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ABSTRACT

State-of-the-art decentralized learning algorithms typically require the data distri-
bution to be Independent and Identically Distributed (IID). However, in practical
scenarios, the data distribution across the agents can have significant heterogene-
ity. In this work, we propose averaging rate scheduling as a simple yet effective
way to reduce the impact of heterogeneity in decentralized learning. Our exper-
iments illustrate the superiority of the proposed method (∼ 3% improvement in
test accuracy) compared to the conventional approach of employing a constant
averaging rate.

1 INTRODUCTION

Decentralized Learning, a subset of Federated Learning, offers many advantages over the traditional
centralized approach in core aspects such as data privacy, fault tolerance, and scalability without the
need for a central server. Research has shown that decentralized learning algorithms can perform
comparable to centralized algorithms on benchmark datasets (Lian et al., 2017) under the assumption
of IID data. Recently, there have been several efforts (Aketi et al., 2023b; Vogels et al., 2021)
that make algorithmic changes to bridge the performance gap between IID and non-IID data for
decentralized setups. In this work, we explore an orthogonal direction of scheduling the averaging
rate to handle heterogeneous data in decentralized setups.

The averaging rate or consensus step size (Tang et al., 2019; Koloskova et al., 2019) is a hyper-
parameter introduced in decentralized algorithms with communication compression to control the
rate at which the model parameters across the neighbors are averaged. The value of the averaging
rate depends on the compression ratio and remains constant throughout the training. The higher the
compression ratio, the lower the value of the averaging rate. However, the averaging rate is usually
ignored when there is no communication compression and is set to a constant value of one. We
hypothesize that the averaging rate is crucial in decentralized setups with heterogeneous data. In this
paper, we validate two significant claims: 1. Tuning the averaging rate is critical for decentralized
learning on heterogeneous data (Figure. 1), and 2. Scheduling the averaging rate during training
helps improve the performance of decentralized learning on heterogeneous data (Table. 2).

2 BACKGROUND AND RELATED WORK

The main goal of decentralized learning is to learn a global model utilizing data stored locally across
n agents connected via a sparse graph. Traditional decentralized algorithms (Lian et al., 2017)
include three steps at every iteration - (a) Local SGD update, (b) Communication, and (c) Gossip
averaging. Algorithm. 1 in the appendix describes the baseline Decentralized Stochastic Gradient
Descent (DSGD). Each agent computes the gradients using local data and performs an SGD update.
Then, the updated parameters are communicated to the neighbors. Finally, in the gossip averaging
step, the received model parameters of the neighborhood are averaged using the mixing weights.

Several works in the literature aim to improve the performance of decentralized learning for het-
erogeneous data. Some of these works include tracking-based methods (Koloskova et al., 2021;
Takezawa et al., 2022; Aketi et al., 2023a), cross-gradients based methods (Aketi et al., 2023b;
Esfandiari et al., 2021), momentum-based methods (Lin et al., 2021), changing the mixing matrix
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Figure 1: Variation of test accuracy with averag-
ing rate (constant during training) during training
of CIFAR-10 on ResNet-20 over a ring graph of 16
agents with α = 0.01.

Table 1: Different Schedulers used in training of CIFAR-
10 on ResNet-20 over a ring topology of 16 agents.

Scheduler Test Accuracy

Step 70.46± 5.08
Exponential 71.19± 3.66
Cosine 70.81± 5.59

Table 2: Impact of exponential Averaging Rate Scheduler
(ARS) on CIFAR-10 dataset trained over a ring topology
with 16 agents using DSGDm-N algorithm.

Model w/o ARS w/ ARS

ResNet-20 67.67± 4.48 71.19± 3.66
VGG-11 68.38± 0.83 71.54± 1.60

(Dandi et al., 2022) etc. However, all of these works use a constant averaging rate throughout the
training and don’t explore the impact of scheduling this hyper-parameter.

3 AVERAGING RATE SCHEDULER

In decentralized learning, averaging rate is a hyper-parameter that indicates the rate at which the
model parameters are averaged across the neighborhood. Typically, the averaging rate is constant,
often set to one. However, in a heterogeneous data setting, the model parameters across the neigh-
borhood exhibit significant differences during the initial training phase. In this scenario, a high
averaging rate (set to one) can disrupt local training by adding large gossip error (refer A.1 for def-
inition) to local model parameters. To circumvent this, we propose to employ an Averaging Rate
Scheduler (ARS) for decentralized learning. The proposed scheduler initializes the averaging rate
to a tuned lower value and gradually increases it to one over training. Note that, unlike the learning
rate, the averaging rate increases with time. Similar to the learning rate schedulers, one can explore
schedulers such as exponential, step, cosine, etc. The scheduler scales the averaging rate by a factor
known as growth rate after every k epochs. Through our exhaustive experiments, we demonstrate
that the ARS improves the performance of decentralized learning on heterogeneous data.

4 RESULT AND CONCLUSION

We evaluate the effectiveness of the proposed ARS on a diverse set of datasets and models over a
ring topology. Following (Lin et al., 2021), we use a Dirichlet distribution-based partitioning with
a parameter α quantifying the heterogeneity between the data distributions across agents. We set
α = 0.01 as it corresponds to a setting with high heterogeneity. The hyper-parameters at all the
agents are synchronized at the beginning of the training (Appendix. A.2) and all the agents have the
same ARS. The experiments are run for three seeds and the averaged test accuracy of the consensus
model with standard deviation is presented. Figure. 1 shows that tuning the averaging rate instead
of using the default value of 1 improves the performance. Note that in Figure. 1 we use a constant
averaging rate throughout the training. Table. 1 shows the impact of various types of ARS on the
CIFAR-10 dataset. We observe that the exponential scheduler gives the best accuracy. Table. 2
illustrates the gain in performance obtained by the addition of an exponential ARS. We observe
an accuracy improvement of 3.5% for ResNet-20 and 3.2% for VGG-11 with a heterogeneous
distribution of the CIFAR-10 dataset across 16 agents. The implementation details of the scheduler
and the results on other datasets and models can be found in the Appendix. A.2, A.3 respectively.

In summary, this paper presents the hypothesis that the averaging rate plays a crucial role in decen-
tralized learning on heterogeneous data, and employing an averaging rate scheduler can improve the
performance of such setups. Scheduling the averaging rate (for heterogeneous data) helps to reduce
the impact of neighbors’ updates in the initial exploratory phase of training when the variation in
model updates across the agents is high. Our experimental results corroborate the proposed hypoth-
esis. The potential future direction is to study the impact of ARS on various decentralized learning
algorithms (refer Appendix. A.4). designed for heterogeneous data.
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A APPENDIX

A.1 DECENTRALIZED LEARNING

The main goal of decentralized learning is to learn a global model using the information extracted
from the locally stored data across n edge agents while maintaining privacy constraints. In particu-
lar, we solve the optimization problem of minimizing global loss function f(x) distributed across n
agents as given in equation. 1. Here, fi is a local loss function (for example, cross-entropy loss) com-
puted in terms of the data sampled (di) from the local dataset Di at agent i with model parameters
xi.

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x),

and fi(x) = Edi∈Di
[Fi(x; di)] ∀i

(1)

This is typically achieved by combining stochastic gradient descent (Bottou, 2010) with global
consensus-based gossip averaging (Xiao & Boyd, 2004). The communication topology in this setup
is modeled as a graph G = ([n], E). An edge {i, j} is present in E if and only if is a communication
link between agents i and j to exchange the messages directly. Ni is used to represent the neighbors
of i including itself. It is assumed that the graph G is strongly connected with self-loops. The adja-
cency matrix of the graph G is referred to as a mixing matrix W where wij is the weight associated
with the edge {i, j}. Note that, weight 0 indicates the absence of a direct edge between the agents.
We assume that the mixing matrix is doubly stochastic and symmetric, similar to all previous works
in decentralized learning (Lian et al., 2017; Lin et al., 2021).

Algorithm 1 Decentralized Learning with DSGD (Lian et al., 2017)

Input: Each agent i ∈ [1, n] initializes model weights x
(0)
i , step size η, averaging rate γ, and

mixing matrix W = [wij ]i,j∈[1,n], Ni represents neighbors of agent i including itself.

Each agent simultaneously implements the TRAIN( ) procedure
1. procedure TRAIN( )
2. for t=0, 1, . . . , T − 1 do
3. dti ∼ Di // mini-batch sampling
4. gti = ∇xFi(d

t
i;x

t
i) // Compute local gradients

5. x
t+ 1

2
i = xt

i − ηgti // Local SGD step

6. SEND(xt+ 1
2

i ) RECEIVE(xt+ 1
2

j ) // Communicate parameters across neighbors

7. x
(t+1)
i = x

t+ 1
2

i + γ
∑

j∈Ni
wij(x

t+ 1
2

j − x
t+ 1

2
i ) // Gossip averaging step

8. return

Algorithm. 1 describes the flow of Decentralized Stochastic Gradient Descent (DSGD) which is the
baseline algorithm. DSGD has three main steps at every time step - (a) Local update, (b) Com-
munication, and (c) Gossip averaging. At every iteration, each agent computes the gradients using
local data and updates its model parameters as shown in line 6 of Alg. 1. Then these updated model
parameters are communicated to the neighbors as shown in line 7 of Alg. 1. Finally, in the gossip
averaging step, the local model parameters are averaged with the received model parameters of the
neighbors using the mixing weights (shown in line 8 of Alg. 1).

Gossip error: The term
∑

j∈Ni
wij(x

t+ 1
2

j − x
t+ 1

2
i ) in line 7 of Alg. 1 is referred to as the gossip

error for agent i. The gossip error is scaled by the averaging rate before adding to the local model
parameters.

A.2 EXPERIMENTAL DETAILS

For the decentralized setup, we use an undirected ring topology with a uniform mixing matrix.
The undirected ring topology for any graph size has 3 peers per agent including itself and each
edge has a mixing weight of 1

3 . We use the Dirichlet distribution (Lin et al., 2021) to generate
heterogeneous data distribution (skewed label partition) across the agents. The created data partition
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across the agents is fixed, non-overlapping, and never shuffled across agents during the training. All
the experiments have the degree of heterogeneity set to a value of α = 0.01. DSGDm-N indicates
the Decentralized Parallel Stochastic Gradient Descent algorithm (Lian et al., 2017) with Nesterov
momentum. All the experiments presented in the paper utilize D-PSGD as the decentralized learning
algorithm. The PyTorch code is available at https://github.com/aparna-aketi/ARS.

A.2.1 DATASETS

We use the following datasets for the image classification task.

CIFAR-10: CIFAR-10 (Krizhevsky et al., 2014) is an image classification dataset with 10 classes.
The image samples are colored (3 input channels) and have a resolution of 32×32. There are 50, 000
training samples with 5000 samples per class and 10, 000 test samples with 1000 samples per class.

CIFAR-100: CIFAR-100 (Krizhevsky et al., 2014) is an image classification dataset with 100
classes. The image samples are colored (3 input channels) and have a resolution of 32 × 32. There
are 50, 000 training samples with 500 samples per class and 10, 000 test samples with 100 samples
per class.

Fashion MNIST: Fashion MNIST (Xiao et al., 2017) is an image classification dataset with 10
classes. The image samples are in greyscale (1 input channel) and have a resolution of 28 × 28.
There are 60, 000 training samples with 6000 samples per class and 10, 000 test samples with 1000
samples per class.

Imagenette: Imagenette (Husain, 2018) is a 10-class subset of the ImageNet dataset. The image
samples are colored (3 input channels) and have a resolution of 224× 224. There are 9469 training
samples with roughly 950 samples per class and 3925 test samples.

A.2.2 MODEL ARCHITECTURES

We replace ReLU+BatchNorm layers of all the model architectures with EvoNorm-S0 as it was
shown to be better suited for decentralized learning over non-IID data (Lin et al., 2021). The details
of the model architectures are given below.

ResNet-20: For ResNet-20 (He et al., 2016), we use the standard architecture with 0.27M trainable
parameters except that BatchNorm+ReLU layers are replaced by EvoNorm-S0.

VGG-11: We modify the standard VGG-11 (Simonyan & Zisserman, 2014) architecture by reducing
the number of filters in each convolutional layer by 4× and using only one dense layer with 128
units. Each convolutional layer is followed by EvoNorm-S0 as the activation-normalization layer.
VGG-11 has 0.58M trainable parameters.

LeNet-5: For LeNet-5 (LeCun et al., 1998), we use the standard architecture with 61, 706 trainable
parameters.

MobileNet-V2: We use the the standard MobileNet-V2 (Sandler et al., 2018) architecture used
for CIFAR dataset with 2.3M parameters except that BatchNorm+ReLU layers are replaced by
EvoNorm-S0.

A.2.3 HYPER-PARAMETERS

All the experiments for CIFAR-10 are run for 300 epochs whereas the experiments for other datasets
are run for 100 epochs. The initial learning rate is set to 0.1 for CIFAR datasets and 0.01 for Fashion
MNIST and ImageNette. The learning rate is decayed by 10 at epochs 150 and 180 for CIFAR-
10 and at 50 and 75 for the remaining datasets. We use Nesterov momentum with a momentum
coefficient of 0.9, weight decay of 0.0001, and a mini-batch size of 32 per agent. The experiments
that do not employ ARS have the averaging rate set to a constant value of 1. The results are averaged
over three seeds and the average test accuracy and standard deviation of the consensus model are
presented. The consensus model is obtained by averaging the model parameters of all the agents at
the end of the training using the all-reduce method.
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A.2.4 AVERAGING RATE SCHEDULER DETAILS

For Table. 1, we use an initial averaging rate of 0.08, and the averaging rate is gradually increased
to 1 during training. For the exponential scheduler, we use a growth rate of 1.01, and k is set to 1
which means that the averaging rate is multiplied by 1.01 after every epoch. For the step scheduler,
we use a growth rate of 1.09, and k is set to 10 which means that the averaging rate is multiplied
by 1.09 after every 10 epochs. For both of these schedulers, we clip the averaging rate at 1 ensuring
that it never takes a value greater than 1. The cosine scheduler utilizes Equation. 2. Here, we use γ0
as 0.08 and Tmax is 300, and k is set to 1 implying that the averaging rate is updated according to
equation. 2 after every epoch.

γt = γ0 +
1

2
(1− γ0)(1− cos

( t

Tmax
π
)
) (2)

For Table. 2, 3, we use an exponential averaging rate for both ResNet-10 and VGG-11 models. In
the case of ResNet-20 experiments, the initial averaging rate is set to 0.08 and the growth rate is
set to 1.01. In the case of VGG-11, the initial averaging rate is set to 0.09 and the growth rate is
set to 1.01. The hyper-parameter pair values (initial averaging rate, growth rate) for Table. 4 are
Fashion-MNIST: (0.1, 1.03), CIFAR-100: (0.5, 1.02), and ImageNette: (0.1, 1.03).

A.3 ADDITIONAL RESULTS

We provide additional results on various graph sizes and datasets to show the generalizability and
scalability of the ARS. Table. 3 shows the results on varying graph (ring) sizes from 16 to 48 agents
for training CIFAR-10 dataset on ResNet-20 architecture. We observe that D-PSGD with ARS
achieves better performance with 3.5 − 6.9% improvement in test accuracy compared to D-PSGD
without ARS.
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(a) CIFAR-10 trained on a 5-layered CNN
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(b) Fashion-MNIST trained on LeNet-5

Figure 2: Average consensus error during training for various datasets trained over ring topology of 16 agents.
The graph is plotted for one seed where the solid line represents the average consensus error across the agents
and the shaded region represents the variation of the consensus error across agents.

Table. 4 presents the results of various datasets trained in a decentralized manner using the D-PSGD
algorithm with and without ARS. We train the Fashion MNIST dataset on LeNet-5 architecture,
CIFAR-100 on ResNet-20, and ImageNette on MobileNet-V2. We observe an average improvement
of 2% in test accuracy across various datasets.

Additionally, we compute the average consensus error i.e., 1
n

∑n
i ||xt

i − x̄||2F over time for various
datasets trained over ring topology of 16 agents. x̄ is the average/consensus model parameters.
We observe that at the end of the training, the consensus error with or without ARS is similar
(refer Fig. 2). The main difference is during the initial epochs of the training, where the consensus
error for D-PSGD with ARS gradually decreases over time in contrast to D-PSGD without ARS
which oscillates at a lower value. Note that the neighborhood’s model information is not completely
reliable at the initial phase of training as the models are just starting to learn and the variation in
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Figure 3: Average validation during training for various datasets trained over ring topology of 16 agents. The
graph is plotted for one seed where the solid line represents the average loss across the agents and the shaded
region represents the variation of the loss across agents.

Table 3: Test accuracy of CIFAR-10 dataset
trained on ResNet-20 distributed over a ring topol-
ogy with a skew of α = 0.01.

Agents w/o ARS w/ ARS

16 67.67± 4.48 71.19± 3.66
24 65.98± 3.64 69.91± 3.45
32 61.65± 3.51 68.58± 1.77
48 56.56± 11.52 61.79± 6.28

Table 4: Test accuracy of various datasets trained over a
ring topology of 16 agents with a skew of α = 0.01.

Dataset w/o ARS w/ ARS(Model)

Fashion MNIST
84.58± 0.32 85.55± 0.81(LeNet-5)

CIFAR-100
41.57± 0.72 44.05± 1.70(ResNet-20)

ImageNette
43.68± 8.16 46.59± 4.73(MobileNet-V2)

parameters across agents is high because of data heterogeneity. Since ARS starts with a lower
averaging rate and exponentially increases it while training, it avoids aggressive averaging with
the neighborhood’s models at the initial epochs. This in turn helps in improving the performance
(reducing the validation loss) of decentralized learning on heterogeneous data as shown in Fig. 3.

A.4 LIMITATIONS AND FUTURE WORK

The inherent limitation of the proposed method is the hyper-parameter tuning of the initial averaging
rate, growth rate, type of decay, etc. Similar to the learning rate scheduler, one needs to curate the
ARS for the given dataset, model architecture, graph structure, and data distribution.

There are two potential future directions for this work:

1. A study on designing and evaluating the impacts of ARS on algorithms such as QGM (Lin et al.,
2021), GUT (Aketi et al., 2023a), and (NGMmv) (Aketi et al., 2023b) is a potential extension for
this work. Quasi Global Momentum (QGM), Global Update Tracking (GUT), and Neighborhood
Gradient Mean (NGMmv) are well-known and current state-of-the-art methods for decentralized
learning with heterogeneous data that do not require any communication overhead. These methods
use additional memory and compute resources to improve the test accuracy and perform much better
than D-PSGD and its ARS variant. ARS is a simple hyper-parameter scheduling method and can not
independently compete with methods that modify the gradient or momentum information to improve
performance. However, all these algorithms (QGM, GUT, and NGMmv) also utilize the averaging
rate hyper-parameter. Therefore, ARS can be employed in synergy with these methods to further
improve the performance of decentralized learning on heterogeneous data.

2. Theoretical analysis of the convergence rate of the D-PSGD algorithm with an Averaging Rate
Scheduler (ARS) can help in better understanding the impact of the ARS. Analyzing the convergence
rate with ARS can shed light on whether ARS leads to faster convergence to the same solution or
allows D-PSGD to converge to a better stationary point of the global objective. Note that the existing
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theoretical analysis of D-PSGD (Lian et al., 2017) assumes a constant averaging rate, leaving room
for potential future work.
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