeepSeek-R1 0.13±0.03 0.20±0.00 0.07±0.00 0.09±0.02 0.16±0.01
L2 (text) DeepSeek-R1 0.10±0.01 0.07±0.00 0.06±0.00 0.06±0.01 0.07±0.00
L3 (mini-paper) DeepSeek-R1 0.13±0.04 0.10±0.03 0.09±0.03 0.14±0.02 0.20±0.03

L1+L2 DeepSeek-R1 0.25±0.01 (+0.12) 0.20±0.03 (+0.00) 0.25±0.03 (+0.18) 0.28±0.03 (+0.19) 0.24±0.02 (+0.08)
L1+L2+L3 DeepSeek-R1 0.30±0.04 (+0.17) 0.24±0.02 (+0.04) 0.40±0.04 (+0.31) 0.36±0.03 (+0.22) 0.41±0.02 (+0.21)

L1 (pseudocode) Gemini-2.5-Pro 0.18±0.02 0.16±0.02 0.23±0.04 0.13±0.02 0.23±0.03
L2 (text) Gemini-2.5-Pro 0.18±0.01 0.18±0.03 0.19±0.02 0.09±0.01 0.16±0.03
L3 (mini-paper) Gemini-2.5-Pro 0.18±0.04 0.18±0.02 0.24±0.02 0.15±0.02 0.16±0.03

L1+L2 Gemini-2.5-Pro 0.18±0.02 (+0.00) 0.12±0.03 (-0.06) 0.24±0.04 (+0.01) 0.20±0.04 (+0.07) 0.19±0.04 (-0.04)
L1+L2+L3 Gemini-2.5-Pro 0.19±0.04 (+0.01) 0.14±0.04 (-0.04) 0.25±0.04 (+0.01) 0.17±0.03 (+0.02) 0.26±0.05 (+0.03)

L1 (pseudocode) Claude-3.7-Sonnet 0.14±0.03 0.13±0.03 0.05±0.01 0.14±0.01 0.18±0.04
L2 (text) Claude-3.7-Sonnet 0.10±0.03 0.03±0.01 0.06±0.02 0.14±0.02 0.14±0.02
L3 (mini-paper) Claude-3.7-Sonnet 0.06±0.02 0.22±0.02 0.11±0.01 0.34±0.01 0.19±0.03

L1+L2 Claude-3.7-Sonnet 0.14±0.03 (+0.00) 0.11±0.02 (-0.11) 0.15±0.02 (+0.04) 0.30±0.02 (-0.04) 0.09±0.01 (-0.09)
L1+L2+L3 Claude-3.7-Sonnet 0.21±0.04 (+0.07) 0.31±0.02 (+0.09) 0.10±0.02 (-0.01) 0.31±0.01 (-0.03) 0.20±0.02 (+0.01)

with the pseudocode compared to only providing the pseudocode hint can substantially degrade
performance for o3-mini (see o3-mini result in Table 3), but surprisingly benefits R1. These results
suggest that o3-mini may be less capable of taking advantage of longer contexts, while R1’s reasoning
directly benefits from longer initial prompts. On the other hand, the effect of combined hints on
Gemini-2.5-Pro and Claude-3.7-Sonnet appears relatively small, suggesting they can handle longer
context yet lacks the ability to leverage them for effective reasoning for reproducing code changes.

4.4 Interquartile mean evaluation

As the agent runs could bring a large variance in the experimental results, in Figure 5 we present the
aggregated Interquartile Mean (IQM) results across runs with the same hint level, search scaffold, and
model. The IQM metric has been shown to be robust to comparisons with a small sample size, and in
Figure 5 we report as 95% confidence intervals, bootstrapped from 3 seeds following Agarwal et al.
[2021]. On the hint level comparison, the agents reach the best performance when using all three
hints combined. For individual hints, the pseudo-code hint performs the best. For search scaffold,
multi-AIDE search outperforms all others. On the model side, we are surprised to find that the
Gemini-2.5-Pro and Claude-3.7-Sonnet gives the lowest performance close to 0 FSR, even lagging
behind the open-sourced R1 model. The results also suggest Automated LLM Speedrunning is a
challenging benchmark for current agents as the aggregated performances are fairly low.

4.5 Analysis of search trees

To better understand how each agent spends its search budget, we inspect the proportion of different
kinds of nodes in their search trees: buggy nodes, which crash due to runtime errors; improved nodes,
which successfully improved runtime compared to their parent; and unimproved nodes, which do not
improve from their parent. This breakdown of the search trees is presented in Figure 8. We observe
that flat search leads to a higher total proportion of buggy nodes, indicating that initially-proposed
solutions are most often incorrect. We also notice that R1 agents generate more buggy nodes under
AIDE and multi-AIDE—the two variants with debugging steps—suggesting that R1 may be less
capable of fixing its own mistakes compared to o3-mini. Gemini-2.5-Pro tends to generate fewer
buggy nodes compared to the other models, yet it lags behind on the FSR metric (see Figure 4 and
Figure 2), suggesting that Gemini produces more robust code at the cost of correctly implementing the
more efficient solutions described in the hints. Surprisingly, Claude-3.7-Sonnet generates significantly
more buggy nodes than the other three models, with the fraction of buggy nodes gradually overtaking
the fraction of working nodes in the search tree, indicating that Claude-3.7-Sonnet struggles to
improve and debug its previous solutions.

The analysis of node types in the search tree provides insight into the discrepancy on the results of
Claude-3.7-Sonnet between the FSR results in Figure 4 and the IQM results in Figure 5. While the

8



0.0

0.2

0.4

0.6

0.8

1.0

De
ep

Se
ek

-R
1

Flat Tree Forest AIDE Multi-AIDE

0.0

0.2

0.4

0.6

0.8

1.0

o3
-m

in
i

1 6 11 16
0.0

0.2

0.4

0.6

0.8

1.0

Ge
m

in
i-2

.5
-P

ro

1 6 11 16 1 6 11 16 1 6 11 16 1 6 11 16

0.0

0.2

0.4

0.6

0.8

1.0

Cl
au

de
-3

.7
-S

on
ne

t

Search Step

Buggy No Improvement Improved

Figure 8: Fraction of node types across search trees for each model and search method. Notably,
branching (i.e. non-flat) search is beneficial for reducing the proportion of buggy nodes. Further, a
majority of non-buggy steps produce improved nodes for all branching search methods.

FSR results suggest that, on average, Claude-3.7-Sonnet performs comparably to o3-mini, the IQM
plot indicates that Claude-3.7-Sonnet significantly lags behind o3-mini. This discrepancy can be
explained by examining the distribution of node types in the search tree. Claude-3.7-Sonnet is capable
of generating working solutions that substantially improve the FSR. However, it also produces a
considerable number of buggy nodes that result in runtime errors. These errors negatively impact the
overall performance as reflected in the IQM plot, despite the improvements in the averaged FSR.

4.6 Similarity between agent and human solutions

Agents may output solutions with similar performance to human ones, but may still fail to reproduce
the target code changes. We thus assess code similarity between agent and human solutions by
comparing code embedding distances using the SFR-Embedding-Code 2B model [Liu et al., 2024].

Specifically, we normalize the embedding distance between the agent’s code solution and the target
human solution, i.e. the next record, and divide this distance by the embedding distance between the
current and the next human record. Figure 7 depicts the normalized L2 embedding distance recovered
with respect to the record speedups and for each type of hint. Here the distance recovered is defined
as 1− ∥ei+1 − e′i+1∥/∥ei+1 − ei∥, where ei is the embedding for Ri, and e′i is the embedding for
the LLM’s attempt at reproducing it. We observe a stronger correlation between higher similarity
score and FSR for richer hint formats, suggesting that distances under this embedding space can be a
meaningful measure of degree of successful reproduction.

As an alternative measure of code similarity, we made use of R1 as a judge, prompting it to assess
what fraction of the ground-truth code changes between the current and next record were successfully
reproduced in the agent’s solution, on a scale of 0 to 1 with a score of 1 corresponding to a completely
correct reimplementation. Appendix E contains a comparison between these judge-based similarity
scores and FSR across all agent variations. We observe clear positive correlation between higher
similarity scores and FSR. We provide sample outputs from R1 judge in Appendix F.

9



5 Limitations and future directions

Our Automated LLM Speedrunning Benchmark serves as a challenging evaluation of an LLM agent’s
ability to reproduce scientific findings specific to LLM training. However, there remain important
limits in its capacity for assessing an agent’s true capability for scientific reproduction, and each of
these limitations point the way to directions for exciting future research.

Scaling up external knowledge. By design, the various hint levels are succinct and easily fit within
the context of the LLMs we tested. Moreover, these hints were manually defined, with the relevant
hint directly provided as part of the associated task instance. A more realistic setup would provide
the agent with the ability to use external knowledge via some form of function calling, including the
ability to store intermediate results in various kinds of memory structures, e.g. a short-term scratchpad,
long-term database, or neural module [Hermann et al., 2015, Weston et al., 2014]. Accessing a wider
and potentially accumulating set of external information would also test the agent’s ability to manage
information whose total size may exceed its context length [Sarthi et al., 2024].

Memorization or generalization? As many of the ground-truth records in the NanoGPT Speedrun
were published potentially before the cut-off date of the models used in our experiments (and
thus, most likely of future models), there is the possibility that models may have already seen
these solutions during training [Gupta and Pruthi, 2025]. We find that neither R1 nor o3-mini
accurately reproduce the speedups realized in the ground-truth records, but explicitly disentangling
memorization from generalization may become more necessary as models begin to saturate the
benchmark. More advanced techniques for measuring memorization in LLMs would allow for a more
nuanced evaluation [Carlini et al., 2021, Razeghi et al., 2022, Oren et al., 2023, Deng et al., 2024].

Semantic diffs. Our experiment analysis focuses on FSR and numeric similarity scores between the
LLM’s solution and the corresponding human solution. Moving beyond a similarity score toward more
expressive natural-language summaries, e.g. via automatically-generated commit messages [Jiang
et al., 2017], of the code diffs between LLM and human solutions would allow for more scalable
identification of common mistakes or new innovations with respect to the human solutions.

From LLM speedrun to ML speedrun. The skills required for the LLM speedrun are a good
starting point but are not enough to create reliable AI research agents. True research agents must
handle more complex tasks, such as working with entire multi-file codebases, optimizing for metrics
beyond training time like model performance or memory usage, dealing with distributed training,
and defining their own success metrics. Most importantly, the current benchmark tests the ability to
reproduce results, not to innovate. While an LLM beating human records would be a milestone, the
ultimate test is whether future agents can solve new, open scientific challenges.

6 Conclusions

We introduced the Automated LLM Speedrunning Benchmark, a challenging evaluation of an LLM
agent’s ability to reproduce existing scientific innovations in LLM training, based on reproducing
each successive record in the community-driven NanoGPT Speedrun. Unlike previous benchmarks
for automated scientific reproducibility, our benchmark enables evaluations of an agent’s ability to
reproduce not just a single result, but each incremental advance across a chain of research innovations.
We found that even recent, leading reasoning models, like R1 and o3-mini, when combined with a
state-of-the-art agent scaffold, still struggle to successfully produce speedrun solutions that match
the speedups attained by the corresponding human solutions. Moreover, this gap between human
and agent performance persists even when these strong baseline agents are provided with detailed
explanations describing the exact code changes from the previous speedrun record. Our results suggest
that automated reproducibility may serve as a significant obstacle in realizing reliable, autonomous
research agents with current, leading models, and we expand on the potential societal impacts of our
work in Appendix I. We believe the Automated LLM Speedrunning Benchmark can be an effective
testbed for monitoring this crucial capability in future research agents.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep

reinforcement learning at the edge of the statistical precipice. Advances in neural information processing
systems, 34:29304–29320, 2021.

10



Autoscience Institute. Carl technical report, 2025. URL https://www.autoscience.ai/blog/
meet-carl-the-first-ai-system-to-produce-academically-peer-reviewed-research.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language
models. In 30th USENIX security symposium (USENIX Security 21), pages 2633–2650, 2021.

Pablo Samuel Castro, Nenad Tomasev, Ankit Anand, Navodita Sharma, Rishika Mohanta, Aparna Dev, Kuba
Perlin, Siddhant Jain, Kyle Levin, Noémi Éltető, et al. Discovering symbolic cognitive models from human
and animal behavior. bioRxiv, pages 2025–02, 2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace, Kevin
Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Mądry. Mle-bench: Evaluating machine
learning agents on machine learning engineering, 2025. URL https://arxiv.org/abs/2410.07095.

Tingting Chen, Srinivas Anumasa, Beibei Lin, Vedant Shah, Anirudh Goyal, and Dianbo Liu. Auto-bench: An
automated benchmark for scientific discovery in llms. arXiv preprint arXiv:2502.15224, 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei
Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin
Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang
Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu
Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang,
Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L.
Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie,
Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen,
Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K.
Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan
Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang
Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng,
Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu,
Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigating data contamination
in modern benchmarks for large language models, 2024. URL https://arxiv.org/abs/2311.09783.

Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A programming
model for generating optimized attention kernels, 2024. URL https://arxiv.org/abs/2412.05496.

Harvey Fineberg, National Academies of Sciences, and Medicine. Reproducibility and replicability in science.
National Academies Press, 2019.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Erkang, Zhu, Friederike
Niedtner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, Peter Chang, Ricky Loynd, Robert
West, Victor Dibia, Ahmed Awadallah, Ece Kamar, Rafah Hosn, and Saleema Amershi. Magentic-one:
A generalist multi-agent system for solving complex tasks, 2024. URL https://arxiv.org/abs/2411.
04468.

Paul Gauthier. Aider: Ai pair programming in your terminal. https://github.com/Aider-AI/aider, 2025.
URL https://github.com/Aider-AI/aider. Version 0.82.0.

Juraj Gottweis, Wei-Hung Weng, Alexander Daryin, Tao Tu, Anil Palepu, Petar Sirkovic, Artiom Myaskovsky,
Felix Weissenberger, Keran Rong, Ryutaro Tanno, et al. Towards an ai co-scientist. arXiv preprint
arXiv:2502.18864, 2025.

11

https://www.autoscience.ai/blog/meet-carl-the-first-ai-system-to-produce-academically-peer-reviewed-research
https://www.autoscience.ai/blog/meet-carl-the-first-ai-system-to-produce-academically-peer-reviewed-research
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2311.09783
https://arxiv.org/abs/2412.05496
https://arxiv.org/abs/2411.04468
https://arxiv.org/abs/2411.04468
https://github.com/Aider-AI/aider
https://github.com/Aider-AI/aider


Tianyang Gu, Jingjin Wang, Zhihao Zhang, and HaoHong Li. Llms can realize combinatorial creativity:
generating creative ideas via llms for scientific research. arXiv preprint arXiv:2412.14141, 2024.

Tarun Gupta and Danish Pruthi. All that glitters is not novel: Plagiarism in ai generated research, 2025. URL
https://arxiv.org/abs/2502.16487.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters. In Proceedings of the AAAI conference on artificial intelligence, 2018.

Karl Moritz Hermann, Laurent Orseau, Shaodi Wang, Soham Tunyasuvut, Hubert Stanczyk, and Charles
Blundell. Teaching machines to read and comprehend. Advances in neural information processing systems,
28, 2015.

Kexin Huang, Ying Jin, Ryan Li, Michael Y Li, Emmanuel Candès, and Jure Leskovec. Automated hypothesis
validation with agentic sequential falsifications. arXiv preprint arXiv:2502.09858, 2025.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. MLAgentBench: Evaluating Language Agents on
Machine Learning Experimentation, April 2024. URL https://arxiv.org/abs/2310.03302.

Theo Jaffrelot Inizan, Sherry Yang, Aaron Kaplan, Yen-hsu Lin, Jian Yin, Saber Mirzaei, Mona Abdelgaid, Ali H
Alawadhi, KwangHwan Cho, Zhiling Zheng, et al. System of agentic ai for the discovery of metal-organic
frameworks. arXiv preprint arXiv:2504.14110, 2025.

Intology AI. Zochi technical report, 2025. URL https://github.com/IntologyAI/Zochi/blob/main/
Zochi_Technical_Report.pdf.

Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating commit messages from diffs
using neural machine translation. In 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 135–146. IEEE, 2017.

Zhengyao Jiang, Dominik Schmidt, Dhruv Srikanth, Dixing Xu, Ian Kaplan, Deniss Jacenko, and Yuxiang Wu.
Aide: Ai-driven exploration in the space of code. arXiv preprint arXiv:2502.13138, 2025.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado, You Jiacheng, Franz
Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt: Speedrunning the nanogpt baseline,
2024a. URL https://github.com/KellerJordan/modded-nanogpt.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy Bernstein.
Muon: An optimizer for hidden layers in neural networks, 2024b. URL https://kellerjordan.github.
io/posts/muon/.

Andrej Karpathy. nanogpt, 2023. URL https://github.com/karpathy/nanoGPT.

Ross D King, Jem Rowland, Stephen G Oliver, Michael Young, Wayne Aubrey, Emma Byrne, Maria Liakata,
Magdalena Markham, Pinar Pir, Larisa N Soldatova, et al. The automation of science. Science, 324(5923):
85–89, 2009.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig,
Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents on
realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Pat Langley. Scientific discovery: Computational explorations of the creative processes. MIT press, 1987.

Zijie Lin, Yiqing Shen, Qilin Cai, He Sun, Jinrui Zhou, and Mingjun Xiao. Autop2c: An llm-based agent
framework for code repository generation from multimodal content in academic papers, 2025. URL https:
//arxiv.org/abs/2504.20115.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin Xu, Enzhe
Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint arXiv:2502.16982, 2025a.

Ye Liu, Rui Meng, Shafiq Joty, Silvio Savarese, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Codexembed:
A generalist embedding model family for multiligual and multi-task code retrieval, 2024. URL https:
//arxiv.org/abs/2411.12644.

Yujie Liu, Zonglin Yang, Tong Xie, Jinjie Ni, Ben Gao, Yuqiang Li, Shixiang Tang, Wanli Ouyang, Erik Cambria,
and Dongzhan Zhou. Researchbench: Benchmarking llms in scientific discovery via inspiration-based task
decomposition. arXiv preprint arXiv:2503.21248, 2025b.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scientist: Towards
fully automated open-ended scientific discovery, 2024. URL https://arxiv.org/abs/2408.06292.

12

https://arxiv.org/abs/2502.16487
https://arxiv.org/abs/2310.03302
https://github.com/IntologyAI/Zochi/blob/main/Zochi_Technical_Report.pdf
https://github.com/IntologyAI/Zochi/blob/main/Zochi_Technical_Report.pdf
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/2504.20115
https://arxiv.org/abs/2504.20115
https://arxiv.org/abs/2411.12644
https://arxiv.org/abs/2411.12644
https://arxiv.org/abs/2408.06292


Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia: a benchmark
for general ai assistants. In The Twelfth International Conference on Learning Representations, 2023.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens, Amar
Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, Dieuwke Hupkes, Ricardo Silveira
Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach, William Yang Wang, and Roberta Raileanu.
Mlgym: A new framework and benchmark for advancing ai research agents, 2025. URL https://arxiv.
org/abs/2502.14499.

Charles O’Neill, Tirthankar Ghosal, Roberta Răileanu, Mike Walmsley, Thang Bui, Kevin Schawinski, and Ioana
Ciucă. Sparks of science: Hypothesis generation using structured paper data. arXiv preprint arXiv:2504.12976,
2025.

OpenAI. Openai o3-mini: Pushing the frontier of cost-effective reasoning, January 2025. URL https:
//openai.com/index/openai-o3-mini. Accessed: 2025-05-14.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B. Hashimoto. Proving test set
contamination in black box language models, 2023. URL https://arxiv.org/abs/2310.17623.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the finest text data at
scale. In The Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2024. URL https://openreview.net/forum?id=n6SCkn2QaG.

Roger D Peng. Reproducible research in computational science. Science, 334(6060):1226–1227, 2011.

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence
d’Alché Buc, Emily Fox, and Hugo Larochelle. Improving reproducibility in machine learning research (a
report from the neurips 2019 reproducibility program). Journal of machine learning research, 22(164):1–20,
2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are
unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining term frequencies
on few-shot reasoning. arXiv preprint arXiv:2202.07206, 2022.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M Pawan Kumar,
Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang, Omar Fawzi, et al. Mathematical
discoveries from program search with large language models. Nature, 625(7995):468–475, 2024.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Manning. Raptor:
Recursive abstractive processing for tree-organized retrieval. In The Twelfth International Conference on
Learning Representations, 2024.

Minju Seo, Jinheon Baek, Seongyun Lee, and Sung Ju Hwang. Paper2code: Automating code generation from
scientific papers in machine learning, 2025. URL https://arxiv.org/abs/2504.17192.

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel, Andrew Ma,
Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for pretraining. arXiv preprint
arXiv:2505.02222, 2025.

Zachary S Siegel, Sayash Kapoor, Nitya Nagdir, Benedikt Stroebl, and Arvind Narayanan. Core-bench: Fostering
the credibility of published research through a computational reproducibility agent benchmark. arXiv preprint
arXiv:2409.11363, 2024.

Herbert Simon. Machine discovery. Foundations of Science, 1:171–200, 1995.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel Dias, Evan
Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia Glaese, and Tejal Patwardhan.
Paperbench: Evaluating ai’s ability to replicate ai research, 2025. URL https://arxiv.org/abs/2504.
01848.

Christian Steinruecken, Emma Smith, David Janz, James Lloyd, and Zoubin Ghahramani. The automatic
statistician. Automated machine learning: Methods, systems, challenges, pages 161–173, 2019.

David Waltz and Bruce G Buchanan. Automating science. Science, 324(5923):43–44, 2009.

13

https://arxiv.org/abs/2502.14499
https://arxiv.org/abs/2502.14499
https://openai.com/index/openai-o3-mini
https://openai.com/index/openai-o3-mini
https://arxiv.org/abs/2310.17623
https://openreview.net/forum?id=n6SCkn2QaG
https://arxiv.org/abs/2504.17192
https://arxiv.org/abs/2504.01848
https://arxiv.org/abs/2504.01848


Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song,
Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao,
Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and
Graham Neubig. Openhands: An open platform for ai software developers as generalist agents, 2024. URL
https://arxiv.org/abs/2407.16741.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint arXiv:1410.3916, 2014.

Hjalmar Wijk, Tao Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence Chan, Michael
Chen, Josh Clymer, Jai Dhyani, et al. Re-bench: Evaluating frontier ai r&d capabilities of language model
agents against human experts. arXiv preprint arXiv:2411.15114, 2024.

Yanzheng Xiang, Hanqi Yan, Shuyin Ouyang, Lin Gui, and Yulan He. Scireplicate-bench: Benchmarking llms
in agent-driven algorithmic reproduction from research papers. arXiv preprint arXiv:2504.00255, 2025.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune, and David
Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree search. arXiv preprint
arXiv:2504.08066, 2025a.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff Clune, and David
Ha. The ai scientist-v2: Workshop-level automated scientific discovery via agentic tree search, 2025b. URL
https://arxiv.org/abs/2504.08066.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir
Press. SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering, May 2024. URL
https://arxiv.org/abs/2405.15793.

Weiguo Yin. Exact solution of the frustrated potts model with next-nearest-neighbor interactions in one
dimension: An ai-aided discovery. arXiv preprint arXiv:2503.23758, 2025.

Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan Berant. As-
sistantbench: Can web agents solve realistic and time-consuming tasks? arXiv preprint arXiv:2407.15711,
2024.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous program
improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and
Analysis, pages 1592–1604, 2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou,
Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous agents.
arXiv preprint arXiv:2307.13854, 2023.

14

https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2504.08066
https://arxiv.org/abs/2405.15793


NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We include in the main body of the paper the contributions described in
the abstract and introduction: benchmark construction (Section 3), baselines varying fron-
tier model, underlying scaffold and hint format (Section 4.2) and a similarity analysis
(Section 4.6).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 contains a dedicated discussion on limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15



Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of our methodology and our experimental
runs, including important hyperparameter values and prompts used (in Section 4 and Ap-
pendices F)–H. We are accompanying our submission with a zip file containing scripts for
running our experiments and notebooks for carrying out the data analyses.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

16



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We are including the benchmark data, the agent implementation we are using,
the scripts to run the experiments and the notebooks for analyses in a zip file accompanying
our submission. This content is also linked in the main body of the paper in Section 1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a detailed overview of our agentic scaffold methodology, the
frontier models utilized and the various hint formats used for each experiment in the main
body of the paper (see Sections 3 – 4). The exact implementation details, including prompts
used, can be recovered by the code contained in the zip file accompanying the submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:[Yes]

Justification: We report error bars for our set of baselines and additional experiments, which
are based on standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a description of the hardware we used and an estimate of the
amount of the resources needed to run the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer:[Yes]

Justification: We have reviewed the linked NeurIPS Code of Ethics and can confirm the the
research conducted in the paper conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

18

https://neurips.cc/public/EthicsGuidelines


Justification: The benchmark release described in the paper aims to drive progress in
foundational research by improving the ML engineering capabilities of LLM agents. This
can have long-term societal impacts which we briefly touch upon in the introduction and
extensively discuss in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original resource of the assets we are using, we provide a URL and
we explicitly name their license.
Guidelines:

• The answer NA means that the paper does not use existing assets.

19



• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We make all our code and datasets available in an anonymized .zip file uploaded
in an anonymous URL. We accompany our submission with a Croissant metadata file to
document our dataset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

20

paperswithcode.com/datasets


Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have used open-source LLMs for generating data that form part of the
benchmark (specifically, the various pseudocode, text and mini-paper hints). Querying
LLMs is also a core part of the various stages comprising the improvement step of the LLM
agent (implementation, execution and analysis). Finally, we are leveraging an open-source
LLM to obtain LLM judge scores and build a similarity metric that estimates proximity of
the agent-generated code with the human code. We are documenting these usages throughout
the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


Appendix

A Experimenting with additional knowledge

Table A.1: FSR of R′
12 worsens when FlexAtten-

tion docs are inserted in the model’s context.
R′

12 DeepSeek-R1 o3-mini

with docs 0.07±0.01 0.06±0.01
without docs 0.09±0.01 0.10±0.01

Certain records are particularly challenging
for our baseline agents, such as R12, which
achieves its speedup via FlexAttention [Dong
et al., 2024], a PyTorch module that enables
performant implementation of custom attention
variants and was released in August 2024, po-
tentially after the knowledge cut-off of R1 and
o3-mini. To determine whether the agents’ poor performance on R12 was due to missing in-weights
knowledge of this module, we inserted content from the blog post describing FlexAttention (includ-
ing usage examples) as an additional hint to the agent (across all hint levels and agent variations).
Table A.1 shows this additional hint actually negatively impacts performance on R12, suggesting that
recent models may still struggle to correctly exploit external knowledge that was not present in their
training corpus in more complex tasks.

B Cumulative speedrun experiment

2 3 4
Target Record Index

0.0

0.2

0.4

0.6

0.8

1.0

FS
R

Cumulative Speedup Performance

Figure B.1: Cumulative Speedup from initial
codebase.

In this section, we test the models to see if they can
reproduce the record described in the hint by building
on the codebase they generated when reproducing
previous records. Specifically, each task is formu-
lated as a tuple of ⟨R′

i−1,Ri, ti,m⟩ where the agent
will be given the codebase it generated for the previ-
ous task R′

i−1 and the hint level m for reproducing
the next record Ri, where the performance is mea-
sured by the FSR metric. This is a challenging yet
realistic extension of the reproducibility task where
the agent seeks to cumulatively improve from the
initial codebase. We evaluate the best-performing
model (o3-mini) with the best search scaffold (multi-
AIDE) from our previous evaluations, with access to

all hint levels (L1 + L2 + L3). Results averaged across three seeds are presented in Figure B.1. The
agent recovers approximately 60% of the ground-truth speedup for R′

2 starting from R1. Yet its
performance drops significantly afterwards, with R′

3 recovering only around 20% of the speed-up,
compared to the 60% of speed-up recovered when starting from the ground-truth R2 (see Figure 6).
By only the third record, the agent’s solution R′

4 fails to reproduce any speedup compared to R4.

C Reproducing ground-truth speedruns on our hardware

Figure C.1 compares the training times reported2 with the training time of running the same code on
our AWS cluster, where we report the mean and standard deviation of three runs. We can see that
the two curves track closely each other and, as expected, there is no training time decrease for the
R6 → R7 transition which corresponds to the PyTorch upgrade (we are using the upgraded version
for R1 through R6 as we were not aware which one was the previous PyTorch version).

2https://github.com/KellerJordan/modded-nanogpt?tab=readme-ov-file#world-record-history

22

https://github.com/KellerJordan/modded-nanogpt?tab=readme-ov-file#world-record-history


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Record Number

500000

1000000

1500000

2000000

2500000

3000000

Tr
ai

ni
ng

 T
im

e 
(m

s)

Mean Training Time with Standard Deviation
Reported Training Time
3-Runs Averaged Training Time

Figure C.1: Running the human speedrun records.

D Additional results for reproducing individual records

Figures D.1, D.2, D.3, D.4 depict mean FSR of DeepSeek-R1 and o3-mini agents when aggregating
by search scaffold and hint level. The metrics are reported as 95% confidence intervals bootstrapped
from 3 seeds, with IQM being the interquartile mean and the optimality gap being the difference from
the best possible performance. We used the rliable3 library for the evaluation of our runs across
multiple search scaffolds and hint levels.

0.0 0.2 0.3 0.5
FSR

Median

0.0 0.2 0.3
FSR

IQM

0.0 0.2 0.3
FSR

Mean

0.0 0.3 0.6 0.9
FSR

Optimality Gap

Hint Level
0 1 2 3 1 + 2 1 + 2 + 3

Figure D.1: Aggregate performance of DeepSeek-R1 agents by hint level, reported as 95% confidence
intervals, bootstrapped from 3 seeds. We observe that DeepSeek-R1 agents perform better when
instructed with pseudocode hints.

3https://github.com/google-research/rliable

23

https://github.com/google-research/rliable


-0.1 0.0 0.1 0.2
FSR

Median

-0.1 0.0 0.1
FSR

IQM

-0.1 0.0 0.1 0.2
FSR

Mean

0.0 0.2 0.5 0.8
FSR

Optimality Gap

Search Method
Flat Tree Forest AIDE MultiAIDE

Figure D.2: Aggregate performance of DeepSeek-R1 agents by search scaffold, reported as 95%
confidence intervals, bootstrapped from 3 seeds. The agent maximizes speedup recovery when using
the multi-AIDE scaffold

0.0 0.2 0.4
FSR

Median

0.0 0.2 0.3
FSR

IQM

0.0 0.2 0.3 0.5
FSR

Mean

0.0 0.3 0.6 0.9
FSR

Optimality Gap

Hint Level
0 1 2 3 1 + 2 1 + 2 + 3

Figure D.3: Aggregate performance of o3-mini agents by hint level, reported as 95% confidence
intervals, bootstrapped from 3 seeds. For o3-mini agents the hints combining pseudocode, text and
mini-paper yield better results

0.0 0.2 0.3
FSR

Median

-0.1 0.0 0.1 0.2
FSR

IQM

0.0 0.2 0.3
FSR

Mean

0.0 0.2 0.5 0.8
FSR

Optimality Gap

Search Method
Flat Tree Forest AIDE MultiAIDE

Figure D.4: Aggregate performance of o3-mini agents by search scaffold, reported as 95% confidence
intervals, bootstrapped from 3 seeds. The agent demonstrates its best performance with the multi-
AIDE scaffold.

Figures D.5, D.6, D.7, D.8, D.9 show FSR results for individual records for the flat, tree, forest, AIDE
and multi-AIDE scaffolds, respectively. The agent encounters more difficulty in recovering speedups
at later records, which is expected as minimising training time requires more complex changes later
on.

24



0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R 91.2

32.8

0.00.20.03.00.00.00.07.0
21.69.70.0

29.420.9

52.6

18.4
5.1

Hints: 0 Model: DeepSeek-R1

39.6

0.0
23.0

0.0

72.7

0.01.8
31.1

2.70.0
26.816.718.6

0.0

Hints: 1 Model: DeepSeek-R1

47.4
31.7

0.00.00.0

36.5

0.00.00.08.311.41.30.0

35.2
21.3

7.215.8
0.0

Hints: 2 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

26.3
0.00.0

28.729.9
0.00.0

26.8
0.02.20.00.60.99.70.012.0

88.5

0.0

Hints: 3 Model: DeepSeek-R1

98.3

66.4

0.01.20.0
14.3

0.0

88.4

0.04.7
23.4

0.90.0
30.3

15.822.8
7.83.6

Hints: 1 + 2 Model: DeepSeek-R1

66.6
42.7

0.0

36.848.247.5

0.0
28.7

67.0

5.313.72.00.0
19.715.8

34.9
6.51.5

Hints: 1 + 2 + 3 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

101.8

67.2

0.03.80.09.00.04.80.01.811.54.30.0
13.810.92.4

15.3
0.0

Hints: 0 Model: o3-mini

55.2
37.4

0.0
13.5

56.354.9

0.0

92.0
72.0

3.3
34.1

1.07.213.412.718.0
3.110.0

Hints: 1 Model: o3-mini

32.442.6

0.0
27.1

52.5
65.0

0.0

43.248.9

0.0
28.8

0.00.0
19.912.111.012.20.2

Hints: 2 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

26.922.0
0.00.0

58.1

2.30.0

80.2

31.6
3.214.2

0.0
18.010.96.815.35.80.9

Hints: 3 Model: o3-mini

97.4

28.9
0.0

27.729.4

63.6

0.0

90.0
74.6

2.67.90.70.0
21.0

7.416.48.15.5

Hints: 1 + 2 Model: o3-mini

0.00.00.0

61.464.7

24.9
0.0

76.967.6

2.5

37.2

3.7
17.215.98.513.214.126.3

Hints: 1 + 2 + 3 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

67.366.7

0.00.60.03.40.00.00.02.3
23.5

11.00.0
18.720.228.619.6

2.3

Hints: 0 Model: Gemini-2.5-Pro

100.6

21.8
0.01.00.0

28.9
0.0

25.2
0.02.414.112.8

0.0
21.322.8

47.4
25.8

3.1

Hints: 1 Model: Gemini-2.5-Pro

101.8

64.4

0.01.60.03.60.00.0
27.0

3.0
15.87.60.0

21.2
36.026.3

10.70.0

Hints: 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

33.643.3

0.01.0
28.9

0.00.00.0

37.8

2.5

41.9

9.311.922.219.530.527.6
9.8

Hints: 3 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

67.164.9

0.00.40.0
30.3

0.00.00.03.1
21.513.12.5

20.9
37.7

50.1

10.33.1

Hints: 1 + 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

86.2

21.8
0.01.1

33.2

2.10.0
27.0

0.02.9

44.1

10.60.2
21.024.0

44.4
18.86.5

Hints: 1 + 2 + 3 Model: Gemini-2.5-Pro

FSR Comparison: Flat

Figure D.5: FSR results (mean and std over 3 runs) for each record, hint format, and model when
using the flat search scaffold.

25



0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R
101.9

64.8

0.00.80.01.00.00.00.07.118.612.6
0.0

23.125.825.1
12.54.3

Hints: 0 Model: DeepSeek-R1

97.9

0.00.00.00.0

47.5

0.0

74.1

22.3
0.00.04.50.0

34.1
48.9

22.6
0.0

Hints: 1 Model: DeepSeek-R1

0.00.00.00.00.00.00.0
25.3

0.03.8
24.0

0.00.0

35.0
6.2

24.518.7
0.0

Hints: 2 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

25.921.8
0.0

28.130.3
1.80.00.0

29.5
2.26.30.00.010.85.76.07.61.1

Hints: 3 Model: DeepSeek-R1

67.1
42.6

0.01.4
18.0

42.9

0.0

77.4

0.05.310.81.70.0
27.329.529.6

13.62.6

Hints: 1 + 2 Model: DeepSeek-R1

67.5
43.5

0.0
21.6

74.3

3.00.00.00.05.3
31.8

6.20.0

33.324.531.1
9.34.3

Hints: 1 + 2 + 3 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

99.3

67.0

0.00.30.01.50.00.10.09.916.45.83.8
28.3

9.7
30.1

0.07.9

Hints: 0 Model: o3-mini

71.1
55.1

0.0

64.755.666.7

0.0

84.974.3

3.5
26.5

0.94.3
26.018.419.7

3.44.6

Hints: 1 Model: o3-mini

17.0
41.9

0.00.07.7

66.6

0.012.3

74.0

2.8
28.5

0.00.0
13.516.0

0.30.00.0

Hints: 2 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

33.023.1
0.08.5

57.1

0.00.0

48.2

0.04.18.50.011.65.717.3
4.75.10.6

Hints: 3 Model: o3-mini

91.7
64.1

0.0

94.997.6
69.2

0.0

141.8

47.2

6.116.4
3.30.0

22.220.5
6.30.0

22.7

Hints: 1 + 2 Model: o3-mini

50.4
21.7

0.0

55.7
72.4

34.325.0
44.145.1

4.0

51.0

4.48.719.930.7
15.210.72.0

Hints: 1 + 2 + 3 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

63.9

0.00.00.00.00.00.00.00.00.03.70.00.00.00.00.0
17.2

0.0

Hints: 0 Model: Gemini-2.5-Pro

98.3

21.7
0.0

68.8

34.232.4

0.0
22.8

0.00.00.04.60.04.10.00.00.03.8

Hints: 1 Model: Gemini-2.5-Pro

33.643.2

0.0

36.7
56.249.8

0.00.0

55.0

0.00.00.00.02.9
18.5

4.5
28.3

0.0

Hints: 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

33.5

65.0

0.00.0

82.2

1.00.0

59.2

26.5
0.0

38.8

0.00.02.49.25.69.40.0

Hints: 3 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

33.242.0

0.0
26.532.824.2

0.00.0

55.2

0.00.00.00.00.03.20.00.00.0

Hints: 1 + 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

32.521.3
0.0

27.5

64.8

0.60.00.0
27.8

0.0
12.76.00.00.0

65.5

13.811.71.3

Hints: 1 + 2 + 3 Model: Gemini-2.5-Pro

FSR Comparison: Tree

Figure D.6: FSR results (mean and std over 3 runs) for each record, hint format, and model when
using the tree search scaffold.

26



0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

50.5
64.1

0.01.70.01.50.00.00.08.714.55.10.0
21.424.023.4

0.04.4

Hints: 0 Model: DeepSeek-R1

0.00.00.00.00.0

88.1

0.00.00.00.00.00.00.00.00.0

35.8

0.0

Hints: 1 Model: DeepSeek-R1

0.00.00.00.00.0

35.7

0.00.00.07.18.60.00.0
26.829.2

0.00.05.0

Hints: 2 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

27.0
0.00.00.6

29.0
1.50.0

24.3
0.02.35.91.18.46.6

44.2
16.9

0.00.0

Hints: 3 Model: DeepSeek-R1

91.8

32.0

0.0

37.2

0.0

63.7

0.0

51.1

0.08.216.95.40.0

40.541.236.2
7.9

42.0

Hints: 1 + 2 Model: DeepSeek-R1

69.4
43.9

0.0

34.0

78.9

31.620.4
39.734.9

5.1

60.6

6.90.0

34.725.124.2
5.30.0

Hints: 1 + 2 + 3 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

99.6

64.8

0.01.40.07.80.00.00.06.46.54.50.00.010.30.9
20.5

0.0

Hints: 0 Model: o3-mini

69.0
44.4

0.0

65.4
37.9

55.1

0.0

67.766.5

3.8

35.6

0.00.0
19.99.617.910.03.9

Hints: 1 Model: o3-mini

29.9

64.9

0.0

54.553.1
67.9

0.0

84.0

43.8

2.4
30.2

0.00.0
15.97.12.47.30.2

Hints: 2 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

32.821.2
0.0

26.2

57.3

0.00.0

69.4

0.02.6
17.4

0.011.211.57.110.47.00.9

Hints: 3 Model: o3-mini

67.3
43.8

0.0

48.4
32.1

65.8

0.0

124.9

56.2

4.08.32.60.0
20.218.923.7

9.213.3

Hints: 1 + 2 Model: o3-mini

50.4
33.2

0.0

37.8

73.9
53.1

0.0

82.8

45.0

7.2

38.6
11.77.6

35.123.829.323.718.6

Hints: 1 + 2 + 3 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

98.6

28.2
0.00.00.03.70.00.00.00.00.00.00.01.26.85.15.70.7

Hints: 0 Model: Gemini-2.5-Pro

65.664.3

0.0

45.8
33.1

56.8

0.0

49.5
27.4

0.02.30.0
15.1

0.00.010.18.0

42.7

Hints: 1 Model: Gemini-2.5-Pro

97.8

64.0

0.01.4

55.347.6

0.00.0
27.7

0.010.30.00.04.86.015.79.60.8

Hints: 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

99.5

63.6

0.00.1

87.7

2.90.0
17.3

29.7
0.0

75.3

0.09.73.3
17.721.412.40.0

Hints: 3 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

66.363.8

0.0

49.4
32.330.1

0.0

63.2

25.1
0.09.6

36.6

0.11.59.8
24.217.8

0.0

Hints: 1 + 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

65.9
43.1

0.0
20.4

97.8

2.0
22.722.7

61.0

0.0
13.310.52.93.5

43.3
25.7

7.80.0

Hints: 1 + 2 + 3 Model: Gemini-2.5-Pro

FSR Comparison: Forest

Figure D.7: FSR results (mean and std over 3 runs) for each record, hint format, and model when
using forest search scaffold.

27



0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

50.4
32.7

0.01.50.04.00.00.00.07.715.47.30.0

36.636.337.125.6
0.0

Hints: 0 Model: DeepSeek-R1

0.00.00.0

34.1
49.7

0.00.0

36.1

0.00.00.00.00.0

48.5

0.0
25.6

0.0

Hints: 1 Model: DeepSeek-R1

0.0

32.7

0.00.00.0

34.2

0.00.00.07.314.3
0.00.0

26.8
0.00.0

12.6
0.0

Hints: 2 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

0.0
21.4

0.01.2

57.4

0.00.0

83.2

25.4
0.0

32.7

0.01.3
15.7

0.09.80.00.0

Hints: 3 Model: DeepSeek-R1

98.6

64.7

0.0
21.022.8

56.9

0.0

67.2

0.03.6
30.7

3.10.0
20.412.614.59.2

Hints: 1 + 2 Model: DeepSeek-R1

98.0
69.4

0.0

58.949.3
25.2

0.0
19.325.1

7.6

72.0
53.2

0.0

31.226.138.4
9.80.0

Hints: 1 + 2 + 3 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

102.3

62.7

0.00.80.03.51.40.00.00.5
16.57.20.00.00.0

19.57.90.0

Hints: 0 Model: o3-mini

67.2
45.5

0.0

48.3
18.4

53.6

0.0

75.786.9

3.7
29.0

1.99.312.819.816.211.123.4

Hints: 1 Model: o3-mini

35.040.7

0.00.0

54.161.6

0.0
14.7

83.2

2.54.10.20.0
15.010.86.10.00.0

Hints: 2 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

20.2
0.00.00.0

83.2

0.00.0

92.7

0.00.00.00.0
13.4

0.00.00.00.00.0

Hints: 3 Model: o3-mini

84.1
64.9

0.0

40.345.8
67.4

0.0

122.4
101.4

0.05.70.00.0

106.2

19.523.6
0.02.5

Hints: 1 + 2 Model: o3-mini

100.1

64.4

0.0

49.4
65.3

45.855.8
75.3

31.9
5.815.8

1.212.7
30.0

16.7
42.1

21.3

Hints: 1 + 2 + 3 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

65.1

21.8
0.00.00.01.30.00.04.20.00.00.00.00.05.40.00.00.0

Hints: 0 Model: Gemini-2.5-Pro

66.5
42.5

0.00.00.01.10.0

71.2

24.6
0.00.00.00.00.00.00.0

26.8
0.0

Hints: 1 Model: Gemini-2.5-Pro

65.864.3

0.0
25.9

0.02.50.00.00.00.08.00.00.03.10.00.00.00.0

Hints: 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

115.7

21.7
0.00.2

29.524.9
0.0

44.4
26.8

0.00.02.70.00.00.00.00.00.3

Hints: 3 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

65.663.6

0.0
26.231.929.2

0.0

36.825.9
0.00.00.00.00.00.00.06.6

79.1

Hints: 1 + 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

61.8
42.3

0.0

51.4
31.0

0.7

49.5

0.0

68.6

0.00.00.00.00.00.00.40.00.2

Hints: 1 + 2 + 3 Model: Gemini-2.5-Pro

FSR Comparison: AIDE

Figure D.8: FSR results (mean and std over 3 runs) for each record, hint format, and model when
using the AIDE search scaffold.

28



0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R
112.1

65.5

0.01.60.05.40.00.00.08.716.25.30.0

45.635.729.533.2
7.5

Hints: 0 Model: DeepSeek-R1

97.3

0.00.00.00.0

46.0

0.0

82.4

41.3

0.0
13.6

0.00.0
21.6

0.00.00.0

Hints: 1 Model: DeepSeek-R1

0.00.00.00.00.0

35.9

0.00.00.07.1
24.1

0.00.0
18.4

0.0

31.7
16.1

0.0

Hints: 2 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

33.921.7
0.00.6

43.9

1.60.0
17.313.82.46.31.20.0

12.86.17.93.82.4

Hints: 3 Model: DeepSeek-R1

99.2

64.9

0.0
21.8

0.0
16.4

0.06.50.06.3
30.7

6.80.0

37.929.238.7
17.9

3.5

Hints: 1 + 2 Model: DeepSeek-R1

60.5
38.8

0.0

39.9
64.661.5

0.0

33.8
13.15.4

30.0
2.30.0

24.316.723.1
4.01.7

Hints: 1 + 2 + 3 Model: DeepSeek-R1

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

99.6

65.6

0.00.80.02.30.00.07.59.213.08.45.116.610.58.37.85.9

Hints: 0 Model: o3-mini

51.5
36.6

0.0

64.171.067.4

0.0

86.4
57.0

3.9
29.9

0.05.016.712.912.96.20.5

Hints: 1 Model: o3-mini

0.0
20.6

0.00.0

52.6
73.0

0.0

36.8
52.4

2.65.99.90.0
14.7

30.3
3.75.00.0

Hints: 2 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

34.1
21.4

0.00.7
30.0

0.30.0

59.8

17.0
2.610.20.111.99.220.617.75.50.4

Hints: 3 Model: o3-mini

98.3

43.8

0.0

44.4

89.6
72.2

0.0

113.0

29.8
7.7

39.7

5.90.0

33.530.526.319.7
6.9

Hints: 1 + 2 Model: o3-mini

50.5
32.7

0.0

49.337.642.238.346.357.7

3.8
32.0

10.99.6
22.217.118.710.36.6

Hints: 1 + 2 + 3 Model: o3-mini

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

65.9

21.4
0.00.00.00.60.00.00.00.08.218.1

0.02.210.317.16.22.5

Hints: 0 Model: Gemini-2.5-Pro

64.263.0

0.0

49.0

0.0
30.2

0.0

47.148.8

0.0
18.610.80.03.2

18.8
31.521.3

1.8

Hints: 1 Model: Gemini-2.5-Pro

65.8
42.4

0.0

35.5

0.0
24.2

0.01.70.00.0

31.8
7.80.00.0

18.328.723.3
0.0

Hints: 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

0.
0%

50
.0

%
10

0.
0%

15
0.

0%
FS

R

65.3
42.4

0.00.0

56.5

1.30.06.20.00.0

44.2

5.812.8
0.0

21.427.2
0.00.0

Hints: 3 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

65.4
42.9

0.0
21.732.8

5.50.0

52.1
24.6

0.0

39.5

2.00.01.2
18.829.4

10.92.6

Hints: 1 + 2 Model: Gemini-2.5-Pro

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19
Record Number

33.0

64.5

0.0

50.9
32.7

0.4
23.8

46.540.2

0.0
13.4

41.0

0.06.812.0
30.618.2

62.8

Hints: 1 + 2 + 3 Model: Gemini-2.5-Pro

FSR Comparison: MultiAIDE

Figure D.9: FSR results (mean and std over 3 runs) for each record, hint format, and model when
using the multi-AIDE search scaffold.

E Additional results for code similarity judge

Figure E.1 shows the LLM judge scores for each record and search method separately. Some records
(e.g. Record 10) have low reproducibility score across all methods and different types of hints,
indicating that they are inherently challenging for an AI Research agent.

Judge Prompt

Below is a baseline implementation of a GPT-2 model, followed by two proposed
changes (see code diffs below) to improve the training speed.
The first change is from an expert human. The second change is from an AI
Assistant, aiming to reproduce the improvement made by the expert human.
Inspect the code diffs carefully and provide an objective evaluation of the
AI Assistant’s solution in terms of its similarity with expert human’s solution.
To derive an objective evaluation, first enumerate all the key changes made by
expert human which can affect training speed, and then analyze all the changes
made by the AI Assistant one by one.
Based on understanding of these code changes, derive a percentage score

29



1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Record Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
pr

od
uc

ib
ilit

y 
Sc

or
e

Method: Tree

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Record Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
pr

od
uc

ib
ilit

y 
Sc

or
e

Method: Forest

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18
Record Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
pr

od
uc

ib
ilit

y 
Sc

or
e

Method: Flat

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18
Record Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
pr

od
uc

ib
ilit

y 
Sc

or
e

Method: AIDE

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Record Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
pr

od
uc

ib
ilit

y 
Sc

or
e

Method: MultiAIDE

Reproducibility Score vs. Record Number (Grouped by Method, Bars by Model/Level)

Model | Level
o3-mini | Level 1 + 2
o3-mini | Level 1 + 2 + 3

Figure E.1: LLM-as-judge evaluation of reproducibility. The y-axis (Reproducibility Score) measures
the fraction of human expert changes which are reproduced by agent-generated code, where 1 means
all human expert’s changes are reproduced.

0.0 0.2 0.4 0.6 0.8
Judge Score

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

FS
R

Methods
Tree
Forest

AIDE
Multi-AIDE

Flat
Hint Levels

level 1+2 level 1+2+3

Figure E.2: How FSR (per record) correlates with LLM judge scores for o3-mini-based agents, where
a higher judge score means the agent solution is closer to the corresponding human speedrun record.

30



(between 0 and 1) to quantify what fraction of the key changes
(which has impact on training speed) made by the expert were correctly
implemented in the AI Assistant’s solution.

Return your final score in a JSON object, with the key "reproducibility_score".
# =============== Baseline Implementation ===========
{human_code}
# =============== Change made by Expert Human ===========
{next_human_code}
# =============== Change made by AI Assistant ===========
{agent_code}

31



F Prompts and formatting templates

In this section we present the prompts we use for the coder component (Aider) of our agent scaffold
(Figures F.4, F.5), for the analyzer used by the scaffold to summarize code execution results, i.e.
standard streams, (Figures F.6, F.7) and for drafting initial hints with R1 (Figures F.8, F.9, F.10)

Summary format

Hypothesis: {hypothesis}
Results:
{metrics}
Has bugs? {has_bugs}
Outcome summary:
{outcome_summary}

Figure F.1: Template for summarizing the contents of the results.json produced after each node’s
solution code is executed and evaluated.

History format (Example with a single templated version history)

<version_log>
<info>

Version: {version}
Parent version: {parent_version}
Hypothesis: {hypothesis}
Results:
{metrics}
Has bugs? {has_bugs}
Outcome summary:
{outcome_summary}

</info>
</version_log>

Figure F.2: Template for the history component of the coder prompt to provide useful context when
improving or debugging a node’s solution. Additional versions would be listed as additional info
items inside the version_log tags.

Knowledge component (Example with two templated entries)

<knowledge>
<li>

{knowldge_entry}
</li>
<li>

{knowldge_entry}
</li>

</knowledge>

Figure F.3: Template for the knowledge component of the coder, where each knowledge_entry
variable can be an arbitrary piece of text from an external source.

32



Coder Prompt

You are a machine learning scientist, with expertise in large language models
and high-performance computing. Use your expertise to assist the user in their
machine learning task.

Study the current version of {fnames}:
{code}

Your goal is to implement the following ideas to improve the code so that it
better achieves the task:

# Task description
Improve train_gpt2.py so that it achieves or goes below the
target val_loss value of 3.28 in the shortest train_time possible.

Make sure your code changes preserve these aspects of train_gpt2.py:
- The script continues to be runnable via simply calling ‘torchrun

--nproc_per_node=8 train_gpt2.py‘.
- Do NOT change the value of train_files, val_files, or val_token values in

the Hyperparameters config used to set the training args.
- Make sure the values of these hyperparameters are not changed,

and keep to using the current os.environ variables.
- Always keep save_checkpoint set to False in the training args.
- Keep all print0 statements the same. Do not change the arguments

used in the current print0 statements, so to ensure the logging format is
preserved.

- When possible, just change the train_gpt2.py file without making extra files.
- Important: I care about optimizing the performance of the implementation and

do not care how organized or disorganized the code is.
- Any bugs will be described in the "outcome_summary" value of the summary, if

provided. Always focus on addressing these when present, before improving
other parts of the code.

If you violate any of the above constraints, the experiment run will be invalid.

Your job will be run on a single 8xH100 node with access to all 8 GPUs.

You have access to the following knowledge, consider these when writing code:
{knowledge}

**Never** install or ask to install any additional packages. Assume you have
access to the following packages outside of the standard python packages:
{packages}

If necessary, you may access pretrained model checkpoints via HuggingFace for
smaller models like BERT variants or CLIP.

To help with your task, here is a list summarizing recent erroneous changes to
the above code that you have previously tried, along with a summary of the
outcome of each change.
{history}

I trust you to make good decisions, so do not ask me for permission to make any
code changes.
Do not ever ask to install any additional packages. The answer
will be no.

In your final response, include ONLY the fully-functional updated code
which implements ideas in the hypothesis above. Do NOT include any other
content in your final response besides the code.

Figure F.4: Full prompt for the coder (Aider), conditioning on external knowledge. Here, history
and knowledge template strings are first composed via the templates in Figure F.2 and F.3.

33



Coder Prompt With No Knowledge

You are a machine learning scientist, with expertise in large language models
and high-performance computing. Use your expertise to assist the user in their
machine learning task.

Study the current version of {fnames}:
{code}

Your goal is to implement the following ideas to improve the code so that it
better achieves the task:

# Task description
Improve train_gpt2.py so that it achieves or goes below the
target val_loss value of 3.28 in the shortest train_time possible.

Make sure your code changes preserve these aspects of train_gpt2.py:
- The script continues to be runnable via simply calling ‘torchrun

--nproc_per_node=8 train_gpt2.py‘.
- Do NOT change the value of train_files, val_files, or val_token values in

the Hyperparameters config used to set the training args.
- Make sure the values of these hyperparameters are not changed,

and keep to using the current os.environ variables.
- Always keep save_checkpoint set to False in the training args.
- Keep all print0 statements the same. Do not change the arguments

used in the current print0 statements, so to ensure the logging format is
preserved.

- When possible, just change the train_gpt2.py file without making extra files.
- Important: I care about optimizing the performance of the implementation and

do not care how organized or disorganized the code is.
- Any bugs will be described in the "outcome_summary" value of the summary, if

provided. Always focus on addressing these when present, before improving
other parts of the code.

If you violate any of the above constraints, the experiment run will be invalid.

Your job will be run on a single 8xH100 node with access to all 8 GPUs.

**Never** install or ask to install any additional packages. Assume you have
access to the following packages outside of the standard python packages:
{packages}

If necessary, you may access pretrained model checkpoints via HuggingFace for
smaller models like BERT variants or CLIP.

To help with your task, here is a list summarizing recent erroneous changes to
the above code that you have previously tried, along with a summary of the
outcome of each change.
{history}

First, analyze the task and come up with a plan for solving the task:
1. Consider ideas for changes and improvements needed to improve on the task.
Consider both creative and practical ideas.
2. Break down the implementation into clear steps, generate pseudo codes for
each step
3. Consider potential challenges and how to address them

Then, implement your plan by making the necessary code changes.

I trust you to make good decisions, so do not ask me for permission to make
any code changes.
Do not ever ask to install any additional packages. The answer will be no.

Respond with your plan for improving the code, followed by the fully-functional
updated code implementing your plan.

Figure F.5: Full prompt for the coder, without external knowledge. Here, the coder is prompted to
first conceive of a plan for solving the task.

34



Log summarization prmopt

Task: Analyze the following output logs and extract metrics following the
metrics structure and typing template provided below.

# Logs
{logs}

# Metric dict template (showing expected type for each key)
{metric_types}

Respond with only the extracted metrics as a JSON dict following the exact
structure and type specification in the dict template below.
If no metrics are successfully extracted, return the empty dict, {{}}. If any
individual key: value expected in the metrics template is missing, set its
value to null.

Figure F.6: Prompt for extracting metrics resulting from executing a solution. Here the logs are a
concatenation of the standard streams output by running the solution.

Standard stream summarization prompt

Task: Produce a succinct summary of the following stdout and stderr logs for a
job running on a compute cluster.
- Your summary should consider whether the logs indicate whether the goal below
was achieved or not.
- Keep your summary below 500 words.

# Job goal
{goal}

# stdout logs
{log_out}

# stderr logs
{log_err}

Respond with just your summary text with no extra commentary and no extra
formatting. If appropriate, include the most useful stderr logs for debugging
in code blocks fenced by triple ticks.

Figure F.7: Prompt for extracting standard stream summaries and metrics resulting from executing a
solution.

35



Level 1 hint generation prompt

Given the git diff between the current and next version and the changelog,
generate a high-level pseudo code description of the changes made.
Focus on explaining the key algorithmic changes and improvements in a clear,
concise way.

Git diff:
{diff}

Changelog:
{changelog}

Generate pseudo code that:
1. Describes the key algorithmic changes and improvements
2. Focuses on the high-level logic and avoids implementation details
3. Explains the purpose and impact of each major change
4. Uses clear, readable pseudo code syntax

Format the output as:
# Pseudo Code Changes
[Your pseudo code description here]

Figure F.8: Prompt for generating the level 1 (pseudocode)s hints of the Automated LLM Speedrun-
ning benchmark, where the changelog contains descriptions of the changes retrieved by the repo.

Level 2 hint generation prompt

Given the current code, changelog, and next code, provide a detailed natural
language description of the improvements made.
Current code:
{code}

Changelog:
{changelog}

Next code:
{next_code}

Provide a detailed explanation of:
1. What specific improvements were made
2. Why these changes were beneficial
3. How they contribute to the overall performance
4. Any technical challenges that were addressed

Figure F.9: Prompt for generating the level 2 (text) hints of the Automated LLM Speedrunning
benchmark, where the changelog contains descriptions of the changes retrieved by the repo and
next_code is the full implementation of the next record.

36



Level 3 hint generation prompt

Given the current code, changelog, and next code, pseudo codes and text
description, generate a formal paper-like summary of the improvements.
Current code:
{code}

Changelog:
{changelog}

Next code:
{next_code}

Pseudo code:
{generate_level_1(record)}

Text description:
{generate_level_2(record)}

Use this text description and pseudocode changes to generate a body of knowledge
resembling a scientific paper. You should tailor the generated scientific paper
so that a competent machine learning engineer can easily implement the suggested
changes in PyTorch. Besure to include the pseudocode in the paper-like summary.

Figure F.10: Prompt for generating the level 3 hints of the Automated LLM Speedrunning benchmark,
where the changelog contains descriptions of the changes retrieved by the repo and next_code is
the full implementation of the next record.

37



G Record breakdown

In Table G.1, we list each NanoGPT speedrun record and its description as seen in the NanoGPT
Speedrun repository [Jordan et al., 2024a]4. We also list each record index and its corresponding task
index in Automated LLM Speedrunning, including its corresponding target next record (indexed by
original record index).

Table G.1: Summarized and categorized of records from [Jordan et al., 2024a]

# ID # Transition Record time Description Category
1 - - 45 mins llm.c baseline Baseline

2 1 #1 → #2 31.4 mins Tuned learning rate & rotary embed-
dings

Embeddings

3 2 #2 → #3 24.9 mins Introduced the Muon optimizer Optimizer

4 3 #3 → #4 22.3 mins Muon improvements Optimizer

5 4 #4 → #5 15.2 mins Pad embeddings, ReLU², zero-init
projections, QK-norm

Architecture

6 5 #5 → #6 13.1 mins Distributed the overhead of Muon Parallelization

7 - - 12.0 mins Upgraded PyTorch 2.5.0 Framework

8 7 #6 → #8 10.8 mins Untied embedding and head Architecture

9 8 #8 → #9 8.2 mins Value and embedding skip connec-
tions, momentum warmup, logit
softcap

Architecture

10 9 #9 → #10 7.8 mins Bfloat16 activations Data Type

11 10 #10 → #11 7.2 mins U-net pattern skip connections &
double lr

Architecture

12 11 #11 → #12 5.03 mins 1024-ctx dense causal attention →
64K-ctx FlexAttention

Attention Mechanism

13 12 #12 → #13 4.66 mins Attention window warmup Attention Mechanism

14 13 #13 → #14 4.41 mins Value Embeddings Embeddings

15 14 #14 → #15 3.95 mins U-net pattern value embeddings, as-
sorted code optimizations

Embeddings

16 15 #15 → #16 3.80 mins Split value embeddings, block slid-
ing window, separate block mask

Embeddings

17 16 #16 → #17 3.57 mins Sparsify value embeddings, improve
rotary embeddings, drop an attn
layer

Embeddings

18 17 #17 → #18 3.4 mins Lower logit softcap from 30 to 15 Hyperparameter Tuning

19 18 #18 → #19 3.142 mins FP8 head, offset logits, lr decay to
0.1 instead of 0.0

Data Type

20 19 #19 → #20 2.992 mins Merged QKV weights, long-short at-
tention, attention scale, lower Adam
epsilon, batched Muon

Attention Mechanism

21 20 #20 → #21 2.933 mins Reduced batch size Hyperparameter Tuning

4https://github.com/KellerJordan/modded-nanogpt

38



H Example hints

In this section, we provide example hints used for various hint levels.

Level 1 hint (pseudo-code) for Record 1

# Pseudo Code Changes

1. Rotary Position Embedding Implementation
# Added rotary position embeddings to attention mechanism
class RotaryPositionEmbedding:

def __init__(dim, base=10000):
precompute inverse frequencies using base^(2i/dim)
initialize cache for cos/sin values

def forward(sequence_length):
if sequence_length not in cache:

compute angular positions t
calculate frequency components
store cos(t), sin(t) in cache

return cached cos/sin values

def apply_rotary_embeddings(q, k, cos, sin):
split q and k vectors into halves
rotate components using:

rotated_q = q1*cos + q2*sin
rotated_k = k1*cos + k2*sin

return concatenated rotated vectors

2. Modified Attention Mechanism
class SelfAttention:

def __init__():
# Changed from standard positional embeddings
add rotary embedding module
remove position embedding matrix

def forward(x):
split into q,k,v with same head_dim
apply rotary embeddings to q and k
use scaled_dot_product_attention with rotated q/k
remove manual scaling (was /sqrt(24))
return attention output

3. Layer-Wise Attention Scaling
class TransformerBlock:

def __init__():
# Added depth-dependent scaling
attn_scale = 1/sqrt(2 * num_layers)

def forward(x):
x += attn_scale * attention_output
x += mlp_output

4. Simplified Model Architecture
class GPT:

def __init__():
remove position embedding matrix (wpe)
keep only token embeddings (wte)
remove custom embedding initialization

def forward():
# Position info now handled by rotary embeddings
use only token embeddings (no pos_emb addition)

5. Training Process Improvements
Training Hyperparameters:

batch_size: 32 → 64
total_batch_size: 262k → 524k tokens
add warmdown phase after constant LR period

Optimization Changes:
replace gradient clipping with:

grad = grad / (norm + 1e-6)
implement linear warmdown schedule
add periodic model checkpoint saving

Learning Rate Schedule:
if step < warmup: linear increase
elif step < total - warmdown: constant
else: linear decrease to zero

Key Impacts:
- Rotary embeddings improve position awareness in attention
- Layer-wise scaling stabilizes deep networks
- Modified LR schedule enables better convergence
- Gradient normalization replaces clipping for stability
- Larger batches improve training efficiency

39



Level 2 hint (text description) for Record 1

Here’s a detailed breakdown of the improvements:

1. **Architectural Improvements**
- **Rotary Positional Embeddings**: Replaced standard positional embeddings

with rotary embeddings
- Added ‘Rotary‘ module and ‘apply_rotary_emb‘ function for relative

position encoding
- Benefits: Better captures relative positions and attention patterns,

improves model accuracy
- Implementation: Applied to queries/keys in attention instead of separate

positional embeddings

- **Simplified Normalization**
- Removed all affine parameters from RMSNorm implementation
- Benefits: Reduces parameter count while maintaining effectiveness
- Tradeoff: Minor performance cost offset by other optimizations

2. **Optimization Improvements**
- **Learning Rate Changes**:

- Increased base LR from 0.0015 to 0.0018 (3x increase as per changelog)
- Changed schedule to trapezoidal (warmup → constant → warmdown)
- Benefits: Following [2405.18392], allows more stable high-LR training

- **Gradient Normalization**:
- Replaced gradient clipping with per-parameter gradient norm scaling
- ‘p.grad = p.grad / (p.grad.norm() + 1e-6)‘
- Benefits: More stable training with high LR, prevents explosion

3. **Initialization/Scaling Changes**
- **Attention Scaling**:

- Introduced ‘attn_scale = 1/sqrt(2*n_layer)‘
- Replaced ad-hoc ‘/ math.sqrt(24)‘ with systematic layer-based scaling
- Benefits: Better coordinates residual branches across layers

- **Removed Positional Embeddings**:
- Deleted ‘wpe‘ embedding layer completely
- Benefits: Parameter reduction + rotary handles position information

4. **Training Process Improvements**
- **Checkpointing**:

- Added periodic model saving (‘save_every‘ parameter)
- Benefits: Fault tolerance and easier resumption

- **Batch Size Optimization**:
- Increased batch size from 32 to 64 tokens
- Total batch size from 262K to 524K tokens
- Benefits: Better hardware utilization

5. **Code Simplifications**
- Removed ‘_init_weights‘ and special initialization flags
- Eliminated position embedding mixing (‘tok_emb + pos_emb‘)
- Removed unused configuration options and legacy code paths

**Technical Challenges Addressed**:
1. **Stability at High Learning Rates**: Through gradient normalization and

careful attention scaling
2. **Position Encoding Migration**: Non-trivial transition from absolute to

relative (rotary) positioning
3. **Distributed Training Coordination**: Maintained DDP compatibility through

architectural changes
4. **Learning Rate Schedule Tuning**: Required careful warmup/warmdown

40



Level 2 hint (text description), continued

balancing for trapezoidal schedule

**Performance Impact**:
Combined these changes enable 2x faster training convergence by:
- Allowing more aggressive learning rates through better normalization
- Improving parameter efficiency with rotary embeddings
- Increasing useful batch size through stability improvements
- Reducing computational overhead from simplified operations

The architectural simplifications also make the model more amenable to compiler
optimizations (like torch.compile), while the training process improvements
enable better utilization of distributed hardware.

Level 3 hint (mini-paper) for Record 1

# Efficient Training of GPT-style Models Through Architectural and
Optimization Co-design

## Abstract
We present architectural and optimization improvements enabling 2× faster
training of GPT-style models while maintaining equivalent final performance.
Through systematic analysis of position encoding, normalization schemes,
and learning rate scheduling, we demonstrate that:
1) Rotary position embeddings (RoPE) improve position-aware attention
computation;
2) A trapezoidal learning rate schedule with gradient normalization enables
more stable high-rate training;
3) Simplified initialization and scaled residual connections reduce parameter
count while maintaining model capacity. Our modifications require minimal code
changes while achieving 5B token convergence equivalent to baseline 10B token
performance.

## 1. Introduction

### 1.1 Background
Transformer architectures (Vaswani et al., 2017) require careful coordination
of position encoding, normalization, and optimization parameters to achieve
efficient training. We analyze common pain points in standard implementations:

- Additive positional embeddings limit attention head flexibility
- Unstable gradient flow requiring aggressive clipping
- Suboptimal learning rate schedules wasting compute

### 1.2 Key Improvements
Our modified architecture (Figure 1) implements four fundamental changes:

1. **Rotary Position Embeddings**: Replace additive positional encoding with
rotational transformations of query/key vectors
2. **Layer-Scaled Attention**: Fixed scaling of attention outputs based on
network depth
3. **Trapezoidal LR Schedule**: Three-phase schedule combining warmup, sustain,
and cooldown periods
4. **Gradient Normalization**: Per-parameter gradient scaling replaces global
clipping

## 2. Methodology

### 2.1 Rotary Position Encoding
Traditional approaches concatenate positional embeddings to token embeddings.
We implement rotary position encoding in attention computation:

41



Level 3 hint (mini-paper), continued

‘‘‘python
class Rotary(nn.Module):

def forward(self, x):
t = arange(seq_len)
freqs = outer_product(t, inv_freq)
return cos(freqs), sin(freqs)

def apply_rotary_emb(q, k, cos, sin):
return (q * cos + rotate(q, sin),

k * cos + rotate(k, sin))
‘‘‘

This creates position-aware transformations without additional embedding
parameters. The rotation operation preserves relative position information
through dot product attention.

### 2.2 Trapezoidal Learning Schedule
Our three-phase schedule improves upon cosine decay:

‘‘‘
Learning Rate Schedule:
1. Warmup (0 <= step < 256): lr = base * step/256
2. Sustain (256 <= step < N-2000): lr = base
3. Cooldown (N-2000 <= step <= N): lr = base * (N-step)/2000
‘‘‘

Mathematically:

$$
\text{LR}(t) = \begin{cases}
\alpha\frac{t}{\tau_w} & t \leq \tau_w \\
\alpha & \tau_w < t \leq T-\tau_d \\
\alpha\frac{T-t}{\tau_d} & t > T-\tau_d
\end{cases}
$$

Where $\alpha=0.0018$, $\tau_w=256$, $\tau_d=2000$.

### 2.3 Gradient Normalization
Replaces global gradient clipping with per-parameter scaling:

‘‘‘python
# Before: Global clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

# After: Per-parameter normalization
for p in model.parameters():

p.grad = p.grad / (p.grad.norm() + 1e-6)
‘‘‘

This prevents extreme gradient magnitudes while maintaining relative update
directions.

## 3. Architectural Modifications

### 3.1 Simplified Attention Scaling
Layer-dependent scaling stabilizes deep networks:

‘‘‘python
class Block(nn.Module):

def __init__(self, config):

42



Level 3 hint (mini-paper), continued

self.attn_scale = 1/math.sqrt(2*config.n_layer)

def forward(self, x):
x = x + self.attn_scale * attn_output

‘‘‘
% For 12-layer model: scale = 1/sqrt(24) approx 0.204. This compensates for
residual path accumulation in deep networks.
### 3.2 Parameter Reduction
Removed components:
1. Positional embedding matrix (wpe)
2. Affine parameters in RMSNorm
3. Custom weight initialization

Preserves weight tying between input/output embeddings while reducing total
parameters by 1.2% for d12 configuration.

## 4. Implementation Details

### 4.1 Critical Code Changes
Core modifications from baseline implementation:

‘‘‘python
# Additions
class Rotary(nn.Module): ...
def apply_rotary_emb(...): ...

# Modifications
class CausalSelfAttention:

def forward():
q, k = apply_rotary_emb(q, k) # Rotate Q/K

class Block:
def __init__():

self.attn_scale = ... # Layer-dependent scaling

# Removals
del self.wpe # Positional embedding matrix
del _init_weights # Custom initialization
‘‘‘

### 4.2 Training Configuration
Updated hyperparameters:

| Parameter | Original | Modified |
|-------------------|----------|----------|
| Batch size | 32 | 64 |
| Total batch tokens| 262k | 524k |
| Peak LR | 0.0015 | 0.0018 |
| LR schedule | Cosine | Trapezoidal |
| Warmup iterations | 256 | 256+2000 |

## 5. Results & Analysis

### 5.1 Performance Improvements
Validation loss comparison on 5B tokens:

| Model | Loss (Original) | Loss (Modified) |
|-------------|-----------------|-----------------|
| d12 (124M) | 3.21 | 3.09 (-3.7%) |
| d24 (355M) | 2.89 | 2.77 (-4.1%) |

43



Level 3 hint (mini-paper), continued

Achieves equivalent loss to baseline in half the tokens.

### 5.2 Training Dynamics
Key observations:
- 18% faster iteration speed from larger batches
- 2.1× fewer iterations to reach target loss
- 23% lower gradient variance via normalization

## 6. Conclusion

We demonstrate that coordinated architectural and optimization changes enable
2× faster training of transformer models. Critical factors include:

1. Position encoding through rotary transformations
2. Stable gradient flow via layer-wise scaling
3. Sustained high learning rates through trapezoidal scheduling

The modifications require <200 lines of code changes while maintaining
compatibility with standard distributed training setups. Our results suggest
that careful component co-design remains crucial for efficient large model
training.

## Appendix: Complete Pseudocode

Algorithm 1: Modified Training Loop

‘‘‘python
Initialize model with rotary layers
Load data with doubled batch size

for step in total_steps:
# Forward pass with rotary embeddings
cos, sin = rotary(q)
q = q * cos + rotate(q, sin)
loss = model(x)

# Normalized backward pass
loss.backward()
for p in parameters:

p.grad /= (norm(p.grad) + 1e-6)

# Trapezoidal LR update
lr = trapezoidal_schedule(step)
optimizer.step(lr)

‘‘‘

This paper-style summary provides both theoretical justification and
implementation-level details, enabling direct reproduction of the improvements.
The combination of architectural simplification and optimized training dynamics
demonstrates a practical path for efficient large language model training.

44



I Broader impact

AI agents that are proficient in conducting AI research autonomously can provide significant, far-
reaching benefits: (1) accelerated scientific progress in healthcare, climate science, and other impor-
tant domains, (2) economic growth driven by the development of novel technology, and (3) expedited
safety and alignment research for models. Crucial to automated science is the ability of such agents to
reproduce scientific results, which our benchmark seeks to measure. However, such innovation also
requires a thorough understanding of model advancements to ensure responsible deployment. We
hope our benchmark can serve as a useful evaluation for model autonomy. However, agents capable
of executing open-ended AI research tasks can also pose risks if their capabilities outpace our ability
to comprehend the consequences of their actions. Responsible deployment of such models therefore
requires parallel advancements in monitoring, aligning, and controlling such models.

To foster understanding, reproducibility, and further development of AI Research Agents, we open-
source the full code to reproduce the experiments on the Automated LLM Speedrunning Benchmark
presented in this work. We acknowledge the limitations of our benchmark and encourage the
development of additional evaluations of automated AI research capabilities, particularly those
tailored to the workflow of researchers training frontier models.

45


	Introduction
	Related works
	The Automated LLM Speedrunning Benchmark
	Reproducibility tasks from existing records
	Agent scaffolds

	Experiments and results
	Baselines
	Reproducing individual records
	Combining multiple hints
	Interquartile mean evaluation
	Analysis of search trees
	Similarity between agent and human solutions

	Limitations and future directions
	Conclusions
	Experimenting with additional knowledge
	Cumulative speedrun experiment
	Reproducing ground-truth speedruns on our hardware
	Additional results for reproducing individual records
	Additional results for code similarity judge
	Prompts and formatting templates
	Record breakdown
	Example hints
	Broader impact

