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Abstract001

With the increasing demand for substantial002
amounts of high-quality data to train large lan-003
guage models (LLMs), efficiently filtering large004
web corpora has become a critical challenge.005
For this purpose, KenLM, a lightweight n-gram-006
based language model that operates on CPUs, is007
widely used. However, the traditional method008
of training KenLM utilizes only high-quality009
data and, consequently, does not explicitly learn010
the linguistic patterns of low-quality data. To011
address this issue, we propose an ensemble ap-012
proach that leverages two contrasting KenLMs:013
(i) Good KenLM, trained on high-quality data;014
and (ii) Bad KenLM, trained on low-quality015
data. Experimental results demonstrate that016
our approach significantly reduces noisy con-017
tent while preserving high-quality content com-018
pared to the traditional KenLM training method.019
This indicates that our method can be a practi-020
cal solution with minimal computational over-021
head for resource-constrained environments.022

1 Introduction023

The advancement of large language models (LLMs)024

has accelerated as the ‘scaling law’ (Kaplan et al.,025

2020), which states that the performance of LLMs026

directly correlates with data size, has been stud-027

ied. Moreover, recent studies (Penedo et al., 2023;028

Gunasekar et al., 2023; Li et al., 2024; Penedo029

et al., 2024; Dubey et al., 2024) have shown that030

the performance of LLMs is largely determined by031

the quality of the training corpus. In other words,032

a vast amount of high-quality training corpus is033

necessary to enhance the performance of LLMs.034

However, large web corpora often contain sub-035

stantial amounts of low-quality data, making them036

difficult to use directly for training. In response037

to this challenge, various methods (Wettig et al.,038

2024; Kong et al., 2024) are employed to filter039

out low-quality data and select high-quality data.040

These methods typically require GPU resources,041

which makes them impractical, especially when 042

processing data that exceeds trillions of tokens. 043

To efficiently filter large datasets, the most 044

widely used method is KenLM (Heafield, 2011), 045

a lightweight n-gram-based model that operates 046

on CPUs. In many studies (Wenzek et al., 2019; 047

Computer, 2023; Nguyen et al., 2023; Laurençon 048

et al., 2024), KenLM, trained on the high-quality 049

Wikipedia dataset, is commonly used. It measures 050

perplexity (PPL) to identify low-quality content. 051

Note that higher PPL scores indicate lower-quality 052

or out-of-domain text, while lower PPL scores sug- 053

gest that the text closely resembles the linguis- 054

tic patterns of the high-quality data used to train 055

KenLM. Low-quality data with high PPL scores 056

are then filtered out. 057

We argue that the traditional KenLM does not 058

explicitly learn the linguistic patterns of low-quality 059

data. Thus, while it assigns low PPL scores to 060

data with high-quality linguistic patterns, it does 061

not consistently assign high PPL scores to data 062

with low-quality linguistic patterns. To address 063

this issue, we propose an ensemble approach that 064

utilizes the following two contrasting KenLMs: (i) 065

Good KenLM, trained on high-quality data; and (ii) 066

Bad KenLM, trained on noisy, low-quality data such 067

as spam emails, hate speech, and informal social 068

media text. Our empirical results show that this 069

approach can be a practical solution with minimal 070

computational overhead for resource-constrained 071

environments, significantly reducing noisy content 072

and preserving high-quality content compared to 073

the traditional KenLM training method. 074

2 Related Work 075

As the demand for a vast amount of high-quality 076

training corpus grows, it has become essential to 077

effectively and efficiently filter large amounts of 078

web corpus. Among various filtering methods, 079

this paper focuses on model-based quality filtering, 080
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which can be broadly divided into the following081

two categories: (i) perplexity-based filtering; and082

(ii) classifier-based filtering.083

Perplexity-based filtering. Numerous stud-084

ies (Wenzek et al., 2019; Computer, 2023; Nguyen085

et al., 2023; Wei et al., 2023; Paster et al.,086

2023; Laurençon et al., 2024) use the perplexity087

(PPL) scores of KenLM (Heafield, 2011), an088

n-gram-based language model, to efficiently089

filter out low-quality data due to its lightweight090

architecture. It can operate on CPUs, making it a091

cost-efficient solution for handling large-scale text092

data. Despite its efficiency, there have been few093

efforts to improve its performance. Meanwhile,094

The Pile (Gao et al., 2020) used the perplexity of095

GPT-2 (Radford et al., 2019) and GPT-3 (Brown,096

2020) to evaluate the quality of the dataset.097

Classifier-based filtering. FastText (Joulin et al.,098

2016) is widely used to distinguish the quality of099

data (Computer, 2023; Wei et al., 2023; Li et al.,100

2024). Similar to KenLM, FastText is also an effi-101

cient model that operates on CPUs. However, as102

detailed in Section 4, KenLM demonstrated supe-103

rior performance compared to FastText when both104

were trained on the same dataset. Furthermore,105

recent research (Gunasekar et al., 2023; Li et al.,106

2024; Penedo et al., 2024) has focused on fine-107

tuning pre-trained embedding models to serve as108

classifiers for quality filtering. Especially, Fineweb109

demonstrated that training relatively small-sized110

LLMs (1.82 billion parameters) on data filtered by111

a trained classifier (resulting in 350 billion tokens),112

rather than on unfiltered data, led to performance113

improvements across various benchmarks. How-114

ever, these methods are impractical for processing115

large web corpora due to their high computational116

costs, which necessitate significant GPU resources.117

3 Proposed Method118

In this paper, we aim to reduce noisy data while119

preserving high-quality data in a computationally120

efficient manner. To this end, we propose an en-121

semble approach using two contrasting KenLMs:122

(i) Good KenLM and (ii) Bad KenLM.123

Good KenLM. The objective of Good KenLM124

is to assign low perplexity (PPL) scores to well-125

structured, high-quality text. Many previous stud-126

ies (Wenzek et al., 2019; Computer, 2023; Nguyen127

et al., 2023; Laurençon et al., 2024) have used128

a high-quality Wikipedia dataset for training, de- 129

noted as Wiki KenLM in this paper. However, with 130

recent advancements in LLMs, several high-quality 131

datasets (Soldaini et al., 2024; Penedo et al., 2024; 132

Li et al., 2024) have emerged. In our experiments, 133

as shown in Section 4, we found that the combi- 134

nation of S2ORC (Lo et al., 2020) and Textbooks- 135

are-all-you-need-lite (SciPhi, 2023) as training data 136

was more effective than utilizing Wikipedia. Thus, 137

in this paper, we designate the KenLM trained on 138

this combination of data as Good KenLM. 139

Bad KenLM. The rationale behind employing 140

Bad KenLM alongside Good KenLM is that Good 141

KenLM fails to detect unwanted content (e.g., 142

spam, advertising, and informal communication), 143

which are generally considered poor for training 144

LLMs, as it has not been explicitly trained on these 145

types of content. For instance, if low-quality con- 146

tent shares superficial linguistic patterns with high- 147

quality text, it may still score reasonably well un- 148

der Good KenLM. Therefore, to detect a wider 149

range of undesirable content, Bad KenLM is de- 150

signed to assign low PPL scores to such content. To 151

achieve this, we trained Bad KenLM using noisy, 152

low-quality datasets, including hate speech, spam 153

emails, and informal social media content. To the 154

best of our knowledge, this is the first study to em- 155

ploy KenLM trained on noisy, low-quality datasets. 156

Ensemble. To leverage the complementary 157

strengths of two contrasting KenLMs, we ensemble 158

the models by integrating the PPL scores assigned 159

by each. We perform Z-score standardization to 160

align the scales of the two PPL scores assigned 161

by each model, as they are trained on different 162

datasets and therefore exhibit different distributions 163

of PPL scores. Then, we compute the ensembled 164

PPL score Pens(xi), as follows: 165

Pens(xi) =α

(
Pgood(xi)− µgood

σgood

)
− (1− α)

(
Pbad(xi)− µbad

σbad

)
,

(1) 166

where xi ∈ X denotes the i-th text data, X repre- 167

sents datasets, Pgood(xi) (resp. Pbad(xi)) indicates 168

PPL score from Good (resp. Bad) KenLM for xi, 169

µgood (resp. µbad) is the mean of the PPL scores 170

from Good (resp. Bad) KenLM, σgood (resp. σbad) 171

is the standard deviation of the PPL scores from 172

Good (resp. Bad) KenLM, and α denotes a param- 173

eter that balances the two PPL scores. Note that 174

the coefficient for the term associated with Bad 175
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KenLM is negative. This is because, in contrast176

to Good KenLM, which assigns low PPL scores177

to high-quality data, Bad KenLM assigns low PPL178

scores to low-quality data. Consequently, data with179

low ensembled PPL scores—obtained by appropri-180

ately subtracting two PPL scores—closely resem-181

ble the linguistic patterns of high-quality data and182

are distinctly separated from low-quality content.183

4 Experiments184

We designed our experiments to answer the follow-185

ing key research questions (RQs):186

• RQ1: Does our ensemble approach outperform187

existing models in removing noisy content while188

preserving high-quality content?189

• RQ2: Which data sources are effective for train-190

ing the Bad KenLM?191

• RQ3: How sensitive is the performance of our192

ensemble approach to hyperparameter α?193

• RQ4: How much additional computational over-194

head does our ensemble approach introduce com-195

pared to a single KenLM?196

• RQ5: What types of data does our ensemble197

approach effectively filter out?198

4.1 Experimental Settings199

Dataset and model details. As mentioned in Sec-200

tion 3, we randomly selected subsets of 300,000201

samples each from S2ORC (Lo et al., 2020) and202

Textbooks-are-all-you-need-lite (SciPhi, 2023) as203

training data for Good KenLM. For the training204

data of Bad KenLM, we collected datasets that205

is likely to hinder the training of LLMs. Specifi-206

cally, we used 1,000,000 pieces of social network207

service (SNS) data (Twitter) (mjw, 2022; fschatt,208

2023; lcama, 2022; StephanAkkerman, 2023) and209

776,142 pieces of spam message data (Metsis et al.,210

2006; thehamkercat, 2024; alissonpadua, 2024).211

During the training of both models, we configured212

the n-gram size to 6 and the vocabulary size to213

65, 536. Also, we set the hyperparameter α to 0.7.214

Evaluation details. To evaluate the effectiveness215

of our ensemble approach, we measured perplex-216

ity (PPL) scores for the CC-MAIN-2024-10 dump217

(211 million samples) from Fineweb-edu (Penedo218

et al., 2024). Following Wenzek et al. (2019); Com-219

puter (2023), we then filtered the data based on the220

30th and 60th percentiles of PPL scores. Subse-221

quently, we measured the proportion of data with222

Models Recall@30 Recall@60 Average Recall

Wiki KenLM 0.5530 0.8513 0.7022
Good KenLM 0.7059 0.9195 0.8127
Bad KenLM 0.3403 0.7031 0.5217

FastText(Wiki, Bad) 0.6453 0.8878 0.7665
FastText(Good, Bad) 0.7462 0.9412 0.8437

Ens(Good, Bad) 0.8190 0.9647 0.8919

Ens(Good, Wiki) 0.6312 0.8898 0.7605

Table 1: Performance comparison of our approach with
existing models, and an ablation study on our design
choices.

an educational score of 2.5 or higher that was in- 223

cluded. In other words, we treated data with an 224

educational score of 2.5 or higher as the ground 225

truth and measured the recall value. Note that the 226

educational scores are annotated using extensive 227

GPU resources, and it has been demonstrated that 228

training LLMs with data possessing high educa- 229

tional scores leads to performance improvements. 230

4.2 Main Results 231

We highlight the best results in bold and the second- 232

best results with an underline in the tables. 233

RQ1: Comparison of existing models. As 234

shown in Table 1, our Good KenLM significantly 235

outperformed the widely used Wiki KenLM. Al- 236

though Bad KenLM alone showed poor perfor- 237

mance, our strategy of ensembling it with Good 238

KenLM outperformed even FastText trained on the 239

same data, improving Recall@30 and Recall@60 240

by 9.76% and 2.50%, respectively. 241

Moreover, to validate the effectiveness of Bad 242

KenLM within our ensemble framework, we con- 243

ducted a comparative experiment where Good 244

KenLM and Wiki KenLM were ensembled in place 245

of Bad KenLM, denoted as Ens(Good, Wiki). The 246

performance of Ens(Good, Wiki) was lower than 247

that of Good KenLM alone. This is likely due 248

to the relatively lower quality of the Wikipedia 249

dataset compared to the training data used for Good 250

KenLM, which negatively impacts its overall per- 251

formance. This result also highlight the importance 252

of incorporating Bad KenLM into the ensemble, as 253

it successfully identifies undesirable content that 254

Good KenLM may overlook. 255

RQ2: Impact of data sources on training Bad 256

KenLM. The training dataset for Bad KenLM 257

is diverse, including SNS, spam mail, and toxic 258

datasets (Davidson et al., 2017; de Gibert et al., 259

2018; Kennedy et al., 2020; Mathew et al., 2021; 260

Vidgen et al., 2021; Pavlopoulos et al., 2022) con- 261

taining hate speech and profanity. We conducted 262

3



Training Dataset
of Bad KenLM

Metrics
Recall@30 Recall@60 Average Recall

Spam 0.8059 0.9576 0.8818
Twitter 0.8131 0.9651 0.8891
Toxic 0.7320 0.9402 0.8361

Spam + Twitter 0.8190 0.9647 0.8919
Spam + Toxic 0.7885 0.9545 0.8715

Twitter + Toxic 0.7973 0.9602 0.8788
Spam + Twitter + Toxic 0.7906 0.9533 0.8720

Table 2: The effect of data sources on Bad KenLM
training.
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Figure 1: The effect of α on the performance of our
ensemble approach.

experiments to determine which of these data263

sources are effective for training Bad KenLM. In264

this experiment, we ensembled our Good KenLM265

with various Bad KenLMs, each trained on differ-266

ent combinations of datasets.267

As shown in Table 2, SNS data (Twitter) proved268

to be the most effective for training Bad KenLM,269

which is designed to filter out noisy content unsuit-270

able for LLM training. Interestingly, toxic datasets271

led to a decrease in the performance of Bad KenLM.272

Unlike SNS data or spam mail, which share similar273

distributions with web data, toxic datasets contain274

a large proportion of highly offensive language,275

resulting in a substantial distributional difference.276

This discrepancy seems to adversely affect the train-277

ing process of Bad KenLM.278

RQ3: Hyperparameter sensitivity analysis.279

The parameter α in Eq. (1) adjusts the balance280

between the PPL scores of Good KenLM and Bad281

KenLM. We analyze how the performance of our282

ensemble approach varies with changes in α in283

terms of Recall@30 and Recall@60.284

As depicted in Figure 1, Recall@30 and Re-285

call@60 continuously improve as α increases to286

0.7 and 0.6, respectively, and then gradually de-287

crease. These results suggest that when α is too288

small, the influence of Bad KenLM becomes overly289

dominant, resulting in poor preservation of high-290

quality content. Conversely, when α is too large,291

the influence of Good KenLM prevails, leading to292

the inclusion of some low-quality content. These293

results indicate that appropriately determining the294

value of α is critical for effectively removing noisy295

content while preserving high-quality content.296

RQ4: Degree of computational overhead. To297

assess the computational overhead of our approach,298

Models Processing Time Estimated Cost Throughput Avg. Recall

Good KenLM 2,234s $1.42 94.4k docs/s 0.8127
Ens(Good, Bad) 3,928s $2.50 53.7k docs/s 0.8919

Table 3: Comparison of computational overhead and
performance for the CC-MAIN-2024-10 dump between
Good KenLM and our ensemble approach.

[…] Online roulette for real money hungary withdrawals can take up to 3 days to 
get approve and payments will be delivered to the client within 3 days, a pop-up 
will appear with the three-step registration process. […] Join us to find the best 
live casino software providers for USA players […]

[…] Of course Sydney being the getting older and more mature by the second 
girl that she is told Pop that he really didn't need to be there because she had it 
all handled. That girl is funny! […]

name

Advertising content

Communication-style content

Figure 2: Visualization of examples that are not filtered
by Good KenLM but are successfully removed by our
ensemble approach.

we measured the processing time and estimated 299

cost1 for the CC-MAIN-2024-10 dump on a ma- 300

chine with 128-core CPUs. As presented in Table 3, 301

our approach increased the processing time from 302

2,234 to 3,928 seconds, with an additional cost of 303

$1.08. These increases are justified by the recall im- 304

provement from 81.27% to 89.19%, as high-quality 305

data is crucial for effective LLM training. 306

RQ5: Case study on the effectiveness of our ap- 307

proach. To demonstrate the effectiveness of our 308

ensemble approach, we present examples that are 309

not filtered by Good KenLM but are successfully 310

removed by our ensemble approach. As illustrated 311

in Figure 2, our approach effectively filters adver- 312

tising and communication-style content, which are 313

generally unsuitable for LLM training. Since ad- 314

vertising content is usually written politely, Good 315

KenLM, trained only on high-quality datasets, 316

struggles to detect it. Conversely, Bad KenLM, 317

trained on spam mail and SNS data, successfully 318

identifies such content as well as communication- 319

style content. Therefore, our ensemble approach 320

more effectively filters these types of content. 321

5 Conclusion 322

In this paper, we propose an ensemble approach 323

using Good KenLM and Bad KenLM for effective 324

text filtering. By integrating perplexity scores, we 325

successfully filter out noisy data, such as spam 326

and informal content, while preserving high-quality 327

text. Empirical results suggest that our approach 328

could be a practical solution for filtering large-scale 329

datasets in resource-constrained environments. 330

1It was measured using an AWS r6a.32xlarge (Amazon
Web Services, 2022) spot instance.
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Limitations331

While the proposed method using Good KenLM332

and Bad KenLM offers effective filtering of large-333

scale datasets, it has the following limitations: (i)334

although our method has demonstrated effective-335

ness through extensive experiments using Fineweb-336

edu, we have not been able to measure its direct337

impact on LLMs training due to computational cost338

constraints; and (ii) the model relies heavily on pre-339

defined training datasets, and its performance may340

degrade when applied to content that significantly341

differs from the training corpora.342

Ethics Statement343

The experiments conducted in this paper were car-344

ried out objectively and fairly. No biases were345

introduced during the data selection or evaluation346

process. All datasets used in this research are pub-347

licly available, and the methods were rigorously348

tested to ensure the reliability and validity of the349

results.350

References351

alissonpadua. 2024. Ham spam scam toxic.352

Amazon Web Services. 2022. Amazon ec2 r6a in-353
stances. Accessed: September 14, 2024.354

Tom B Brown. 2020. Language models are few-shot355
learners. arXiv preprint arXiv:2005.14165.356

Together Computer. 2023. Redpajama: an open dataset357
for training large language models.358

Thomas Davidson, Dana Warmsley, Michael Macy, and359
Ingmar Weber. 2017. Automated hate speech de-360
tection and the problem of offensive language. In361
Proceedings of the 11th International AAAI Confer-362
ence on Web and Social Media, ICWSM ’17, pages363
512–515.364

Ona de Gibert, Naiara Perez, Aitor García-Pablos, and365
Montse Cuadros. 2018. Hate Speech Dataset from366
a White Supremacy Forum. In Proceedings of the367
2nd Workshop on Abusive Language Online (ALW2),368
pages 11–20, Brussels, Belgium. Association for369
Computational Linguistics.370

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,371
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,372
Akhil Mathur, Alan Schelten, Amy Yang, Angela373
Fan, et al. 2024. The llama 3 herd of models. arXiv374
preprint arXiv:2407.21783.375

fschatt. 2023. Trump tweets.376

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 377
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho- 378
race He, Anish Thite, Noa Nabeshima, et al. 2020. 379
The pile: An 800gb dataset of diverse text for lan- 380
guage modeling. arXiv preprint arXiv:2101.00027. 381

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 382
César Teodoro Mendes, Allie Del Giorno, Sivakanth 383
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 384
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all 385
you need. arXiv preprint arXiv:2306.11644. 386

Kenneth Heafield. 2011. Kenlm: Faster and smaller 387
language model queries. In Proceedings of the sixth 388
workshop on statistical machine translation, pages 389
187–197. 390

Armand Joulin, Edouard Grave, Piotr Bojanowski, and 391
Tomas Mikolov. 2016. Bag of tricks for efficient text 392
classification. arXiv preprint arXiv:1607.01759. 393

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 394
Brown, Benjamin Chess, Rewon Child, Scott Gray, 395
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 396
Scaling laws for neural language models. arXiv 397
preprint arXiv:2001.08361. 398

Chris J Kennedy, Geoff Bacon, Alexander Sahn, and 399
Claudia von Vacano. 2020. Constructing interval 400
variables via faceted rasch measurement and multi- 401
task deep learning: a hate speech application. arXiv 402
preprint arXiv:2009.10277. 403

Xiang Kong, Tom Gunter, and Ruoming Pang. 2024. 404
Large language model-guided document selection. 405
arXiv preprint arXiv:2406.04638. 406

Hugo Laurençon, Lucile Saulnier, Léo Tronchon, 407
Stas Bekman, Amanpreet Singh, Anton Lozhkov, 408
Thomas Wang, Siddharth Karamcheti, Alexander 409
Rush, Douwe Kiela, et al. 2024. Obelics: An open 410
web-scale filtered dataset of interleaved image-text 411
documents. Advances in Neural Information Pro- 412
cessing Systems, 36. 413

lcama. 2022. Elon tweets. 414

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, 415
Matt Jordan, Samir Gadre, Hritik Bansal, Etash 416
Guha, Sedrick Keh, Kushal Arora, et al. 2024. 417
Datacomp-lm: In search of the next generation of 418
training sets for language models. arXiv preprint 419
arXiv:2406.11794. 420

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin- 421
ney, and Daniel Weld. 2020. S2ORC: The semantic 422
scholar open research corpus. In Proceedings of the 423
58th Annual Meeting of the Association for Compu- 424
tational Linguistics, pages 4969–4983, Online. Asso- 425
ciation for Computational Linguistics. 426

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, 427
Chris Biemann, Pawan Goyal, and Animesh Mukher- 428
jee. 2021. Hatexplain: A benchmark dataset for ex- 429
plainable hate speech detection. 430

5

https://huggingface.co/datasets/alissonpadua/ham-spam-scam-toxic
https://aws.amazon.com/ko/ec2/instance-types/r6a/
https://aws.amazon.com/ko/ec2/instance-types/r6a/
https://aws.amazon.com/ko/ec2/instance-types/r6a/
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://huggingface.co/datasets/fschlatt/trump-tweets
https://huggingface.co/datasets/lcama/elon-tweets
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447


Vangelis Metsis, Ion Androutsopoulos, and Georgios431
Paliouras. 2006. Spam filtering with naive bayes -432
which naive bayes?433

mjw. 2022. sotck market tweets.434

Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai, Hieu435
Man, Nghia Trung Ngo, Franck Dernoncourt, Ryan A436
Rossi, and Thien Huu Nguyen. 2023. Culturax: A437
cleaned, enormous, and multilingual dataset for large438
language models in 167 languages. arXiv preprint439
arXiv:2309.09400.440

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,441
and Jimmy Ba. 2023. Openwebmath: An open442
dataset of high-quality mathematical web text. arXiv443
preprint arXiv:2310.06786.444

John Pavlopoulos, Léo Laugier, Alexandros Xenos, Jef-445
frey Sorensen, and Ion Androutsopoulos. 2022. From446
the detection of toxic spans in online discussions to447
the analysis of toxic-to-civil transfer. In Proceed-448
ings of the 60th Annual Meeting of the Association449
for Computational Linguistics (ACL 2022)., Dublin,450
Ireland. Association for Computational Linguistics.451

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov,452
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