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Figure 1: The Automated LLM Speedrunning Benchmark. We create a task for each consecutive pair
of records Ri, Ri+1. The performance of the agent is evaluated by comparing the relative speedup of
the agent solution R→

i to Ri.
Abstract

Rapidly improving large language models (LLMs) have the potential to assist in
scientific progress. One critical skill in this endeavor is the ability to faithfully repro-
duce existing work. To evaluate the capability of AI agents to reproduce complex
code in an active research area, we introduce the Automated LLM Speedrunning
Benchmark, leveraging the research community’s contributions to the NanoGPT

speedrun, a competition to train a GPT-2 model in the shortest time. Each of the
19 speedrun tasks provides the agent with the previous record’s training script,
optionally paired with one of three hint formats, ranging from pseudocode to paper-
like descriptions of the new record’s improvements. Records execute quickly by
design and speedrun improvements encompass diverse code-level changes, ranging
from high-level algorithmic advancements to hardware-aware optimizations. These
features make the benchmark both accessible and realistic for the frontier problem
of improving LLM training. We find that recent frontier reasoning LLMs combined
with SoTA scaffolds struggle to reimplement already-known innovations in our
benchmark, even when given detailed hints. Our benchmark thus provides a simple,
non-saturated measure of an LLM’s ability to automate scientific reproduction,
a necessary (but not sufficient) skill for an autonomous research agent. Rapid
advancements in large language models (LLMs) have the potential to assist in
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scientific progress. A critical capability toward this endeavor is the ability to repro-
duce existing work. To evaluate the ability of AI agents to reproduce results in an
active research area, we introduce the Automated LLM Speedrunning Benchmark,
leveraging the research community’s contributions on the NanoGPT speedrun, a
competition to train a GPT-2 model in the shortest time. Each of the 19 speedrun
tasks provides the agent with the previous record’s training script, optionally paired
with one of three hint formats, ranging from pseudocode to paper-like descriptions
of the new record’s improvements. Records execute quickly by design and speedrun
improvements encompass diverse code-level changes, ranging from high-level al-
gorithmic advancements to hardware-aware optimizations. These features make
the benchmark both accessible and realistic for the frontier problem of improving
LLM training. We find that recent reasoning LLMs combined with SoTA scaffolds
struggle to reimplement already-known innovations in our benchmark, even when
given detailed hints. Our benchmark thus provides a simple, non-saturated mea-
sure of an LLM’s ability to automate scientific reproduction, a necessary (but not
sufficient) skill for an autonomous research agent.

1 Introduction

Figure 2: Recent LLM agents struggle to re-
produce NanoGPT Speedrun records.

The advent of LLMs capable of succeeding in chal-
lenging math, coding, and scientific reasoning do-
mains has led to a surge of activity in applying
LLM agents to the longstanding ambition of auto-
mated scientific discovery [Simon, 1995, Langley,
1987, Waltz and Buchanan, 2009, King et al., 2009,
Steinruecken et al., 2019]. Early results suggest
LLM-based systems can improve the productivity
of human researchers, from formulating hypotheses
to implementing code-based experiments to testing
them [Romera-Paredes et al., 2024, Castro et al.,
2025, Yin, 2025, Inizan et al., 2025].

Scientific progress hinges on trustworthy results, and
the ultimate test of the truth behind a finding is whether the experiment and its outcomes can be
reproduced [Fineberg et al., 2019, Pineau et al., 2021, Henderson et al., 2018]. Thus, a critical
component of automated science is automated reproducibility: the process of automatically reimple-
menting an experiment based on a description of the experiment design, such that the implementation
reproduces previously reported outcomes. In other words, translating the description of an experiment
into its implementation [Peng, 2011, Siegel et al., 2024]. Moreover, success in reimplementing a
known study also serves as a metric for assessing the reliability with which an agent can implement
experiments via description, an ability that would enable researchers to quickly scale up the testing of
new ideas, regardless of whether they are of human or AI origin.

We study the ability of recent reasoning LLMs in combination with state-of-the-art scaf-

folds—programs that iteratively make use of an LLM for finding a solution to a given task—on
reproducing prior discoveries in the domain of LLM training. We henceforth refer to the combination
of a specific LLM and scaffold for the purpose of automated research as a research agent, and use
the more specific term AI research agent to refer to those specifically designed for automating AI
research itself. While there is much speculation that AI research agents may lead to the beginnings of
a recursive self-improvement loop for future LLM-based research agents, we set our focus on the
more modest goal of understanding whether current AI research agents can succeed at the prerequisite
task of reproducing previous scientific findings on GPT-2 [Radford et al., 2019], the first model to
demonstrate a broad capacity for zero-shot transfer to new tasks via prompting.

Towards this goal, we introduce The Automated LLM Speedrunning Benchmark, based on the series of
community-driven improvements to GPT-2 training in the NanoGPT Speedrun [Jordan et al., 2024a], a
competition based on minimizing the wall time of training an open-source PyTorch reimplementation
of GPT-2 [Karpathy, 2023] to reach a target cross-entropy loss of 3.28 on the validation set of
FineWeb [Penedo et al., 2024], using a single 8→H100 node. Since its inception in June 2024, this
community effort has driven the training time of GPT-2 from 45 minutes to below 3 minutes (as of
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Table 1: Key motivations of our benchmark design and how it differentiates from existing ML
reproducibility benchmarks. Here, “Reproducibility” denotes whether the tasks require replicating a
given technique; “Sequential”, whether the benchmark measures reproducibility over a cumulative
series of scientific results; “LLM research”, whether the task involves language model development;
and “Agent scaffold”, whether a baseline agent scaffold is released with the benchmark.

Reproducibility Sequential LLM research Agent scaffold
MLE-bench [Chan et al., 2025] No No No No
PaperBench [Starace et al., 2025] Yes No Partially Yes
CORE-bench [Siegel et al., 2024] Yes No No Yes
RE-bench [Wijk et al., 2024] No No Yes Yes
MLAgentBench [Huang et al., 2024] No No Partially Yes
MLGym-bench [Nathani et al., 2025] No No Partially Yes

Automated LLM Speedrunning (ours) Yes Yes Yes Yes

May 2025). These improvements were driven by new algorithmic enhancements, some of which
have been shown to generalize beyond the scale of the 124M parameter GPT-2 model, with the most
notable being the invention of the Muon optimizer [Jordan et al., 2024b], later demonstrated to show
benefits for training much larger modern LLMs [Liu et al., 2025a, Shah et al., 2025]. Other speedrun
improvements include mixed precision training and more efficient attention variants [Dong et al.,
2024]. As of May 2025, the NanoGPT Speedrun includes 21 successive speedrun records. Each
record is associated with its corresponding training script (train_gpt.py), a measured training time,
a public announcement of the changes, and a high-level summary of the code changes.1

The Automated LLM Speedrunning Benchmark then tasks an AI research agent with reproducing
each successive speedrun record, starting from the previous record, with an optional set of hints of
various formats and levels of detail. The clear code-level ground-truth targets per record alongside
detailed change logs between records make this benchmark an ideal testing ground for the ability of
agents to reproduce not only a single experimental finding, but also a series of cumulative research
findings—a distinct affordance compared to prior reproducibility benchmarks. Here, all tasks share
the same success metric of training time to reach the target validation loss, measured on a fixed
hardware configuration (a single 8xH100 node), making exact reproduction, fair comparisons, and
cross-task comparisons straightforward. Lastly, perhaps the most compelling aspect of this benchmark
is its focus on reproducing discoveries directly relevant to real-world LLM development.

Our experiments show that even when given a description of the difference between two consecutive
speedrun records in various formats, recent agents based on DeepSeek-R1 [DeepSeek-AI et al., 2025]
and o3-mini [OpenAI, 2025] combined with a state-of-the-art search scaffold, still struggle to improve
ground-truth records to match the speedups of the next ground-truth record (see Figure 2).

We believe the Automated LLM Speedrunning Benchmark can spur development of AI research
agents that can automate reproducibility studies, paving a critical step on the way towards more
capable AI research agents that can realize the aspiration of accelerating the pace of scientific
discovery via automated science. However, our results show that before such lofty goals can be
realized, automated reproducibility remains a central challenge that must be addressed.

2 Related works

Automated reproducibility. Recent works have devised benchmarks for evaluating the ability of
LLM agents to reproduce code-based experiments from published papers. CORE-Bench measures
an agent’s ability to correctly install, execute, and interpret a paper’s associated codebase and
its outputs [Siegel et al., 2024]. Other benchmarks, including PaperBench [Starace et al., 2025],
Papers2Code [Seo et al., 2025], AutoP2C [Lin et al., 2025], and SciReplicate [Xiang et al., 2025]
test the agent’s ability to convert a research paper to a codebase that replicates the reported findings
or the agent’s ability to formulate and test hypotheses [Chen et al., 2025, Liu et al., 2025b]. Instead
of evaluating on a wide set of, often, unrelated papers as in these previous works, the Automated
LLM Speedrunning Benchmark focuses on a single important overarching task of speeding up LLM
training. This focus allows for a unified success metric across a diverse gradation of task complexity,

1https://github.com/KellerJordan/modded-nanogpt?tab=readme-ov-file#
world-record-history

3

https://github.com/KellerJordan/modded-nanogpt?tab=readme-ov-file#world-record-history
https://github.com/KellerJordan/modded-nanogpt?tab=readme-ov-file#world-record-history


defined by the natural path of innovation previously discovered by human researchers. This grounding
allows for not only comparison to granular, ground-truth code-level changes, but also opens the door
to evaluating an LLM agent’s ability to reproduce an entire research arc over multiple compounding
innovations against human performance. Moreover, the benchmark’s multiple hint levels allow for
controlled study of how performance varies across different forms of background information.

Code generation with LLMs. Code is inherently reproducible via repeated execution and requires
no additional equipment to run beyond a computer. Thus, many automated scientific reproducibility
benchmarks, including ours, focus primarily on virtual, code-based experiments. In this domain,
research agents directly benefit from and build upon the rapid progress in coding and computer-use
agents, such as a growing set of complex, sandboxed software-engineering agent benchmarks [Yang
et al., 2024, Wang et al., 2024, Fourney et al., 2024, Mialon et al., 2023, Yoran et al., 2024, Zhou
et al., 2023, Koh et al., 2024] and scaffold designs [Zhang et al., 2024], such as AIDE [Jiang et al.,
2025], which we both use as a baseline and extend in our experiments.

LLMs for automated ML. Recent advances enabling LLMs to exploit chain-of-thought outputs
during inference have led to drastic improvements in their performance on reasoning tasks in domains
like math, coding, and science. These improvements have led to a surge in LLM programs seeking to
automate the key parts of machine learning itself, encompassing iterated hypothesis generation and
testing and the writing of reports detailing the findings, in the form of end-to-end agents [Lu et al.,
2024, Huang et al., 2025, Yamada et al., 2025a], agents focused on hypothesis generation [Gottweis
et al., 2025, O’Neill et al., 2025], as well as agents that can interact with a human-in-the-loop to
jointly formulate and test hypotheses [Intology AI, 2025, Autoscience Institute, 2025]. However,
early results suggest these systems, while capable of optimizing code-level improvements, often fall
short in executing on experiments that faithfully reflect their intended goals [Yamada et al., 2025b].
Thus, while LLM-based reasoning models can generate, at times, novel hypotheses [Gu et al., 2024],
their ability for scientific reproduction remains a crucial bottleneck in automating scientific research.

3 The Automated LLM Speedrunning Benchmark

The Automated LLM Speedrunning Benchmark seeks to evaluate an LLM agent’s ability to reproduce
the wall-time speedup associated with each record transition from the NanoGPT Speedrun, both with
and without access to hints describing the corresponding changes at varying levels of abstraction.
Table 1 summarizes how our work compares to existing ML reproducibility benchmarks.

3.1 Reproducibility tasks from existing records

For each transition from record Ri↑1 to record Ri for i = 2, ..., 21, excluding i = 7, whose speedup
is purely due to upgrading PyTorch, we define the following components:
Ri Training script for the i-th record in the speedrun,
ti Wall-clock time (in seconds) required by Ri to reach the target validation loss,

!1
i Level 1 hint: A pseudocode description of code change from the previous record,

!2
i Level 2 hint: A natural-language description of the code change from the previous record,

!3
i Level 3 hint: A mini-paper summarizing the code change from the previous record.

All hints were first drafted by R1, manually verified, and, where necessary, edited for correctness and
relevance. See Appendix F for further details on our hint creation process. We provide a categorized
listing of all ground-truth records in Appendix G and example hints in Appendix H.

For convenience, we denote the set of ground-truth speedrun records (which excludes record 6)
as I. We define a record task as a tuple ↑Ri↑1,Ri, ti,m↓, where R1 corresponds to the initial
NanoGPT training script, and where m is any subset of the set of hint levels, {0, 1, 2, 3}, where level
0 corresponds to no hint. Depending on the presence of hints, we categorize the possible tasks in our
benchmark into two types:

Record reproduction tasks. Given hints that describe the subsequent record, i.e. m ↔= {0}, the
LLM agent must reproduce record Ri+1 given Ri and the set of corresponding hints. Here the key
metric of interest is the fraction of speedup recovered (FSR), defined as

FSRi =
ti ↗ t→i+1

ti ↗ ti+1
. (1)
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Figure 3: Overview of our flexible search scaffold. Search starts from a root node containing code
for the starting record Ri from which N0 initial solutions are generated. Subsequently, each search
iteration debugs a buggy leaf node with probability pdebug and otherwise greedily selects the best
node to improve, with debug and improvement each branching N solutions. At each search step, the
coder submodule implements the solution, with optional access to external knowledge (e.g. hints).

where t→i+1 is the training time achieved by the agent to reach the target validation loss. The full
benchmark performance is then the mean FSR over the set of all included records, I:

FSR =
1

|I|
∑

i

ti ↗ t→i+1

ti ↗ ti+1
. (2)

Record optimization tasks. Without any hints, i.e. m = {0}, the LLM agent must produce a new
training script solution R→

i+1 with a minimal training time t→i+1 to reach the target validation loss,
given Ri. Here we consider both the raw wall time t→i+1 of the solution produced, in addition to
FSRi. Similar to the setting of record reproduction, we consider the mean of these metrics over all
ground-truth records in the benchmark as an overall measure of performance. This allows the agent
to explore its own improvements given the same SoTA starting point that humans had when each
record was produced.

3.2 Agent scaffolds

We provide a flexible search scaffold implementation that extends AIDE [Jiang et al., 2025] into a
more general parameterization. In this setup, visualized in Figure 3, each node in the search tree
represents a solution instance contained in a directory with relevant scripts, performance metrics,
and an LLM-generated execution summary. For instance, in NanoGPT training, a solution node
consists of a single train_gpt2.py script and a results file describing its performance and execution
outcome. The fitness of each node is evaluated based on these metrics—such as wall time to reach
the target validation loss—with each new search initialized using a ground-truth script from the
benchmark and proceeding by branching into up-to-multiple child solutions.

Each search step follows three stages: implementation, execution, and analysis. During implementa-
tion, the agent generates working code from a prompt that includes the task description and optionally,
a set of associated hints. We use Aider [Gauthier, 2025] to make diff-based edits to the initial solution,
producing modified versions for execution. These solutions are then run on an 8xH100 node, and the
output is summarized in natural language via the analysis stage, capturing key performance indicators
and insights from standard outputs. Custom prompts guide each stage and are detailed in Appendix F.
The search begins with N0 initial modifications to the root node. At each step, a new node branches
from either a randomly chosen buggy node (with probability pdebug) or the highest-performing node.
To avoid redundant debugging, we cap retries at Dmax per node. This scaffold design supports
multiple search variants, outlined in Table 2, with each receiving the same budget M of search steps
to ensure fair comparison.
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Table 2: Search variants and their corresponding scaffold parameterizations.

Method Initial branch factor Branch factor Debug probability Max debug depth
Tree 1 N 0 0
Forest N0 N 0 0
AIDE N0 1 pdebug Dmax
Multi-AIDE N0 N pdebug Dmax
Flat (Best-of-M) M — — —

Figure 4: Mean FSR across five search variants and four frontier models for six hint regimes: no hint
(0), pseudocode (1), text (2), mini-paper (3) and combinations thereof (1 + 2, 1 + 2 + 3).

4 Experiments and results

We now evaluate the performance of several baseline agents across a range of scaffolds, hint formats,
and model backbones for all NanoGPT Speedrun records. We report results using the normalized
runtime improvement metric (FSR) from Equation 2, as well as measures of code similarity between
agent and human solutions. For fair comparisons, we use training times for human records based
on rerunning each ground-truth record on the same hardware configuration as agent solutions.
Appendix C reports the near exact reproduction of training times for human records on our cluster.

4.1 Baselines

We compare a number of LLM agents based on DeepSeek-R1, o3-mini, Gemini-2.5-Pro, and Claude-
3.7-Sonnet, using instances of the search scaffolds listed in Table 2. Our choice of parameters are
N0 = 3 for the initial pool of root hypotheses (forest, AIDE and multi-AIDE), N = 3 for the
branching factor (tree, forest and multi-AIDE), pdebug = 0.5 and Dmax = 5 for the debug probability
and maximum debug depth respectively (AIDE and multi-AIDE), and a search budget of M = 20
nodes. Taken together, these scaffolds cover a range of branching factors, search depth, and debug
logic.

For each pair of model and search scaffold, we assess the mean FSR across all 19 tasks for each of the
following hint levels: no hint (level 0), pseudocode (level 1), text description (level 2), and mini-paper
(level 3). Each solution is executed under a maximum runtime of 60 minutes (i.e. a maximum of 20
hours per agent run). We observe an average run time of ↘10 hours per agent run, across a total of
6,840 agent runs (19 records → 6 hint regimes → 5 search variants → 4 models → 3 seeds), for a total
of 6,840 → 8 H100 (internal cluster) hours spent executing the generated solutions.

4.2 Reproducing individual records

We report the mean FSR for each model, search scaffold, and hint-level combination across 3 full
search runs in Figure 4, including the case of no hints. It is evident that hints are necessary for
inducing greater values of FSR, with all agents failing to recover more than 20% of the speed-up
achieved by human solutions on average without hints. Appendix D further reports the mean FSR for
each individual record transitions per agent variation across 3 runs per variation.

We observe that o3-mini generally achieves equal or better results than other models in mean FSR for
all hint levels, but sees slightly worse performance with no hints. Notably, flat search (i.e. best-of-M),
generally matches or outperforms iterated search scaffolds across the individual hint levels (levels
1–3), while matching their performance in the case of no hints. Moreover, tree and forest methods,
which lack debug steps, perform on par with AIDE-based search scaffolds, suggesting that explicit
debug steps do not provide a significant benefit on top of iterative improvement steps. Overall, the
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Figure 5: Interquartile Mean (IQM) evaluation results. Scores are aggregated across multiple runs
with the same hint level, scaffold, and model.

Figure 7: Correlation of FSR with L2 distance recovered for each hint level, showing a modest
correlation between similarity to the human solution and FSR for most hint types and models.

gap between the best models (o3-mini and Claude-3.7-Sonnet) and the open-weights (R1) is wider
for the search scaffolds incorporating branching logic (tree, search, and AIDE variants), suggesting
that models like o3-mini can better iterate on their previous solutions. Figure 6 further shows how
agents tend to have more difficulty in reproducing later records.

Figure 6: FSR and embedding distance per
record for o3-mini with text description hints
(mean and std over 3 seeds). Later records
tend to be harder for agents, leading to lower
recovered embedding distance and speedups.

Out of the various hint formats, the most useful are
the pseudocode and the combinations of pseudocode
with text and mini-papers hints, which enable o3-
mini to recover approximately 40% and 46%, respec-
tively, of the speed-up attained by human solutions
on average. Surprisingly, R1 agents seem to worsen
with the presence of the individual hints, generally
achieving lower FSR compared to the no-hint setting,
suggesting that attempting to implement the complex
changes in these hints results in buggy code. With
hints, R1 produces solutions with lower FSR than
simply making no changes to the code, a common
outcome with no hints, as indicated by the cluster
around a recovered L2 embedding distance of 0.0 in
Figure 7 (Section 4.6 details this similarity analysis).

4.3 Combining multiple hints

We further investigate the impact of combining hint formats, and also include these results for each
agent variation in Figure 4. We observe that providing the text description or mini-paper together
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Table 3: Performance comparison across different hint formats (mean and std over 3 runs). Color-
coded values are differences relative to the best-performing individual hint in the combination.

Hints Model Flat Tree Forest AIDE Multi-AIDE
L1 (pseudocode) o3-mini 0.40±0.02 0.43±0.02 0.40±0.02 0.41±0.02 0.43±0.02
L2 (text) o3-mini 0.22±0.04 0.16±0.03 0.26±0.04 0.18±0.02 0.17±0.03
L3 (mini-paper) o3-mini 0.17±0.03 0.13±0.03 0.15±0.04 0.12±0.01 0.25±0.04

L1+L2 o3-mini 0.27±0.03 (-0.13) 0.38±0.02 (-0.05) 0.31±0.04 (-0.09) 0.34±0.03 (-0.07) 0.37±0.03 (-0.06)
L1+L2+L3 o3-mini 0.24±0.05 (-0.16) 0.35±0.05 (-0.08) 0.39±0.03 (-0.01) 0.36±0.04 (-0.05) 0.46±0.04 (+0.03)

L1 (pseudocode) DeepSeek-R1 0.13±0.03 0.20±0.00 0.07±0.00 0.09±0.02 0.16±0.01
L2 (text) DeepSeek-R1 0.10±0.01 0.07±0.00 0.06±0.00 0.06±0.01 0.07±0.00
L3 (mini-paper) DeepSeek-R1 0.13±0.04 0.10±0.03 0.09±0.03 0.14±0.02 0.20±0.03

L1+L2 DeepSeek-R1 0.25±0.01 (+0.12) 0.20±0.03 (+0.00) 0.25±0.03 (+0.18) 0.28±0.03 (+0.19) 0.24±0.02 (+0.08)
L1+L2+L3 DeepSeek-R1 0.30±0.04 (+0.17) 0.24±0.02 (+0.04) 0.40±0.04 (+0.31) 0.36±0.03 (+0.22) 0.41±0.02 (+0.21)

L1 (pseudocode) Gemini-2.5-Pro 0.18±0.02 0.16±0.02 0.23±0.04 0.13±0.02 0.23±0.03
L2 (text) Gemini-2.5-Pro 0.18±0.01 0.18±0.03 0.19±0.02 0.09±0.01 0.16±0.03
L3 (mini-paper) Gemini-2.5-Pro 0.18±0.04 0.18±0.02 0.24±0.02 0.15±0.02 0.16±0.03

L1+L2 Gemini-2.5-Pro 0.18±0.02 (+0.00) 0.12±0.03 (-0.06) 0.24±0.04 (+0.01) 0.20±0.04 (+0.07) 0.19±0.04 (-0.04)
L1+L2+L3 Gemini-2.5-Pro 0.19±0.04 (+0.01) 0.14±0.04 (-0.04) 0.25±0.04 (+0.01) 0.17±0.03 (+0.02) 0.26±0.05 (+0.03)

L1 (pseudocode) Claude-3.7-Sonnet 0.14±0.03 0.13±0.03 0.05±0.01 0.14±0.01 0.18±0.04
L2 (text) Claude-3.7-Sonnet 0.10±0.03 0.03±0.01 0.06±0.02 0.14±0.02 0.14±0.02
L3 (mini-paper) Claude-3.7-Sonnet 0.06±0.02 0.22±0.02 0.11±0.01 0.34±0.01 0.19±0.03

L1+L2 Claude-3.7-Sonnet 0.14±0.03 (+0.00) 0.11±0.02 (-0.11) 0.15±0.02 (+0.04) 0.30±0.02 (-0.04) 0.09±0.01 (-0.09)
L1+L2+L3 Claude-3.7-Sonnet 0.21±0.04 (+0.07) 0.31±0.02 (+0.09) 0.10±0.02 (-0.01) 0.31±0.01 (-0.03) 0.20±0.02 (+0.01)

with the pseudocode compared to only providing the pseudocode hint can substantially degrade
performance for o3-mini (see o3-mini result in Table 3), but surprisingly benefits R1. These results
suggest that o3-mini may be less capable of taking advantage of longer contexts, while R1’s reasoning
directly benefits from longer initial prompts. On the other hand, the effect of combined hints on
Gemini-2.5-Pro and Claude-3.7-Sonnet appears relatively small, suggesting they can handle longer
context yet lacks the ability to leverage them for effective reasoning for reproducing code changes.

4.4 Interquartile mean evaluation

As the agent runs could bring a large variance in the experimental results, in Figure 5 we present the
aggregated Interquartile Mean (IQM) results across runs with the same hint level, search scaffold, and
model. The IQM metric has been shown to be robust to comparisons with a small sample size, and in
Figure 5 we report as 95% confidence intervals, bootstrapped from 3 seeds following Agarwal et al.
[2021]. On the hint level comparison, the agents reach the best performance when using all three
hints combined. For individual hints, the pseudo-code hint performs the best. For search scaffold,
multi-AIDE search outperforms all others. On the model side, we are surprised to find that the
Gemini-2.5-Pro and Claude-3.7-Sonnet gives the lowest performance close to 0 FSR, even lagging
behind the open-sourced R1 model. The results also suggest Automated LLM Speedrunning is a
challenging benchmark for current agents as the aggregated performances are fairly low.

4.5 Analysis of search trees

To better understand how each agent spends its search budget, we inspect the proportion of different
kinds of nodes in their search trees: buggy nodes, which crash due to runtime errors; improved nodes,
which successfully improved runtime compared to their parent; and unimproved nodes, which do not
improve from their parent. This breakdown of the search trees is presented in Figure 8. We observe
that flat search leads to a higher total proportion of buggy nodes, indicating that initially-proposed
solutions are most often incorrect. We also notice that R1 agents generate more buggy nodes under
AIDE and multi-AIDE—the two variants with debugging steps—suggesting that R1 may be less
capable of fixing its own mistakes compared to o3-mini. Gemini-2.5-Pro tends to generate fewer
buggy nodes compared to the other models, yet it lags behind on the FSR metric (see Figure 4 and
Figure 2), suggesting that Gemini produces more robust code at the cost of correctly implementing the
more efficient solutions described in the hints. Surprisingly, Claude-3.7-Sonnet generates significantly
more buggy nodes than the other three models, with the fraction of buggy nodes gradually overtaking
the fraction of working nodes in the search tree, indicating that Claude-3.7-Sonnet struggles to
improve and debug its previous solutions.

The analysis of node types in the search tree provides insight into the discrepancy on the results of
Claude-3.7-Sonnet between the FSR results in Figure 4 and the IQM results in Figure 5. While the
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Figure 8: Fraction of node types across search trees for each model and search method. Notably,
branching (i.e. non-flat) search is beneficial for reducing the proportion of buggy nodes. Further, a
majority of non-buggy steps produce improved nodes for all branching search methods.

FSR results suggest that, on average, Claude-3.7-Sonnet performs comparably to o3-mini, the IQM
plot indicates that Claude-3.7-Sonnet significantly lags behind o3-mini. This discrepancy can be
explained by examining the distribution of node types in the search tree. Claude-3.7-Sonnet is capable
of generating working solutions that substantially improve the FSR. However, it also produces a
considerable number of buggy nodes that result in runtime errors. These errors negatively impact the
overall performance as reflected in the IQM plot, despite the improvements in the averaged FSR.

4.6 Similarity between agent and human solutions

Agents may output solutions with similar performance to human ones, but may still fail to reproduce
the target code changes. We thus assess code similarity between agent and human solutions by
comparing code embedding distances using the SFR-Embedding-Code 2B model [Liu et al., 2024].

Specifically, we normalize the embedding distance between the agent’s code solution and the target
human solution, i.e. the next record, and divide this distance by the embedding distance between the
current and the next human record. Figure 7 depicts the normalized L2 embedding distance recovered
with respect to the record speedups and for each type of hint. Here the distance recovered is defined
as 1↗ ≃ei+1 ↗ e→i+1≃/≃ei+1 ↗ ei≃, where ei is the embedding for Ri, and e→i is the embedding for
the LLM’s attempt at reproducing it. We observe a stronger correlation between higher similarity
score and FSR for richer hint formats, suggesting that distances under this embedding space can be a
meaningful measure of degree of successful reproduction.

As an alternative measure of code similarity, we made use of R1 as a judge, prompting it to assess
what fraction of the ground-truth code changes between the current and next record were successfully
reproduced in the agent’s solution, on a scale of 0 to 1 with a score of 1 corresponding to a completely
correct reimplementation. Appendix E contains a comparison between these judge-based similarity
scores and FSR across all agent variations. We observe clear positive correlation between higher
similarity scores and FSR. We provide sample outputs from R1 judge in Appendix F.

9



5 Limitations and future directions

Our Automated LLM Speedrunning Benchmark serves as a challenging evaluation of an LLM agent’s
ability to reproduce scientific findings specific to LLM training. However, there remain important
limits in its capacity for assessing an agent’s true capability for scientific reproduction, and each of
these limitations point the way to directions for exciting future research.

Scaling up external knowledge. By design, the various hint levels are succinct and easily fit within
the context of the LLMs we tested. Moreover, these hints were manually defined, with the relevant
hint directly provided as part of the associated task instance. A more realistic setup would provide
the agent with the ability to use external knowledge via some form of function calling, including the
ability to store intermediate results in various kinds of memory structures, e.g. a short-term scratchpad,
long-term database, or neural module [Hermann et al., 2015, Weston et al., 2014]. Accessing a wider
and potentially accumulating set of external information would also test the agent’s ability to manage
information whose total size may exceed its context length [Sarthi et al., 2024].

Memorization or generalization? As many of the ground-truth records in the NanoGPT Speedrun
were published potentially before the cut-off date of the models used in our experiments (and
thus, most likely of future models), there is the possibility that models may have already seen
these solutions during training [Gupta and Pruthi, 2025]. We find that neither R1 nor o3-mini
accurately reproduce the speedups realized in the ground-truth records, but explicitly disentangling
memorization from generalization may become more necessary as models begin to saturate the
benchmark. More advanced techniques for measuring memorization in LLMs would allow for a more
nuanced evaluation [Carlini et al., 2021, Razeghi et al., 2022, Oren et al., 2023, Deng et al., 2024].

Semantic diffs. Our experiment analysis focuses on FSR and numeric similarity scores between the
LLM’s solution and the corresponding human solution. Moving beyond a similarity score toward more
expressive natural-language summaries, e.g. via automatically-generated commit messages [Jiang
et al., 2017], of the code diffs between LLM and human solutions would allow for more scalable
identification of common mistakes or new innovations with respect to the human solutions.

From LLM speedrun to ML speedrun. The skills required for the LLM speedrun are a good
starting point but are not enough to create reliable AI research agents. True research agents must
handle more complex tasks, such as working with entire multi-file codebases, optimizing for metrics
beyond training time like model performance or memory usage, dealing with distributed training,
and defining their own success metrics. Most importantly, the current benchmark tests the ability to
reproduce results, not to innovate. While an LLM beating human records would be a milestone, the
ultimate test is whether future agents can solve new, open scientific challenges.

6 Conclusions

We introduced the Automated LLM Speedrunning Benchmark, a challenging evaluation of an LLM
agent’s ability to reproduce existing scientific innovations in LLM training, based on reproducing
each successive record in the community-driven NanoGPT Speedrun. Unlike previous benchmarks
for automated scientific reproducibility, our benchmark enables evaluations of an agent’s ability to
reproduce not just a single result, but each incremental advance across a chain of research innovations.
We found that even recent, leading reasoning models, like R1 and o3-mini, when combined with a
state-of-the-art agent scaffold, still struggle to successfully produce speedrun solutions that match
the speedups attained by the corresponding human solutions. Moreover, this gap between human
and agent performance persists even when these strong baseline agents are provided with detailed
explanations describing the exact code changes from the previous speedrun record. Our results suggest
that automated reproducibility may serve as a significant obstacle in realizing reliable, autonomous
research agents with current, leading models, and we expand on the potential societal impacts of our
work in Appendix I. We believe the Automated LLM Speedrunning Benchmark can be an effective
testbed for monitoring this crucial capability in future research agents.
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Perlin, Siddhant Jain, Kyle Levin, Noémi Éltető, et al. Discovering symbolic cognitive models from human
and animal behavior. bioRxiv, pages 2025–02, 2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio Starace, Kevin
Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Mądry. Mle-bench: Evaluating machine
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of our methodology and our experimental
runs, including important hyperparameter values and prompts used (in Section 4 and Ap-
pendices F)–H. We are accompanying our submission with a zip file containing scripts for
running our experiments and notebooks for carrying out the data analyses.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We are including the benchmark data, the agent implementation we are using,
the scripts to run the experiments and the notebooks for analyses in a zip file accompanying
our submission. This content is also linked in the main body of the paper in Section 1.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide a detailed overview of our agentic scaffold methodology, the
frontier models utilized and the various hint formats used for each experiment in the main
body of the paper (see Sections 3 – 4). The exact implementation details, including prompts
used, can be recovered by the code contained in the zip file accompanying the submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: We report error bars for our set of baselines and additional experiments, which
are based on standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide a description of the hardware we used and an estimate of the
amount of the resources needed to run the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer:[Yes]
Justification: We have reviewed the linked NeurIPS Code of Ethics and can confirm the the
research conducted in the paper conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: The benchmark release described in the paper aims to drive progress in
foundational research by improving the ML engineering capabilities of LLM agents. This
can have long-term societal impacts which we briefly touch upon in the introduction and
extensively discuss in Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original resource of the assets we are using, we provide a URL and
we explicitly name their license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We make all our code and datasets available in an anonymized .zip file uploaded
in an anonymous URL. We accompany our submission with a Croissant metadata file to
document our dataset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have used open-source LLMs for generating data that form part of the
benchmark (specifically, the various pseudocode, text and mini-paper hints). Querying
LLMs is also a core part of the various stages comprising the improvement step of the LLM
agent (implementation, execution and analysis). Finally, we are leveraging an open-source
LLM to obtain LLM judge scores and build a similarity metric that estimates proximity of
the agent-generated code with the human code. We are documenting these usages throughout
the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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