
Transforming a Non-Differentiable Rasterizer into a Differentiable One
with Stochastic Gradient Estimation

Thomas Deliot 1 Eric Heitz 1 Laurent Belcour 1

Abstract
We show how to transform a non-differentiable
rasterizer into a differentiable one with minimal
engineering efforts and no automatic differentia-
tion. To do so, we improve on Stochastic Gradi-
ent Estimation by using a Per-Pixel Loss which
leverage the fact that only a few primitives con-
tribute to a given pixel. Estimating gradients on
a per-pixel basis bounds the dimensionality of
the optimization problem and makes the method
scalable. To track parameters contributing to a
pixel, we use ID- and UV-buffers, which are often
already available or trivial to obtain. With these
minor modifications, we obtain an in-engine op-
timizer for 3D assets with millions of geometry
and texture parameters.

1. Introduction
Motivation for differentiable rendering. A differen-
tiable renderer is a rendering engine that computes a 2D
image for a given 3D scene and has, in addition, the abil-
ity to provide gradients for the 3D scene parameters via
backpropagation through the rendering calculations. The
benefits of having these gradients is that it makes possible
to optimize the 3D scene parameters to obtain a target 2D
image via gradient descent. This allows for many applica-
tions such as object placement [1], object reconstruction [2],
[3], model simplification [4], material estimation [5], etc.

Objective. We assume that a rasterization engine is avail-
able and we wish to use differentiable rendering to optimize
assets for their final in-engine rendering. Ideally, the solu-
tion should keep the workflow simple and self-contained, i.e.
without using other tools and dependencies than the engine
itself. In this context, implementing a renderer from scratch
within a differentiable frameworks such as Dr.JIT [6] or

1Intel Labs, Grenoble, FRANCE. Correspondence to: Thomas
Deliot <thomas.deliot@intel.com>.

Published at the 2nd Differentiable Almost Everything Workshop
at the 41 st International Conference on Machine Learning, Vi-
enna, Austria. July 2024. Copyright 2024 by the author(s).

Slang.D [7] is not an option. Using existing differentiable
rasterizers such as NVDIFFRAST [8] requires externalizing
the workflow and relying on external (sometimes vendor-
specific) dependencies, which is also problematic. This is
why we aim at transforming an existing non-differentiable
rasterizer into a differentiable one.

Contribution. Our method is based on the concept of
Stochastic Gradient Estimation [9], a stochastic variant of fi-
nite differentiation that allows for estimating gradients with-
out a differentiable framework. However, akin to finite dif-
ferentiation, this method does not scale to high-dimensional
problems: the more dimensions, the noisier the gradient esti-
mates, the more optimization steps are required. Our idea is
to cut down the dimensionality by estimating gradients on a
per-pixel basis rather than on the whole image. Indeed, the
number of parameter contributing to a given rasterized pixel
is of tractable dimensionality, regardless of the total number
of parameters in the scene. This idea yields a method to
make an existing rasterizer differentiable. Namely:

• It is simple to implement. Our base differential raster-
ization component consists of adding ID/UV-buffers to
the existing raster targets and two compute shaders.

• It keeps the workflow self-contained by bringing the
benefits of differentiable rasterization to an existing
conventional rasterizer without requiring external de-
pendencies.

• It is cross-platform since it uses only conventional
graphics API functionalities. This is a significant bonus
point for adoption given that existing differential ren-
dering solutions are bound to vendor-specific hardware
and/or software.

• It is efficient and scales well in scene complexity. We
optimize scenes with 1M+ parameters in seconds on a
customer GPU.

• It covers multiple use cases. We estimate gradients for
meshes, displacement mapping, Catmull-Clark subdi-
vision surfaces [10], semi-transparent geometry, physi-
cally based materials, 3D volumetric data and 3D Gaus-
sian Splats [11].

1



Differentiable Raterizer using Stochastic Gradient Estimation

pa
ra

m
et

er
s

θ

θ8

θ7

θ6

θ2

θ5

θ4

θ3

θ1

ra
nd

om
pe

rt
ur

ba
tio

n

s ⊙ ϵ

+ϵ8

−ϵ7

+ϵ6

−ϵ2

+ϵ5

+ϵ4

−ϵ3

+ϵ1

pe
rt

ur
be

d
pa

ra
m

et
er

s
θ ± s ⊙ ϵ

st
oc

ha
st

ic
gr

ad
ie

nt
s

∂fw,h

∂θ

P R

G

rasterized pixel
Iw,h(θ ± s⊙ ϵ)

target pixel
Iw,h

2

pixel error
fw,h(θ ± s ⊙ ϵ)

Figure 1: Overview of our differentiable rasterizer. The first compute shader (P) perturbs the scene parameters before
they are rasterized (R). The second compute shader (G) accumulates the error differences, which provide a gradient estimate.
The key point of our approach is that it accumulates the contribution of a pixel (in red in the images) only in its contributing
parameters (in red in the vectors).

2. Per-Pixel Stochastic Gradient Estimation
Our per-pixel method builds on Stochastic Gradient Estima-
tion to differential rasterization. There, the objective is to
optimize a 3D scene such that a rasterized 2D image from
this scene matches a target image. To do this, we need to
estimate the gradients of the rasterization computations.

2.1. Stochastic Gradient Estimation

In this context, the vector θ ∈ Rd represents a 3D scene
defined by a set of parameters, typically geometry, textures,
etc. A rasterizer computes a 2D image I(θ) using this
3D scene. Finally, the objective function f(θ) is the error
between the rasterized image I(θ) and a target image I .

Our goal is to compute the gradient of the loss function w.r.t.
the input parameters: ∂f

∂θi
. Instead of relying on automatic

differentiation, we estimate the gradient stochastically

∂̂f

∂θi
=

f(θ + s⊙ ϵ)− f(θ − s⊙ ϵ)

2 si ϵi
. (1)

where ϵ = (ϵ1, .., ϵd) is a user-defined perturbation mag-
nitude vector s = (s1, .., sd) is a random sign vector,
si ∈ {−1,+1}, where each sign has equal probability. We
note s⊙ ϵ the element-wise product of both vectors.

2.2. Per-Pixel Formulation

The stochastic gradient estimate of Equation (1) is noisy,
especially in a high-dimensional parameter space (Figure 2,
first row). In our use case, the error of a pixel contributes
to every parameter, even if this parameter is never used to
compute the pixel’s value. Hence, every parameter receives
noisy gradients from every pixel, increasing the variance of
the estimator. We propose to compute gradients per-pixel to
alleviates this problem and makes the method scalable.

Derivation. We assume that the loss function we use (the
l2 error in our applications), is a sum of per-pixel errors:

f(θ) =
∑

(w,h)∈W×H

fw,h(θ), (2)

and the gradient can be defined in the same way:

∂f

∂θi
=

∑
(w,h)∈W×H

∂fw,h

∂θi
. (3)

Note that if the parameter θi is not implicated in the compu-
tation of pixel (w, h) then ∂fw,h

∂θi
= 0. We can thus rewrite

the gradient with a sparse sum where only impacted pixels
contribute:

∂f

∂θi
=

∑
(w,h) impacted by θi

∂fw,h

∂θi
. (4)

By applying the estimator of Equation (1) to Equation (4)
we obtain the stochastic gradient estimate our method is
based on:

∂̂f

∂θi
=

∑
(w,h) impacted by θi

f̂w,h

∂θi
. (5)

In Section 3, we show how to implement this equation with
a rasterizer and compute shaders.

3. Turning a Rasterizer Differentiable
We turn a rasterizer based renderer (denotedR) to a differ-
entiable one with 2 compute shaders: a P (perturbation) and
a G (gradient) shaders which implements Equation (5) We
provide an overview of our pipeline in Figure 1 and detail
its three steps next.

2



Differentiable Raterizer using Stochastic Gradient Estimation

3.1. Perturbation (Compute shader P)

First, we launch a compute shader that execute Algorithm 1
over d threads (one thread per scene parameter). The shader
computes the perturbed scene parameters θ + s ⊙ ϵ and
θ − s ⊙ ϵ and store them in GPU memory. Its main in-
gredient is the generation of the random sign vector s via
randomsign(), which we implement with a random hash
function [12].

Algorithm 1 Compute shader P (perturbation)

Require: thread ID i
load θi, ϵi ▷ load 2 float
si = randomsign() ▷ hash function [12]
store siϵi, θi + siϵi, θi − siϵi ▷ store 3 float

3.2. Rasterization (R)

Then we utilize the perturbed parameter to rasterize the
scene twice. First, using parameters θ + s ⊙ ϵ and then
using parameters θ − s ⊙ ϵ. We thus obtain two images:
I(θ+ s⊙ ϵ), and I(θ− s⊙ ϵ). Those are used to evaluate
the gradient in the next shader.

3.3. Gradients Estimate (Compute shader G)

Finaly, we launch a compute shader that execute Algo-
rithm 2 over W × H threads (one thread per pixel). The
shader computes the pixel errors fw,h(θ + s ⊙ ϵ) and
fw,h(θ − s ⊙ ϵ) between the perturbed-scene images
I(θ+s⊙ ϵ) and I(θ−s⊙ ϵ) and the target image I . Once
these errors are available, they provide the gradient estimate
for each parameter i contributing to pixel (w, h) following
Equation (5). We add the result to the gradient estimate
using an AtomicAdd operation to avoid interferences be-
tween multiple threads (pixels) adding simultaneously their
gradient contribution to the same parameter. Note that the
critical point of this algorithm is the ability to loop over each
parameter i contributing to pixel (w, h): R has to output an
ID buffer (else, we get it from another rasterization step).

Algorithm 2 Compute shader G (gradient)

Require: thread ID (w, h)
load Iw,h(θ + s⊙ ϵ), Iw,h(θ − s⊙ ϵ), Iw,h ▷ load 3
float3 (3× rgb)
fw,h(θ + s⊙ ϵ) = ∥Iw,h − Iw,h(θ + s⊙ ϵ)∥2

fw,h(θ − s⊙ ϵ) = ∥Iw,h − Iw,h(θ − s⊙ ϵ)∥2
for each parameter θi contributing to pixel (w, h) do ▷
implementation of Equation (5)

load siϵi ▷ load 1 float
AtomicAdd

(
∂f
∂θi
← fw,h(θ+s⊙ϵ)−fw,h(θ−s⊙ϵ)

2 si ϵi

)
▷

atomic add 1 float
end for

4. Results
We provide results of our method and compare it to a vanilla
stochastic difference approach. For all our example, we
modified Unity to apply our compute shaders and the Adam
optimizer (as a compute shader) once the gradients are com-
puted. All our results are timed on an NVIDIA 4090 GPU.

Optimizing Triangle Meshes. In Figure 2 we illustrate
the difference between the full-image approach of Equa-
tion (1) and the per-pixel approach of Equation (5). In this
experiment, each triangle is represented by 12 parameters (3
vertices + 1 RGB color). Using 100K triangles, we obtain a
total of 1228800 parameters. Optimizing with the full-image
error is impractical with that numbers of parameters. The
per-pixel gradients permit a quick convergence.

init. 20 iterations
(1.2 sec)

100 iterations
(2.9 sec)

200 iterations
(5.8 sec)

1000 iterations
(28.9 sec)

fu
ll-

im
ag

e
er

ro
r

E
q.

(1
)

pe
r-

pi
xe

le
rr

or
E

q.
(5

)

Figure 2: Validation of the per-pixel formulation. In this
experiment, we optimize triangles soups to match a 2D im-
age. The full-imagevariant implements Equation (1) where
the error over the whole image contributes to every parame-
ter and the per-pixel approach implements Equation (5).

Optimizing various primitives. Figures 3 showcase op-
timizing subdivision surfaces [10], PBR textures, volumes,
and Gaussian Splats [11]. For Catmull-Clark subdivision
surfaces [10], we optimize the control mesh and tessellate
it on the fly in the rasterizer [13]. We write the control
mesh’s triangle in the ID buffer. We additionaly optimize
the displacement and normal maps and further store UV
coordinates. For physically based shading, we optimize
roughness, metallicity, albedo, height and normal maps.
Similary to the subdivision surface case, we need to store
the UV coordinate in the ID buffer. For 3D Gaussian splats,
we rasterize transparent quads and use a front-to-back sort-
ing to output a deep ID buffer. To improve the results, we
implement an additional resampling and a splat subdivision
compute shader executed after each gradient descent, follow-
ing Kerb et al. [11]. Lastly, for 3D volumes, we rely on an
additional ray marching phase in compute shader G to splat
the gradients and avoid to store all the voxels coordinates.

3



Differentiable Raterizer using Stochastic Gradient Estimation

init., 24K vertices
our method

3 sec.
our method

30 sec.
our method

no time
reference

init., 50K triangles
our method

35 sec.
our method

200 sec.
our method

no time
reference

init., 1K splats
our method

3 sec., 2K splats
our method

53 sec., 128K splats
our method

no time
reference

init., 1283 voxels
our method

5 sec.
our method

32 sec.
our method

no time
reference

Figure 3: Optimizing 3D Assets. We showcase different application of our method. We can optimize either subdivision
surfaces, PBR materials, 3D Gaussian Splats, and voxels.

5. Conclusion
We have proposed a method to transform a non-
differentiable rasterizer into a differentiable one. Our exper-
iments have shown that our transformed rasterizer supports
the same applications as state-of-the-art differentiable ras-
terizers without critical performance or qualitative penalty.
We successfully used it to optimize meshes, subdivision
surfaces, physically based materials, volumes, and 3DGS.

However, we do not position our method as a replacement
for other state-of-the-art differentiable rasterizers. We aim
to bring the benefits of differentiable rasterization to an au-
dience that already possesses a rasterization engine and has
workflow or platform constraints that prevent using existing
differentiable rasterizers. Our method makes it possible to
enjoy the possibilities of differentiable rasterization within
the existing engine.

4



Differentiable Raterizer using Stochastic Gradient Estimation

References
[1] H. Rhodin, N. Robertini, C. Richardt, H.-P. Seidel, and

C. Theobalt, “A versatile scene model with differentiable
visibility applied to generative pose estimation,” in Proceed-
ings of the IEEE International Conference on Computer
Vision, 2015, pp. 765–773.

[2] H. Kato and T. Harada, “Learning view priors for single-
view 3d reconstruction,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
2019, pp. 9778–9787.

[3] S. Wu, C. Rupprecht, and A. Vedaldi, “Unsupervised learn-
ing of probably symmetric deformable 3d objects from
images in the wild (invited paper),” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 45, no. 4,
pp. 5268–5281, 2023.

[4] J. Hasselgren, J. Munkberg, J. Lehtinen, M. Aittala, and
S. Laine, “Appearance-driven automatic 3d model simplifi-
cation.,” in EGSR (DL), 2021, pp. 85–97.

[5] D. Azinovic, T.-M. Li, A. Kaplanyan, and M. Nießner, “In-
verse path tracing for joint material and lighting estimation,”
in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 2447–2456.

[6] W. Jakob, S. Speierer, N. Roussel, and D. Vicini, “Dr.jit: A
just-in-time compiler for differentiable rendering,” Trans-
actions on Graphics (Proceedings of SIGGRAPH), vol. 41,
no. 4, 2022.

[7] S. Bangaru, L. Wu, T.-M. Li, et al., “Slang.d: Fast, modular
and differentiable shader programming,” ACM Transac-
tions on Graphics (SIGGRAPH Asia), vol. 42, no. 6, pp. 1–
28, Dec. 2023.

[8] S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen, and
T. Aila, “Modular primitives for high-performance differen-
tiable rendering,” ACM Transactions on Graphics, vol. 39,
no. 6, 2020.

[9] M. Fu, “Stochastic gradient estimation,” Technical report,
2005.

[10] E. Catmull and J. Clark, “Recursively generated b-spline
surfaces on arbitrary topological meshes,” Computer-Aided
Design, vol. 10, no. 6, pp. 350–355, 1978.

[11] B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis,
“3d gaussian splatting for real-time radiance field rendering,”
ACM Trans. Graph., vol. 42, no. 4, 2023.

[12] M. Jarzynski and M. Olano, “Hash functions for gpu ren-
dering,” Journal of Computer Graphics Techniques (JCGT),
vol. 9, no. 3, pp. 20–38, Oct. 2020, ISSN: 2331-7418.

[13] J. Dupuy and K. Vanhoey, “A halfedge refinement rule
for parallel catmull-clark subdivision,” Computer Graphics
Forum, vol. 40, no. 8, pp. 57–70, 2021.

5


