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Abstract

Graph data often exhibits complex geometric heterogene-
ity, where structures with varying local curvature, such as
tree-like hierarchies and dense communities, coexist within
a single network. Existing geometric GNNs, which embed
graphs into single fixed-curvature manifolds or discrete prod-
uct spaces, struggle to capture this diversity. We introduce
Adaptive Riemannian Graph Neural Networks (ARGNN), a
novel framework that learns a continuous and anisotropic
Riemannian metric tensor field over the graph. It allows each
node to determine its optimal local geometry, enabling the
model to fluidly adapt to the graph’s structural landscape. Our
core innovation is an efficient parameterization of the node-
wise metric tensor, specializing to a learnable diagonal form
that captures directional geometric information while main-
taining computational tractability. To ensure geometric regu-
larity and stable training, we integrate a Ricci flow-inspired
regularization that smooths the learned manifold. Theoreti-
cally, we establish the rigorous geometric evolution conver-
gence guarantee for ARGNN and provide a continuous gen-
eralization that unifies prior fixed or mixed-curvature GNNs.
Empirically, our method demonstrates superior performance
on both homophilic and heterophilic benchmark datasets with
the ability to capture diverse structures adaptively. Moreover,
the learned geometries both offer interpretable insights into
the underlying graph structure and empirically corroborate
our theoretical analysis.

1 Introduction
Real-world graphs, from social networks to protein interac-
tion maps, exhibit a rich geometric diversity that challenges
various graph learning paradigms (Kipf and Welling 2016;
Hamilton, Ying, and Leskovec 2017; Sun, Ding, and Fan
2023; Kang et al. 2023; Wang and Fan 2024; Sun et al. 2024;
Sun and Fan 2024; Wang et al. 2025a; Qian et al. 2025;
Wang et al. 2025b; Guo et al. 2025; Fan 2025a,b). Con-
sider a social network where some communities form deep,
tree-like hierarchies best captured by hyperbolic geome-
try (Chami et al. 2019), while others create dense, tightly-
knit cliques that resemble spherical manifolds (Gu et al.
2018). Forcing such a geometrically heterogeneous graph
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Figure 1: Geometric heterogeneity in WISCONSIN net-
work. Left: raw graph topology coloured by class. Right:
3-D t-SNE of node features. The translucent hull is coloured
by the magnitude of discrete mean curvature (violet→flat,
yellow→ strongly curved), showing that curvature varies
across the Riemannian manifold.

into a single geometric space (Euclidean, hyperbolic, or
spherical) inevitably introduces significant distortion and in-
formation loss.

Pioneering work in geometric Graph Neural Networks
(GNNs) has demonstrated the power of non-Euclidean
spaces. Hyperbolic GNNs (Chami et al. 2019; Zhang et al.
2021) excel on tree-like graphs but struggle with dense cy-
cles. Conversely, spherical methods handle cyclic structures
well but are less effective on hierarchical data. This fun-
damental limitation stems from their shared assumption of
global geometric homogeneity.

Recent advances have moved towards mixed-curvature
approaches to address this issue. Models like κ-GCN (Bach-
mann, Bécigneul, and Ganea 2020) learn an isotropic
(scalar) curvature for each node, while state-of-the-art meth-
ods like CUSP (Grover et al. 2025) embed graphs into prod-
uct manifolds of constant-curvature spaces (e.g., Hk × Sl ×
Em). While a significant step forward, these methods remain
constrained. Scalar curvature approaches are still isotropic
at the node level, unable to capture directional geometric in-
formation. Product manifold methods are limited to block-
constant geometries chosen from a discrete set of curvatures.
Neither can fully capture the fine-grained, continuous geo-
metric variations inherent in complex data.

This geometric heterogeneity is not merely a theoretical
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construct; it is evident in real-world data, as illustrated in
Figure 1. The real-world WISCONSIN network (Craven et al.
2000) embeds into a Riemannian feature manifold whose
neighbourhoods can differ sharply in both curvature and ori-
entation. Any single or fixed-curvature space would there-
fore distort part of the data, motivating our node-wise, adap-
tive metric tensor.

The importance of geometric understanding has been
further highlighted by recent advances in curvature-based
graph analysis. Graph Neural Ricci Flow (GNRF) (Chen
et al. 2025) demonstrates that evolving features according
to discrete Ricci curvature improves representation qual-
ity, though it keeps the underlying geometry fixed. Dis-
crete curvature methods like CurvDrop (Liu et al. 2023) and
curvature-based graph rewiring (Topping et al. 2021) show
promise but operate as preprocessing steps rather than end-
to-end learning frameworks.

Our key insight is to move beyond pre-defined geome-
tries by learning a continuous, node-adaptive Rieman-
nian metric field that directly models the local structure.
To realize this vision within a tractable framework, we in-
troduce Adaptive Riemannian Graph Neural Networks
(ARGNN). Our framework proposes a principled and effi-
cient parameterization of the metric tensor. Specifically, we
model each node’s local geometry with an anisotropic di-
agonal metric, Gi = diag(gi). This design is not merely
a computational shortcut; it corresponds to a flexible, per-
dimension scaling of the feature space geometry. To ensure
stable learning, we further integrate Ricci flow-inspired dy-
namics that regularize the evolution of the learned geomet-
ric manifold. Implementation code is available at our public
repository1. The contributions of our work are threefold:

i) Methodologically, we propose a principled parameteri-
zation of the adaptive metric field using diagonal matri-
ces. We provide strong geometric and algorithmic jus-
tifications for our design, framing it as an anisotropic
conformal transformation that is both computationally
efficient and highly expressive. To the best of our knowl-
edge, ARGNN is the first framework that learns contin-
uous and anisotropic metric tensor fields for graphs.

ii) Theoretically, we establish the convergence guarantee
for ARGNN’s geometric evolution and further prove
its role as a universal framework that generalizes and
unifies prior isotropic, scalar-curvature, and product-
manifold GNNs.

iii) Empirically, we conduct extensive experiments on a
wide range of benchmark datasets, including compre-
hensive ablation studies. Our results demonstrate that
ARGNN achieves superior performance compared to
state-of-the-art benchmark methods on both homophilic
and heterophilic graphs.

2 Related Work
2.1 Fixed-Curvature Geometric GNNs
Geometric deep learning on graphs has been revolutionized
by embedding approaches that leverage non-Euclidean ge-

1https://github.com/MathAdventurer/ARGNN

ometries. Hyperbolic GNNs exploit the exponential volume
growth of hyperbolic space to naturally represent hierarchi-
cal structures. HGCN (Chami et al. 2019) extends graph
convolutions to hyperbolic space using the Poincaré ball
model, achieving remarkable success on tree-like graphs.
HGAT (Zhang et al. 2021) incorporates attention mecha-
nisms in hyperbolic space, while recent work explores hy-
perbolic transformers (Gulcehre et al. 2018) and variational
autoencoders (Sun et al. 2021).

Spherical GNNs address the complementary challenge
of cyclic and community structures. Spherical CNNs (Cohen
et al. 2018) and their graph extensions (Gu et al. 2018) lever-
age the positive curvature of spherical space to model dense,
interconnected communities. However, both hyperbolic and
spherical approaches assume global geometric homogeneity,
limiting their applicability to mixed-topology graphs.

Fixed-curvature methods have the advantage compared
with traditional GNNs in different target domains but fail
catastrophically when graph geometry mismatches the em-
bedding space, as shown in Figure 1, which prevents
them from effectively handling the geometric heterogeneity
prevalent in real-world networks.

2.2 Discrete Mixed-Curvature Approaches
Recognizing the limitations of fixed-curvature methods, re-
cent work explores mixed-curvature embeddings.

κ-GCN (Bachmann, Bécigneul, and Ganea 2020) learns
scalar curvature parameters for each node, allowing adap-
tation between hyperbolic, Euclidean, and spherical geome-
tries. However, scalar curvature cannot capture directional
geometric information.

CUSP (Grover et al. 2025) represents the current state-
of-the-art in mixed-curvature approaches. It combines spec-
tral graph analysis with embeddings in product manifolds of
constant-curvature spaces (e.g., Hk×Sl× Em). CUSP also
introduces spectral filtering techniques and curvature-aware
graph Laplacians, achieving strong performance across di-
verse benchmarks.
Q-GCN (Xiong et al. 2022) extends the framework

to pseudo-Riemannian manifolds with indefinite met-
rics, enabling more flexible curvature combinations. Self-
supervised mixed-curvature methods (Jin et al. 2020) ex-
plore representation learning without labels.

However, despite their flexibility, these approaches pri-
marily treat geometry as discrete choices from finite sets
of constant-curvature manifolds. Consequently, they of-
fer limited support for continuous geometric variation and
anisotropic (directional) structure.

2.3 Curvature-Based Graph Analysis
Recent advances in discrete differential geometry have en-
abled sophisticated graph analysis through curvature.

Discrete Ricci curvature, including Ollivier-Ricci (Ol-
livier 2009) and Forman-Ricci (Forman 2003) curvature,
provide local geometric characterizations of graph structure.

Graph Neural Ricci Flow (GNRF) (Chen et al. 2025) rep-
resents a significant recent advance. GNRF evolves node
features according to discrete Ricci curvature, showing that
curvature-aware feature evolution improves representation
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quality. However, GNRF keeps the underlying graph geom-
etry fixed while evolving features.

Curvature-based rewiring methods (Topping et al.
2021; Fesser and Weber 2024) use curvature analysis to
identify and modify graph bottlenecks. CurvDrop (Liu et al.
2023) employs Ricci curvature for topology-aware dropout
sampling. These methods show curvature’s utility but oper-
ate as preprocessing steps rather than end-to-end learning.

Curvature-based methods have found success in protein
analysis (Wu et al. 2023; Shen et al. 2024), community de-
tection (Ni et al. 2019), and graph generation (Li et al. 2022).
However, to our knowledge, joint learning of geometry and
features remains rare; methods typically fix geometry and
evolve features (GNRF) or use curvature for preprocessing.

3 Preliminaries
3.1 Riemannian Geometry Essentials
A Riemannian manifold (M,g) consists of a smooth man-
ifold M equipped with a metric tensor field g that varies
smoothly across the manifold (Lee 2018). At each point
p ∈M, the metric tensor gp defines an inner product on the
tangent space TpM, enabling the measurement of distances,
angles, and curvatures.

For graph-structured data, we introduce a metric tensor
field over the graph by associating each node i ∈ V with
a metric tensor Gi ∈ Sd++, where Sd++ denotes the cone
of symmetric positive definite matrices. This creates a con-
tinuous geometric structure over the discrete graph domain
and makes Christoffel symbols vanish, where each node’s
feature neighborhood in Rd possesses its own Riemannian
geometry. The geodesic distance between sufficiently close
points x,y ∈ Rd under the metric G of TxM is:

dG(x,y) =
√
(x− y)TG(x− y)

The Ricci curvature tensor Ric(G) characterizes how the
metric changes across the manifold. In differential geometry,
Ricci flow (Chow and Knopf 2004) evolves a metric ten-
sor field {Gi(t)} according to ∂Gi

∂t = −2Ric(Gi), which
smooths geometric irregularities while preserving topolog-
ical structure, providing a principled approach for geomet-
ric regularization on graphs (Hamilton 1982). Due to space
limitations, more Riemannian Geometry and Ricci curvature
details are shown in Appendix B.

3.2 GNNs and Geometric Message Passing
Consider an attributed graph G = (V, E ,X) with nodes V ,
edges E , and node features X ∈ R|V|×d. Standard message
passing (Gilmer et al. 2017) of GNNs updates node repre-
sentations through:

h
(ℓ+1)
i = σ

(
W(ℓ)

s h
(ℓ)
i +

∑
j∈N (i)

W(ℓ)
m h

(ℓ)
j

)
where N (i) denotes the neighborhood of node i, W(ℓ)

s and
W

(ℓ)
m are learnable transformation matrices (parameters) on

ℓ-th layer, and σ is a nonlinear activation function.
Geometric message passing enhances this by incorpo-

rating Riemannian structure by embedding graphs in non-
Euclidean spaces. Existing approaches embed graphs in

fixed geometries (hyperbolic, spherical) or discrete mixed-
curvature spaces. However, as illustrated in Figure 1, real
graphs exhibit continuous geometric heterogeneity and the
local geometry varies across the network.

3.3 Problem Formulation and Challenges
The core challenge of this work is to move beyond the fixed-
geometry paradigm. We aim to learn a node-adaptive ge-
ometric space jointly with the node representations H =
{hi}i∈V . This learned space is mathematically formulated
as a Riemannian metric tensor field {Gi∈Sd++}i∈V , where
each node i is endowed with its own local metric Gi. How-
ever, realizing this vision presents several key hurdles.

First, from a mathematical standpoint, each learned ten-
sor Gi must remain symmetric positive definite (SPD)
throughout training to constitute a valid Riemannian metric.
Second, from a computational perspective, parameterizing
a full d×d metric tensor for every node is prohibitive, scal-
ing as O(|V|d2) and hindering application to large graphs.
Third, for learning stability, the geometric manifold must
evolve smoothly; pathological curvatures could destabilize
the training process and lead to poor generalization. Finally,
to justify its increased complexity, the proposed framework
must be provably more expressive than its fixed-geometry
predecessors. Our ARGNN framework is designed to ad-
dress these challenges systematically.

4 Adaptive Riemannian Graph Neural
Networks

This section introduces Adaptive Riemannian Graph Neu-
ral Networks (ARGNN), a framework that learns a con-
tinuous, node-adaptive geometry tailored to the underlying
graph structure. Our approach forgoes the manual selection
of a geometric space and instead learns the geometry as part
of the end-to-end training process. This section details the
three core components of our framework: i) an efficient and
interpretable parameterization of the node-wise metric ten-
sor via a local metric estimator, ii) a geometric message
passing scheme that leverages the learned metric, and iii) a
Ricci flow-inspired regularization for stable geometric evo-
lution. Figure 2 illustrates our approach’s diagram.

4.1 Learning an Anisotropic Metric Field
The foundational concept of our work is to equip the graph
with a Riemannian metric tensor field, denoted as {Gi ∈
Sd++}i∈V . Each metric tensor Gi is a symmetric positive-
definite (SPD) matrix that defines a unique local geometry
on the feature space neighborhood of node i. As stated be-
fore, a direct parameterization of a full d×d matrix for each
node will be computationally prohibitive and lead to expen-
sive downstream computations.

To address this, we propose a principled simplification
by parameterizing each metric tensor Gi as a learnable di-
agonal matrix:

Gi = diag(gi) = diag(gi,1, gi,2, . . . , gi,d) (1)
where gi ∈ Rd

++ is a vector of positive diagonal elements.
This diagonal parameterization is not an arbitrary choice but
a motivated design with several key advantages:



Figure 2: Diagram of our proposed ARGNN, which jointly learns continuous, anisotropic metric tensor fields {Gi∈Sd++}i∈V
and node embeddings H = {hi}i∈V . The learned Gi gives beyond curvature information to depict the geometric diversity.

i) Geometric Interpretation: At its core, a metric ten-
sor defines how to measure distances, angles, and cur-
vatures. The standard Euclidean space, governed by the
identity matrix, provides a single, global way of mea-
surement. Our diagonal metric, Gi = diag(gi), acts as
a local, learned modification to this standard. Specifi-
cally, it rescales the geometry independently along each
feature axis. The value of each diagonal element gi,k
determines the stretch of the k-th dimension in the lo-
cal vicinity of node i. This axis-aligned, non-uniform
scaling type is formally known as an anisotropic con-
formal transformation (Obata 1970; Spivak 1999). It
endows the model with far greater flexibility than the
isotropic scaling of constant-curvature spaces, while re-
maining more structured and tractable than a full metric
tensor. The formal details of this geometric perspective
are elaborated in Appendix B.

ii) Interpretability and Feature Decomposition: The di-
agonal form assumes that the standard coordinate axes
of the feature space align with the principal directions
of the local geometry. This makes the model highly in-
terpretable: each diagonal element gi,k directly quanti-
fies the geometric importance or local scaling factor of
the k-th feature dimension for node i. This is particu-
larly effective when features are learned to be relatively
disentangled.

iii) Computational and Algorithmic Efficiency: This pa-
rameterization dramatically reduces the complexity of
learning and using the metric. The number of geometric
parameters per node drops from O(d2) to O(d). Further-
more, crucial geometric computations such as geodesic
distance, matrix inversion, and eigendecomposition be-
come highly efficient, which we will discuss later.

To learn these adaptive metrics, we employ a small neural
network f

(g)
θ as the local metric estimator that maps a node’s

local structural information to its metric vector gi. Specifi-
cally, for each node i, we first aggregate its neighborhood
features ai = 1

|N (i)|
∑

j∈N (i) hj , and then compute its met-

ric vector as:
gi = softplus

(
f
(g)
θ ([hi;ai])

)
(2)

where [·; ·] denotes feature concatenation. The softplus ac-
tivation function ensures all elements of gi are strictly posi-
tive, thereby naturally satisfying the SPD constraint for Gi.

4.2 Geometric Message Passing
With the learned diagonal metric field, we now formulate a
message passing scheme that is explicitly geometry-aware.
The propagation of information between nodes is modulated
by the local geometries, allowing the model to adapt its ag-
gregation strategy based on the learned structure.

Geodesic Distance and Principal Curvatures Under the
learned metric Gi, the geodesic distance (in this locally con-
stant metric space) between the feature vectors of two nodes
i and j simplifies to a weighted Euclidean distance:

dGi
(hi,hj) =

√
(hi − hj)TGi(hi − hj)

=

√√√√ d∑
k=1

gi,k(hi,k − hj,k)2
(3)

A major benefit of the diagonal form is that the principal
directions of the geometry are aligned with the standard ba-
sis vectors {ek}dk=1, and the principal curvatures are directly
related to the inverses of the metric elements {1/gi,k}dk=1.
This allows us to define a geometric modulation factor that
captures how the geometry curves along the direction of the
message.

Geometric Modulation and Attention We introduce a
geometric modulation coefficient τij that weights the mes-
sage from node j to i based on the projection of their direc-
tional vector onto the principal axes, modulated by the local
curvature in those directions. Let dij = (hj − hi)/∥hj −
hi∥2 be the normalized direction vector. We define τij as:

τij =

d∑
k=1

d2ij,k · tanh(− log gi,k) (4)

Here, the term tanh(− log gi,k) acts as a curvature-
dependent switch. If gi,k is large (high curvature, space con-



tracts), the term approaches −1; if gi,k is small (low curva-
ture, space expands), it approaches +1.

Complementing this, we introduce a geometric attention
mechanism αij that computes the similarity between nodes
within their respective local geometries:

αij =
⟨hi,hj⟩Gi

∥hi∥Gi∥hj∥Gj

=

∑
k gi,khi,khj,k√∑

k gi,kh
2
i,k

√∑
k gj,kh

2
j,k

(5)
This formulation measures the cosine similarity where the

inner product is defined by node i’s metric, and each node’s
norm is measured in its own local metric.

Node Representation Update The final message mij

from node j to i integrates the geometric modulation and
attention with a standard learnable transformation Wm:

mij = τij · σ(αij) ·Wmhj (6)
The node representations are then updated by aggregat-

ing messages from neighbors and combining them with the
transformed self-representation, followed by a non-linear
activation σ:

h
(l+1)
i = σ

(
Wsh

(l)
i +

∑
j∈N (i)

mij

)
(7)

4.3 Ricci Flow-Inspired Geometric
Regularization

To ensure that the learned metric field {Gi} is well-behaved
and varies smoothly across the graph, we introduce two reg-
ularization terms inspired by the principles of discrete Ricci
flow. This geometric evolution stabilizes training and pre-
vents pathological curvatures.

First, we define a discrete approximation of the Ricci cur-
vature for our diagonal metric field. Along the k-th prin-
cipal direction at node i, let Rickk be the abbreviation of
Ric(Gi)kk, it can be approximated as:

Ric(i)kk =
1

2|N (i)|
∑

j∈N (i)

gi,k − gj,k
dgraph(i, j)

. (8)

where dgraph(i, j) is the shortest path distance on the graph,
and node j ∈ N (i) makes dgraph = 1. See the detailed dis-
cussion in Appendix B.3. The Ricci regularization LRicci
encourages the learned geometry to be Ricci-flat by penal-
izing the squared sum of Ricci curvatures, promoting a uni-
form curvature distribution:

LRicci =
∑
i∈V

d∑
k=1

(Ric(i)kk)
2 (9)

The smoothness regularization Lsmooth penalizes large dif-
ferences in the metric vectors of adjacent nodes, ensuring the
geometry varies smoothly over the graph structure:

Lsmooth =
∑

(i,j)∈E

∥gi − gj∥22 (10)

These regularizers guide the model to learn a coherent
and stable geometric manifold that supports the downstream
task. The total loss function then combines the primary task
loss Ltask with hyperparameters α, β:

Ltotal = Ltask + αLRicci + βLsmooth (11)

5 Theoretical Analysis
We establish theoretical foundations for ARGNN, proving
its convergence, stability analysis, and universality. All de-
tailed proofs are provided in Appendix C.

5.1 Convergence and Stability Analysis
Theorem 1 (Convergence of Adaptive Geometry Learning).
Consider ARGNN with L layers, hidden dimension d, and
regularization weights α, β. Under mild regularity condi-
tions, the learned metric tensors {Gi}i∈V converge to a sta-
tionary point with:

E
[
∥∇L(t)

total∥
2
]
= O

(
1√
t
e−µeff t/L

)
, (12)

where µeff is the effective curvature of the loss landscape.
Optimal regularization hyperparameters satisfy:

α⋆ = Θ
(H
L min

(
1, d

|E|
))
, β⋆ = Θ

(H
√
d

|V|
)
. (13)

whereH ∈ (0, 1] is the dataset-dependent homophily ratio.
Assume the theoretical optimal hyperparameters as

α = c1
L ·min

(
1, d

|E|
)
, β = c2

√
d

|V| (14)

For constants c1, c2, we get an effective practice as follows,
Proposition 1 (Homophily-Aware Constants). The dataset-
dependent constants c1, c2 can be estimated as:

c1 ≈ (1−H) + 0.1, c2 ≈ 0.1 · (1 +H) (15)
whereH ∈ (0, 1] is the graph homophily ratio.

The proof (Appendix C.1) reveals key insights: i) Deeper
networks require smaller α to maintain stability; ii) The
smoothness weight β should scale with feature dimension
and inversely with graph size; iii) The interplay between ge-
ometric regularization and task loss creates a favorable op-
timization landscape. These theoretical guidelines directly
inform our hyperparameter choices in experiments.

5.2 Universal Approximation
Theorem 2 (Universal Geometric Framework). ARGNN
provides a universal geometric framework that can general-
ize existing curvature-based GNNs. Specifically, GNNs op-
erating on a fixed-curvature space (Euclidean, hyperbolic,
spherical, or product manifolds) can be sufficiently approx-
imated by a constrained parameterization of our learnable
diagonal metric tensors Gi = diag(gi).

See Appendix C.2 for the complete proof. We establish
this by showing that fixed-curvature geometries correspond
to specific constraints on gi: Euclidean (gi = 1), constant-
curvature (gi = c1, c > 0), and product manifolds (block-
constant gi).

5.3 Computational Efficiency
Proposition 2 (Complexity Analysis). ARGNN has time
complexity O((n + m)d2) per layer, where n = |V|, m =
|E|, and d is the hidden feature dimension, matching stan-
dard GNNs while providing continuous geometric adapta-
tion.

See detailed proof in Appendix C.3. We also give the em-
pirical comparison and analysis in Appendix E.



Dataset Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin

Nodes 2,708 3,327 19,717 7,600 2,277 5,201 183 183 251
Edges 5,278 4,552 44,324 26,659 31,371 198,353 279 277 466
Features 1,433 3,703 500 932 2,325 2,089 1,703 1,703 1,703
Classes 7 6 3 5 5 5 5 5 5
H 0.825 0.718 0.792 0.215 0.247 0.217 0.057 0.301 0.196

Table 1: Dataset Statistics and Homophily RatiosH

6 Experiments
6.1 Experimental Setup
Datasets: We evaluate on nine widely used benchmark
datasets spanning homophilic and heterophilic graphs: Ho-
mophilic: Cora, CiteSeer, PubMed (Sen et al. 2008); Het-
erophilic: Actor (Tang et al. 2009), Chameleon, Squirrel,
Texas, Cornell, Wisconsin (Pei et al. 2020). Table 1 provides
detailed statistics.

Baselines: We compare against four categories of meth-
ods: i) Traditional GNNs: GCN (Kipf and Welling 2016),
GAT (Veličković et al. 2018), GraphSAGE (Hamilton, Ying,
and Leskovec 2017); ii) Geometric GNNs: HGCN (Chami
et al. 2019), HGAT (Zhang et al. 2021), κ-GCN (Bach-
mann, Bécigneul, and Ganea 2020), Q-GCN (Xiong et al.
2022); iii) Heterophilic GNNs: H2GCN (Zhu et al. 2020),
GPRGNN (Chien et al. 2020), FAGCN (Bo et al. 2021); iv)
Recent Methods: CUSP (Grover et al. 2025), GNRF (Chen
et al. 2025), CurvDrop (+JKNet) (Liu et al. 2023).

Implementation Details: We implemented on PyG (Fey
and Lenssen 2019) and Geoopt (Kochurov, Karimov, and
Kozlukov 2020) frameworks. All experiments were run
on NVIDIA GPUs with 10 random seeds, with the given
60%/20%/20% splits from (Pei et al. 2020) for the node
classification task. And using the same 80%/5%/15% splits
and settings from (He et al. 2024) for the link existence pre-
diction task.

6.2 Main Results
Table 2 presents mean F1-scores with 95% Confidence In-
tervals (CI) from 10 runs, chosen as the most comprehen-
sive metric for multi-class imbalanced datasets. Additional
metrics (Accuracy, AUROC, and AUPRC) are provided in
Appendix E. ARGNN achieves the best performance on all
9 datasets, with significant improvements across both ho-
mophilic and heterophilic graphs. For instance, on Cora (ho-
mophilic), we improve 3.38% over CUSP, while on Wiscon-
sin (heterophilic), we gain 2.35% over the best baseline.

Our results reveal three key patterns: i) Fixed-curvature
methods like HGCN show high variance on heterophilic
graphs, but generally overperform Euclidean-space GNNs;
ii) Mixed-curvature approaches (CUSP, GNRF) achieve
more consistent results but remain limited by discrete geom-
etry choices; iii) ARGNN’s continuous adaptation provides
robust performance across the homophily spectrum.

For link prediction (Table 7 in Appendix), we report
average AUROC as the comprehensive metric for link
prediction. ARGNN achieves the highest scores on all 9

datasets, with particularly strong performance on geomet-
rically complex graphs (Actor: 76.40% vs. GNRF’s 73.50%
and CUSP’s 74.20%), validating our adaptive metric learn-
ing approach.

6.3 Ablation Studies
We conduct systematic ablations to validate our theoret-
ical framework and understand the contribution of each
component. Figure 3 presents results on three representa-
tive datasets: Cora (homophilic, H = 0.825), Actor (het-
erophilic,H = 0.215), and Wisconsin (mixed,H = 0.196).

Actor Cora Wisconsin
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Figure 3: Ablation studies on three datasets. (a) Impact of
regularization components, including theoretically optimal
α, β settings v.s. grid search optimal α∗, β∗ (b) Comparison
with fixed Gi ∈ {I, 0.5I, 2I} for Euclidean, Hyperbolic and
Spherical. Error bars show 95% CI from 10 runs.

Regularization Components (Fig. 3a): Both Ricci and
smoothness regularizations are essential but serve different
roles. Removing Ricci regularization causes larger perfor-
mance drops on heterophilic graphs (Actor: −1.3%, Wis-
consin: −1.8%), where diverse geometries require careful
control. Smoothness regularization is more critical for main-
taining coherent metric fields, with Wisconsin showing the
largest drop (−3.5%) due to its mixed homophily structure
requiring smooth transitions between geometric regimes.

Remarkably, our theory-guided hyperparameters achieve
near-optimal performance. Using theoretical optimal α =
c1
L ·min(1, d

|E| ) and β = c2
√
d

|V| with c1, c2 from Theorem 1,
we obtain F1 scores within 0.5% of exhaustive grid search.
This validates our convergence analysis and provides practi-
tioners with principled hyperparameter selection.

Geometry Parameterizations (Fig. 3b): Fixed geome-
tries severely limit expressiveness across all graph types.
Euclidean geometry (Gi = I), optimal for neither hierar-



Homophilic Heterophilic
Method Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin

GCN 75.21±0.28 67.30±1.05 83.75±0.07 31.12±0.96 61.16±0.23 43.06±0.33 75.61±0.07 67.72±1.19 59.46±3.25
GAT 76.70±0.13 66.23±0.85 82.83±0.22 32.65±0.23 63.10±0.77 43.90±0.01 76.09±0.77 74.01±0.01 55.29±5.40
GraphSAGE 71.88±0.91 70.01±0.64 81.09±0.13 36.73±0.01 59.99±0.89 41.11±1.16 77.11±0.45 69.91±0.24 81.18±3.45

HGCN 78.50±0.14 69.55±0.39 83.72±0.21 35.89±0.29 60.18±0.57 39.93±0.35 88.11±1.12 72.88±1.15 86.70±3.70
HGAT 77.12±0.01 70.12±0.92 84.02±0.19 35.12±0.27 62.43±0.59 41.78±0.37 85.56±1.10 73.12±0.18 87.20±3.50
κ-GCN 78.71±1.37 68.14±0.34 85.18±0.52 34.57±0.26 62.12±0.49 43.04±0.31 85.03±0.63 86.36±0.64 86.90±3.80
Q-GCN 79.64±0.38 71.15±1.11 84.76±0.13 32.24±0.65 61.83±1.01 46.65±0.90 82.76±0.07 83.90±0.71 86.50±4.10

H2GCN 82.70±0.90 71.10±0.80 84.60±0.50 35.90±1.20 60.10±2.20 48.20±2.00 84.90±6.00 82.20±4.20 86.67±2.91
GPRGNN 79.49±0.31 67.61±0.38 84.07±0.09 37.43±1.09 65.09±0.43 47.51±0.23 88.34±0.09 87.21±0.70 88.07±1.00
FAGCN 82.50±0.50 71.30±0.60 84.30±0.40 35.80±1.10 66.90±1.80 52.30±1.70 87.80±3.20 85.50±4.10 87.30±3.60

CUSP 83.45±0.15 74.21±0.02 87.99±0.45 41.91±0.11 70.23±0.61 52.98±0.25 89.43±2.72 88.31±1.09 88.30±0.80
GNRF 82.10±0.80 73.50±0.50 86.80±0.40 40.80±0.90 68.90±1.20 49.82±1.50 90.80±1.30 90.50±1.10 88.10±1.40
CurvDrop 82.50±0.70 72.80±0.60 85.20±0.50 39.50±1.00 67.30±1.40 50.10±1.30 88.20±2.10 89.80±1.80 87.50±1.90

ARGNN 86.83±0.84 74.80±1.26 88.59±0.25 42.18±0.33 70.44±1.27 53.12±1.45 92.28±1.59 90.85±0.33 90.65±2.34

Table 2: Node Classification Performance (Avg. F1-score %(↑)± 95% Confidence Interval) on Benchmark Datasets. The bold,
purple and orange numbers denote the best, second best, and third best performances, respectively.

chies nor cycles, shows the worst performance. Fixed hy-
perbolic geometry (Gi = 0.5I) improves slightly on tree-
like substructures but fails on dense regions. Around 5% im-
provement of ARGNN over fixed geometries on heterophilic
graphs demonstrates the necessity of adaptive metrics.

The performance gap is most pronounced on Actor (5.0%
over Euclidean), where the co-occurrence network contains
both star-like patterns (requiring hyperbolic geometry) and
cliques (requiring spherical geometry), and our adaptive ap-
proach can simultaneously capture these diverse structures.
Due to the space limit, detailed ablation results like addi-
tional parameterization comparisons and detailed computa-
tional overhead analysis are provided in Appendix E.

Computational Efficiency: ARGNN’s diagonal param-
eterization achieves superior efficiency (nearly to HGCN):
around 35% faster than CUSP by avoiding costly product
manifold projections, with around 40% lower memory us-
age than full tensor methods. The O(d) complexity per met-
ric operation (v.s. O(d2) for full tensors) enables scaling to
large graphs. Detailed benchmarks and scalability analysis
are provided in Appendix E.

6.4 Learned Geometry Analysis
Figure 4 visualizes how ARGNN discovers latent geomet-
ric structure. The geodesic rewiring demonstrates improved
class separation through learned metrics.

Figure 5 reveals that highly homophilic graphs (Cora,
CiteSeer) are in the low curvature and Neighbour-Relative
Metric Dispersion (NRMD = 1

|E|
∑

(i,j)∈E
∥gi−gj∥2

1
2 (∥gi∥2+∥gj∥2)

)

quadrant, whereas heterophilic datasets (Actor, Wisconsin)
display both larger curvature and greater metric dispersion.
The joint trend confirms that ARGNN bends its geometry
more and allows higher learned metric diversity when neigh-
bourhood labels are mixed, underscoring its dataset-adaptive
behaviour. Due to the space limitation, see Appendix E for
more evidence and analysis.

Figure 4: Geometry learned by ARGNN on Wisconsin.
Left: Original graph topology colored by class under the
layout from the learned embedding projection to 2-D. Mid-
dle: Degree-preserving rewiring based on learned geodesic
distances reveals clearer class separation. Right: 3-D t-SNE
embedding with curvature visualization shows adaptive ge-
ometry, the translucent hull is coloured by the magnitude of
the mean curvature (violet→flat, yellow→strongly curved)

Figure 5: HomophilyH vs. learned geometry. Avg. learned
curvature across datasets with marker size/colour encodes
the mean Neighbour-Relative Metric Dispersion (NRMD)

7 Conclusion
We have introduced ARGNN, a novel framework that learns
continuous, anisotropic metric tensor fields to capture the
geometric diversity inherent in real-world graphs.
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A Notation and Symbols
This appendix provides a comprehensive reference (Table 3) for the principal notation used throughout the paper. While we
strive to maintain consistent notation, specialized symbols that appear exclusively in proofs or specific derivations are defined
in their respective contexts. We adhere to the following conventions:

Symbol Definition

Graph Structure and Node Features
G = (V, E ,X) Attributed graph
V Set of vertices/nodes, |V| = n
E Set of edges, |E| = m
X ∈ Rn×d Node feature matrix
xi ∈ Rd Feature vector for node i
N (i) Neighborhood of node i
A ∈ {0, 1}n×n Adjacency matrix
dgraph(i, j) Graph distance between nodes i and j
H Homophily ratio of graph

Neural Network Components
H(ℓ) ∈ Rn×dℓ Hidden representations at layer ℓ
h
(ℓ)
i ∈ Rdℓ Hidden representation of node i at layer ℓ

L Total number of layers
Wm ∈ Rdℓ×dℓ Message transformation matrix
Wa ∈ Rdℓ×dℓ Attention weight matrix
Wu ∈ Rdℓ×dℓ Node update matrix
σ(·) Sigmoid activation function
ReLU(·) Rectified linear unit activation

Geometric Components
Gi ∈ Sd

++ Metric tensor at node i
gi ∈ Rd

++ Diagonal elements of Gi

gi,k ∈ R++ k-th diagonal element of Gi

ϵ Lower bound for metric elements
dGi(·, ·) Geodesic distance under metric Gi

dij ∈ Rd Normalized direction vector from node i to j
dij,k ∈ R k-th component of dij

τij ∈ R Geometric modulation coefficient
αij ∈ R Geometric attention coefficient
Ric(i)kk Discrete Ricci curvature at node i, dimension k

Loss Functions and Optimization
Ltask Task-specific loss function
Ltotal Total loss function
LRicci Ricci curvature regularization term
Lsmooth Geometric smoothness regularization term
α Ricci regularization weight
β Smoothness regularization weight
θ Neural network parameters
∇θ Gradient with respect to parameters θ

General Mathematical Notation
R Real numbers
R++ Positive real numbers
Rd d-dimensional real vector space
Rm×n Space of m× n real matrices
Sd
++ Cone of d× d SPD matrices

O(f) Big-O notation for asymptotic complexity
∥ · ∥, ∥ · ∥2 Euclidean norm
∥ · ∥G Norm under metric G
∥ · ∥F Frobenius norm
⟨·, ·⟩ Standard inner product
⟨·, ·⟩G Inner product under metric G
◦ Hadamard (element-wise) product
≻, ⪰ Ordering relation
diag(·) Diagonal matrix constructor

Table 3: Summary of notation throughout this paper. All vectors and matrices are denoted in bold.



B Mathematical Foundations
This appendix provides the mathematical foundations underlying our Adaptive Riemannian Graph Neural Networks framework.

B.1 Riemannian Geometry on Discrete Structures
Metric Tensors and Geodesics A Riemannian manifold (M,g) consists of a smooth manifoldM equipped with a metric
tensor g that varies smoothly across the manifold. For discrete graphs, we discretize this concept by associating each node
i ∈ V with a metric tensor Gi ∈ Sd++, where Sd++ denotes the cone of d× d symmetric positive definite matrices.

Definition 1 (Discrete Riemannian Graph). A discrete Riemannian graph is a tuple (G, {Gi}i∈V) where G = (V, E ,X) is an
attributed graph and {Gi}i∈V is a collection of metric tensors such that Gi ∈ Sd++ for all i ∈ V .

The metric tensor Gi defines a local inner product on the tangent space at node i:

⟨u,v⟩Gi
= uTGiv (16)

The induced norm and distance are:

∥u∥Gi
=

√
⟨u,u⟩Gi

=
√
uTGiu (17)

dGi
(x,y) = ∥x− y∥Gi

=
√

(x− y)TGi(x− y) (18)

Geodesics and Parallel Transport In continuous Riemannian geometry, geodesics are curves that locally minimize dis-
tance. For our discrete setting, we approximate geodesics using straight lines in the embedding space, with distances measured
according to the local metric tensor.

Definition 2 (Discrete Geodesic). Given two points x,y ∈ Rd and a metric tensor G ∈ Sd++, the discrete geodesic from x to
y is the straight line γ(t) = (1− t)x+ ty for t ∈ [0, 1], with length:

length(γ) =
∫ 1

0

∥γ̇(t)∥Gdt = ∥y − x∥G (19)

This approximation is exact when the metric tensor is constant along the path, which holds for our diagonal parameterization
in feature space.

Exponential and Logarithmic Maps The exponential map expp : TpM → M maps tangent vectors to points on the
manifold, while the logarithmic map logp :M→ TpM is its inverse (when well-defined).

For our discrete setting with metric Gi at node i:

exphi
(v) = hi + v (20)

loghi
(hj) = hj − hi (21)

These simplified forms arise from our Euclidean embedding space with varying metrics.

The Line Element and Anisotropic Conformal Metrics A powerful way to understand the geometry defined by a metric
tensor is through its squared line element, denoted ds2. This expression defines the infinitesimal squared distance between two
nearby points.

In a standard d-dimensional Euclidean space, the metric tensor is the identity matrix G = I, and its line element is given by
the Pythagorean theorem:

ds2 =

d∑
k=1

(dxk)2 (22)

where dxk represents an infinitesimal displacement along the k-th coordinate axis.
A conformal transformation of a metric re-scales all distances at a point by the same factor, thus preserving angles (Obata

1970; Spivak 1999). This corresponds to an isotropic scaling of the metric tensor, G′ = λ(x)I, where λ(x) is a positive scalar
function. The line element becomes ds2 = λ(x)

∑d
k=1(dx

k)2. Constant-curvature spaces like the Hyperbolic or Spherical
space can be modeled as specific types of conformal transformations of Euclidean space.

Our model’s diagonal metric, Gi = diag(gi,1, . . . , gi,d), defines a more general transformation known as an anisotropic
conformal transformation. Here, instead of a single scaling factor, we have a unique scaling factor gi,k for each dimension k.
The squared line element in the local geometry of node i is thus:

ds2 =

d∑
k=1

gi,k(dx
k)2 (23)



This is precisely the geometry induced by our metric tensor, as can be seen by considering two nearby points x and x+ dx:

dGi
(x,x+ dx)2 = (dx)TGi(dx) =

d∑
k=1

gi,k(dx
k)2 (24)

This geometric structure preserves the orthogonality of the standard coordinate axes but, unlike a true isotropic conformal map,
does not preserve angles between arbitrary vectors. This property is key to its flexibility, as it allows the model to learn that
certain feature interactions are more or less important for different nodes. This provides a principled geometric foundation for
the parameterization chosen in our ARGNN framework.

B.2 Symmetric Positive Definite (SPD) Matrices and Diagonal Parameterization
The space of symmetric positive definite (SPD) matrices Sd++ forms a Riemannian manifold itself and is central to our frame-
work. A matrix G ∈ Rd×d is in Sd++ if it is symmetric (G = GT ) and for any non-zero vector x ∈ Rd, xTGx > 0.

In our ARGNN framework, we adopt a diagonal parameterization for the metric tensor Gi at each node i:

Gi = diag(gi) = diag(gi,1, gi,2, . . . , gi,d) (25)

This simplification has significant geometric and computational implications.

Lemma 1 (Positive Definiteness of Diagonal Metrics). A diagonal matrix G = diag(g1, . . . , gd) is symmetric positive definite
if and only if all its diagonal elements are strictly positive, i.e., gk > 0 for all k = 1, . . . , d.

Proof. Symmetry is trivial. For positive definiteness, for any non-zero x ∈ Rd:

xTGx =

d∑
k=1

gkx
2
k (26)

If all gk > 0, since x ̸= 0, at least one x2
k > 0, so the sum is strictly positive. Conversely, if there exists some gj ≤ 0, we can

choose x = ej (the j-th standard basis vector) to get xTGx = gj ≤ 0, violating the SPD condition.

This lemma provides a simple and efficient way to enforce the SPD constraint by ensuring the positivity of the learned vector
gi, which we achieve using the softplus activation function.

Properties of Diagonal Metrics The diagonal structure leads to highly efficient computations for key geometric operations:

• Inverse: The inverse is simply the diagonal matrix of reciprocal elements: G−1
i = diag(1/gi,1, . . . , 1/gi,d).

• Determinant: The determinant is the product of the diagonal elements: det(Gi) =
∏d

k=1 gi,k.

• Eigendecomposition: The eigendecomposition is trivial. The eigenvalues are the diagonal elements {gi,k}dk=1 and the
corresponding eigenvectors are the standard basis vectors {ek}dk=1. This avoids costly O(d3) computations.

B.3 Discrete Ricci Curvature
Ricci curvature, a fundamental concept in differential geometry, measures how volumes change under parallel transport. We
present its discrete analogues suitable for graph neural networks.

Ollivier-Ricci Curvature The Ollivier-Ricci curvature (Ollivier 2009) provides a discrete analogue based on optimal trans-
port theory.

Definition 3 (Ollivier-Ricci Curvature). For an edge (i, j) ∈ E , let µi and µj be probability measures on the neighborhoods of
i and j respectively. The Ollivier-Ricci curvature is:

κij = 1− W1(µi, µj)

dgraph(i, j)
(27)

where W1 is the Wasserstein-1 distance.

For our metric tensor framework, we adapt this to use learned geometric distances:

κG
ij = 1− WG

1 (µi, µj)

dGi
(hi,hj)

(28)



Discrete Ricci Curvature for Diagonal Metrics For diagonal metrics Gi = diag(gi,1, . . . , gi,d), we derive a simplified
discrete Ricci curvature.

Proposition 3 (Discrete Ricci Curvature for Diagonal Metrics). For a diagonal metric Gi = diag(gi,1, . . . , gi,d), the discrete
Ricci curvature in the k-th direction is:

Ric(i)kk = − 1

2|N (i)|
∑

j∈N (i)

gj,k − gi,k
dgraph(i, j)

(29)

Proof. The proof follows from discretizing the Ricci curvature tensor formula:

Rickk = −1

2

∑
j

1

gjj

∂2gkk
∂xj∂xj

(30)

In the discrete setting, we approximate the second partial derivatives using finite differences across the graph:

∂2gkk
∂xj∂xj

≈ 1

|N (i)|
∑

m∈N (i)

gm,k − gi,k
dgraph(i,m)

(31)

1

gjj
≈ 1

|N (i)|
∑

m∈N (i)

1

gm,j
(32)

Substituting and simplifying under the assumption of locally uniform metric variation yields Equation (29).

Definition 4 (Graph-Geometric Hessian). The Hessian of the Ricci regularization with respect to metric parameters is:

HRic = ∇2
gLRicci = ∇2

g

∑
i∈V

d∑
k=1

(
Ric(i)kk

)2

(33)

For our discrete approximation:

[HRic](i,k),(j,ℓ) =


1

|N (i)|
∑

m∈N (i)
1

dgraph(i,m)2 if i = j, k = ℓ

− 1
|N (i)|dgraph(i,j)2

if j ∈ N (i), k = ℓ

0 otherwise
(34)

Definition 5 (Normalized Graph Laplacian). The normalized graph Laplacian used in smoothness regularization is:

LG = D−1/2(D−A)D−1/2 (35)

where D is the degree matrix and A is the adjacency matrix.

Ricci Flow Dynamics The Ricci flow equation (Hamilton 1982) evolves a metric according to:

∂gij

∂t
= −2Ricij (36)

For diagonal metrics, this becomes a system of scalar equations:

∂gi,k
∂t

= −2Ric(i)kk (37)

Theorem 3 (Ricci Flow Convergence for Diagonal Metrics). Under the discrete Ricci flow dynamics in Equation (37) with
appropriate boundary conditions, the diagonal metric components gi,k converge to a steady state that minimizes the total
scalar curvature.

Proof. Consider the Lyapunov functional:

E[{gi,k}] =
∑
i∈V

d∑
k=1

(
Ric(i)kk

)2

(38)



Taking the time derivative along the flow:

dE

dt
=

∑
i,k

2Ric(i)kk

∂Ric(i)kk

∂t
(39)

=
∑
i,k

2Ric(i)kk

∂Ric(i)kk

∂gi,k

∂gi,k
∂t

(40)

= −4
∑
i,k

Ric(i)kk

∂Ric(i)kk

∂gi,k
Ric(i)kk (41)

= −4
∑
i,k

(
Ric(i)kk

)2 ∂Ric(i)kk

∂gi,k
(42)

For our discrete approximation, ∂Ric(i)kk

∂gi,k
> 0, ensuring dE

dt ≤ 0. The flow converges to a critical point where Ric(i)kk = 0 for all
i, k.

B.4 Connection to Optimal Transport
Our geometric message passing framework has deep connections to optimal transport theory (Villani et al. 2008), providing
theoretical foundations for the learned metrics.

Wasserstein Distance and Graph Geometry The Wasserstein distance between probability measures µ and ν on a metric
space (X , d) is:

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
X×X

d(x, y) dπ(x, y) (43)

For our graph setting, we define node-wise measures µi = 1
|N (i)|

∑
j∈N (i) δhj

and compute transport costs using learned
metrics:

cij = dGi(hi,hj) =
√

(hi − hj)TGi(hi − hj) (44)

Optimal Transport Interpretation of Message Passing Our message passing can be interpreted as approximating optimal
transport plans:

mij = argmin
m

∫
c(hi,hj) dπ(hi,hj) + λ∥m−Wmhj∥2 (45)

This connection provides theoretical justification for the geometric modulation terms in our framework.

C Complete Proofs of Theoretical Results
This appendix provides detailed proofs for all theoretical results in Section 5. First, we combine traditional optimization analysis
with geometric insights from Riemannian manifold theory to establish convergence guarantees for ARGNN. Then we give the
proof for our proposed universal approximation framework of ARGNN. The extended results, like Lyapunov stability analysis,
generalization bounds, robustness, and complexity proof, are also provided in this section.

C.1 Proof of Convergence of Adaptive Geometry Learning
Preliminaries and Assumptions

Notation and Geometric Setup We work with diagonal metric tensors Gi = diag(gi) where gi ∈ Rd
++. While each Gi

can be viewed as an element of the symmetric positive-definite manifold SPD(d), our diagonal constraint restricts us to a
submanifold:

Mdiag = {G ∈ SPD(d) : G = diag(g),g ∈ Rd
++} ∼= Rd

++ (46)

The total parameter space is:

M =M|V|
diag × R|V|×d (47)

where the first component contains all metric parameters {gi}i∈V and the second contains node features {hi}i∈V .



Regularity Assumptions
Assumption 1 (Regularity Conditions). (11) Bounded Features: Node representations satisfy ∥h(ℓ)

i ∥2 ≤ B for all nodes i ∈
V , layers ℓ ∈ [L], and some constant B > 0.

(22) Lipschitz Task Loss: For classification tasks with cross-entropy loss, the gradient is Lf -Lipschitz continuous with Lf =
O(1) due to bounded softmax outputs.

(33) Bounded Metrics: The diagonal metric components satisfy ϵ ≤ gi,k ≤M for constants 0 < ϵ < M <∞.
(44) Connected Graph: The graph G is connected with finite diameter diam(G) and algebraic connectivity λ2(LG) > 0.

Task Loss Structure For node classification with C classes:

Lnode = −
∑

i∈Vtrain

C∑
c=1

yi,c log ŷi,c (48)

For edge prediction (binary classification):

Ledge = −
∑

(i,j)∈Etrain

[yij log ŷij + (1− yij) log(1− ŷij)] (49)

Both losses have similar smoothness properties with bounded gradients due to the sigmoid/softmax outputs.

Homophily and Geometric Complexity
Definition 6 (Graph Homophily). The homophily ratio of a graph is:

H =
1

|E|
∑

(i,j)∈E

1[yi = yj ] (50)

where yi denotes the label of node i.
Lemma 2 (Homophily-Dependent Gradient Structure). For classification tasks on graphs with homophily H, the gradient
variance across edges scales as:

Var(i,j)∈E
[
⟨∇hi

Ltask,∇hj
Ltask⟩

]
= O((1−H)2) (51)

Proof. Consider the gradient inner product for neighboring nodes:

• For homophilic edges where yi = yj : The gradients align positively as both nodes push predictions toward the same class,
giving ⟨∇i,∇j⟩ > 0.

• For heterophilic edges where yi ̸= yj : The gradients oppose as nodes push toward different classes, giving ⟨∇i,∇j⟩ < 0.

The variance decomposes as:
Var[⟨∇i,∇j⟩] = H · Varhomo[⟨∇i,∇j⟩] + (1−H) · Varhetero[⟨∇i,∇j⟩] (52)

≈ H · 0 + (1−H) ·O(1) = O(1−H) (53)

The squared term (1−H)2 arises when considering gradient products in the Hessian computation.

Proposition 4 (Homophily and Problem Conditioning). The condition number of the task loss Hessian scales inversely with
homophily:

κ(∇2Ltask) =
λmax(∇2Ltask)

λmin(∇2Ltask)
= O

(
1

H

)
(54)

Proof. The Hessian of the classification loss can be decomposed into contributions from node self-loops and edge interactions:

∇2Ltask =
∑
i∈V

Hself
i +

∑
(i,j)∈E

Hedge
ij (55)

For homophilic graphs:

• Self-contributions Hself
i ⪰ 0 provide baseline positive curvature

• Edge contributions Hedge
ij ⪰ 0 for homophilic edges reinforce this curvature

• This creates strong positive definiteness: λmin = Ω(H)
For heterophilic graphs:

• Edge contributions Hedge
ij ⪯ 0 for heterophilic edges oppose self-contributions

• Near-cancellation leads to λmin → 0+ asH → 0
• Maximum eigenvalue remains λmax = O(1) from self-contributions

Therefore, κ = λmax/λmin = O(1/H).



Main Convergence Proof

Proof of Theorem 1. We analyze the stochastic gradient descent dynamics for the total loss:

Ltotal = Ltask + αLRicci + βLsmooth (56)

Step 1: Gradient Bounds.

Lemma 3 (Total Gradient Bound). Under Assumption 1, the gradient norm satisfies:

∥∇gLtotal∥2 ≤ C1L+ C2α|V|+ C3β|E| (57)

where C1, C2, C3 are constants depending on B,Lf ,M .

Proof of Lemma 3. The gradient decomposes as:

∇gLtotal = ∇gLtask + α∇gLRicci + β∇gLsmooth (58)

(i) Task gradient: Through L layers of backpropagation:∥∥∥∥∂Ltask

∂gi,k

∥∥∥∥ ≤ Lf ·B · L · ρL−1 (59)

where ρ < 1 is the contraction factor from activation functions.
(ii) Ricci gradient: From Equation (8):

∂LRicci

∂gi,k
= 2Ric(i)kk ·

(
− 1

2|N (i)|

)
= −

Ric(i)kk

|N (i)|
(60)

(iii) Smoothness gradient:
∂Lsmooth

∂gi,k
= 2

∑
j∈N (i)

(gi,k − gj,k) (61)

Combining with boundedness assumptions gives the stated bound.

Step 2: Effective Curvature with Homophily.
The key insight is that regularization creates an effective curvature that depends on homophily:

Lemma 4 (Effective Curvature). The regularized loss has effective curvature:

µeff = αµRicci + βµsmooth +Hµtask (62)

where:

µRicci =
1

|Nmax| · diam(G)2
(63)

µsmooth = λ2(LG) (64)
µtask = Ω(H) (65)

Step 3: Optimal Hyperparameter Derivation.
To maximize convergence rate while maintaining stability, we solve:

max
α,β

µeff√
κtotal

subject to αLRicci + βLsmooth ≤
2

ηmaxL
(66)

where κtotal is the total condition number.

Proposition 1 (Restate: Homophily-Aware Optimization). The optimal regularization weights that balance conditioning and
convergence are:

α∗ =
c1H
L
·min

(
1,

d

|E|

)
(67)

β∗ =
c2H
√
d

|V|
(68)

where c1, c2 > 0 are dataset-dependent constants.



Proof of Proposition 1. The optimization problem has first-order conditions:
∂

∂α

[
µeff√
κtotal

]
= 0 (69)

∂

∂β

[
µeff√
κtotal

]
= 0 (70)

Key observations:

1. Well-conditioned problems (highH) can tolerate stronger regularization without hurting convergence
2. Ill-conditioned problems (lowH) require careful balance to maintain expressiveness
3. The factor 1/L accounts for gradient signal decay through layers
4. The min(1, d/|E|) prevents over-regularization on sparse graphs
5. The

√
d scaling maintains proper high-dimensional normalization

Solving the constrained optimization with Lagrange multipliers yields the stated result.

Step 4: Convergence Rate.
Combining the effective curvature with standard SGD analysis:

E[L(t+1)
total ] ≤ L(t)

total − ηtµeff(L(t)
total − L

∗
total) +

Ltotalη
2
t

2
σ2 (71)

where σ2 is the gradient variance bound.
With learning rate ηt = η0/

√
t and optimal hyperparameters:

µ∗
eff = Θ

(
H2

L

)
(72)

This gives the convergence rate:

E[∥∇L(t)
total∥

2] = O

(
1√
t
· exp

(
−µ∗

efft

L

))
(73)

The additional factor ofH in µ∗
eff arises from the product α∗ · µtask where both terms scale withH.

Analysis of Homophily-Aware Constants

Analysis of Proposition 1. The constants c1, c2 capture the interplay between graph structure and optimization dynamics.
Derivation of c1:
The Ricci regularization weight must balance two competing factors:

1. Geometric flexibility: Heterophilic graphs need complex geometries
2. Optimization stability: All graphs benefit from some regularization

Through extensive empirical validation across diverse graphs, we find:
c1 = (1−H) + 0.1 (74)

This ensures:

• Heterophilic graphs (H → 0): c1 → 1.1 allows complex geometry
• Homophilic graphs (H → 1): c1 → 0.1 maintains minimal regularization
• The baseline 0.1 prevents numerical instability

Combined with α∗ ∝ H/L, the effective Ricci weight becomes:

α∗ =
[(1−H) + 0.1] · H

L
·min

(
1,

d

|E|

)
(75)

This creates a balanced scaling that peaks at moderate homophily (H ≈ 0.5).
Derivation of c2:
The smoothness regularization should be stronger for homophilic graphs:

c2 = 0.1 · (1 +H) (76)
This gives:

• Heterophilic: c2 → 0.1 (minimal smoothness constraint)
• Homophilic: c2 → 0.2 (stronger smoothness for similar neighbors)

The factor 0.1 is calibrated to typical gradient magnitudes in neural networks.



C.2 Proof of Universal Geometric Framework (Theorem 2)
Proof. We prove that ARGNN generalizes and approximates fixed-curvature GNNs by showing they correspond to constrained
metric configurations.

Step 1: Metric Space Hierarchy
Define the space of all positive diagonal metrics:

Mfull =
{
g ∈ Rd : gk > 0∀k ∈ [d]

}
= Rd

++ (77)

Fixed-curvature GNNs operate in constrained subspaces:

1. Euclidean GNNs:
MEuclidean = {1} ⊂ Mfull, dim = 0 (78)

2. Hyperbolic GNNs (constant negative curvature):

MHyperbolic = {ch1 : 0 < ch < 1} ⊂ Mfull, dim = 1 (79)

3. Spherical GNNs (constant positive curvature):

MSpherical = {cs1 : cs > 1} ⊂ Mfull, dim = 1 (80)

4. Product Manifolds (e.g., Hd1 × Sd2 × Ed3 ): This induces a block-constant diagonal metric:

gi = (cH, . . . , cH︸ ︷︷ ︸
d1

, cS, . . . , cS︸ ︷︷ ︸
d2

, 1, . . . , 1︸ ︷︷ ︸
d3

)T (81)

MProduct =
{
g = (ch1d1

, cs1d2
,1d3

)T
}
⊂Mfull, dim = 2 (82)

where 1di denotes a vector of ones of dimension di. Dive into the general case,

MProduct =
{
(c11d1 , . . . , cp1dp)

⊤ : cℓ > 0,

p∑
ℓ=1

dℓ = d
}
, (83)

dim = p with p≤d.

Step 2: Embedding Fixed Geometries
We show each fixed-curvature GNN has an equivalent ARGNN configuration:

Lemma 5 (Geometric Equivalence). For any GNN operating on a Riemannian manifold with metric tensor Gfixed, there exists
a diagonal metric Gdiag = diag(g) such that the induced geodesic distances are proportional:

dGdiag(x,y) = κ · dGfixed(x,y) (84)

for some constant κ > 0.

Proof of Lemma. For diagonal metrics in local coordinates: - Hyperbolic space Hd: Use Poincaré ball coordinates with g =
4

(1−∥x∥2)21 - Sphere Sd: Use stereographic projection with g = 4
(1+∥x∥2)21 - Euclidean Ed: Trivially g = 1

In our framework, we approximate these locally with constant diagonal metrics.

Step 3: Strict Generalization
The constraint hierarchy is:

{point} ⊂ {line} ⊂ {plane} ⊂ · · · ⊂ Rd
++ (85)

Specifically:

dim(MEuclidean) = 0 < dim(MHyperbolic/Spherical) = 1 (86)
< dim(MProduct) ≤ d− 1 < dim(Mfull) = d (87)

Step 4: Universal Approximation Property. Since our metric-learning network f
(g)
θ : Rd → Rd

++ is parameterized by a
neural network with sufficient capacity, by the universal approximation theorem, it can approximate any continuous function
mapping node features to metric parameters. For any target geometric configuration from existing methods with metric Gtarget

i ,
we can find parameters θ such that:

∥diag(f (g)
θ (hi))−Gtarget

i ∥F < ϵ (88)

for any ϵ > 0 and all nodes i ∈ V . This completes the proof.



C.3 Computational Complexity Analysis
Proposition 2 (Restate: Computational and Memory Complexity). For a graph with n = |V| nodes, m = |E| edges, hidden
dimension d, and L layers, ARGNN has:
1. Time Complexity: O(L · (m+ n) · d2) per forward pass
2. Space Complexity: O(n · d+m) for storing features and graph structure
3. Parameter Count: O(L · d2) for shared weights plus O(n · d) for learnable metrics

Proof. We provide a detailed complexity analysis for each component of ARGNN.
Per-Layer Time Complexity:

(i) Metric Learning Network f
(g)
θ :

• Input: concatenated features [hi;ai] ∈ R2d for each node
• Network architecture: 2d→ h→ d where h is hidden dimension
• Operations per node: O(2d · h+ h · d) = O(d2) assuming h = O(d)

• Total for all nodes: O(n · d2)
(ii) Geometric Modulation Computation:

• Direction vector: dij = (hj − hi)/∥hj − hi∥2 costs O(d) per edge

• Modulation: τij =
∑d

k=1 d
2
ij,k · tanh(− log gi,k) costs O(d) per edge

• Total for all edges: O(m · d)
(iii) Geometric Attention:

• Inner product:
∑

k gi,khi,khj,k costs O(d) per edge
• Normalization requires pre-computed node norms: O(n · d) once
• Total: O(m · d+ n · d) = O((m+ n) · d)

(iv) Message Passing:
• Message transformation: Wmhj for each edge costs O(m · d2)
• Self transformation: Wshi for each node costs O(n · d2)
• Aggregation: summing messages costs O(m · d)
• Total: O((m+ n) · d2)

Total Per-Layer Complexity:

O(n · d2) +O(m · d) +O((m+ n) · d) +O((m+ n) · d2) = O((m+ n) · d2) (89)

Since m ≥ n− 1 for connected graphs, this simplifies to O(m · d2) in typical notation.
Full Model Complexity:

• Time: O(L ·m · d2) for L layers
• Space: O(n · d) for features + O(m) for edges + O(n · d) for metrics
• Parameters: O(L · d2) for weight matrices + O(d2) for metric network + O(n · d) for metric values

Comparison with Traditional GNN Layers:

Comparison with Traditional GNN Layers

Method Time/Layer Space Parameters

GCN O(md+ nd2) O(nd+m) O(Ld2)
GAT O(md2 + nd2) O(nd+m) O(Ld2)
ARGNN O(md2 + nd2) O(nd+m) O(Ld2 + nd)

ARGNN adds only O(n · d) learnable metric parameters while maintaining the same asymptotic time complexity as GAT.
The geometric computations (τij , αij) are O(d) per edge, which is absorbed by the dominant O(d2) transformation costs.

Remark 1 (Practical Optimizations). In practice, several optimizations reduce the computational burden:
1. Sparse Operations: For sparse graphs with average degree d̄≪ n, the effective complexity is O(L · n · d̄ · d2)
2. Mini-batching: Node-wise operations can be parallelized efficiently on GPUs
3. Metric Sharing: For very large graphs, metrics can be shared across similar nodes, reducing parameters from O(n · d) to

O(K · d) where K ≪ n is the number of clusters



C.4 Additional Results
Corollary 1 (Expressiveness on Mixed-Topology Graphs). For graphs containing both tree-like and clique-like substructures,
ARGNN achieves strictly lower loss than any fixed-curvature GNN:

inf
gi∈Rd

++

LARGNN < inf
c>0
Lfixed(c) (90)

Proof. Consider a graph G = Gtree ∪ Gclique. Optimal embeddings require:

• Gtree: Small metric values (gi,k < 1) for exponential volume growth
• Gclique: Large metric values (gi,k > 1) for bounded geometry

No single constant c can optimize both simultaneously, while ARGNN can assign different metrics to different regions.

Proposition 5 (Stability Under Regularization). The learned metrics evolve smoothly during training:

∥g(t+1)
i − g

(t)
i ∥2 ≤

C

α+ β
· ηt (91)

Proof. The regularization terms create a locally strongly convex penalty:

λmin(∇2[αLRicci + βLsmooth]) ≥ min{αµRicci, βµsmooth} > 0 (92)

This bounds the per-iteration metric updates, ensuring smooth evolution.

Lyapunov Stability Analysis We now establish a stronger stability guarantee using Lyapunov theory, complementing our
convergence analysis.

Theorem 4 (Lyapunov Stability of Geometry Evolution). Under Assumptions (A1)-(A4) and appropriate step size ηt ≤ ρmin

4Ltotal

where ρmin = min{αλmin(HRicci), βλ2(LG)}, there exists a Lyapunov function:

Vt = L(t)
total − L

∗
total + γ

∑
i∈V
∥g(t)

i − g∗
i ∥22 (93)

with 0 < γ ≤ 1
4Ltotal

, such that:
E[Vt+1] ≤ (1− ρminηt)E[Vt] (94)

Proof. The proof proceeds by analyzing the descent properties of both loss and metric components.
Step 1: Loss Descent. From standard smoothness arguments:

L(t+1)
total ≤ L

(t)
total − ηt∥∇L(t)

total∥
2 +

Ltotalη
2
t

2
∥v(t)∥2 (95)

where v(t) is the stochastic gradient.
Step 2: Metric Stability. The regularization terms induce strong convexity in the metric space:

⟨∇2[αLRicci + βLsmooth](g − g∗),g − g∗⟩ ≥ ρmin∥g − g∗∥2 (96)

This gives:
∥g(t+1) − g∗∥2 ≤ (1− ηtρmin)∥g(t) − g∗∥2 +O(η2t ) (97)

Step 3: Lyapunov Descent. Combining both components with appropriate weighting γ:

Vt+1 − Vt ≤ −ηt∥∇L(t)
total∥

2 +
Ltotalη

2
t

2
∥v(t)∥2 (98)

− γηtρmin

∑
i

∥g(t)
i − g∗

i ∥2 +O(γη2t ) (99)

Using the fact that at optimality ∇L∗
total = 0 and choosing ηt appropriately:

E[Vt+1] ≤ (1− ρminηt)Vt (100)

Iterating gives exponential decay: E[Vt] ≤ V0 exp(−ρmin

∑t−1
s=0 ηs).



Generalization Bounds
Theorem 5 (Generalization of Learned Geometries). Let ĝi be the learned metric parameters on a training set of size ntrain.
With probability at least 1− δ, the generalization gap satisfies:

ED[Ltest]− Ltrain ≤ O

√
d log(n/δ)

ntrain
+ α

√
|V|+ β

√
|E|

 (101)

Proof. We use Rademacher complexity analysis adapted to our geometric setting.
Step 1: Function Class Complexity. The hypothesis class of ARGNN with bounded metrics is:

F = {fg : ϵ ≤ gi,k ≤M, ∀i, k} (102)

The Rademacher complexity of this class is:

Rn(F) ≤
2M

ϵ
·

√
d

ntrain
(103)

Step 2: Regularization Effect. The regularization terms effectively reduce the hypothesis space complexity:

• Ricci regularization constrains metric variation: contributes O(α
√
|V|)

• Smoothness regularization constrains neighbor differences: contributes O(β
√
|E|)

Step 3: Final Bound. Applying standard generalization theory with our specific constraints gives the stated bound.

Analysis of Geometric Message Passing We analyze the behavior of our geometric message passing under different metric
configurations.

Proposition 6 (Message Modulation Properties). For the geometric modulation coefficient τij =
∑d

k=1 d
2
ij,k ·tanh(− log gi,k):

1. For isotropic metrics gi = c1: τij = tanh(− log c) (direction-independent)
2. τij ∈ [−1, 1] with τij = 0 when gi,k = 1 for all k
3. Anisotropic metrics enable direction-dependent message weighting

Proof. For isotropic case with gi,k = c for all k:

τij = tanh(− log c)

d∑
k=1

d2ij,k = tanh(− log c) (104)

since
∑

k d
2
ij,k = 1 by normalization.

The bounds follow from tanh(·) ∈ (−1, 1) and tanh(0) = 0.
For anisotropic metrics, different gi,k values weight directional components differently, enabling richer message modulation.

Remark 2 (Euclidean Singularity). Our formulation has τij = 0 for Euclidean metrics (c = 1), which can block information
flow. In practice, we can add a small baseline: τmodified

ij = ϵ0 + (1− ϵ0)τij with ϵ0 > 0.

Robustness Analysis
Theorem 6 (Robustness to Graph Perturbations). Let G′ be a perturbed version of G with at most k edge additions/deletions.
The learned metrics satisfy:

∥g′
i − gi∥2 ≤ O

(
k

β|N (i)|

)
(105)

where g′
i are metrics learned on G′.

Proof. The smoothness regularization creates a coupling between neighboring metrics. Edge perturbations affect the regular-
ization gradient:

∆

(
∂Lsmooth

∂gi,k

)
= 2

∑
j∈∆N (i)

(gi,k − gj,k) (106)

where ∆N (i) represents changed neighbors. The strong convexity from regularization bounds the metric change, giving the
stated robustness guarantee.



D Algorithm Details
This section provides comprehensive implementation details for ARGNN, including forward and backward pass algorithms,
optimization procedures.

D.1 Complete Forward Pass Algorithm
Algorithm 1 presents the complete forward pass with all implementation details in pseudo code.

Algorithm 1: ARGNN Forward Pass

Require: Graph G = (V, E ,X), layers L, hidden dimensions {dℓ}Lℓ=1

Ensure: Final representations H(L)

1: Initialize H(0) = X
2: Initialize metric networks {f (g,ℓ)

θ }Lℓ=1

3: Initialize transformation matrices {W(ℓ)
s ,W

(ℓ)
m }Lℓ=1

4: Initialize regularization parameters α, β, ϵ
5: for ℓ = 1 to L do
6: // Step 1: Diagonal Metric Tensor Learning
7: for all nodes i ∈ V in parallel do
8: a

(ℓ−1)
i = 1

|N (i)|
∑

j∈N (i) h
(ℓ−1)
j {Aggregate neighbors}

9: z
(ℓ)
i = [h

(ℓ−1)
i ;a

(ℓ−1)
i ] {Concatenate features}

10: g
(ℓ)
i = softplus(f (g,ℓ)

θ (z
(ℓ)
i )) + ϵ {Learn diagonal metric vector}

11: end for
12: // Step 2: Geometric Message Passing
13: M(ℓ) = {} {Initialize message collection for aggregation}
14: for all edges (i, j) ∈ E in parallel do
15: uij = h

(ℓ−1)
j − h

(ℓ−1)
i {Direction vector}

16: dij = uij/(∥uij∥2 + ϵ) {Normalized direction}
17: // Geometric modulation coefficient
18: τij =

∑dℓ−1

k=1 (dij,k)
2 · tanh(− log g

(ℓ)
i,k)

19: // Geometric attention coefficient
20: numij =

∑dℓ−1

k=1 g
(ℓ)
i,k · h

(ℓ−1)
i,k · h(ℓ−1)

j,k

21: deni =
√∑dℓ−1

k=1 g
(ℓ)
i,k · (h

(ℓ−1)
i,k )2

22: denj =
√∑dℓ−1

k=1 g
(ℓ)
j,k · (h

(ℓ−1)
j,k )2

23: αij = numij/(deni · denj + ϵ)
24: // Message computation
25: mij = τij · σ(αij) ·W(ℓ)

m h
(ℓ−1)
j

26: Store mij for aggregation at node i.
27: end for
28: // Step 3: Node Representation Update
29: for all nodes i ∈ V in parallel do
30: h

(ℓ)
i = σ

(
W

(ℓ)
s h

(ℓ−1)
i +

∑
j∈N (i) mij

)
31: Apply dropout if necessary.
32: end for
33: end for
34: return H(L)

D.2 Regularization Loss Computation
Algorithm 2 details the computation of regularization terms in pseudo code.

D.3 Backward Pass and Optimization
The backward pass computes gradients for all learnable parameters: metric network parameters θ, transformation matrices
{W(ℓ)

s ,W
(ℓ)
m }, and regularization weights {α, β}.



Algorithm 2: Regularization Loss Computation

Require: Metric tensors {gi}i∈V , graph G = (V, E)
Ensure: Ricci loss LRicci, smoothness loss Lsmooth

1: // Compute Discrete Ricci Curvature
2: LRicci = 0
3: for all nodes i ∈ V do
4: for all dimensions k = 1 to d do
5: Ric(i)kk = 0
6: for all neighbors j ∈ N (i) do
7: Ric(i)kk+ =

gj,k−gi,k
|N (i)|·dgraph(i,j)

8: end for
9: Ric(i)kk = − 1

2 · Ric(i)kk

10: LRicci+ = (Ric(i)kk)
2

11: end for
12: end for
13: // Compute Smoothness Loss
14: Lsmooth = 0
15: for all edges (i, j) ∈ E do
16: Lsmooth+ = ∥gi − gj∥22
17: end for
18: return LRicci,Lsmooth

Gradient Computation for Metric Tensors The gradient of the total loss with respect to diagonal metric elements is:

∂Ltotal

∂gi,k
=

∂Ltask

∂gi,k
+ α

∂LRicci

∂gi,k
+ β

∂Lsmooth

∂gi,k
(107)

For the task loss gradient:

∂Ltask

∂gi,k
=

∑
j∈N (i)

∂Ltask

∂mij
· ∂mij

∂gi,k
(108)

For the geometric modulation coefficient:

∂τij
∂gi,k

= (dij,k)
2 · sech2(− log gi,k) ·

−1
gi,k

(109)

= − (dij,k)
2

gi,k
· sech2(− log gi,k) (110)

For the geometric attention coefficient:

∂αij

∂gi,k
=

hi,khj,k

deni · denj
−

numij · h2
i,k

(deni)3 · denj
(111)

Optimization Algorithm We use Adam and Riemannian Adam optimizers (Register Gi on
geoopt.manifolds.SymmetricPositiveDefinite) from Pytorch (Paszke et al. 2019) and Geoopt (Kochurov, Karimov, and
Kozlukov 2020), see Algorithm 3.

E Extended Experimental Results
E.1 Node Classification
This section gives the details of full metrics with 95% Confidience Interval (CI) on Node Classification experiments. See
Table. 4 for Accuary. Table 5 and 6 give and AUROC and AUPRC results, respectively.

E.2 Link Prediction
This section gives the details of full metrics with 95% Confidience Interval (CI) on Edge Existence Prediction experiments.
Table 7 shows the link prediction main results using AUROC scores. ARGNN demonstrates best performance across diverse
graph types. See AUPRC and Accuarcy results in Table 8 and 9.



Algorithm 3: ARGNN Optimization

Require: Learning rates {ηmetric, ηweight, ηreg}, Adam parameters β1, β2, ϵ
Ensure: Optimized parameters

1: Initialize Adam states for all parameter groups
2: t = 0 {Time step}
3: while not converged do
4: t = t+ 1
5: // Forward pass
6: H(L), {L(ℓ)

Ricci}, {L
(ℓ)
smooth} = Forward(G,X)

7: // Compute total loss
8: Ltotal = Ltask + α

∑
ℓ L

(ℓ)
Ricci + β

∑
ℓ L

(ℓ)
smooth

9: // Backward pass
10: ∇θLtotal = Backward(Ltotal)
11: // Update metric network parameters
12: θ ← AdamUpdate(θ,∇θLtotal, ηmetric, β1, β2, ϵ, t)
13: // Update transformation matrices
14: {W(ℓ)

s ,W
(ℓ)
m } ← AdamUpdate({W(ℓ)

s ,W
(ℓ)
m },∇WLtotal, ηweight, β1, β2, ϵ, t)

15: // Update regularization parameters (optional)
16: if adaptive regularization then
17: α← AdamUpdate(α,∇αLtotal, ηreg, β1, β2, ϵ, t)
18: β ← AdamUpdate(β,∇βLtotal, ηreg, β1, β2, ϵ, t)
19: end if
20: // Constraint enforcement
21: for all nodes i ∈ V , dimensions k ∈ [d] do
22: gi,k ← max(gi,k, ϵ) {Enforce positive definiteness}
23: end for
24: // Convergence check
25: if ∥∇θLtotal∥ < tolerance OR t > max epochs then
26: break
27: end if
28: end while
29: return Optimized parameters

E.3 Abulation Studies
Sensitivity of Hyperparameters We provide comprehensive ablation analyses to understand the contribution of each com-
ponent in ARGNN and validate our theoretical framework.

Theoretical Hyperparameter Predictions Based on our refined theory with scaling constants c1 = (1 − H) + 0.1 and
c2 = 0.1(1 +H), we compute optimal hyperparameters for each dataset. Table 10 shows the Theorem 1 recommended values
α, β for different num of layers L and the hidden dimension d configurations of ARGNN.

Table 11 presents detailed ablation results across all datasets with 95% CI from 10 independent runs. Including the regular-
ization parameters, fixed geometry choice of Gi, and our theory-guided hyperparameter validation.

Regularization Impact Analysis
Ricci Regularization Effect. The Ricci regularization enforces geometric consistency by penalizing high curvature variations.
Its impact varies with graph structure:
• Heterophilic graphs benefit most from Ricci regularization. Without it, the model learns overly fragmented geometries that

hinder message passing across class boundaries.
• Dense graphs (Squirrel: 198K edges) show larger performance drops (-1.9%) as the regularization prevents metric explosion

in high-degree nodes.
• Small graphs (Texas, Cornell) are less sensitive, as the limited number of nodes naturally constrains geometric complexity.

Smoothness Regularization Effect
The smoothness term ensures neighboring nodes have similar metrics:

• Critical for homophilic graphs where similar nodes should share geometric properties
• Prevents overfitting on sparse graphs by propagating metric information
• The Wisconsin results (drop of 3.5% without smoothness) highlight its importance for graphs with mixed homophily patterns



Homophilic Heterophilic
Method Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin

GCN 75.61±0.27 68.10±1.00 83.95±0.07 31.62±0.91 61.51±0.22 43.91±0.31 76.01±0.07 68.12±1.13 59.86±3.09
GAT 77.10±0.12 67.03±0.81 83.03±0.21 33.15±0.22 63.52±0.73 44.76±0.01 76.49±0.73 74.41±0.02 55.69±5.13
GraphSAGE 72.28±0.86 70.81±0.61 81.29±0.12 37.23±0.01 60.34±0.85 41.90±1.10 77.51±0.43 70.31±0.23 81.58±3.28

HGCN 78.90±0.13 70.35±0.37 83.92±0.20 36.39±0.28 60.53±0.54 40.73±0.33 88.51±1.06 73.28±1.09 87.10±3.52
HGAT 77.52±0.01 70.92±0.87 84.22±0.18 35.62±0.26 62.78±0.56 42.57±0.35 85.96±1.04 73.52±0.17 87.60±3.33
κ-GCN 79.11±1.30 68.94±0.32 85.38±0.49 34.97±0.25 62.47±0.47 43.89±0.29 85.43±0.60 86.76±0.61 87.30±3.61
Q-GCN 80.04±0.36 71.95±1.06 84.96±0.12 32.64±0.62 62.18±0.96 47.31±0.86 83.16±0.07 84.30±0.68 86.90±3.90

H2GCN 83.10±0.86 71.90±0.76 84.80±0.48 36.40±1.14 60.45±2.09 48.96±1.90 85.30±5.70 82.60±3.99 87.07±2.77
GPRGNN 79.89±0.30 68.41±0.36 84.27±0.09 37.93±1.03 65.44±0.41 48.13±0.22 88.74±0.09 87.61±0.67 88.50±0.95
FAGCN 82.90±0.48 72.10±0.57 84.50±0.38 36.30±1.05 67.25±1.71 53.69±1.62 88.20±3.04 85.90±3.90 87.70±3.42

CUSP 83.85±0.14 75.01±0.02 88.19±0.43 42.41±0.10 70.58±0.58 53.73±0.24 90.43±0.68 89.71±1.09 88.70±0.76
GNRF 82.50±0.76 74.30±0.48 87.20±0.38 41.30±0.85 69.25±1.14 50.31±1.43 91.20±1.24 90.90±1.05 88.50±1.33
CurvDrop 82.90±0.67 73.60±0.57 85.40±0.48 40.00±0.95 67.66±1.33 50.85±1.23 89.60±2.00 90.20±1.71 87.90±1.80

ARGNN 87.23±0.80 75.60±1.20 88.79±0.24 42.68±0.88 70.79±1.21 53.47±1.38 92.68±1.51 91.25±0.31 91.05±2.22

Table 4: Node Classification Performance (Avg. Accuracy %(↑)± 95% Confidence Interval) on Benchmark Datasets. The bold,
purple and orange numbers denote the best, second best and third best performances, respectively.

Network Depth Analysis Table 12 reveals that ARGNN achieves optimal performance with L = 3 layers across all graph
types. Shallow networks (L = 1, 2) lack sufficient expressive power to capture complex geometric patterns, particularly evident
in heterophilic graphs where performance drops by 4.6% on Actor. Deeper networks (L > 3) suffer from over-smoothing
despite our geometric regularization, with performance degrading monotonically beyond L = 4. The computational cost scales
linearly with depth, making L = 3 an optimal trade-off. This aligns with our theoretical analysis in Theorem 1, where the
regularization strength α ∝ 1/L becomes insufficient for very deep networks.

Embedding Dimension Impact The embedding dimension analysis (Table 13) demonstrates diminishing returns beyond
d = 128. While d = 256 achieves marginally better performance (+0.1% on Cora), it doubles memory consumption without
meaningful gains. Lower dimensions (d = 32, 64) significantly underperform, particularly on heterophilic graphs where geo-
metric expressiveness is crucial. The sweet spot at d = 128 balances expressiveness with computational efficiency, supporting
our complexity analysis in Theorem 2.

Learning Rate Robustness Table 14 highlights ARGNN’s robustness across a wide range of learning rates when using de-
fault Adam optimizer parameters. The optimal learning rate η = 5e − 3 achieves fastest convergence (58-62 epochs) while
maintaining training stability. All configurations with η ∈ [1e − 4, 1e − 2] converge successfully within 100 epochs, demon-
strating the effectiveness of adaptive optimization for metric learning. Higher learning rates (η ≥ 5e − 2) cause occasional
instabilities due to the non-convex nature of metric learning on manifolds. The metric network benefits from slightly higher
learning rates than typical GNNs, as it needs to adapt the geometry more rapidly than the feature transformations.

Theory-Guided vs. Grid Search Our theoretical framework provides remarkably accurate hyperparameter guidance, achiev-
ing 99.5% of grid search performance while requiring 100× fewer experiments. The theory-guided settings—derived from our
convergence analysis (Theorem 1) and homophily-aware constants (Proposition 5.1)—consistently perform within 0.3-0.5% of
exhaustive search optima. This validates that our theoretical insights translate directly to practical benefits, enabling efficient
hyperparameter selection without extensive tuning.

Dropout and Regularization The comprehensive comparison (Table 15) reveals interesting regularization dynamics. The
optimal dropout rate of 0.3 is lower than typical GNN values (0.5-0.6), likely because the metric network MLP already provides
implicit regularization through geometric constraints. The marginal difference between dropout rates 0.3 and 0.5 (only 0.2-
0.3% performance gap) suggests that ARGNN is robust to regularization choices. This robustness stems from the inherent
regularization provided by our Ricci and smoothness constraints, which prevent overfitting at the geometric level.

Additional Ablation on Metric Initialization We also studied the impact of metric initialization strategies, see Table 16.

Computational Efficiency Analysis See Table 17. As we stated in the complexity analysis in Sec. 5 and C.3

E.4 Geometry Analysis by Graph Type
Learned Metric Statistics From our experiments, Homophily correlates negatively with both global curvature and NRMD
(Table 18). Heterophilic datasets require approximately 2–4 × larger curvature on average and exhibit up to 2× higher NRMD,
reflecting greater intra-layer metric heterogeneity, and our proposed ARGNN can effectively depict this kind of anisotropy.



Homophilic Heterophilic
Method Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin

GCN 87.60±0.22 80.84±0.84 91.21±0.06 43.62±0.76 84.02±0.18 57.93±0.26 90.01±0.06 84.87±0.95 76.66±2.60
GAT 88.35±0.10 79.87±0.68 90.62±0.18 44.76±0.18 85.50±0.62 58.59±0.01 90.87±0.62 87.65±0.01 77.77±4.32
GraphSAGE 84.44±0.73 84.05±0.51 89.45±0.10 54.43±0.01 83.99±0.71 57.07±0.93 92.49±0.36 86.11±0.19 90.13±2.76

HGCN 89.25±0.11 83.74±0.31 91.04±0.17 55.22±0.23 84.71±0.46 58.60±0.28 94.00±0.90 88.23±0.92 92.26±2.96
HGAT 88.56±0.01 84.09±0.74 91.29±0.15 54.49±0.22 86.10±0.47 59.26±0.30 91.93±0.88 88.48±0.14 92.48±2.80
κ-GCN 89.36±1.10 84.38±0.27 92.07±0.42 52.81±0.21 86.35±0.39 60.36±0.25 94.47±0.50 93.06±0.51 92.45±3.04
Q-GCN 89.82±0.30 86.93±0.89 91.10±0.10 50.68±0.52 85.91±0.81 61.18±0.72 91.87±0.06 90.54±0.57 92.00±3.28

H2GCN 94.35±0.72 85.28±0.64 91.48±0.40 56.36±0.96 84.52±1.76 62.56±1.60 93.92±4.80 90.47±3.78 92.73±2.33
GPRGNN 89.74±0.25 81.22±0.30 91.47±0.07 59.34±0.87 87.36±0.34 63.41±0.19 96.11±0.07 94.12±0.56 94.08±0.80
FAGCN 91.25±0.40 86.00±0.48 91.62±0.32 56.71±0.88 90.06±1.44 67.27±1.36 96.18±2.88 93.28±3.69 92.87±2.88

CUSP 94.73±0.12 89.19±0.02 95.39±0.36 56.41±0.09 90.61±0.49 68.22±0.20 95.83±0.58 95.08±0.07 95.17±0.64
GNRF 94.05±0.64 88.03±0.40 94.20±0.32 58.36±0.72 89.30±0.96 64.32±1.20 97.22±1.04 96.36±0.88 94.31±1.12
CurvDrop 93.25±0.56 87.02±0.48 92.96±0.40 58.80±0.80 88.64±1.12 64.78±1.04 96.12±1.92 96.02±1.44 93.20±1.52

ARGNN 97.59±0.46 92.54±0.87 96.19±0.17 57.68±0.74 91.12±1.02 70.11±1.16 98.68±1.27 96.30±0.25 96.84±0.54

Table 5: Node Classification Performance (Avg. AUROC %(↑) ± 95% Confidence Interval) on Benchmark Datasets. Bold,
purple and orange numbers denote best, second and third best, respectively.

Learned Geometry Visualization on All Benchmark Datasets Like the Figure4 in Section 6.4. We visualize all ARGNN
learned geometry via t-SNE embedding to both 2-D and 3-D space for the original graph topology and the node degree-
preserving rewriting topology via the ARGNN learned geodesic distance; the embedding with curvature visualization shows
adaptive geometry, respectively. See Figures. 6(Cora), 8(Pubmed), 9(Actor), 10(Chameleon), 11 (Squirrel), 12(Texas), 13(Cor-
nell).

Figure 6: Geometry learned by ARGNN on CORA.Left: Original graph topology colored by class under the layout from the
learned embedding projection to 2-D. Middle: Degree-preserving rewiring based on learned geodesic distances reveals clearer
class separation. Right: 3-D t-SNE embedding with curvature visualization shows adaptive geometry, the translucent hull is
coloured by the magnitude of the mean curvature (violet→flat, yellow→strongly curved)



Homophilic Heterophilic
Method Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin

GCN 80.61±0.31 71.33±1.16 88.08±0.08 36.62±1.06 73.34±0.25 49.13±0.36 80.11±0.08 74.43±1.31 64.85±3.58
GAT 81.45±0.15 69.27±0.98 87.40±0.24 37.65±0.26 75.18±0.73 49.89±0.01 81.17±0.73 78.21±0.02 61.70±5.95
GraphSAGE 77.48±1.00 73.51±0.70 86.33±0.15 42.23±0.01 72.48±1.03 49.22±1.28 82.91±0.50 77.06±0.26 86.38±3.80

HGCN 82.05±0.12 72.50±0.43 88.20±0.23 43.39±0.32 74.80±0.63 51.92±0.38 92.29±1.23 82.31±1.27 90.15±4.07
HGAT 81.26±0.01 73.43±0.99 88.46±0.21 42.62±0.30 76.94±0.65 53.02±0.40 89.13±1.15 82.61±0.20 90.38±3.85
κ-GCN 82.61±1.21 73.80±0.38 89.36±0.57 40.57±0.29 77.14±0.54 55.35±0.34 91.33±0.69 93.15±0.71 90.28±4.49
Q-GCN 83.07±0.42 76.27±0.99 88.38±0.14 38.94±0.72 76.09±1.11 56.57±0.99 90.19±0.08 90.29±0.78 89.95±4.51

H2GCN 89.53±0.99 76.31±0.88 88.93±0.55 44.10±1.32 74.83±2.42 57.55±2.20 92.77±6.60 90.42±4.62 90.70±3.31
GPRGNN 83.44±0.34 72.37±0.42 88.57±0.10 46.02±1.20 78.76±0.47 58.26±0.25 96.72±0.10 95.05±0.77 95.03±1.10
FAGCN 86.15±0.55 76.89±0.66 88.83±0.44 44.30±1.22 82.05±1.98 61.91±1.87 94.58±3.52 93.36±4.51 91.87±3.96

CUSP 90.13±0.17 79.01±0.02 92.99±0.50 50.21±0.10 83.03±0.67 62.18±0.28 96.43±0.79 95.58±0.10 95.60±0.88
GNRF 88.75±0.88 78.28±0.55 91.12±0.44 48.10±0.99 81.18±1.32 59.50±1.65 97.00±1.43 96.25±1.21 94.31±1.54
CurvDrop 87.15±0.77 77.58±0.66 90.12±0.55 47.00±1.10 80.03±1.54 60.61±1.43 95.92±2.31 96.72±2.19 93.45±2.09

ARGNN 92.59±1.25 79.65±1.51 93.48±0.45 51.18±0.98 83.31±1.40 63.16±1.60 99.70±1.75 97.15±0.36 95.71±1.67

Table 6: Node Classification Performance (Avg. AUPRC %(↑) ± 95% Confidence Interval) on Benchmark Datasets. Bold,
purple and orange numbers denote best, second and third best, respectively.

Figure 7: Geometry learned by ARGNN on CITESEER.Left: Original graph topology colored by class under the layout from
the learned embedding projection to 2-D. Middle: Degree-preserving rewiring based on learned geodesic distances reveals
clearer class separation. Right: 3-D t-SNE embedding with curvature visualization shows adaptive geometry, the translucent
hull is coloured by the magnitude of the mean curvature (violet→flat, yellow→strongly curved)



Homophilic Heterophilic
Method Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin

GCN 82.15±0.80 79.84±0.92 83.42±0.85 70.78±0.95 81.83±0.74 84.61±0.68 64.70±1.15 65.90±1.05 74.20±0.96
GAT 83.42±0.78 80.92±0.88 84.51±0.83 72.34±0.94 83.75±0.72 85.28±0.70 65.98±1.08 66.90±1.04 74.55±0.93
GraphSAGE 84.10±0.75 82.05±0.80 85.24±0.86 73.15±0.93 84.10±0.73 85.90±0.66 66.30±1.06 66.90±1.02 73.62±0.95

HGCN 86.48±0.70 84.92±0.78 86.98±0.72 73.82±0.91 85.35±0.70 86.25±0.64 65.82±1.12 67.12±1.07 74.82±0.92
HGAT 85.70±0.68 83.85±0.77 86.32±0.75 72.88±0.90 84.50±0.71 85.55±0.63 66.25±1.13 66.78±1.05 74.60±0.94
κ-GCN 87.15±0.64 85.52±0.69 87.48±0.70 73.94±0.89 85.90±0.68 86.52±0.62 66.92±1.05 67.35±1.02 75.22±0.93
Q-GCN 87.25±0.65 85.25±0.65 87.38±0.69 73.98±0.91 85.60±0.69 86.28±0.62 66.48±1.06 66.82±1.02 75.12±0.94

H2GCN 88.50±0.63 87.40±0.64 86.90±0.65 72.80±0.98 87.35±0.66 87.00±0.60 64.80±1.04 66.20±1.00 75.00±0.91
GPRGNN 86.88±0.65 86.50±0.66 86.70±0.65 72.95±0.92 86.70±0.68 86.40±0.63 66.90±1.04 67.20±1.01 74.80±0.90
FAGCN 88.00±0.64 87.10±0.65 87.90±0.64 73.50±0.91 87.10±0.67 86.80±0.59 65.80±1.10 67.50±1.02 74.90±0.92

CUSP 89.85±0.60 88.50±0.62 87.90±0.58 74.20±0.74 87.20±0.66 86.60±0.61 67.50±0.95 67.80±0.92 74.50±0.85
GNRF 87.70±0.65 86.90±0.64 87.10±0.60 73.50±0.75 86.90±0.67 86.10±0.62 66.70±0.98 66.90±0.95 73.30±0.88
CurvDrop 87.10±0.66 85.60±0.67 87.00±0.60 72.60±0.78 86.80±0.66 86.30±0.63 65.40±0.99 66.80±0.97 74.10±0.89

ARGNN 91.03±0.72 90.13±0.82 88.62±0.55 76.40±0.70 91.60±0.65 88.10±0.60 69.30±0.53 69.25±0.90 77.48±3.06

Table 7: Link Prediction Performance (Avg. AUROC % ↑ ± 95% CI) on Benchmark Datasets. Bold, purple and orange numbers
denote best, second and third best, respectively.

Figure 8: Geometry learned by ARGNN on PUBMED.Left: Original graph topology colored by class under the layout from the
learned embedding projection to 2-D. Middle: Degree-preserving rewiring based on learned geodesic distances reveals clearer
class separation. Right: 3-D t-SNE embedding with curvature visualization shows adaptive geometry, the translucent hull is
coloured by the magnitude of the mean curvature (violet→flat, yellow→strongly curved)



Homophilic Heterophilic
Method Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin

GCN 81.61±0.56 80.38±0.63 84.20±0.79 73.53±0.77 81.11±0.70 83.96±0.65 64.26±0.82 64.98±0.74 73.55±1.04
GAT 83.01±0.55 81.90±0.79 84.97±0.60 75.20±0.74 83.02±0.69 84.66±0.67 65.37±0.86 65.71±0.79 74.04±0.99
GraphSAGE 83.70±0.77 83.09±0.75 86.01±0.57 75.88±0.78 83.86±0.71 85.25±0.60 65.92±0.88 66.31±0.70 73.82±1.17

HGCN 85.92±0.76 85.41±0.81 87.30±0.68 76.77±0.80 84.91±0.66 85.76±0.64 65.54±0.90 66.73±0.82 74.87±1.18
HGAT 85.34±0.66 84.73±0.69 87.28±0.71 75.26±0.76 84.11±0.63 85.07±0.61 65.93±0.93 66.54±0.86 74.53±0.82
κ-GCN 86.11±0.77 86.54±0.70 87.71±0.68 76.89±0.82 85.49±0.74 86.02±0.59 67.91±0.74 68.41±0.77 75.98±0.97
Q-GCN 86.51±0.88 86.34±0.64 87.99±0.73 76.87±0.79 85.25±0.71 85.77±0.60 66.48±0.75 67.21±0.74 75.80±0.93

H2GCN 87.37±0.88 88.52±0.84 87.34±0.60 75.21±0.82 86.29±0.67 86.28±0.64 65.81±0.59 67.38±0.74 75.87±1.15
GPRGNN 86.12±0.62 87.31±0.81 87.05±0.66 75.86±0.80 85.89±0.64 85.62±0.67 66.12±0.77 67.66±0.76 75.53±1.05
FAGCN 87.06±0.87 88.20±0.57 88.29±0.59 76.12±0.75 86.78±0.71 86.59±0.60 66.81±0.71 68.44±0.70 75.89±0.99

CUSP 89.34±0.79 89.72±0.65 88.37±0.58 77.07±0.73 86.23±0.66 86.38±0.61 68.21±0.85 68.98±0.85 75.43±0.87
GNRF 87.44±0.84 88.09±0.87 88.01±0.60 76.41±0.78 86.26±0.64 85.96±0.61 67.86±0.82 68.36±0.70 74.25±1.20
CurvDrop 86.45±0.80 86.07±0.65 88.02±0.75 75.42±0.79 86.03±0.68 86.05±0.63 66.50±0.80 68.06±0.62 75.27±1.07

ARGNN 90.48±0.80 91.12±0.61 89.42±0.81 79.23±0.59 91.05±0.61 87.92±0.74 70.34±0.59 70.64±0.63 78.72±3.04

Table 8: Link Prediction Performance (Avg. AUPRC % ↑ ± 95% CI) on Benchmark Datasets. Bold, purple and orange numbers
denote best, second and third best, respectively.

Figure 9: Geometry learned by ARGNN on ACTOR.Left: Original graph topology colored by class under the layout from the
learned embedding projection to 2-D. Middle: Degree-preserving rewiring based on learned geodesic distances reveals clearer
class separation. Right: 3-D t-SNE embedding with curvature visualization shows adaptive geometry, the translucent hull is
coloured by the magnitude of the mean curvature (violet→flat, yellow→strongly curved)



Homophilic Heterophilic
Method Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin

GCN 84.77±0.50 83.23±0.42 86.17±0.62 75.87±0.73 84.17±0.71 88.14±0.69 68.10±0.78 68.42±0.72 77.63±2.15
GAT 85.65±0.71 83.98±0.63 86.61±0.58 77.04±0.70 85.01±0.66 88.71±0.71 68.56±0.76 68.95±0.69 78.11±2.02
GraphSAGE 86.18±0.52 85.32±0.71 87.64±0.72 77.81±0.74 85.32±0.69 89.27±0.68 68.84±0.79 69.13±0.76 77.84±2.10

HGCN 89.35±0.51 87.58±0.79 90.31±0.70 79.02±0.81 86.38±0.64 90.58±0.70 70.42±0.82 71.63±0.80 78.12±2.60
HGAT 88.50±0.73 87.01±0.54 89.76±0.73 77.51±0.73 85.58±0.60 89.88±0.68 70.07±0.83 70.92±0.77 77.70±1.72
κ-GCN 90.37±0.42 88.22±0.89 90.61±0.71 80.01±0.70 86.94±0.61 90.98±0.74 72.27±0.69 72.48±0.76 78.14±2.10
Q-GCN 90.03±0.47 87.75±0.74 90.65±0.63 79.12±0.72 86.71±0.63 90.72±0.76 71.53±0.51 71.75±0.80 77.63±2.20

H2GCN 91.08±0.68 90.78±0.61 90.57±0.67 79.47±0.81 90.68±0.58 91.08±0.70 70.43±0.67 70.83±0.56 77.81±2.16
GPRGNN 90.28±0.81 89.80±0.85 90.06±0.61 78.35±0.79 89.65±0.65 90.24±0.72 71.36±0.70 72.48±0.63 78.18±2.76
FAGCN 90.91±0.54 90.22±0.79 90.55±0.64 78.93±0.75 90.56±0.62 90.96±0.66 71.85±0.58 72.88±0.57 77.42±1.62

CUSP 93.09±0.48 91.83±0.53 91.33±0.46 79.50±0.70 90.56±0.65 91.04±0.68 72.27±0.43 73.09±0.43 77.11±2.08
GNRF 91.07±0.78 90.26±0.87 89.82±0.41 78.82±0.73 90.24±0.58 90.60±0.73 71.83±0.64 72.00±0.87 75.82±2.84
CurvDrop 89.79±0.82 88.43±0.67 90.36±0.77 78.14±0.74 89.94±0.61 90.13±0.70 70.30±0.54 72.28±0.64 77.14±2.50

ARGNN 94.47±0.80 92.75±0.61 92.09±0.85 81.08±0.70 95.06±0.58 91.87±0.68 73.91±0.61 74.18±0.70 80.71±1.63

Table 9: Link Prediction Performance (Avg. Accuracy% ↑ ± 95% CI) on Benchmark Datasets. Bold, purple and orange numbers
denote best, second and third best, respectively.

Variant d = 64 d = 128 d = 256

L = 2 L = 3 L = 2 L = 3 L = 2 L = 3

Cora {0.00576, 0.00112} {0.00384, 0.00112} {0.01151, 0.00158} {0.00768, 0.00158} {0.02303, 0.00224} {0.01535, 0.00224}
CiteSeer {0.00633, 0.00120} {0.00422, 0.00120} {0.01266, 0.00169} {0.00844, 0.00169} {0.02532, 0.00239} {0.01689, 0.00239}
PubMed {0.00025, 0.00037} {0.00017, 0.00037} {0.00051, 0.00053} {0.00034, 0.00053} {0.00102, 0.00075} {0.00068, 0.00075}
Actor {0.00209, 0.00143} {0.00139, 0.00143} {0.00419, 0.00202} {0.00279, 0.00202} {0.00839, 0.00286} {0.00559, 0.00286}
Chameleon {0.00224, 0.00173} {0.00149, 0.00173} {0.00448, 0.00244} {0.00298, 0.00244} {0.00895, 0.00346} {0.00597, 0.00346}
Squirrel {0.00032, 0.00174} {0.00021, 0.00174} {0.00063, 0.00245} {0.00042, 0.00245} {0.00126, 0.00348} {0.00083, 0.00348}
Texas {0.01767, 0.00104} {0.01178, 0.00104} {0.03535, 0.00147} {0.02357, 0.00147} {0.07070, 0.00208} {0.04714, 0.00208}
Cornell {0.01778, 0.00117} {0.01185, 0.00117} {0.03557, 0.00166} {0.02370, 0.00166} {0.07115, 0.00234} {0.04740, 0.00234}
Wisconsin {0.01007, 0.00107} {0.00671, 0.00107} {0.02014, 0.00152} {0.01342, 0.00152} {0.04027, 0.00215} {0.02683, 0.00215}

Table 10: Recommended {α∗, β∗} from Theorem 1 for ARGNN

Figure 10: Geometry learned by ARGNN on CHAMELEON.Left: Original graph topology colored by class under the layout
from the learned embedding projection to 2-D. Middle: Degree-preserving rewiring based on learned geodesic distances reveals
clearer class separation. Right: 3-D t-SNE embedding with curvature visualization shows adaptive geometry, the translucent
hull is coloured by the magnitude of the mean curvature (violet→flat, yellow→strongly curved)



Variant Cora CiteSeer PubMed Actor Chameleon Squirrel Texas Cornell Wisconsin
Regularization Ablations

w/o Ricci 85.2±0.92 73.1±1.38 86.9±0.28 40.9±1.03 68.5±1.40 51.2±1.59 90.1±1.75 88.7±0.36 88.9±2.57
w/o Smooth 85.0±0.88 72.8±1.32 86.5±0.27 39.9±1.15 67.8±1.52 50.5±1.73 89.5±1.91 88.1±0.40 87.2±2.81
w/o Both 83.8±0.97 71.5±1.45 85.2±0.30 38.1±1.27 65.9±1.68 48.8±1.90 87.3±2.10 86.2±0.44 85.1±3.08

Fixed Geometry Baselines
Euclidean 82.2±0.95 70.1±1.21 83.8±0.28 37.2±1.21 64.2±1.45 47.1±1.61 85.8±1.82 84.9±0.38 85.4±2.89
Hyperbolic 83.4±0.91 71.3±1.17 84.9±0.27 38.7±1.15 65.8±1.39 48.9±1.55 87.1±1.75 86.3±0.37 86.9±2.72
Spherical 82.8±0.93 70.8±1.19 84.3±0.28 38.1±1.18 65.1±1.42 48.2±1.58 86.5±1.78 85.7±0.38 86.2±2.78

Theory-Guided Hyperparameters
Theory α, β 86.5±0.86 74.6±1.28 88.3±0.26 42.0±0.95 70.1±1.29 52.8±1.48 92.0±1.62 90.5±0.34 90.3±2.38
ARGNN with α∗, β∗ 86.8±0.84 74.8±1.26 88.6±0.25 42.2±0.93 70.4±1.27 53.1±1.45 92.3±1.59 90.9±0.33 90.7±2.34

Table 11: Complete ablation study. Theory-guided hyperparameters achieve near-optimal performance, validating our analysis
in Sec. 5.

Cora Actor Wisconsin
Layers F1 Score Accuracy Time(s) F1 Score Accuracy Time(s) F1 Score Accuracy Time(s)

L = 1 82.4±0.92 83.1±0.88 0.82 37.6±1.12 39.2±1.05 1.24 84.2±2.68 85.3±2.51 0.45
L = 2 86.1±0.87 86.7±0.82 1.43 41.5±0.98 42.8±0.91 2.18 89.8±2.42 90.1±2.28 0.78
L = 3 (default) 86.8±0.84 87.3±0.79 2.05 42.2±0.93 43.4±0.87 3.12 90.7±2.34 91.2±2.20 1.11
L = 4 86.5±0.89 87.0±0.84 2.67 41.8±1.01 43.0±0.94 4.06 90.2±2.45 90.8±2.31 1.44
L = 5 85.9±0.94 86.5±0.89 3.29 40.9±1.08 42.2±1.02 5.00 89.1±2.58 89.7±2.43 1.77
L = 6 85.2±0.98 85.8±0.93 3.91 39.8±1.15 41.1±1.09 5.94 87.9±2.71 88.5±2.56 2.10

Table 12: Impact of network depth on performance and computational efficiency. Results show F1 score (%), accuracy (%), and
training time per epoch (seconds) with 95% CI from 10 runs. Optimal performance is achieved with L = 3 layers across all
datasets.

Figure 11: Geometry learned by ARGNN on SQUIRREL.Left: Original graph topology colored by class under the layout from
the learned embedding projection to 2-D. Middle: Degree-preserving rewiring based on learned geodesic distances reveals
clearer class separation. Right: 3-D t-SNE embedding with curvature visualization shows adaptive geometry, the translucent
hull is coloured by the magnitude of the mean curvature (violet→flat, yellow→strongly curved)



Cora Actor Wisconsin
Hidden Dim F1 Score Memory (MB) F1 Score Memory (MB) F1 Score Memory (MB)

d = 32 84.7±0.91 142 40.1±1.05 168 88.3±2.52 98
d = 64 85.9±0.88 284 41.4±0.99 336 89.7±2.41 196
d = 128 (default) 86.8±0.84 568 42.2±0.93 672 90.7±2.34 392
d = 256 86.9±0.85 1136 42.3±0.94 1344 90.8±2.35 784
d = 512 86.7±0.87 2272 42.0±0.97 2688 90.5±2.38 1568

Table 13: Effect of embedding dimension on performance and memory usage. While larger dimensions marginally improve
performance, d = 128 offers the best trade-off between accuracy and computational efficiency.

Cora Actor Wisconsin
Learning Rate F1 Score Conv. Epoch Stability F1 Score Conv. Epoch Stability F1 Score Conv. Epoch Stability

η = 1e− 4 83.2±0.95 93 ✓ 38.4±1.09 107 ✓ 86.9±2.58 97 ✓
η = 5e− 4 85.4±0.89 86 ✓ 40.8±1.01 88 ✓ 89.1±2.45 87 ✓
η = 1e− 3 86.3±0.86 72 ✓ 41.7±0.95 76 ✓ 90.2±2.36 74 ✓
η = 5e− 3 (default) 86.8±0.84 58 ✓ 42.2±0.93 62 ✓ 90.7±2.34 60 ✓
η = 1e− 2 86.5±0.87 45 ✓ 41.9±0.96 48 ✓ 90.4±2.37 46 ✓
η = 5e− 2 84.1±1.15 28 ∼ 39.2±1.28 31 ∼ 87.4±2.85 29 ∼
η = 1e− 1 79.8±1.68 18 × 35.6±1.72 20 × 82.3±3.45 19 ×

Table 14: Learning rate sensitivity analysis with default Adam parameters (β1 = 0.9, β2 = 0.999, ϵ = 1e − 8). Conv. Epoch
denotes convergence epoch. Stability: ✓=stable, ∼=occasional instability, ×=frequent divergence. The default η = 5e − 3
provides optimal balance between convergence speed and stability.

Figure 12: Geometry learned by ARGNN on TEXAS.Left: Original graph topology colored by class under the layout from the
learned embedding projection to 2-D. Middle: Degree-preserving rewiring based on learned geodesic distances reveals clearer
class separation. Right: 3-D t-SNE embedding with curvature visualization shows adaptive geometry, the translucent hull is
coloured by the magnitude of the mean curvature (violet→flat, yellow→strongly curved)



Theory-Guided Grid Search Optimal
Configuration Cora Actor Wisconsin Cora Actor Wisconsin

Metric Network Architecture
MLP depth=1 85.8±0.89 41.2±0.98 89.6±2.41 86.0±0.87 41.4±0.96 89.8±2.39
MLP depth=2 (default) 86.5±0.86 42.0±0.95 90.3±2.38 86.8±0.84 42.2±0.93 90.7±2.34
MLP depth=3 86.3±0.88 41.7±0.97 90.0±2.40 86.6±0.85 41.9±0.94 90.4±2.36

Dropout Rate
dropout=0.1 86.1±0.88 41.5±0.97 89.8±2.41 86.3±0.86 41.7±0.95 90.1±2.38
dropout=0.2 86.4±0.86 41.9±0.95 90.2±2.38 86.6±0.84 42.1±0.93 90.5±2.35
dropout=0.3 (default) 86.5±0.86 42.0±0.95 90.3±2.38 86.8±0.84 42.2±0.93 90.7±2.34
dropout=0.5 86.3±0.87 41.8±0.96 90.1±2.39 86.6±0.85 42.0±0.94 90.4±2.36
dropout=0.7 85.7±0.91 41.1±1.00 89.3±2.45 85.9±0.89 41.3±0.98 89.5±2.42

Weight Decay
wd=0 86.1±0.88 41.5±0.97 89.8±2.41 86.3±0.86 41.7±0.95 90.1±2.38
wd=1e-4 (default) 86.5±0.86 42.0±0.95 90.3±2.38 86.8±0.84 42.2±0.93 90.7±2.34
wd=5e-4 86.3±0.87 41.8±0.96 90.1±2.39 86.6±0.85 42.0±0.94 90.4±2.36
wd=1e-3 86.0±0.89 41.4±0.98 89.7±2.41 86.2±0.87 41.6±0.96 89.9±2.39

Table 15: Comprehensive hyperparameter analysis comparing theory-guided settings with grid search optimal values. Theory-
guided parameters consistently achieve within 0.3-0.5% of optimal performance, validating our theoretical framework.

Initialization Cora Actor Wisconsin

Random U(0.5, 1.5) 85.8±1.05 41.2±1.23 89.5±2.68
All ones (gi,k = 1) 86.3±0.91 41.8±1.08 90.2±2.45
Degree-based 86.5±0.88 42.0±0.98 90.5±2.39
Xavier-style 86.8±0.84 42.2±0.93 90.7±2.34

Table 16: Impact of metric initialization. Xavier-style initialization gi,k ∼ U(1− ϵ, 1 + ϵ) with ϵ =
√
3/d performs best.

Figure 13: Geometry learned by ARGNN on CORNELL.Left: Original graph topology colored by class under the layout from
the learned embedding projection to 2-D. Middle: Degree-preserving rewiring based on learned geodesic distances reveals
clearer class separation. Right: 3-D t-SNE embedding with curvature visualization shows adaptive geometry, the translucent
hull is coloured by the magnitude of the mean curvature (violet→flat, yellow→strongly curved)

F Discussion on Limitation and Borderline Effects
F.1 Diagonal Metric Tensor Simplification
While ARGNN demonstrates strong empirical performance through learnable diagonal metric tensors, this design choice repre-
sents a deliberate trade-off between expressiveness and computational efficiency. The diagonal parameterization Gi = diag(gi)
constrains the metric to axis-aligned anisotropy, potentially limiting the model’s ability to capture certain geometric structures:

• Geometric Expressiveness: Full metric tensors Gi ∈ SPD(d) could capture arbitrary local orientations and anisotropic



Training Time (s/epoch) Memory Usage (GB)
Method Cora CiteSeer PubMed Cora CiteSeer PubMed

GCN 0.12 0.15 0.45 0.8 1.0 2.1
GAT 0.18 0.22 0.68 1.2 1.5 3.2
HGCN 0.25 0.31 0.89 1.5 1.8 3.8
CUSP 0.35 0.42 1.25 2.1 2.5 5.2
GNRF 0.28 0.35 1.02 1.8 2.2 4.5

ARGNN 0.22 0.28 0.82 1.4 1.7 3.6

Table 17: Computational Efficiency Analysis

Dataset Avg.κ Avg.NRMD H
Cora 0.1795 0.0757 0.825
Citeseer 0.1405 0.0445 0.718
PubMed 0.2603 0.0924 0.792
Actor 0.6087 0.1476 0.215
Chameleon 0.3217 0.0623 0.247
Squirrel 0.3972 0.0605 0.217
Texas 0.3794 0.1135 0.057
Cornell 0.5850 0.1466 0.301
Wisconsin 0.8449 0.3173 0.196

Table 18: Overall curvature κ and mean NRMD per dataset (higher Avg. κ / NRMD⇒ larger geometric adaptation). Homophily
H is also shown in Table 1.

scaling, enabling richer geometric representations. The additional d(d−1)
2 off-diagonal parameters per node would allow

modeling of correlated feature dimensions and rotational geometry.
• Computational Complexity: However, full tensors incur O(d3) complexity for metric operations and O(|V|d2) memory

overhead. For typical GNN dimensions (d = 128), this represents a 128× increase in metric computation cost. Low-rank
factorizations Gi = LiL

T
i with Li ∈ Rd×r offer a middle ground but still require O(dr2) operations.

• Optimization Challenges: Non-diagonal metrics cannot leverage our efficient conformal geometry framework (Section 4),
requiring expensive SPD manifold projections and Riemannian optimization. The increased parameter space also exacer-
bates overfitting on small graphs.

We view exploring full or low-rank metric tensors as valuable future work, particularly for applications requiring fine-grained
geometric modeling. However, this extension lies beyond the current scope, as our diagonal approach already achieves state-
of-the-art performance while maintaining computational efficiency comparable to standard GNNs.

F.2 Statements of Broader Impact
This work introduced ARGNN, a novel framework that learns continuous, anisotropic metric tensor fields to capture the ge-
ometric diversity inherent in real-world graphs. This advancement possibly has broader impacts for scientific and societal
benefits, such as enhancing community network analysis and advancing biomedical research by its node and link prediction
power. Apart from offering possible scientific and societal benefits, to the best of our knowledge, our research works do not
involve ethical constraints or religious and political restrictions.
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