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Abstract

While current deep learning algorithms have been successful for a wide variety of ar-
tificial intelligence (AI) tasks, including those involving structured image data, they
present deep neurophysiological conceptual issues due to their reliance on the gradi-
ents, computed by backpropagation of errors (backprop). Gradients are required to
obtain synaptic weight adjustments but require knowledge of feed-forward activities
for the backward propagation. But because there is no known biological way for
an error (backward) network to be precisely aware of the weights of the original
(forward) network, many current deep learning algorithms are majorly biologically
implausible. This is known as the “weight transport problem”. We present a more
biologically plausible approach towards solving the weight transport problem for
structured image data, by introducing the error-kernel driven activation alignment
(EKDAA) algorithm, to train convolutional neural networks (CNNs) using locally
derived error transmission kernels and error maps. Like standard deep learning
networks, EKDAA performs the standard forward process via weights and activa-
tion functions, but its backward error computation involves learning error kernels
to propagate local error signals through the network. We demonstrate the efficacy
of EKDAA by performing the task of visual-recognition on the Fashion MNIST,
CIFAR-10 and SVHN benchmarks, along with demonstrating its ability to extract
visual features from natural color images. Furthermore, we present results for a
CNN trained using a non-differentiable activation function.

1 Introduction

In order for the brain to learn from sensory patterns, the efficacy of the synaptic connections
between the neurons need to be modified Markram & Sakmann (1995); Hebb (1949). Although
neurophysiologists have made great progress in characterizing the mechanisms involved in single
synapse transmissions, according to Südhof and Malenka Südhof & Malenka (2008), in their classical
paper about the past, present and future of neuron studies, the most daunting challenge facing
neuroscientists is still the understanding of how the neurons in the complex, synaptic network of the
brain work together and adjust their synapses in order to accomplish goals. While artificial neural
networks (ANNs) trained by backpropagation of errors (backprop) present a practical, feasible
implementation of learning by synaptic adjustment, it is largely regarded by neuroscientists as
biologically implausible for various reasons, including the implausibility of the direct backwards
propagation of error derivatives for synaptic updates, largely considered a deep conceptual issue
Crick (1989). Further, it breaks a fundamental requirement for a bio-plausible learning mechanism
- backprop requires access to the feed-forward weights to create a continued error signal backwards
to previous layers, a method which is highly regarded as impossible within the brain. This property
is known as the weight transport problem Grossberg (1987) and plagues backprop from being used
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as the base learning rule to build a realistic bio-inspired framework for neural modeling. For a
bio-plausible learning rule, it is more likely that neural activity differences, driven by feedback
connections, are used in locally effecting synaptic changes Lillicrap et al. (2020). This overcomes
some of backprop’s major implausibilities in a way that is both natural and compatible with the
current understanding of how brain circuitry operates.

Although a few classes of algorithms have been proposed to address the specific challenge of error
gradient propagation in training ANNs, fewer still have been proposed to handle the highly struc-
tured data found in large-scale images datasets. Current-day convolutional neural networks (CNNs)
continue to set the benchmark standards for difficult vision problems He et al. (2016); Mnih et al.
(2013) and they do so using a backprop-driven approach that requires having symmetric weight
matrices in both the feedforward and feedback pathways. More importantly, they also require a
global feedback pathway that carries back update signals from the output back towards the input,
one of the key causes of the vanishing/exploding gradient problems Pascanu et al. (2013); Ororbia
& Mali (2019).

In this work, we introduce a more biologically-plausible error synaptic feedback mechanism that we
call the (learnable) error-kernel, which will generate target activities for the feature maps within a
CNN to align to. We call this learning mechanism error-kernel driven activation alignment (EK-
DAA). In our learning scheme, the forward pathway relies on traditional weight matrices/tensors
whereas the backward pathway focuses on error kernels and maps, thus eliminating both symmetric
weight structure inherent to backprop-trained networks and resolving the weight transport problem.
We analyze the resulting system’s learning capacity on natural color image datasets and present
our empirical findings.

While all currently known bio-plausible methodologies have not reached the modeling performance
of back-propagation and have yet to be scaled to large datasets such as ImageNet Deng et al. (2009),
we believe investigating bio-plausible learning rules are key in future neural modeling to overcome
some of the many fundamental pitfalls that are inherent to backprop. EKDAA notably opens the
door to a wider variety of neural structures, such as those that use lateral neural connections,
where forward/backward propagation no longer carries the traditional meaning. Additionally, our
framework marks a step forward towards designing networks that are less-constrained to appease
backprop-centric optimization (which imposes restrictions such as the need for differentiable activi-
ties) and instead facilitate more focus on designing for the task/problem at hand. We demonstrate
this by successfully training a convolutional network on image data, using the signum function
(which has a derivative of zero everywhere except at zero, i.e., its derivative is a Dirac delta func-
tion).

2 Related Work

In this section, we discuss several classes of approaches built on the premise of biologically-plausible
learning rules that do not involve back-propagating computed derivatives/gradients through all
layers of the ANN.

Credit Assignment and Neural-Oriented Learning: The learning process in ANNs involves
adjusting the synaptic efficacies that connect the internal processing units that make up an ANN’s
architecture which entails solving the problem known as credit assignment. The credit assignment
problem has to do with determining how the success of the overall system can be attributed to the
contributions of its various components Minsky (1961) (in the case of ANNs, these would be its
individual neuronal processing units). Although Hebbian learning Hebb (1949) is one of the earliest
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and simplest biologically plausible learning rules for addressing the credit assignment problem in
ANNs, extending them to the CNN has not yet been well-developed. Our proposed approach aims
to fill this gap.

In addition to Hebbian-based learning, other related work includes alternative convolution-based
learning schemes such as those found in Akrout et al. (2019) that base their work on the Kollen-
Pollack (KP) method and have demonstrated promising results on larger, more extensive bench-
marks. Other training approaches are based on local losses Nøkland & Eidnes (2019); Grinberg
et al. (2019); Guerguiev et al. (2017); Schmidhuber (1990); Werbos (1982); Linnainmaa (1970);
are methods that take the sign of the forward activities Xiao et al. (2018); are schemes that uti-
lize noise-based feedback modulation Lansdell et al. (2019); or use synthetic gradients Jaderberg
et al. (2017) to stabilize learning for deeper networks. These approaches have shown better or
comparable performance (to backprop) on challenging benchmarks using the convolution operator.
However, there are significant dependencies on the network model’s forward activities used to guide
the backward signal propagation (requiring weight transport), hence, these approaches belong to a
different class of problems/algorithms than what we address in this work.

The Bottleneck Approach: One of the more recent efforts in this area, inspired by information
theory, is the Hilbert-Schmidt independence criterion (HSIC) bottleneck training algorithm Ma
et al. (2019), based on the Information Bottleneck (IB) principle Tishby et al. (2000). HSIC
performs credit assignment locally and layer-wise, seeking hidden representations that have high
mutuality with targets but less with the inputs (presented) to that layer (i.e., it is not driven by the
information propagated from the layer below). Approaches based on the bottleneck mechanism are
considered to be the least bio-plausible. Other efforts Salimans et al. (2017) have proposed variants
that use an evolutionary strategy to search for optimal weights without gradient descent. However,
these approaches often struggle with slow convergence and require many iterations to find optimal
solutions.

Feedback Alignment: Notably, an algorithm named Random Feedback Alignment (RFA) was
proposed in Lillicrap et al. (2016), where it was argued that the use of the transpose of the forward
weights (Wℓ for any layer ℓ) in backprop, meant to carry backwards derivative information, was
not required for learning. This work showed that network weights could be trained by replacing
the transposed forward weights with fixed, random matrices of the same shape (Bℓ for layer ℓ),
side-stepping the weight transport problem Grossberg (1987).

Direct Feedback Alignment (DFA) Nøkland (2016), and its variants Han et al. (2020); Crafton
et al. (2019); Chu et al. (2020), was inspired by RFA Lillicrap et al. (2016), but in contrast to
RFA, it directly propagates the error signal (at the output to individual layers directly, rather than
layer-wise as is done in RFA. Across multiple neural architectures, it was observed that networks
trained with DFA showed a steeper reduction in the classification error when compared to those
trained with backprop. To compare these biologically-plausible feedback alignment-based training
paradigms with EKDAA, we extended the corresponding published works and implemented CNN
versions of FA, DFA, and other related variants. Details of their performance on the benchmark
image datasets we investigate are given in Section 4.

Target Propagation: Target propagation (target prop, or TP) Lee et al. (2015) is another ap-
proach to credit assignment in deep neural networks, where the goal is to compute targets that
are propagated backwards to each layer of the network. Target prop essentially designs each layer
of the network as an auto-encoder, with the decoder portion attempting to learn the inverse of
the encoder (modified by a linear correction to account for the imperfectness of the auto-encoders
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themselves). This corrected difference (between encoder and decoder) is then propagated through-
out the network. This process allows difference target prop (DTP) Lee et al. (2015) and variants
Bartunov et al. (2018); Ororbia & Mali (2019) (e.g., DTP-σ) to side-step the vanishing/exploding
gradient problem. However, TP approaches are expensive and can be unstable, requiring multiple
forward/backward passes in each layer-wise encoder/decoder in order to produce useful targets.

Representation Alignment: Local Representation Alignment (LRA) Ororbia et al. (2018) and
recursive LRA Ororbia et al. (2020) represent yet another class of credit assignment methods,
inspired by predictive coding theory Clark (2015) and similar in spirit to target prop. Under LRA,
each layer in the neural network has a target associated with it such that changing the synaptic
weights in a particular layer will help move layer-wise activity towards better matching a target
activity value.

LRA was shown to perform competitively to other local learning rules for fully-connected mod-
els, but extending/applying it to vectorized natural images like CIFAR-10 resulted in significant
performance degradation.

In contrast to TP and LRA approaches, our proposed algorithm, EKDAA, the forward and back-
ward activities share as minimal information as possible; this helps the model to better overcome
poor initialization and stabilization issues that might arise during training. Furthermore, EKDAA
naturally works well with systems based on convolution and offers a direct, local Hebbian-like,
non-differentiable rule, (thus circumventing backprop’s need for a global feedback pathway) to con-
ducting credit assignment in convolutional networks. EKDAA introduces the notion of an error
kernel which is computed during the image deconvolution process and is used to propagate target
deltas from one layer ℓ to the preceding layer ℓ− 1. More details are given in Section 3.

3 Error Kernel Credit Assignment

In implementing the EKDAA algorithm, desirably, the forward pass in the CNN remains the same.
However, the backward pass uses a form of Hebbian learning that locally computes error kernels
and aims to align the forward activations accordingly. In this section, we will start by describing
the forward pass in our notation and then present the details of the EKDAA learning approach.

Notation: We denote standard convolution with the symbol ∗ and deconvolution with symbol ⟲.
Hadamard product is denoted by ⊙ while · represents a matrix/vector multiplication. ()T denotes
the transpose operation. Flip(X) is a function for flipping a tensor and is defined as taking the
transpose of X over both the x-axis and y-axis such that the value of an element Xi,j after flipping
results in the location Xn−i,n−j . Flatten(z) means that the input tensor z is converted to a column
vector with a number of rows equal to the number of elements that it originally contained while
UnFlatten(z) is its inverse (i.e., it converts the vector back to its original tensor shape).

We use the notation : to indicate extracting a slice of a certain dimension in a tensor object, i.e.,
Vj,:,: means that we extract all scalar elements in the jth slice of the three dimensional tensor V.
Finally, = denotes equality while ← denotes variable assignment.

Inference Dynamics: Given an input (color) image x, inference in a basic CNN consists of
running a feedforward pass through the underlying model, computing the activities (or nonlinear
feature maps) for each layer/level ℓ, where the the model contains LC convolutional layers total.
The CNN is parameterized by a set of synaptic tensors Θ = {W1, W2, ..., WL, Wy} where the last
parameter Wy is a two-dimensional tensor (or matrix) meant to be used in a softmax/maximum
entropy classifier. All other tensors Wℓ, ℓ = 1, 2, ..., L are four-dimensional and of shape Wℓ ∈
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Figure 1: EKDAA forward and backward updates. Forward propagation convolves the current
pathway with applicable filters (in red) and then continues on to the next layer (in orange). To
propagate error from layer ℓ to ℓ − 1, backprop computes a circular convolution of zn on fn to
translate the signal to ℓ − 1. EKDAA uses error map en and computes a circular convolution on
En to create the signal pathway for ℓ. In a layer-wise update, tensors used to continue the signal
pathway backwards are shown in blue and their resulting layers are shown in green.

RNℓ×Nℓ−1×hℓ×wℓ . This means that any tensor Wℓ houses Nℓ sets of Nℓ−1 filters/kernels of shape
hℓ × wℓ. Note that the bottom tensor W0, which takes in as input the source image, would be of
shape W0 ∈ RN1×N0×h0×w0 where N0 is the number of input color channels, e.g., three, for images
of size h0 × w0 pixels.

The mth feature map of any convolutional layer ℓ is specifically calculated as a function of the Nℓ−1
features maps of the layer below (n ∈ Nℓ−1 – there are Nℓ−1 input channels to the mth channel
of layer ℓ). This is done, with hℓ

:,:,m initialized as hℓ
:,:,m = 0, in the following manner (bias term

omitted for clarity):

hℓ
m,:,: ← hℓ

m,:,: + Wℓ
m,n,:,: ∗ zℓ−1

n,:,:, ∀n (1)
zℓ

m,:,: = ϕℓ(hℓ
m,:,:) (2)

where Wℓ
m,n,:,: denotes the specific filter/kernel that is applied to input channel n when computing

values for the mth output channel/map. Note that ϕℓ is the activation function applied to any
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output channel in layer ℓ, e.g., ϕℓ(v) = max(0, v). Max (or average) pooling is typically applied
directly after the nonlinear feature map/channel has been computed, i.e., zℓ

m,:,: ← Φmp(zℓ
m,:,:).

Learning Dynamics: Once inference has been conducted, we may then compute the values needed
to adjust the filters themselves. To calculate the updates for each filter in the CNN, EKDAA pro-
ceeds in two steps: 1) calculate target activity values for each feature map in each layer - this is then
used to compute the error neurons (or error neuron maps), a type of neuron specialized for comput-
ing mismatch signals inspired by predictive processing brain theory Clark (2015), and, 2) calculate
the updates/adjustments for each filter given the error neuron values. To do so, we introduce a
specific set of filter parameters that we call the error kernels, each denoted as Eℓ

m,n,:,:, for every
map and layer in the CNN. This means that, if we include these error kernels as part of the param-
eter set of the CNN learned by EKDAA, Θ = {W0, E0, W1, E1, ..., WL, EL, Wy, Ey}. Each error
filter/kernel is the same shape as its corresponding convolutional filter, i.e., Eℓ ∈ RNℓ×Nℓ−1×hℓ×wℓ

(except Ey, which is the same shapes as the transpose of Wy).

Assuming the tensor target activity yℓ is available to layer ℓ, we compute each channel’s error
neuron map as eℓ

m,:,: = −(yℓ
m,:,: − zℓ

m,:,:). Using this mismatch signal, we then work our way
down to layer ℓ − 1 by first convolving this error neuron map to project it downwards, using the
appropriate error kernel. Once the projection is complete, if pooling has been applied to the output
of each convolutional layer, we then up-sample the projection before computing the final target.
This process proceeds formally as follows:

eℓ
m,:,: = −(yℓ

m,:,: − zℓ
m,:,:) (3)

dℓ−1
n,:,: ← dℓ−1

n,:,: + Eℓ
m,n,:,: ⟲ eℓ

m,:,:, ∀m ∈ Nℓ (4)
dℓ−1

n,:,: ← Φup(dℓ−1
n,:,:) // (If max-pooling used) (5)

yℓ−1
n,:,: = ϕℓ−1(hℓ−1

n,:,: − βdℓ−1
n,:,:) (6)

where we see that Φup() denotes the up-sampling operation (to recover the dimensionality of the
map before max-pooling was applied). Note that if pooling was not used in layer ℓ − 1, then
Equation 5 is omitted in the calculation of layer ℓ − 1’s target activity. Note that the update
rule has a recursive nature, since it requires the existence of yℓ which in turn would have been
created by applying Equations 3-6 to the layer above, ℓ + 1. Thus, the base case target activity
yL, which would exist at the very top (or highest level) of the CNN, and, in the case of supervised
classification, which is the focus of this paper, this would be the target label vector y associated
with input image x.

Once targets have been computed for each convolutional layer, the adjustment for each filter/kernel
in each requires a specialized local rule that entails convolving the post-activation maps of the level
below with the error neuron map at ℓ. Formally, this means:

∆Wℓ
m,n,:,: = zℓ−1

n,:,: ∗ Flip(eℓ
m,:,:) (7)

∆Eℓ
m,n,:,: = −γ(∆Wℓ

m,n,:,:)T (8)

which can then subsequently be treated as the gradient to be used in either a stochastic gradient
descent update, i.e., Wℓ

m,n,:,: ← Wℓ
m,n,:,: − λ∆Wℓ

m,n,:,:, or a more advanced rule such as Adam
Kingma & Ba (2017) or RMSprop Tieleman & Hinton (2012).

In Algorithm 1, we provided a full mathematical description of how EKDAA would be applied
to a deep CNN specialized for classification. Note that while this paper focuses on feedforward
classification, our approach is not dependent on the type of task that the CNN is required to solve.

6



Under review as submission to TMLR

Algorithm 1 EKDAA applied to a CNN with max-pooling and a fully-connected maximum en-
tropy output.

// Feedforward inference
Input: sample (y, x) and Θ
function Infer(x, Θ)

// Pass data thru convolution stack
// Get image input channels
z0

n,:,: = xn,:,:, ∀n ∈ N0
for ℓ = 1 to LC do

// Calculate feature maps for layer ℓ
hℓ

m,:,: = 0,∀m ∈ Nℓ

for m = 1 to Nℓ do
hℓ

m,:,: ← hℓ
m,:,: + Wℓ

m,n,:,: ∗ zℓ−1
n,:,:, ∀n

zℓ
m,:,: = ϕℓ(hℓ

m,:,:),
zℓ

m,:,: ← Φmp(zℓ
m,:,:)

hy = Wy · Flatten(zLC ), zy = σ(hy)
Λ = {(h1, ..., hLC , hy), (z0, ..., zLC , zy)}
Return Λ

// Calculate weight updates via EKDAA
Input: Statistics Λ, target y, β, and Θ
function CalcUpdates(Λ, y, Θ)

h1, ..., hLC , hy, z0, ..., zLC , zy ← Λ, yL = y
// Compute softmax weight updates
ey = −(y− zy)
∆Wy = ey ·

(
Flatten(zLC )

)T ,
∆Ey = −γ(∆Wy)T

yLC = ϕLC
(
Flatten(hLC )− β(E · ey)

)
// Compute convolutional kernel updates
yLC ← UnFlatten(yLC )
for ℓ = LC to 1 do

for m = 1 to Nℓ do
eℓ

m,:,: = −(yℓ
m,:,: − zℓ

m,:,:)
dℓ = 0,∀n ∈ Nℓ−1
for n = 1 to Nℓ−1 do

for m = 1 to Nℓ do
dℓ−1

n,:,: ← dℓ−1
n,:,:+

(Eℓ
m,n,:,: ⟲ eℓ

m,:,:)
yℓ−1

n,:,: = ϕℓ−1(hℓ−1
n,:,: − βΦup(dℓ−1

n,:,:))
for m = 1 to Nℓ do

for n = 1 to Nℓ−1 do
∆Wℓ

m,n,:,: = zℓ−1
n,:,: ∗ Flip(eℓ

m,:,:)
∆Eℓ

m,n,:,: = −γ(∆Wℓ
m,n,:,:)T

∆ = {∆W0, ∆E0, ..., WLC , ∆ELC , Wy, Ey}
Return ∆

For example, one could readily employ our approach to learn convolutional autoencoders for the
case of unsupervised learning, to craft alternative convolutional architectures that solve other types
of computer vision problems, e.g., image segmentation, or to build more complex models such as
those that model time series information, i.e., temporal/recurrent convolutional networks. One key
advantage of the above approach is that the test-time inference of the CNN that is learned using
the proposed EKDAA is no slower than a standard backprop-trained CNN given that the forward
pass remains the same/untouched.

4 Experimental Setup and Results

4.1 Datasets and Experimental Tasks

To understand learning capacity for fitting and generalization under EKDAA, we design and train
several models and test them against three standard datasets. Specifically, we evaluated on Fashion
MNIST Xiao et al. (2017) (FMNIST), CIFAR-10 Krizhevsky et al. (2014), and SVHN Netzer et al.
(2011).

Fashion MNIST, while only being a single channel (gray-scale) image dataset at a [28 × 28] res-
olution, has a more complicated pixel input space than MNIST, facilitating a better analysis of
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the convolutional contribution to overall network performance. SVHN and CIFAR-10 images are of
shape [32×32] pixels and are represented in three color channels, having more complicated patterns
and motifs compared to the gray scale Fashion MNIST (SVHN even contains many images with
distractors at the sides of the character the image is centered on). Fully-connected layers are not
strong enough to learn the spatial relationships between pixels, and, as a result, convolutional filters
are needed in order to learn the key patterns within the data that would help in distinguishing
between the varying classes.

In addition, in Figure 2, we utilized t-SNE to visualize the outputs of the last layer across epochs
in order to see how EKDAA disentangles the feature space of Fashion MNIST and CIFAR10.
Furthermore, CIFAR-10 and SVHN are used to test how EKDAA operates on real-world natural
color images.

Taken together, the FMNIST, CIFAR-10, and SVHN datasets allow us to investigate not only how
well EKDAA learns filters when engaged in the process of data fitting but also how effective it
is in creating models that generalize on visual datasets. Additionally, we show that our networks
can be trained using non-differentiable activations, such as the signum function, or, more formally:
signum(x) = 1 if x > 0, 0 if x = 0,−1 if x < 0. In this case, we train all convolutional and fully-
connected layers of our model using signum as the activation function, except for the softmax output
layer, in order to investigate how our well an EKDAA-driven network handles non-differentiable
activity without specific tuning.

4.2 Technical Implementation

We design convolutional neural networks for the Fashion MNIST, CIFAR-10, and SVHN datasets.
The Fashion MNIST CNN consists of three convolutional layers before flattening and propagating
through one fully-connected layer followed by a softmax. The filter size is [3×3] for all convolutional
layers with the first layer starting with one channel, expanding to 32 to 64 and finishing at 128 filters.
The fully connected layers start after flattening the filters which are then propagated through 128
fully-connected nodes before finishing at 10 output nodes (one per image class). Max-pooling with
a kernel of [2×2] and a stride of 2 was used at the end of the first and second layers of convolution.

The CIFAR-10 and SVHN models use six layers of convolution and is inspired by the blocks of
convolution and pooling layers used in the VGG family of networks Simonyan & Zisserman (2014).
First, two convolutional layers are used before finally passing through a max-pooling layer with a
kernel of [2×2] and a stride of two. Three of these mini-blocks of two convolution layers, followed by
a max-pooling layer, are used to build the final network. The first three layers of convolution use 64
filters while the last three layers use 128 filters. All layers use a filter size of [3×3]. After traversing
through the last convolutional layer, the final neural activities are flattened and propagated through
a single 128-node, fully-connected layer before shrinking down to 10 output nodes (which are run
through the softmax nonlinearity). Both Fashion MNIST, SVHN, and CIFAR-10 models use a very
small amount of fully-connected nodes and instead use multiple large filter layers to learn/extract
distributed representations (see Appendix for details).

Each model was tuned for optimal performance and several hyper-parameters were adjusted in-
cluding: batch size, learning rate, filter size, number of filters per layer, number of fully-connected
nodes per layer, weight initialization, optimizer choice, and dropout rate. Additional details can
be found in Appendix. This exact architecture was used for the EKDAA model as well as for the
other learning mechanisms that it was compared against. Models were optimized using stochastic
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Dataset/Algorithm Memory Required (MB) Computation Time (Sec)
FMNIST/BP 1517.29 96.36 +/- 1.79
FMNIST/EKDAA 2574.25 96.39 +/- 9.16
SVHN/BP 4723.84 316.84 +/- 19.91
SVHN/EKDAA 4728.03 268.95 +/- 54.56
CIFAR-10/BP 4723.84 319.72 +/- 13.59
CIFAR-10/EKDAA 4728.03 271.99 +/- 11.58

Table 1: Memory required and computation time computed for each backprop and EKDAA model
on the datasets tested. GPU memory required is recorded as well as the average computation time
and variance per 1000 updates. Ten trials for computation time are run.

gradient descent with momentum and Pascanu Pascanu et al. (2013) re-scaling was applied to all
layer-wise weight updates.

All models were trained on the original datasets at the original image resolutions without any data
augmentation or pre-training. Unlike backprop, EKDAA did not benefit from extensive heuristic
knowledge as to what optimal parameterization would look like, making a grid search for parameters
ineffective as the tuning limits would be significantly wider than with backprop. As a result, for
tuning, the learning rate was tuned from the range 1e−1 to 1e−4, number of filters were tuned from
the range 32 to 128, dropout was tuned from 0 to 0.5, and the activation function was evaluated
to be either the hyperbolic tangent (tanh) or the linear rectifier (relu). The final meta-parameter
setting for EKDAA was a learning rate of 0.5e−3, 0.9 momentum rate, tanh for activation, and a
dropout rate of 0.1 for filters and 0.3 for fully-connected layers (complete model specifications are
in the Appendix). All model weights were randomly initialized with system time as a seed. For
EKDAA, the error kernels were randomly initialized with the Glorot uniform weight initialization
scheme Glorot & Bengio (2010) Furthermore, all models were trained on a single Tesla P4 GPU with
8GB of GPU RAM and ran on Linux Ubuntu 18.04.5 LTS, using Tensorflow 2.1.0. The code for this
work has been designed in a novel library that allows for defining convolutional and fully-connected
models with the ability to quickly change the learning mechanism between BP and EKDAA. The
library also allows for defining new custom learning rules for analysis. While this codebase offers an
advantage for analyzing learning mechanisms, it has been custom written without the optimization
techniques that common libraries have implemented. This codebase takes advantage of Tensorflow
tensors when possible but has a custom defined forward and backward pass that is not nearly as
memory or computationally efficient as it can be.

In addition to train and test accuracy, we compare the GPU memory usage and computation time
required to train EKDAA and backprop. Results for this are shown in Table 1. Overall, EKDAA
shows a slight improvement in computation time as models become larger, and has a minor increase
in required memory to run the same model than backprop. Overall, EKDAA’s architecture does
not exhibit worse computational requirements to those of backprop.

4.3 Discussion

We analyzed EKDAA by comparing it to several biologically-inspired learning rules such as HSIC
Ma et al. (2019), RFA Lillicrap et al. (2016), DFA Nøkland (2016), sparse direct feedback align-
ment (SDFA) Crafton et al. (2019), and direct random target projection (DRTP) Frenkel et al.
(2021) (see Appendix for baseline details). The results are presented in Table 2 (we also added
two fully-connected baselines – an MLP trained by backprop and one trained by LRA-E Ororbia

9



Under review as submission to TMLR

FMNIST SVHN CIFAR-10
Train Acc Test Acc Train Acc Test Acc Train Acc Test Acc

BP 95.31 ± 0.18 89.97 ± 0.14 90.98 ± 0.23 88.52 ± 0.10 83.33 ± 0.22 71.08 ± 0.08
BP (FC) 92.91 ± 0.39 87.02 ± 0.41 84.36 ± 0.12 79.81 ± 0.22 57.05 ± 0.34 55.03 ± 0.29
LRA-E (FC) 93.59 ± 0.26 87.58 ± 0.33 80.17 ± 0.08 73.24 ± 0.19 58.10 ± 0.28 55.51 ± 0.42
EKDAA 95.83 ± 0.33 90.01 ± 0.11 84.31 ± 0.21 82.27 ± 0.19 75.05 ± 0.27 63.38 ± 0.12
EKDAA, Sig. 94.00 ± 0.14 88.69 ± 0.06 79.43 ± 0.09 76.87 ± 0.13 64.22 ± 0.12 59.71 ± 0.08
HSIC Ma et al. (2019) 88.30 ± −− 59.50 ± −−
FA 95.30 ± 0.51 89.10 ± 0.18 79.18 ± 00.22 76.50 ± 00.18 77.50 ± 0.25 58.80 ± 0.11
DFA 93.99 ± 0.32 88.90 ± 0.10 82.50 ± 00.24 80.30 ± 00.21 79.50 ± 0.20 60.50 ± 0.08
SDFA 94.10 ± 0.28 89.00 ± 0.10 84.50 ± 00.23 81.40 ± 00.19 80.00 ± 0.19 59.60 ± 0.06
DRTP 93.50 ± 0.40 87.99 ± 0.15 85.21 ± 00.21 81.90 ± 00.20 79.50 ± 0.22 58.20 ± 0.14

Table 2: Train and test accuracy on the Fashion MNIST, SVHN, and CIFAR-10 datasets. Mean
and standard deviation over 10 trials reported. It is important to note here that the signum (sig.)
function is included only to demonstrate that we are able to successfully train a non-differentiable
activation function using EKDAA, and obtain reasonable performance. Backprop results are shown
to serve as a best case scenario for using optimal gradients when training each architecture and
dataset. FC stands for fully-connected.

Figure 2: t-SNE visualization depicting the learned representations of EKDAA, shown for Epoch
0 (initial weights) and the final training epoch: (Left:) FMNIST and (Right) CIFAR-10.

& Mali (2019)). Comparable BP results are shown only to provide intuition on how well the con-
structed models could perform if trained with precise gradients. We find that EKDAA performs
competitively with all other algorithms and exhibits both increased training and test accuracy on
the natural color images with SVHN and CIFAR-10. Additionally, when testing EKDAA with the
signum activation, we find that the resulting CNN is able to operate with the non-differentiable
function successfully on Fashion MNIST.

Figure 2 shows the t-SNE plots for a Fashion MNIST and CIFAR-10 CNN trained with EKDAA.
The t-SNE plots were generated (at the 0th and 40th epoch) and visualized using default t-SNE
parameters (i.e. no tuning) with a perplexity value of 30 and the maximum number of iterations
set to 1000. Qualitatively, we find that the EKDAA learning process successfully learns to group
features together with primarily convolutional layers, indicating that the error kernels learned are
indeed benefiting the CNN model.

While many biologically-plausible alternatives have also been developed to learn models of natural
images, many of them incorporate the computation of error derivatives as part of the process
and the architectures that they are generally applied to have been designed with multiple, large
fully-connected layers with only a few convolutional layers. We argue that adding many fully
connected layers corrupts the original input signal such that the neural model is engaged in a
greedy optimization process that results in fitting to noise rather than extracting useful features
from natural image inputs. Therefore, the role of convolution in such models is still debatable and,

10



Under review as submission to TMLR

as a result, it is difficult to determine if model generalization/performance is coming from the bio-
plausible learning mechanism or from the fully-connected layers. In contrast, EKDAA emphasizes
the role of convolutional filters in extracting useful image features while reducing the amount of
fully-connected elements. Our results on the three datasets examined above validate that this
approach still yields models that generalize well.

Limitations: The main limitation of the proposed EKDAA algorithm is currently related its scal-
ability to massive datasets, especially when compared with highly optimized tensor computations
that are implemented in standard deep learning libraries that support backprop-based convolu-
tion/deconvolution operations. Currently, EKDAA would not scale easily to networks with many
layers or more than several hundred filters without optimization of its filter operations. Due to the
current lack of optimization compared to frameworks like TensorFlow and PyTorch, the proposed
framework is not currently as efficient requiring more computational resources than the more es-
tablished frameworks. Based on our practical experience with our custom software library that
implements EKDAA, it appeared to us that EKDAA does not scale easily to very large networks
with many filters in each layer given a constrained computational budget and hardware (note that
we were constrained in the amount of memory that we could allocate in a given GPU – at maximum,
the GPUs available to us only facilitated a maximum of 8GB of workable memory, constraining
the types of convolutional structures that we could ultimately explore). Specifically, we used one
Ubuntu 18.04 server that had an 8GB Tesla P4, an Intel Xeon CPU E5-2650, and 256GB of RAM.

Our primary future work will be to further modularize the current state of our software library
and its implementation of EKDAA, focusing on engineering/extending it so as to improve the
algorithm’s ability to scale to training on much larger datasets such as ImageNet Deng et al.
(2009).

Broader Impacts: Backprop generally works well on a carefully parameterized network, but it
has many drawbacks. Notably, this means that network design often focuses on appeasing backprop
when optimizing an ANN’s parameters rather than building an architecture that is more directly
appropriate for a given task or purpose. Oftentimes, appeasing backprop requires certain con-
straints that prevent us from easily designing mechanisms that facilitate sparsity, interpretability,
adversarial-resistance, probabilistic interpretation, etc. Back-propagation requires computing gra-
dients layer-by-layer enforcing strict requirements for propagation flow such as needing to propagate
in only a feed-forward flow (i.e. lateral connections make no sense for back-propagation). Local
learning mechanisms do not have these restrictions and allow for exploration into novel propagation
flow.

We introduce a novel framework for training images without the need for back-propagation. While
our proposed work is limited with scale and speed compared to the highly optimized tensor com-
putations implemented in standard deep learning libraries, this work serves as a foundation for
exploring local learning on image data. We introduce EKDAA, an algorithm that learns error
kernels from local layer convolutional signals to better represent image data in a backprop-free
manner. While several novel bio-plausible methodologies have been developed in recent years they
their learning rules tend to strictly focus on learning standard feed-forward linear layers. Some
of these methods apply convolution before linear layers, but often fix randomly initialized filters
or use backprop to train those layers. By utilizing learnable error kernels, we introduce a way
to transfer error signal through convolutional layers of the model all while not requiring gradient
information like in backprop and learn in a local way that does not impose the weight transport
problem. Continued work in this area may have profound impact in future model development by
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ablating the severe restrictions of backprop and still provide the ability to model highly complex
and high dimensional data such as natural color images.

5 Conclusion

We have presented an initial exploration of a back-propagation (backprop)-free convolutional neural
network learning algorithm.We implemented a local feedback mechanism that transmits information
across layers in order to compute target activity values and relevant error neuron maps (independent
of activation function type), resulting in Hebbian-like update rules for the convolutional filters of
a CNN. Specifically, this credit assignment process was made possible through the introduction of
a mechanism that we call the error kernel, which provides a means to reverse filter error neuron
activity signals and complements the normal filters used to extract features in convolutional models.
We refer to our proposed process as the error-kernel driven activation alignment (EKDAA) method.
In this work, we compared various learning algorithms in training a small CNN and find that
EKDAA outperforms other bio-inspired alternatives on natural color images. Notably, our method
offers several benefits. It resolves the major bio-implausibility of the weight transport problem,
works with non-differentiable activities, and is computationally efficient since it can operate in a
layer-wise parallel/asynchronous fashion.

Our experiments demonstrated that EKDAA learns “good” representations during training and,
furthermore, we found that an EKDAA-trained CNN acquires latent representations that improve
over time (epochs) as training evolves. Additionally, we find that EKDAA has similar computational
and memory requirements as back-propagation, and shows similar loss convergence as well. While
there is still much to explore in future work, we have successfully presented an analysis of the
novel EKDAA algorithm, yielding promising evidence that it is capable of training convolutional
networks without backprop. The implication of this could have far-reaching effects in expanding
the future designs of CNN architectures.
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A Appendix

B Experimental Setup Details

We performed a grid search for all of the models investigated in this work in order to find opti-
mal meta-parameters and extract optimal behavior for each. Primarily, tuned hyper-parameters
included: batch size, learning rate, filter size, number of filters per layer, number of fully-connected
nodes/units per layer, weight initialization, choice of optimizer, and the dropout rate. Note that
this work does not aim to obtain state-of-the-art image classification results. Rather, its intent is
to present a method that efficiently tackles the credit assignment issues in a convolution neural net-
work (CNN) by effectively operating with our proposed error kernel mechanism. Furthermore, our
method offers additional flexibility in design choices (such as permitting the use of non-differentiable
activation functions).

Meta-parameter Tuning: We report our grid search ranges for each model’s meta-parameters
in Tables 2 (EKDAA), 6 (DFA), 5 (FA), 8 (RDFA), and 7 (SDFA), respectively. Furthermore, in
the “Best” column, we report the final values selected/used for the models reported in the main
paper.

Architecture Design: In Table 3, we present the architectures used across the learning algo-
rithms investigated in this paper, i.e., the proposed EKDAA, feedback alignment (FA, also referred
to as RFA in the main paper), direct feedback alignment (DFA), sparse direct feedback alignment
(SDFA), and random direct feedback alignment (RDFA). We built the models for Fashion MNIST,
SVHN, and CIFAR-10 to include several layers of convolution (conv), with a sizeable amount of
filters, and only small (in terms of dimensionality) fully-connected (fc) layers to focus the learning
process on adapting/using the model kernels/filters to extract useful features from the input image
signals. In particular, the model for SVHN and CIFAR-10 had multiple layers with 128 filters per
layer and, before flattening the activities for the fully-connected layers, the image size was reduced
using three max pooling layers in order to propagate forward the image to obtain a [4×4] resolution.

General Comments/Discussion: With respect to the main paper’s results, what is significant
about our findings is that EKDAA demonstrates that adjusting the synaptic weight parameters of a
CNN is possible using recurrent error synapses formulated as error kernels themselves. This means
that the target feature map values (and the error neuron maps that calculate the distance between
the original feature maps and these targets) inherent to our backprop-free computational process
provide useful teaching signals that facilitate the learning of useful neural vision architectures. The
main results of our paper provide promising initial evidence that EKDAA can serve as a potentially
useful bio-inspired alternative to backprop for training CNNs on natural images.
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C Asset Usage

We build our codebase on top of TensorFlow 2.0 for fundamental functionality. TensorFlow is
open-source with an Apache license. In addition, for analysis we use the publicly available Fashion-
MNIST, SVHN, and CIFAR-10 datasets, all of which have licenses permitting unlimited use and
modification. In addition, none of the datasets used in this study entail any data that could be
considered sensitive (thus not requiring data consent) or offensive.

D Model and Training Specifications

Layer Fashion MNIST Fashion MNIST Output SVHN/CIFAR-10 SVHN/CIFAR-10 Output
L0 Input [:, 28, 28, 1] Input [:, 32, 32, 3]
L1 Conv1 (1, 32) [3 x 3] [:, 28, 28, 32] Conv1 (3, 64) [3 x 3] [:, 32, 32, 64]
L2 MaxP1 (2, 2) [:, 14, 14, 32] Conv2 (64, 64) [3 x 3] [:, 32, 32, 64]
L3 Conv2 (32, 64) [3 x 3] [:, 14, 14, 64] MaxP1 (2, 2) [:, 16, 16, 64]
L4 MaxP2 (2, 2) [:, 7, 7, 64] Conv3 (64, 64) [3 x 3] [:, 16, 16, 64]
L5 Conv3 (64, 128) [3 x 3] [:, 7, 7, 128] Conv4 (64, 128) [3 x 3] [:, 16, 16, 128]
L6 Flatten() [:, 6272] MaxP2 (2, 2) [:, 8, 8, 128]
L7 FC1 (6272, 128) [:, 128] Conv5 (128, 128) [3 x 3] [:, 8, 8, 128]
L8 Softmax (128, 10) [:, 10] Conv6 (128, 128) [3 x 3] [:, 8, 8, 128]
L9 - - MaxP3 (2, 2) [:, 4, 4, 128]
L10 - - Flatten() [:, 2048]
L11 - - FC1 (2048, 128) [:, 128]
L12 - - Softmax (128, 10) [:, 10]

Table 3: Model architectures that were trained on Fashion MNIST, SVHN, and CIFAR-10. The
layers of each model are defined as well as the outputs from each layer.
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Parameter Range Min Range Max Interval Activation Functions Best
batch_size 50 200 50 - 50
learning_rate 1e-5 1e-2 0.5 - 5e-4
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_uniform
optimizer - - - tanh, relu, signum tanh
dropout 0.0 0.5 0.1 - 0.1 conv, 0.3 fc

Table 4: Hyper-parameter tuning ranges and best found parameters for EKDAA.
Parameter Range Min Range Max Increment Activation Functions Best
batch_size 32 256 64 - 64
learning_rate 5e-5 3e-2 0.5 - 5e-4
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_normal
optimizer - - - tanh, relu relu
dropout 0.0 0.5 0.1 - 0.1 conv, 0.3 fc

Table 5: Hyper-parameter tuning ranges and best found parameters for random feedback alignment
(FA).

Parameter Range Min Range Max Increment Activation Functions Best
batch_size 32 256 64 - 64
learning_rate 5e-5 3e-2 0.5 - 5e-3
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_uniform
optimizer - - - tanh, relu relu
dropout 0.0 0.5 0.1 - 0.1 conv, 0.2 fc

Table 6: Hyper-parameter tuning ranges and best found parameters for direct feedback alignment
(DFA).

Parameter Range Min Range Max Increment functions Best
batch_size 32 256 64 - 64
learning_rate 5e-5 3e-2 0.5 - 3e-3
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_uniform
optimizer - - - tanh, relu tanh
dropout 0.0 0.5 0.1 - 0.1 conv, 0.1 fc

Table 7: Hyper-parameter tuning ranges and best found parameters for sparse direct feedback
alignment (SDFA).

Parameter Range Min Range Max Increment functions Best
batch_size 32 256 32 - 32
learning_rate 5e-5 3e-2 0.5 - 4e-3
filter_size 3 7 2 - 3
num_filters 32 256 32 - -
fc_per_layer 128 128 - - 128
weight_init - - - glorot_uniform, glorot_normal glorot_normal
optimizer - - - tanh, relu relu
dropout 0.0 0.5 0.1 - 0.2 conv, 0.3 fc

Table 8: Hyper-parameter tuning ranges and best found parameters for random direct feedback
alignment (RDFA).
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