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Abstract

The Platonic Representation Hypothesis suggests that diverse, large-scale neural networks
trained on similar data learn aligned internal representations. This work provides a the-
oretical justification for this phenomenon from an information-geometric and Bayesian
perspective. We demonstrate that representation alignment is a direct consequence of
posterior concentration in Bayesian learning. As the dataset size grows, the posterior dis-
tribution over model parameters concentrates on those that best approximate the true
data distribution. For sufficiently expressive models (i.e., large capacity), this forces them
to learn the same underlying function, resulting in aligned representations. We formalize
this convergence and also prove a “disunion theorem”, showing that models with different
approximation capabilities will learn provably distinct representations, with a separation
that grows exponentially with dataset size.

Keywords: Platonic Representation Hypothesis, Information Geometry, Bayesian Infer-
ence, Posterior Concentration, Representation Learning

1. Introduction

The Platonic Representation Hypothesis (Huh et al., 2024) refers to the empirically observed
alignment of internal representations learned by different models with varying architectures
or even trained on different data modalities. A key observation is that this representational
alignment improves as model and dataset sizes grow. Conversely, when the connection
between data and labels is random, the learned representations are misaligned (rokosbasilisk,
2024), suggesting that the existence of meaningful structure of the data distribution is
needed.

While prior theoretical work has explored this hypothesis in simplified settings, such as
linear networks, this paper examines it from a more general, information-geometric view-
point. We frame machine learning models as parametric probability distributions and use
the tools of Bayesian inference to explain why and when alignment should occur.

Our argument rests on a foundational result in Bayesian asymptotics: in the large data
limit (N → ∞), the posterior distribution over model parameters concentrates on the set of
parameters that minimize the Kullback-Leibler (KL) divergence to the true data distribution
(Berk, 1966).
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2. Related Works

Kornblith et al. (2019) observed that the similarity between learned representations for
different initializations grows with the model width and that later layers learn more similar
representations. Later Imani et al. (2022) conducted more detailed study on alignment in
deep CNN with VGG and ResNet architectures, further proving and strengthen the claim
of Kornblith et al. (2019). Next, the Platonic Representation Hypothesis was proposed
by Huh et al. (2024), who extended the prior idea of alignment to different modalities,
providing empirical evidence for alignment between models trained separately on text and
image datasets.

However, these studies considers mostly experimental results, which has led to research
on a theoretical explanation for this phenomenon. For example, Ziyin and Chuang (2025)
studies the convergence of representations in deep linear network without activation func-
tions and prove existence of unique optimal representation, which could be reached during
stochastic gradient descent optimization.

Contribution Our work takes a different approach by grounding the hypothesis in
the principles of Bayesian statistics and information geometry (Amari and Nagaoka, 2000).
The core mechanism we leverage – posterior concentration – is a classical result. Our
main theoretical tool, Theorem 5, is a well-known result in Bayesian asymptotics, closely
related to the seminal work of Berk (1966). Berk’s theorem established that, even when a
statistical model is misspecified (i.e., the true distribution is not in the model class), the
posterior distribution still concentrates on the set of parameters that are closest to the
true distribution in terms of KL divergence. Our analysis applies this powerful principle
to the space of learned representations, providing a general explanation for alignment that
depends not on a specific architecture, but on the model’s capacity to approximate the true
data distribution.

3. The Asymptotic Behavior of the Posterior

Our analysis begins with the theorem of Bayesian asymptotics, which describes how a
posterior distribution on model weights evolves as we observe more data. The following
theorem generalizes the proof of Theorem 3.1 by Lobashev et al. (2025) from exponential
family distributions to general conditional probability measures p(x|t), where t are the
model parameters. It also resembles the results of Berk (1966) on the concentration of
posterior distributions, adding exponential decay as a model distribution stays further from
the real data. The complete proofs and proof sketches are given in the Appendix.

Theorem 1 (Large-N Posterior Limit for General Models) Let (X ,A, µ) be a mea-
surable space. For each parameter t in a compact set S ⊂ Rn, let p(x | t) be a probability
density. Assume the map (t, x) 7→ log p(x | t) is continuous in t and uniformly continuous
in x. Assume a continuous prior p(t) > 0 on S. Let x1, . . . , xN be i.i.d. samples from
p(· | t′) for some true parameter t′ ∈ S. Then, almost surely,

lim
N→∞

(p(t | x1, . . . , xN ))1/N = exp
(
−DKL(p(· | t′)∥p(· | t))

)
. (1)

This could be seen as an extension of a classic result in Bayesian asymptotics (Berk,
1966). We assume that true data distribution p(x|t′) lies in the same class of distributions as
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our model and several different parameters t of the model could produce the same generated
distribution p(x|t). The later property holds for deep generative models, due to symmetries
in their parameter spaces.

In simple terms, the theorem states that if the distribution p(· | t) is distinguishable from
the true data distribution p(· | t′), the posterior probability of such t becomes exponentially
small as the number of data samples (N) grows. The rate of this decay is precisely the KL
divergence. Consequently, the posterior mass concentrates entirely on the parameter t∗ that
minimizes this divergence. For the well-specified case (i.e. no symmetries in the model), it
is t∗ = t′. This forces the model to learn the true data.

4. Formalizing the Platonic Hypothesis

Using Theorem 5 as our foundation, we can now formalize the Platonic Representation
Hypothesis. We first define our terms.

Definition 2 (Model and Representation)

1. A parametric model class is a set of distributions M = {pt : t ∈ S}, where S ⊂ Rd

is a compact parameter set.

2. A representation map is a continuous function R : S → R that maps a param-
eter t to its corresponding representation R(t) in a representation space R. R(t) =
{R(t)(x), x ∈ Dataset} could be understood as a learned representations of the whole
dataset, i. e. the set of all embedding vectors produced by a model with parameters t
for all samples in the validation dataset.

3. The approximation gap of a parametric model class M is its minimal KL diver-
gence to the true distribution P ⋆: εM = inft∈S DKL(P

⋆∥pt). A model is universally
approximating if εM = 0.

Theorem 3 (Platonic Representation Convergence) Consider two model classes, M(1)

and M(2), that are both universally approximating (εM(1) = εM(2) = 0). Assume that for
both models, the optimal parameters (those that minimize KL divergence) map a dataset

with N samples to the same unique ”Platonic” representation r⋆ ∈ R. Let Π̃
(j)
N be the pos-

terior distribution over the representation space R for model j. Then, for any neighborhood
V of r⋆,

lim
N→∞

Π̃
(1)
N (V ) = 1 and lim

N→∞
Π̃

(2)
N (V ) = 1 (a.s.).

In other words, the posterior distributions on the representation space will converge to the
delta function at the r⋆.

Conversely, if models are unable to perfectly capture the true data distribution, they
converge to different representations.

Theorem 4 (Exponential Separation of Models) Consider two non-universally ap-
proximating model classes, MA = {pt : t ∈ SA} and MB = {pt : t ∈ SB}, with corre-
sponding representation maps RA and RB. Let R⋆

A and R⋆
B be the sets of representations
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produced by the parameters that best approximate the true data distribution P ⋆ within each
model class.

Assume that the best representations achievable by these two models are distinct, such
that R⋆

A and R⋆
B are disjoint. This typically occurs when the models have different approx-

imation capacities.

Let ΠN,A be the posterior distribution over the representation space for model MA given
N data samples. For any neighborhood VB that contains R⋆

B but is disjoint from R⋆
A, the

probability that model A generates a representation inside VB vanishes exponentially:

ΠN,A(VB) ≤ Ce−Nγ for some constants C > 0 and γ > 0.

5. Explaining the Platonic Representation Hypothesis

These theorems provide theoretical insights for the empirical findings.

Why does alignment improve with model capacity? “Larger model capacity” cor-
responds to a smaller approximation gap (εM). As capacity increases for two different
model families, their approximation gaps εM(1) and εM(2) both approach zero. By Theorem
3, this forces both models to learn parameters that approximate the same true data dis-
tribution P ⋆. If the function learned by the model uniquely determines its representation,
then both models will converge to the same “Platonic” representation r⋆. Smaller models,
with larger εM, are governed by Theorem 4; they converge to their own best, but imperfect,
approximations, which need not be the same, leading to misaligned representations.

Why does random data lead to misalignment? If the data and labels are uncon-
nected (e.g., random labels), the true conditional distribution P ⋆(y|x) is independent of
x. In this case, the optimization landscape (the expected log-likelihood) becomes flat or
possesses many equally good global optima – the set of optimal representations R(S⋆) is no
longer a single point. Any representation is valid because none provides a better explanation
of the random data than any other. It explains the observations of rokosbasilisk (2024).

Why does alignment improve with dataset size? The dataset size is represented by
N in our theorems. The key insight is that the concentration of the posterior is exponential
in N . As seen in Theorem 4, the posterior probability of a model producing a suboptimal
representation vanishes at a rate of e−Nγ . This means that with a large dataset, even minor
differences in how well parameters explain the data are massively amplified.

Why does alignment occur across datasets for different modalities? A crucial
observation is that models trained on different, disjoint datasets also learn aligned repre-
sentations. Let us take, for instance, two datasets of texts and images. This occurs because
both datasets, if sampled from the same underlying reality, act as proxies for the same true
data distribution P ⋆.
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Appendix A. Proof of theoretical results

Parameter space S

t⋆

pN (t |X1:N ) for small N

pN (t |X1:N ) for large N

lim
N→∞

(p(t | DN ))
1/N

= e−DKL(p(·|t′)∥p(·|t))

Representation space R

r⋆

induced distribution for small N

induced distribution for large N

R : S → R

Figure 1: Illustration of Theorems 5 and 3. Posterior concentration in parameter space and
its induced alignment in representation space. Concentric KL level sets around
t⋆ visualize how the posterior sharpens with growing dataset size. The KL bound
controls the large sample exponent. Mapping through R collapses the induced
distribution in R toward a limiting representation r⋆.

Theorem 5 (Large-N Posterior Limit for General Models) Let (X ,A, µ) be a mea-
surable space. For each parameter t in a compact set S ⊂ Rn, let p(x | t) be a probability
density. Assume the map (t, x) 7→ log p(x | t) is continuous in t and uniformly continuous
in x. Assume a continuous prior p(t) > 0 on S. Let x1, . . . , xN be i.i.d. samples from
p(· | t′) for some true parameter t′ ∈ S. Then, almost surely,

lim
N→∞

(p(t | x1, . . . , xN ))1/N = exp
(
−DKL(p(· | t′)∥p(· | t))

)
. (2)

Proof The posterior probability of the parameter t given the data DN is given by Bayes’
theorem:

p(t|DN ) =
p(DN |t)p(t)∫

S p(DN |s)p(s)ds
. (3)

Since the data samples are i.i.d. given the parameter t, the likelihood term is p(DN |t) =∏N
i=1 p(xi|t).
We are interested in the limit of (p(t|DN ))1/N . Let’s first analyze the likelihood part of

the numerator. We can write it as:

(p(DN |t))1/N =

(
N∏
i=1

p(xi|t)

)1/N

= exp

(
1

N

N∑
i=1

log p(xi|t)

)
. (4)
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Since the samples xi are drawn from the true distribution p(x|t′), the Strong Law of Large
Numbers states that the average of log p(xi|t) converges almost surely to its expectation
under p(x|t′):

lim
N→∞

1

N

N∑
i=1

log p(xi|t)
a.s.
= Ex∼p(x|t′)[log p(x|t)]. (5)

The prior term (p(t))1/N converges to 1 asN → ∞. Therefore, the numerator of (p(t|DN ))1/N

converges almost surely to:

lim
N→∞

(p(DN |t)p(t))1/N a.s.
= exp

(
Ex∼p(x|t′)[log p(x|t)]

)
. (6)

The denominator term, also known as the evidence or marginal likelihood, is given by:

ZN =

∫
S
p(DN |s)p(s)ds =

∫
S
exp

(
N · 1

N

N∑
i=1

log p(xi|s)

)
p(s)ds. (7)

Let gN (s) = 1
N

∑N
i=1 log p(xi|s). By the Law of Large Numbers, gN (s) converges almost

surely to g(s) = Ex∼p(x|t′)[log p(x|s)]. The integral thus takes the form
∫
S eN ·g(s)p(s)ds.

For large N , such an integral can be approximated by Laplace’s method. The value of
the integral is dominated by the maximum value of the function g(s) over the domain S.
The maximizer s∗ is found by:

s∗ = argmax
s∈S

g(s) = argmax
s∈S

Ex∼p(x|t′)[log p(x|s)].

We can relate this maximization to the KL divergence:

DKL(p(x|t′) ∥ p(x|s)) = Ex∼p(x|t′)[log p(x|t′)]− Ex∼p(x|t′)[log p(x|s)].

Maximizing Ex∼p(x|t′)[log p(x|s)] is equivalent to minimizing the KL divergence. By Gibbs’
inequality, DKL ≥ 0, with equality holding if and only if p(x|s) = p(x|t′). Thus, the unique
maximizer is s∗ = t′.

The maximum value of the exponent is g(t′) = Ex∼p(x|t′)[log p(x|t′)]. By Laplace’s
method, the asymptotic limit of the N -th root of the evidence is:

lim
N→∞

(ZN )1/N
a.s.
= exp

(
max
s∈S

g(s)

)
= exp

(
Ex∼p(x|t′)[log p(x|t′)]

)
. (8)

By combining the limits for the numerator (6) and the denominator (8), we obtain the
final result:

lim
N→∞

(p(t|DN ))1/N
a.s.
=

exp
(
Ex∼p(x|t′)[log p(x|t)]

)
exp

(
Ex∼p(x|t′)[log p(x|t′)]

)
a.s.
= exp

(
Ex∼p(x|t′)[log p(x|t)]− Ex∼p(x|t′)[log p(x|t′)]

)
a.s.
= exp

(
−Ex∼p(x|t′)

[
log

p(x|t′)
p(x|t)

])
a.s.
= e−DKL(p(x|t′) ∥ p(x|t)).

This completes the proof.
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Theorem 6 (Platonic Representation Convergence) Consider two model classes, M(1)

and M(2), that are both universally approximating (εM(1) = εM(2) = 0). Assume that for
both models, the optimal parameters (those that minimize KL divergence) map a dataset

with N samples to the same unique ”Platonic” representation r⋆ ∈ R. Let Π̃
(j)
N be the pos-

terior distribution over the representation space R for model j. Then, for any neighborhood
V of r⋆,

lim
N→∞

Π̃
(1)
N (V ) = 1 and lim

N→∞
Π̃

(2)
N (V ) = 1 (a.s.).

In other words, the posterior distributions on the representation space will converge to the
delta function at the r⋆.

Proof [Proof Sketch] By Theorem 5, the posterior mass for each model M(j) concentrates

on the set of parameters S
(j)
⋆ that minimize the KL divergence. Since both models are uni-

versally approximating, this means they concentrate on parameters that perfectly describe
the true distribution P ⋆. By assumption, the continuous representation map R(j) maps all

parameters in S
(j)
⋆ to the same representation r⋆. Therefore, the induced posterior over

representations must concentrate on r⋆ for both models.

Theorem 7 (Exponential Separation of Models) Consider two non-universally ap-
proximating model classes, MA = {pt : t ∈ SA} and MB = {pt : t ∈ SB}, with corre-
sponding representation maps RA and RB. Let R⋆

A and R⋆
B be the sets of representations

produced by the parameters that best approximate the true data distribution P ⋆ within each
model class.

Assume that the best representations achievable by these two models are distinct, such
that R⋆

A and R⋆
B are disjoint. This typically occurs when the models have different approx-

imation capacities.

Let ΠN,A be the posterior distribution over the representation space for model MA given
N data samples. For any neighborhood VB that contains R⋆

B but is disjoint from R⋆
A, the

probability that model A generates a representation inside VB vanishes exponentially:

ΠN,A(VB) ≤ Ce−Nγ for some constants C > 0 and γ > 0.

Proof [Proof Sketch] The proof is a direct consequence of the exponential concentration
rate established in Theorem 5. The key insight is the existence of a ”KL gap.”

Let εA = inft∈SA
DKL(P

⋆∥pt) be the minimum possible KL divergence (the approxima-
tion gap) for model class MA. The posterior for model A will concentrate around the set
of parameters that achieve this minimum KL.

By assumption, the set of optimal representations R⋆
A is separate from the neighbor-

hood VB. Therefore, any parameter t ∈ SA that produces a representation RA(t) ∈ VB is
necessarily sub-optimal for model A. Its KL divergence must be strictly greater than the
minimum possible value, i.e., DKL(P

⋆∥pt) > εA.

This creates a strictly positive gap, ∆KL = DKL(P
⋆∥pt)−εA > 0. According to Theorem

5, the posterior mass on any such sub-optimal parameter t is suppressed by a factor pro-
portional to e−N∆KL . The constant γ in the theorem corresponds to the smallest such KL
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gap for parameters producing representations in VB. Integrating over all such parameters
that map into VB preserves this exponential decay, yielding the result.
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