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ABSTRACT

The high costs and risks involved in extensive environment interactions hinder the
practical application of current online safe reinforcement learning (RL) methods.
While offline safe RL addresses this by learning policies from static datasets, the
performance therein is usually limited due to reliance on data quality and chal-
lenges with out-of-distribution (OOD) actions. Inspired by recent successes in
offline-to-online (O2O) RL, it is crucial to explore whether offline safe RL can
be leveraged to facilitate faster and safer online policy learning, a direction that
has yet to be fully investigated. To fill this gap, we first demonstrate that naively
applying existing O2O algorithms from standard RL would not work well in the
safe RL setting due to two unique challenges: erroneous Q-estimations, resulted
from offline-online objective mismatch and offline cost sparsity, and Lagrangian
mismatch, resulted from difficulties in aligning Lagrange multipliers between of-
fline and online policies. To address these challenges, we introduce Marvel, a
novel framework for O2O safe RL, comprising two key components that work in
concert: Value Pre-Alignment to align the Q-functions with the underlying truth
before online learning, and Adaptive PID Control to effectively adjust the La-
grange multipliers during online finetuning. Extensive experiments demonstrate
that Marvel significantly outperforms existing baselines in both reward maximiza-
tion and safety constraint satisfaction. By introducing the first policy-finetuning
based framework for O2O safe RL, which is compatible with many offline and on-
line safe RL methods, our work has the great potential to advance the field towards
more efficient and practical safe RL solutions.

1 INTRODUCTION

Safe reinforcement learning (safe RL) (Gu et al., 2022; Garcıa & Fernández, 2015), prioritizes not
only the maximization of rewards but also the adherence to specific safety constraints, enhancing its
applicability in real-world scenarios. For example, an autonomous vehicle must reach its destination
without exceeding a preset fuel limit. However, solving safe online RL from scratch in fields such
as robotics (Brunke et al., 2022; Kiran et al., 2021), and healthcare (Yu et al., 2021; Qayyum et al.,
2020) is often prohibitive, due to substantial risks and costs caused by the need for extensive interac-
tions with the environment. To address this, offline safe RL (Achiam et al., 2017; Zheng et al., 2024;
Ray et al., 2019) has been introduced, enabling the derivation of safe policies from a static dataset
(Liu et al., 2023b) without the need for real-time environmental interaction. Nonetheless, offline
safe RL faces its own set of limitations: it typically shows limited performance (Ghosh et al., 2022),
heavily relies on the quality of the offline dataset, and suffers from the impact of out-of-distribution
(OOD) actions, restricting its effectiveness across varying scenarios.

The pretraining-and-finetuning paradigm is a well-established strategy in the fields of computer vi-
sion and natural language processing, for enabling fast and sample-efficient online learning based
on offline pretrained models, particularly with the recent advances in large language models. Fol-
lowing a similar line, offline-to-online reinforcement learning (O2O RL) in the unconstrained case
(Nair et al., 2020; Wang et al., 2024; Zhang et al., 2023b) and imitation learning (Yue et al., 2024;
Ross et al., 2011) has recently gained prominence. These approaches utilize policies (including
Q-functions) derived from offline RL or offline imitation learning, along with offline datasets, to
expedite the process of online finetuning. This strategy effectively avoids the extensive environ-
mental interactions required in training policies from scratch. Thus motivated, a key insight is that
leveraging the pretraining-and-finetuning paradigm can also potentially facilitate more efficient and
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Figure 1: The “steps” on the x-axis represent the number of policy gradient updates (i.e., optimizer
updates). For each gradient update, the agent interacts with the environment for 3 episodes. This
convention is followed in the subsequent figures. In (a), we evaluate these methods in the BallCircle
environment from Bullet Safety Gym (Gronauer, 2022), setting the cost limit to 20. As shown,
although “Warm Start” begins with a reasonably good initial policy, it performs poorly and overly
conservatively, even worse than “From Scratch” in which the policy and Q-functions are initialized
randomly. This result suggests that directly finetuning the pretrained policy and Q-functions may
actually hinder online learning. In contrast, “Marvel” achieves impressive results, finding a policy
with much higher return in just a few online steps while adhering to the cost limit. In (b), t-SNE
visualization of state vectors in the environment, reduced to 2D space. Each point represents a state,
with rewards uniformly distributed across the space, while costs are sparse, appearing as isolated
points or clusters, reflecting their limited association with states.

practical online safe RL, which however has not been fully explored in the literature. To fill this gap,
we seek to answer the following question:

Can we design an effective offline-to-online approach for safe RL to address the limitations of both
online safe RL and offline safe RL, thereby enabling fast online safe policy learning?

However, achieving this is highly nontrivial, and simply applying existing O2O algorithms in con-
ventional RL would not work well here due to unique challenges in safe RL. In Fig. 1 (a), ‘Warm
Start’ refers to using the offline pretrained policy and Q-networks directly initialize an online safe
RL algorithm. ‘From Scratch’ refers to purely online safe RL training. As illustrated, directly fine-
tuning the offline pretrained policy and Q-functions by using standard online safe RL often results
in suboptimal performance and, in some cases, complete training failures.

The reasons behind this phenomenon are as follows: a) Erroneous Q-estimations resulted from ob-
jective mismatch and offline cost sparsity. In order to avoid explorations beyond the offline data and
reduce the extrapolation errors, offline safe RL algorithms typically introduce additional regulariza-
tions in the objective function to push up the cost estimates of OOD actions, e.g., VOCE (Guan et al.,
2024) and CPQ (Xu et al., 2022), leading to a different overall objective from standard online safe
RL. More critically, the majority of state-actions in offline datasets for safe RL usually are safe with
zero cost (Fig. 1 (b)), resulting in a pretrained cost Q-function that predicts extremely low cost for
most in-distribution (IND) state-actions. By erroneously giving high values for OOD state-actions
and low values for IND state-actions, the pretrained cost Q-function will conservatively force the
online finetuning to stay in the state-action space similar to offline dataset and be reluctant to ex-
plore (e.g., cost of “Warm Start” in Fig. 1). b) Mismatch of Lagrange multipliers. Many online safe
RL algorithms (Stooke et al., 2020; Chow et al., 2018a; Achiam et al., 2017) solve the constrained
optimization problem based on the primal-dual approach, which requires a synchronous updating
of Lagrange multipliers. Nonetheless, initial values for these multipliers that are matching with the
offline policies cannot be obtained from offline safe RL precisely, such that using traditional dual as-
cent methods to update the Lagrange multipliers may result in slow learning during the online phase
even with accurate estimated Q-functions, ultimately degrading the performance of the learned pol-
icy. In this work, we seek to design an effective O2O framework for safe RL by addressing these
two challenges above.

The main contribution of this work lies in the development of the warM-stArt safe Reinforcement
learning with Value prE-aLignment (Marvel) framework, which includes two key components:
Value Pre-alignment (VPA) and Adaptive PID Control (aPID). More specifically, VPA adjusts the
pretrained Q-functions by re-evaluating the offline policy before online learning based on the of-
fline data only, so as to align the distribution of estimated Q-values with that of true Q-values under
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the online learning objective for the offline policy. On one hand, by optimistically estimating re-
wards and pessimistically estimating costs, VPA promotes active exploration during online learning
while maintaining the cost below the limit; on the other hand, the active exploration of high-reward
state-actions inevitably increases the risk of exploring high-cost state-actions, amplifying the de-
mand of appropriate Langrange multipliers in online finetuning to penalize the cost violations. To
jointly handle this risk and the multiplier mismatch problem, instead of directly finding the best
initial multipliers, we take an alternative route by seeking to quickly adapt the multipliers to the
right values. Particularly, We introduce aPID, an adaptive PID control mechanism that adjusts the
Lagrange multipliers based on cost violations, where PID (Proportional-Integral-Derivative) con-
trol is a widely used feedback control technique that combines proportional, integral, and derivative
components to minimize errors effectively. This approach can quickly stabilize the online finetun-
ing compared to standard dual ascent-based approaches in online safe RL. Extensive experimental
results demonstrate the superior performance of our framework over multiple baseline methods on
different benchmarks, i.e., Marvel can quickly find a safe policy with the best reward by using only
a few online interactions. To the best of our knowledge, Marvel is the first framework that finetunes
pretrained offline policy to facilitate fast online learning for safe RL. More importantly, by only
leveraging pretrained offline policy/Q-functions and controlling the Lagrange multipliers update,
Marvel is compatible with and ready to plug in a lot of state-of-the-art (SOTA) offline and online
safe RL approaches.

2 PRELIMINARIES

Constrained Markov Decision Process. We consider a standard constrained Markov Decision
Process (CMDP) (Sutton, 2018; Altman, 2021), defined by a tuple (S,A, T,R,C, γ, η, cth). Here
S ⊆ R

n represents the state space, A ⊆ R
m denotes the action space, T : S × A × S → [0, 1]

is the transition probability function, R : S × A → [0, Rmax] is the reward function, and
C : S × A → [0, Cmax] is the cost function. γ ∈ [0, 1] is the discount factor, η represents the
initial state distribution, and cth is the cost threshold that sets the limit on cumulative costs for the
policy. A policy π : S → P(A) is a mapping from states to a probability distribution over actions,
where π(a|s) denotes the probability of selecting action a in state s. In this work, we consider
parameterized policies πθ, where θ denotes the parameters of the policy, typically represented by
neural networks in deep RL. Given a policy π, its cumulative reward under policy π is defined as
R(π) = Eτ∼π [

∑∞
t=0 γ

tr(st, at)], where τ = (s0, a0, s1, a1, . . . ) is a trajectory induced by policy
π, and the expectation is taken over the distribution of trajectories. Similarly, its cumulative cost is
defined as C(π) = Eτ∼π [

∑∞
t=0 γ

tc(st, at)]. The Q-function, for a given policy π, is defined as the
expected cumulative reward starting from a state-action pair (s, a) and thereafter following policy
π: Qπ(s, a) = Eτ∼π [

∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a]. Similarly, the cost Q-function Qπ
c (s, a)

is defined as the expected cumulative cost starting from the same state-action pair (s, a) and there-
after following policy π: Qπ

c (s, a) = Eτ∼π [
∑∞

t=0 γ
tc(st, at) | s0 = s, a0 = a]. In the context of

CMDP, the goal is to find an optimal policy π∗ that maximizes the cumulative reward R(π), subject
to the constraint that the cumulative cost C(π) does not exceed a predefined threshold cth. This can
be formulated as the following constrained optimization problem:

maxπ R(π), s.t. C(π) ≤ cth. (1)

To solve this, a common approach is to apply the Lagrangian relaxation method (Ray et al., 2019),
where a Lagrange multiplier λ is introduced to enforce the cost constraint. This leads to the follow-
ing primal-dual optimization formulation:

minλ≥0 maxπ [R(π)− λ(C(π)− cth)] (2)

which can be solved by iteratively updating the policy π and the Lagrange multiplier λ. Specifically,
λ is updated by:

λt+1 = λt + αλ(C(πt)− cth) (3)

where αλ is the learning rate.

Online Safe RL. Primal-dual based algorithms have shown great effectiveness and superior perfor-
mance in the literature for online safe RL, which can combine a wide range of online unconstrained
RL algorithms with the Lagrange multiplier method to create online safe RL algorithms. Without
loss of generality, we consider SAC-lag (Ray et al., 2019) as the online algorithm, a primal-dual
based algorithm that integrates the widely used SAC algorithm (Haarnoja et al., 2018) with the La-
grange multiplier method. More specifically, SAC minimizes the following objectives for the actor
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(policy) and the critic (Q-function), respectively:

LSAC
π (θ) = Es∼dEa∼πθ(·|s)[α log πθ(a|s)−Q(s, a;µ)] (4)

LSAC
Q (µ) = E(s,a,s′)∼d[(Q̂(s, a;µ)− y(r, s′))2] (5)

where y(r, s′) = r + γEa′∼πθ(·|s′)[Q̂(s, a′;µ′) − α log π(a′|s′)], Q(s, a;µ) is parameterized by µ,

Q̂(s, a;µ′) is the target reward Q-function parameterized by µ′, d represents the data distribution in
the replay buffer, and α > 0 is some constant. To be applied in online safe RL, SAC-lag adapts SAC
by using the Lagrangian method, resulting in the policy optimization objective as follows:

LSAC
π (θ) = Es∼dEa∼πθ(·|s)[α log πθ(a|s)− (Q(s, a)− λQc(s, a))] (6)

The optimization of the Q-functions for both reward and cost in SAC-lag is with Eq. (5) in SAC.

Offline Safe RL. Offline safe RL algorithms typically push up the cost estimations of OOD actions
to avoid exploration beyond the offline dataset D. Considering the comprehensive performance
across various environments, in this paper we consider the SOTA Lagrangian-based algorithm for
offline learning, namely CPQ (Xu et al., 2022). More specifically, CPQ first generates OOD actions
via a conditional variational autoencoder (CVAE). Then, the cost of the generated OOD actions is
increased by minimizing the following loss function for cost critic (Qc-function):

LCPQ
Qc

(µc) = E(s,a,s′)∼d

[

(

Qc(s, a;µc)−
(

r + γEa′∼πθ(·|s
′)[Q̂c(s, a

′;µ′
c)]

))2
]

−ψEa∼d,a∼ν [Qc(s, a;µc)]

where Qc(s, a;µc) is parameterized by µc, Q̂c(s, a;µ
′
c) is the target cost Q-function parameterized

by µ′
c, ν represents the distribution of OOD actions generated by the CVAE. Additionally, to ensure

both constraint safety and in-distribution safety, CPQ updates the reward critic (Q-function) using
only state-action pairs that satisfy the cost threshold l:

LCPQ
Q (µ) = E(s,a,s′)∼d

[

(

Q(s, a;µ)−
(

r + γEa′∼πθ(·|s
′)[I(Qc(s

′, a′;µc) < l)Q(s, a′;µ)]
))2

]

where I(·) is the indicator function, used to filter state-action pairs that satisfy the safety constraints.
The policy loss function is given by:

LCPQ
π (θ) = −Es∼d

[

Ea∼πθ(·|s)[I(Qc(s, a;µc) < l)Q(s, a, µ)]
]

(7)

Similarly, when maximizing the reward, the policy only considers state-action pairs that meet the
safety constraints. By assigning a higher cost to OOD actions, CPQ mitigates the OOD problem
while meeting safety constraints.

O2O Safe RL. To the best of our knowledge, Guided Online Distillation (Li et al., 2024) is the
only work studying O2O safe RL, which leverages a large-scale DT based on GPT-2 (Radford
et al., 2019) as a guide policy to accelerate online learning, by following the idea of Jump-start
RL (Uchendu et al., 2023). However, how to achieve fast safe online learning by finetuning a pre-
trained policy is still not clear. Our work seeks to fill this gap and serves as an initial attempt to
spur more interesting studies on policy-finetuning based O2O safe RL without using large models.
A more detailed description of related work is delegated to Appendix B.

In this work, our objective is to enable faster and safer policy learning with standard online safe RL
methods, by finetuning the policy and Q-functions pretrained using offline safe RL. In principle, any
offline safe RL algorithms that output an offline policy and Q-functions can be used here for offline
training.

3 WARM-START SAFE RL WITH VALUE PRE-ALIGNMENT

As demonstrated in Fig. 1, naively finetuning the offline policy for safe RL would not work well
and the finetuned policy shows clear “inertia” in improving its performance: within a long period
after online finetuning starts, its cost stays far below the limit, but its reward is quite low and not
improving at all. This implies that such a strategy automatically “inherits” the conservatism from
offline safe RL and is reluctant to actively explore in order to fully utilize the safe gap below the
cost limit. In this section, we delve into the failure of naive finetuning, which points to two unique
challenges for policy finetuning in O2O safe RL, i.e., erroneous offline Q-estimations and Lagrange
multiplier mismatch. To address these problems, we propose a framework for O2O safe RL, namely
warM-stArt safe Reinforcement learning with Value prE-aLignment (Marvel).

3.1 PRE-FINETUNE PHASE

Challenge I: Erroneous Q-estimations resulted from objective mismatch and offline cost sparsity. By
learning from a fixed dataset without online environment interactions, offline safe RL typically suf-
fers from large extrapolation errors for OOD actions beyond the support of the dataset. A general
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principle to handle this is to penalize the reward/cost estimations for the OOD actions in such a
way that risky explorations outside the dataset are discouraged. Particularly, the optimization of
Q-functions in offline safe RL can be captured as follows:

Offline (Q): minE(s,a,r,s′)∼D

[

(

Q(s, a)−

(

r + γE

[

max
a′

Q(s′, a′)

]))2
]

+ ψ · P(s, aOOD),

Offline (Qc): minE(s,a,c,s′)∼D

[

(

Qc(s, a)−

(

c+ γE

[

max
a′

Qc(s
′
, a

′)

]))2
]

− ψc · Pc(s, aOOD).

Here ψ · P(s, aOOD) and ψc · Pc(s, aOOD) are the penalty terms. For instance, penalties are intro-
duced in VOCE (Guan et al., 2024) so as to minimize the expected reward Q-values and maximize
the expected cost Q-values for OOD actions. CPQ (Xu et al., 2022) increases the perceived cost of
OOD actions during Q-function and policy updates, while keeping cost below the threshold.

In contrast, the optimization of Q-functions in online safe RL is standard without any penalty terms:

Online (Q): minE(s,a,r,s′)∼D

[

(

Q(s, a)−

(

r + γE

[

max
a′

Q(s′, a′)

]))2
]

,

Online (Qc): minE(s,a,c,s′)∼D

[

(

Qc(s, a)−

(

c+ γE

[

max
a′

Qc(s
′
, a

′)

]))2
]

.

Obviously, Offline and online safe RL have distinct objectives for Q-functions, meaning pretrained
Q-functions may not accurately estimate values for state-action pairs encountered during online
interactions. As a result, offline policies tend to act overly conservatively, exploring only low-cost
regions during online finetuning. However, effective online learning requires identifying state-action
pairs with both high rewards and low costs, which necessitates exploring areas with potentially
higher costs. This objective mismatch is even more pronounced in O2O safe RL due to the additional
Q-function for cost estimation. The sparsity of offline cost leads to a pretrained cost Q-function that
predicts low costs for IND state-actions, further limiting exploration during finetuning.

Solution: Value Pre-Alignment. To address the first challenge, a naive approach is to reevaluate the
offline policy in online environments using Monte Carlo simulations, which however introduces ad-
ditional interaction costs. Motivated by the recent advances in Off-Policy Evaluation (OPE) (Uehara
et al., 2022), we borrow the idea from Fitted Q Evaluation (Hao et al., 2021) to align the offline Q-
functions with the online learning objectives for the offline policy, by using the offline dataset before
online policy finetuning. In particular, we seek to minimize the following objectives for the reward
and cost Q-functions by starting from the pretrained Q-functions from offline learning, respectively:

LV PA
Q (µ) = ED

[

L2

(

Q(s, a;µ)− (r + γEa′∼πθ(·|s
′)[Q̂(s′, a′;µ′)− αV PA log πθ(a

′|s′)])
)]

(8)

LV PA
Qc

(µc) = ED

[

L2

(

Qc(s, a;µc)− (c+ γEa′∼πθ(·|s
′)[Q̂c(s

′
, a

′;µ′
c)− α

V PA
c log πθ(a

′|s′)])
)]

, (9)

where D represents the distribution of (s, a, s′) in the offline dataset, and L2 denotes the MSE loss.

µ denotes parameters of Q function and Q̂ is the target Q function. Entropy terms are introduced in
VPA to 1) optimistically estimate rewards to encourage greater exploration during the early stages of
finetuning and 2) pessimistically estimate costs to ensure the agent remains cautious about the cost
threshold during exploration. Specificity, the entropy terms can result in both higher rewards and
costs for state-action pairs with high entropy, where the pretrained policy is ‘uncertain’. We set the
coefficient α for the Qc-network lower than αc for the Q-network to encourage higher exploration
during the agent’s finetuning process. During the initial stage of online finetuning, the agent priori-
tizes exploring these high-reward areas, even at a high cost, as reward maximization dominates due
to the small Lagrangian coefficient. This process helps refine the Q values through interactions. The
offline policy remains unchanged during VPA to preserve the knowledge extracted from offline data.
As a result, the agent can potentially explore high cost areas, without being overly conservative.

To characterize the performance of VPA in correcting the Q-estimations, we leverage Spearman’s
rank correlation coefficient, which measures the strength and direction of a monotonic relationship
between two ranked variables. The reason is that the relative ranking of Q-values are more important
than the absolute values for policy update. Specifically, given a dataset collected by rolling out the
offline policy in the environment, we compare the ranking of learned reward/cost Q-values before
and after VPA with that of estimated actual return by using Monte Carlo simulations. A large Spear-
man’s rank correlation coefficient implies that the distribution of learned Q-values is more aligned

5



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2025

Table 1: The Spearman’s rank correlation coefficients of the Q-value and Qc-value are evaluated in
the BallCircle and CarRun environments. “Random” refers to rollouts where the offline policy starts
from a randomly initialized state-action pair (may not in the offline dataset), while “Dataset” refers
to rollouts starting from a state-action pair randomly selected from the offline dataset.

VPA
BallCircle CarRun

random dataset random dataset

Q-value
before -0.2387 -0.3852 -0.1143 -0.5078
after 0.5661 0.8278 -0.0125 0.8314

Qc-value
before -0.2521 0.1725 -0.2431 -0.4327
after 0.3579 0.8252 0.1254 0.4937

Figure 2: Comparison of online finetuning performance after VPA with two different initial values
of the Lagrange multiplier. In ‘VPA w/o init’, the initial value is set to 0, whereas we initialize
Lagrange multipliers with a good value found empirically (0.65 in BallCircle and 0.5 in CarRun) in
‘VPA w/ init’. The multiplier is then updated using the standard dual ascent method.

with the distribution of true Q-values. As shown in Table 1, it is evident that the coefficient increases
significantly after VPA for both reward and cost Q-values, no matter if the offline policy rolls out
from a seen state-action pair in the offline dataset or from a randomly selected OOD state-action
pair. This clearly demonstrates the effectiveness of VPA in aligning the pretrained Q-functions.

3.2 FINETUNE PHASE

Challenge II: Lagrange multiplier mismatch. Conventional value-based online safe RL relies on up-
dating Lagrange multipliers alongside the policy and Q-functions during training, so as to push the
overall cost below the limit while striking a right balance between maximizing the reward and min-
imizing constraint violations. While the policy and Q-functions can benefit from offline pretraining
for a warm start, offline safe RL algorithms like CPQ (Xu et al., 2022) and BEAR-lag (Ray et al.,
2019) cannot accurately estimate Lagrange multipliers with regularizing strengths matching with
the cost of the offline policy, e.g., a small Lagrange multiplier is not power enough to push down the
policy cost, while a large multiplier prevents active exploration of high-reward state-action pairs.
For instance, in the BallCircle environment, the offline pretrained Lagrange multiplier value ob-
tained using the BEAR-lag algorithm is approximately 1500, whereas during online finetuning, the
SAC-lag requires a value of only about 0.65. The gap between these values clearly precludes the
direct use of offline pretrained Lagrange multipliers. Improper initialization can lead to extensive
constraint violations or training stagnation, an issue we term as the Lagrange multiplier mismatch.

On the other hand, as VPA promotes active exploration of high-reward state-actions by optimistically
estimating rewards and pessimistically estimating costs, it inevitably increases the risk of exploring
high cost state-actions, which in turn amplifies the need for appropriate Lagrange multipliers to
quickly reduce the constraint violations. Figure 2 shows the online finetuning performance com-
parison after VPA in two environments between 1) empirically setting a good initial value for the
Lagrange multiplier and 2) setting it to zero, where the traditional dual ascent method is used to
update the multiplier. It is clear that a good initial multiplier can manage the cost very well, while
the policy with a very small initial multiplier value suffers from large constraint violations and takes
a much longer time to reduce the cost below the limit. The results also imply that although VPA
aligns the distributions of Q-values, it may introduce high costs for online finetuning, which can be
addressed with an appropriate initial Lagrange multiplier.

Solution: Adaptive PID Control. Clearly, finding a good initial value of the Lagrange multiplier can
jointly address the mismatch problem and mitigate the potential risk of VPA. However, achieving
this through experimental tuning is challenging, and currently, there is no theory to accurately predict
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these values. To address this problem, instead of directly finding the best initial value, we take an
alternative path by quickly adapting the Lagrange multipliers in an effective manner. Motivated by
the recent success of leveraging PID control for updating the multiplier in online safe RL (Stooke
et al., 2020; Yuan et al., 2022; Zhou et al., 2021), we introduce an adaptive PID control approach
specifically tailored for O2O safe RL.

More specifically, compared to standard dual ascent in Eq. (3), PID control (Johnson & Moradi,
2005) offers a different approach to updating the Lagrange multiplier in the following way:

λt+1 = λt +Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

(10)

where e(t) captures the cost violation (errors) at time t, namely the cumulative cost difference from
the policy rollout compared to the cost threshold. Here, Kp is the proportional gain, corresponding
to the instantaneous value of the error; Ki is the integral gain to characterize the accumulation of
past errors andKd is the differential gain corresponding to the rate of change of the error. In practice,
the integral and differential are usually discretized as follows:

∫ t

0

e(τ)dτ ≈

t
∑

k=0

e(k)∆t,
de(t)

dt
≈
e(t)− e(t− 1)

∆t
.

By taking the rate of change into consideration, the PID control can be especially useful in scenarios
where costs fluctuate significantly, which however is not sufficient to handle the unique challenges in
O2O safe RL. Specifically, to address the objective mismatch and the over conservatism exacerbated
by sparse costs in the offline learning, VPA encourages active exploration but increases the risk of
high cost. This requires a stronger control strength at the early stage of online finetuning to quickly
reduce the cost. As training progresses and the cost is approaching to the limit, a weaker control
strength is however preferred to stabilize the learning and keep the cost below the limit without large
oscillations. The need of dynamic strength points to the need of adaptive control for O2O safe RL.

Towards this end, we propose an adaptive PID control approach for updating the Lagrange multiplier,
which dynamically adjusts the PID control parameters during online finetuning based on the incurred
policy cost over a time window of n steps:

Kp ← clip
(

Kp ·
(

1 + α · tanh
(

c̄−cth
c̄

))

,Kpmin ,Kpmax

)

, (11)

Ki ← clip
(

Ki ·
(

1 + β · c̄−cth
c̄

)

,Kimin ,Kimax

)

, Kd ← clip
(

Kd ·
(

1 + γ σc

c̄

)

,Kdmin
,Kdmax

)

(12)

where the average cost c̄ = 1
n

∑n

i=1 ci, the standard deviation σc =
√

1
n−1

∑n

i=1(ci − c̄)
2, α, β

and γ are hyper-parameters. The design rationale is as follows: 1) By introducing the non-linear
hyperbolic tangent function to adjust Kp, the Lagrange multiplier can respond quickly to large
errors while avoiding frequent adjustments and reducing oscillations when the cost is close to the
limit. When the average cost exceeds the limit (c̄ > cth), Kp and Ki are increased to enhance the
sensitivity of the PID controller to accelerate error correction. On the other hand, when the average
cost is below the limit (c̄ < cth), Kp and Ki are decreased to prevent overreaction of the PID
controller, thus avoiding unnecessary oscillations and ensuring stability. By dynamically adjusting
Kp and Ki in this manner, the controller adapts its low-frequency gain to match the current error
magnitude, balancing speed and stability in error correction. 2) Because Kd captures the volatility
of cost changes, it will be adjusted using the standard deviation σc of the cost over the period to
stabilize cost control. A larger σc indicates greater fluctuations in the error signal, suggesting the
presence of high-frequency disturbances or noise. Kd will be correspondingly increased, such that
the controller can enhance its damping characteristics, adding phase lead and improving transient
response. This helps mitigate the effects of sudden changes and stabilize the system.

In a nutshell, combining VPA and aPID leads to our proposed framework Marvel: 1) Given the pre-
trained policy and Q-functions from offline learning, Marvel first applies VPA to align the pretrained
Q-functions for both reward and cost using the offline dataset; 2) Marvel next utilizes Lagrangian-
based online safe RL algorithms to further finetune both the pretrained policy and aligned Q-
functions, by using aPID to update the Lagrange multipliers. We present the algorithmic frame-
work of Marvel in Appendix A. Here VPA and aPID work in concert to guarantee the superior
performance of Marvel: aPID addresses the Lagrange multiplier mismatch problem and quickly
pushes down the potential high cost resulted by VPA, whereas VPA facilitates active exploration of
high-reward state-action pairs and the usage of the pretrained policy as a warm-start for fast online
finetuning with aPID control.
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4 EXPERIMENTS

In this section, we conduct extensive experiments to verify the effectiveness of our approach, aiming
to answer the following questions: 1) RQ1: How does our method compare with naive finetuning
and other SOTA baselines in both reward and cost? 2) RQ2: How do different components in
Marvel affect the performance? Due to the space limit, we delegate the experimental details and
some additional results to Appendix D and Appendix F.

Figure 3: Performance comparison between Marvel and baseline methods in multiple environments.
It is clear that Marvel can quickly find a high-return policy while keeping the cost below the limit.

4.1 EVALUATION SETUP

Benchmarks. We consider the DSRL benchmark (Liu et al., 2023b) and select ten environments
from the Bullet Safety Gym (Gronauer, 2022) and Safety Gymnasium (Ji et al., 2023): BallRun,
BallCircle, CarRun, CarCircle, HalfCheetah, AntCircle, AntRun, DroneCircle, Hopper, and Swim-
mer (results for the last four are in Appendix D.1). The cost threshold is set to be 20 in these
environments. As mentioned earlier in Section 2, we choose CPQ and SAC-lag as base algorithms
in our proposed framework Marvel for offline training and online finetuning, respectively, due to the
effectiveness and representativeness of them. Each experiment was conducted using five random
seeds, and the results were averaged to generate the final learning curves. We use a dataset that
includes data provided by DSRL (Liu et al., 2024) and random data generated by a random policy
to control the quality of the offline dataset.

Baselines. While Guided Online Distillation (Li et al., 2024) is the only work studying O2O safe
RL, its usage of large pretrained model leads to an unfair comparison with standard RL frameworks
using typically small-scale policy networks. In this work, we compare Marvel with JSRL (Uchendu
et al., 2023), as Guided Online Distillation mainly follows this approach except using DT as the
pretrained policy. Besides, we further adapt some SOTA approaches in O2O RL to O2O safe RL,
including SO2 (Zhang et al., 2024) and PEX (Zhang et al., 2023a), and a Warm Start approach
as baselines. SO2 improves Q-value estimation through Perturbed Value Updates, JSRL and PEX
utilize offline pretrained policies for exploration, and Warm Start directly finetunes the policy and
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Figure 4: The policy pretrained with BEAR-lag performs poorly in cost, as this algorithm was not
designed for safe RL. However, Marvel still achieves good results. This also indicates that Marvel
performs well with pretrained policies of varying initial performance.

Q-networks from offline safe RL without modifications. We also compare with online learning from
scratch, namely From Scratch. More importantly, aPID is used to update Lagrange multipliers in
all these baseline methods, which in fact already improves the performance of these methods com-
pared to their original designs. These baselines provide a meaningful comparison to demonstrate
the effectiveness of Marvel in O2O safe RL. We provide the detailed descriptions of each baseline
algorithm in Appendix C.

4.2 MAIN RESULTS

As shown in Fig. 3, Marvel demonstrates better or comparable performance compared to all base-
lines consistently across all environments, i.e., achieving the higher return while keeping the cost
below the threshold. In stark contrast, the naive warm start method proves largely ineffective, of-
ten causing performance drop or stagnation during training. Without aligning the Q-estimations,
both JSRL and PEX struggles a lot to improve during online learning and fails to control the cost.
Besides, PEX also suffers from poor training stability and high variance across different settings.
While SO2 mitigates the inaccuracies of Q-estimations related to O2O RL, it does so only to a lim-
ited extent and cannot maintain its performance consistently across different environments, although
aPID has already been used to boost its performance. On the other hand, the fact that SO2 performs
better than other baselines further indicates 1) the great potentials of enabling fast and safe online
learning through policy finetuning (compared to using the pretrained policy only as a guide policy as
in JSRL and PEX) and 2) the need of correcting pretrained Q-estimations before online finetuning.

More importantly, Marvel shows the superior capability of finding a good and safe online policy
very quickly by using only a few steps of online interactions. In particularly, in environments like
BallCircle and CarCircle, Marvel finds a good policy within less than 15 steps, dominating baseline
methods in both performance and speed. Note that all approaches indeed start from the offline policy
and Q-functions, i.e., the same point at step 0 (ignored in all figures). Guided by the offline policy
and aligned Q-functions, Marvel rapidly jumps into the high-reward region in the state space, which
highlights the effectiveness of VPA in addressing the overly conservative nature of offline pretrained
policies. But this may also lead to a high cost at the beginning, e.g., the cost spike in the early step
of finetuning as illustrated in Fig. 3. Because a few steps of online finetuning will just modify the
policy in a neighborhood of the pretrained policy, aPID will lead the finetuned policy to low cost
state-actions in the high-reward region by adaptively pushing the cost towards the threshold. It is
also worth to note that we use the same aPID parameters across all tested environments without
any further adjustments, demonstrating the robustness and effectiveness of our design.

Compatibility of Marvel: In O2O safe RL, compatibility with different offline safe RL methods
is essential. Given the non-interactive nature of offline training and the potential unavailability
of algorithms due to privacy concerns, this compatibility becomes even more critical compared to
online algorithms. Our design of Marvel naturally fits a variety of offline safe RL methods and
only requires a pretrained policy and Q-functions. To further verify this, Fig. 4 shows the training
process using BEAR+Lagrangian (BEAR-lag) (Kumar et al., 2019) in the offline phase and SAC-
lag in online finetuning. Note that BEAR-lag was not specifically designed for offline safe RL, but
rather it incorporates the Lagrange multiplier into offline RL. In the BallCircle environment, Marvel
achieves the highest reward while satisfying cost constraints, and in the CarRun environment, it also
outperformed others while maintaining cost below the threshold. This highlights the flexibility of
our algorithm across different offline safe RL methods.

4.3 ABLATION STUDIES

To answer RQ2, we conduct experiments in various setups. As shown in Fig. 5, the performance is
best when both VPA and aPID are used. In contrast, if only VPA is used with traditional dual ascent
during online finetuning, it significantly slows down safe online learning and takes a much longer

9
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Figure 5: ‘aPID’ represents the scenario where aPID is used exclusively during the online finetuning
phase, without applying VPA. ‘VPA’, on the other hand, shows the case where aPID is not used, and
VPA is applied only during the pre-finetuning phase. VPA+PID use PID control for finetuning,
while VPA+aPID employs aPID with adaptive parameter adjustment. Clearly, VPA+aPID achieves
the best performance in terms of learning performance, speed, and stability.

time to reduce the cost. If only aPID is applied without VPA, the learning performance is very sim-
ilar to naive policy finetuning, which struggles to improve due to the erroneous Q-estimations. We
also evaluate the effectiveness of adaptive control in aPID, by comparing the performance between
Marvel (VPA+aPID) and Marvel with aPID replaced by PID (VPA+PID). It can be seen from Fig. 5
that the training curve for cost exhibits significant fluctuations without using aPID. More critically,
when the cost is close to the limit, PID cannot reduce its control strength. As a result, even if on av-
erage the cost of VPA+PID is close to the threshold, it is very frequent that the real-time cost exceeds
the limit substantially, which is in fact not safe. Moreover, the inability to adjust the Lagrange mul-
tiplier promptly and appropriately affects the weight of reward and cost in policy updates, thereby
influencing reward performance, as shown in the plots for CarCircle and HalfCheetah.

We also provide additional ablation studies in the Appendix D.2, which can provide the following
insights: 1) Applying VPA to both the pretrained reward and cost Q-functions achieves the best
performance compared to applying VPA to only one of them, which is reasonable as both will be
manipulated during offline learning to reduce the extrapolation errors. 2) Marvel is robust to different
qualities of the offline dataset. Regardless of the performance of the offline pretrained policy, Marvel
can effectively finetune the policy while keeping the cost below the limit. 3) Introducing the entropy
term in VPA is very helpful to improve the policy performance in terms of reward, by encouraging
explorations of high-entropy states.

5 CONCLUSION

O2O safe RL has great potentials to put safe RL on the ground in real-world applications, by lever-
aging offline learning to facilitate fast online safe learning. In this paper, we proposed the first
policy-finetuning based framework, namely Marvel, for O2O safe RL. In particular, by showing that
naive finetuning would not work well, we identified two unique challenges in O2O safe RL, i.e., the
erroneous Q-estimations and Lagrangian mismatch. To address these challenges, Marvel consisted
of two key designs: 1) value pre-alignment to correct the Q-estimations before online finetuning, and
2) adaptive PID control to dynamically change the control parameters so as to rapidly and appropri-
ately control the cost. Extensive experiments demonstrate the superiority of Marvel over multiple
baselines. More importantly, Marvel is compatible to a variety of offline and online safe RL ap-
proaches, making it very practically appealing. For future work, it is interesting to take a closer look
at the offline dataset, to identify states that are more worth exploring during online finetuning given
the environmental information and cost threshold. Ultimately, we hope our work will bridge the gap
between offline and online algorithms in safe RL, distinct from unconstrained RL, and enhance the
efficiency of online safe RL, laying the foundation for the usage of safe RL in practical applications.
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A OVERVIEW OF ALGORITHM

Algorithm 1: Marvel

Data: Offline RL algorithm {L
Qφ

off , L
Qcφc

off , Lπθ

off}, Online RL algorithm {L
Qφ
on , L

Qcφc
on , Lπθ

on}
Result: Offline dataset Doff , Online dataset Don, Network parameters φ, φc, θ, Lagrange

multiplier λ
while in offline training phase do

φ← φ− λQ∇φL
Qφ

off ;

φc ← φc − λ
c
Q∇φc

L
Qcφc

off ;

θ ← θ − λπ∇θL
πθ

off ;

end
% VPA with offline dataset;
while in VPA phase do

for each VPA step do
Sample transitions (s, a, r, c, s′) ∼ Doff ;
Update Q by Eq. (8), Update Qc by Eq. (9);

end

end
while in online training phase do

for each environment step do
at ∼ πθ(st), st+1 ∼ T (st, at);
Don = Don ∪ {st, at, r(st, at), c(st, at), st+1};

end
for each update step do

φ← φ− λQ∇φL
Qφ
on ;

φc ← φc − λ
c
Q∇φc

L
Qcφc
on ;

θ ← θ − λπ∇θL
πθ
on;

% update Lagrange multiplier with aPID;
Update λ by Eq. (10);
update PID parameters by Eq. (11) and Eq. (12);

end

end

B RELATED WORK

Online Safe RL. Online safe RL approaches can be generally divided into several categories. The
first category includes primal-dual based methods, such as PDO (Chow et al., 2018a), which com-
bines PPO (Schulman et al., 2017) with the Lagrange multiplier method to obtain a policy that
satisfies safety constraints. CPPO-PID (Stooke et al., 2020) combines PID control with Lagrangian
methods to dampen cost oscillations. Similar Lagrangian-based methods are applied in conjunc-
tion with other unconstrained safe RL algorithms, such as TRPO-lag, PPO-lag, and SAC-lag. CPO
(Achiam et al., 2017) inherits from TRPO (Schulman, 2015), optimizing with the Lagrange mul-
tiplier method within the trust region. CUP (Yang et al., 2022) extends CPO by incorporating the
generalized advantage estimator. In comparison, RCPO (Tessler et al., 2018) uses different update
rates for the primal and dual variables. Two-stage iterative methods have also been developed for
online safe RL, e.g., PCPO (Yang et al., 2020) and FOCOPS (Zhang et al., 2020). Besides the
primal-dual based methods, primal methods, which are also known as Lyapunov methods, have
been leveraged in some studies for online safe RL. For instance, IPO (Liu et al., 2020) uses loga-
rithmic barrier functions. P3O (Zhang et al., 2022) employs an exact penalty function to derive an
equivalent unconstrained objective and restrict policy updates within the trust region. Chow et al.
(2018b) leverages Lyapunov functions to handle constraints, which contains two parts, safe policy
iteration and safe value iteration. Additionally, some studies (Wabersich et al., 2023; Choi et al.,
2020) borrow techniques from the control theory, such as HJ reachability (Bansal et al., 2017; Yu
et al., 2022) and control barrier functions (Ames et al., 2019), to ensure state-wise zero costs.
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Offline Safe RL. Offline safe RL seeks to learn a safe policy from static datasets without online
environmental interactions. Similar to online safe RL, Lagrangian methods can still be applied
here, by adapting offline unconstrained RL algorithms like BCQ (Fujimoto et al., 2019) and BEAR
(Kumar et al., 2019) to the safe RL setting. CPQ (Xu et al., 2022) uses a VAE to detect OOD
(Ren et al., 2019) actions and penalizes them in terms of cost. COptiDICE (Lee et al., 2022a)
extends OptiDICE (Lee et al., 2021) by adding safety constraints and derives a safe policy through
the stationary distribution of the optimal policy. FISOR (Zheng et al., 2024) decouples the process
of satisfying safety constraints from maximizing rewards and employs a diffusion model as the
policy. VOCE (Guan et al., 2024) estimates Q-values of both cost and reward in a pessimistic way,
mitigating extrapolation errors caused by OOD actions. Decision transformer (DT) (Chen et al.,
2021) has also been applied to safe RL, leading to constrained decision transformer (Liu et al.,
2023c).

O2O Unconstrained RL. O2O RL has recently attracted much attention in the unconstrained case,
where a policy pretrained on an offline dataset is used to assist online policy learning, e.g., through
finetuning or serving as a guide policy. More specifically, Hester et al. (2018); Nair et al. (2018);
Rajeswaran et al. (2017) and Rudner et al. (2021) explore various combinations of offline demon-
stration data with online learning. The core idea is that pure offline RL often struggles with limited
performance due to heavy reliance on dataset quality. However, if interaction with the environment
is allowed, pffline pretrained policy can be finetuned for improved performance. However, naive
implementation of this process often leads to suboptimal performance (Nair et al., 2020; Uchendu
et al., 2023). AWAC (Nair et al., 2020) prioritizes actions with high advantage estimates, while
AW-Opt (Lu et al., 2022) builds on AWAC by applying positive sample filtering and using hybrid
actor-critic exploration during online finetuning. Lee et al. (2022b) finetunes the pretrained policy
by balancing the offline and online datasets. FamO2O (Wang et al., 2024) trains a family of policies
using a universal model and then employs a balance model to select the most suitable policy for
each state. Cal-QL (Nakamoto et al., 2024) constrains the updates to the Q-network during online
finetuning to prevent underestimation of the Q-values. SO2 (Zhang et al., 2024) improves Q-value
estimation by updating Q-values more frequently and using noise-augmented actions. Instead of di-
rectly finetuning the pretrained policy, Jump-start RL (Uchendu et al., 2023) and PEX (Zhang et al.,
2023a) follows another direction to leverage the offline policy, by using it to guide the update of the
online policy during online learning.

C DETAILS ON BASELINES

Considering the characteristics of safe RL, which requires keeping the cost below a certain threshold,
not all O2O unconstrained RL algorithms are suitable for O2O safe RL. For instance, AWAC (Nair
et al., 2020), which maximizes the advantage function, has not yet been applied in the safe RL
context. We compare Marvel with the following baselines:

SO2 (Zhang et al., 2024). By analyzing Q-value estimation in offline to online transitions, the
SO2 algorithm achieves more accurate Q-value estimation through Perturbed Value Update and by
increasing the frequency of Q-value updates.

JSRL (Uchendu et al., 2023). JSRL employs an offline pretrained policy as the exploration policy
and a policy under training during the online phase as the target policy. Initially, the exploration pol-
icy is used, followed by the target policy during online interaction to facilitate curriculum learning.
To adapt to the safe RL setting, we update the Lagrange multipliers using the aPID method when
updating the target policy.

PEX (Zhang et al., 2023a). Similar to JSRL, PEX uses an offline pretrained policy and a policy
under training during the online phase for online interaction. However, PEX selects one of the
actions based on the Q-networks’s value estimation of actions chosen by the two policies. To meet
the safe RL requirements concerning cost, like the modifications to JSRL, we use the aPID method
to update the Lagrange multipliers.

Warm Start. We directly utilize the policy, Q-network, and Qc-network networks obtained from
offline safe RL without any modifications (no VPA and aPID), and apply online safe RL algorithms
for finetuning.
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Figure 6: We provide experiments on more environments.

We selected SO2, JSRL, and PEX as baselines because they represent prominent methods in O2O
RL, and adapting them to the safe RL context provides a meaningful comparison. Including these
baselines allows us to demonstrate the effectiveness of Marvel in a fair and relevant context.

D MORE EXPERIMENTAL RESULTS

D.1 MORE EXPERIMENTS

In Fig. 6, we additionally provide experimental results in more environments, including DroneCircle,
AntRun, Hopper, and Swimmer. The results indicate that our proposed Marvel algorithm achieves
competitive performance across these settings.

Additionally, we present the performance of the baseline algorithms and Marvel, along with the
offline pretrained policy as the starting point, as shown in Fig. 3 and Fig. 6, and summarized in
Table 2.

D.2 MORE ABLATIONS

Fig. 7 presents more detailed ablation experiments, including whether VPA needs to be applied to
both the Q-network and Qc-network, as well as whether the entropy term should be added to VPA.
By comparing VPA(Q), VPA(Qc), and VPA(Q+Qc), we can observe that applying VPA solely to
the Qc-network results in very poor performance during online finetuning. For example, in the Ball-
Circle environment, results similar to naive finetuning shown in Fig. 1 were observed. On the other
hand, applying VPA only to the Q-network leads to significant instability during finetuning (e.g.,
large error bands in BallCircle, CarCircle, and HalfCheetah) and poor performance in terms of cost
(e.g., the cost curve in CarRun shows a sharp increase beyond the cost threshold). This occurs be-
cause if only the reward is optimistically estimated while the cost is pessimistically overestimated, it
causes the agent to neglect the cost during exploration, adversely affecting finetuning performance.
The experiments demonstrate that applying VPA to both the Q-network and Qc-network simulta-
neously has the best results, which aligns with the motivation discussed in Section 3. Comparing
VPA(Q+Qc) with VPA(Q+Qc) with entropy, it is evident that optimistically estimating both reward
and cost, while aligning with the pretrained policy, proves to be effective.

As shown in Fig. 8, regardless of the quality of the offline dataset or the performance of the pretrained
policy, Marvel is able to quickly achieve optimal performance with only a few online interaction
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Figure 7: In the figure, VPA(Q), VPA(Qc), and VPA(Q+Qc) represent applying VPA to the Q-
network, the Qc-network, and both simultaneously, without using the entropy term. This corre-
sponds to setting α and αc to 0 in Eq. (8) and Eq. (9). Conversely, VPA(Q+Qc) with entropy
indicates that the entropy term is used in VPA, meaning αc and αc are non-zero. In all experiments
represented by the curves, we employed aPID.

Figure 8: In the figure, “high” and “low” represent the different performance levels of offline pre-
trained policies resulting from varying quality in the offline dataset. These policies are then finetuned
online. The results demonstrate that the Marvel algorithm is robust to both different offline dataset
qualities and pretrained policy performances.

steps. This highlights the robustness of the Marvel algorithm to variations in the quality of the
offline dataset.

D.3 FINETUNE Q-NETWORKS VS TRAIN NEW Q-NETWORKS IN VPA

In Marvel, VPA fine-tunes the offline pretrained Q-networks. Fig. 9 illustrates the training curves
when, instead of fine-tuning the pretrained Q-networks, the Q-networks are retrained from scratch
during the VPA phase and subsequently fine-tuned online. As shown, fine-tuning the pretrained
Q-networks achieves better performance. This is because, although the pretrained Q functions may
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be inaccurate, they still provide meaningful prior knowledge from the offline dataset and serve as
a valuable starting point for Q function fine-tuning. This would generally speed up the learning
and lead to a better local optima compared to learning from scratch based on the offline data from
a random initial point. Moreover, considering the limited number of steps allowed in VPA for
efficiency, directly learning completely forgoes the knowledge learned offline and can fail to find
good Q estimations.

Figure 9: In the figure, “VPA (finetune)” refers to fine-tuning the offline pretrained Q-networks
during the VPA phase, while “VPA (from scratch)” refers to training new Q-networks from scratch
during the VPA phase.

D.4 PARAMETER SENSITIVITY OF APID

D.4.1 PID

The SAC-lag algorithm in Liu et al. (2024) utilizes PID control, with PID parameters carefully op-
timized. However, if their provided parameters are used directly under the environmental settings,
policy updates, and Q-network update configurations of this paper, the performance is suboptimal.
Fig. 10 presents a comparison, showing that when the PID parameters from the FSRL library are
applied, the performance of online fine-tuning is significantly degraded. It is clear that the imple-
mentation of PID in our paper indeed significantly outperforms the implementation of PID provided
by FSRL. More importantly, even with inappropriate PID parameters, aPID effectively boosts per-
formance, achieving higher rewards while maintaining more stable cost levels.

D.4.2 PARAMETERS IN APID

α, β, and γ are the parameters used in aPID to adjust the PID parameters. These parameters enhance
the robustness of the initial settings for the PID parameters while being inherently robust themselves.
Although our method aPID introduces more parameters, this is very common for adaptive algorithms
in order to control the adaptation during the learning procedure. Fig. 11 illustrates the performance
under various combinations of α, β, and γ, with values ranging from 0.01 to 0.5. All curves achieve
similar performance in terms of reward and cost by the end of training. This demonstrates that these
parameters are both easy to tune and robust in their selection.

D.5 PARAMETER SENSITIVITY OF VPA

The selection of α and αc follows a similar approach to the selection of α in SAC. These values need
to be empirically determined based on the evaluation results of the pretrained policy, the entropy of
the policy, and the scale of the Q-values provided by the Q networks. It is crucial to ensure that the
values of these parameters do not cause the entropy term to dominate the Q-value update process.
The tuning process involves starting with small values, such as those in the range of 1 × 10−5.
Considering that the entropy value is typically a negative single-digit number, the upper limit for α
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Figure 10: “Our PID” and “Our aPID” refer to using the PID and aPID parameters proposed in
this paper for adjusting the Lagrange multipliers, respectively. Similarly, “FSRL PID” and “FSRL
aPID” represent the parameters provided by the FSRL library for the same purpose.

and αc should generally be around 1× 10−1. For relatively conservative offline pretrained policies,
larger values of α and αc may be more suitable.

To demonstrate the robustness of the chosen α and αc, we scaled the values provided in this paper
by a factor of five, ranging from 1× 10−4 to 3× 10−5. As shown in Fig. 12, the choice of different
α and αc values has minimal impact on the final performance.

D.6 CORRECTNESS OF OUR IMPLEMENTATION OF SAC-LAG

The primary goal of O2O safe RL algorithms is to achieve competitive performance with minimal
environment interactions and in the shortest time by leveraging offline information to accelerate
online learning. In contrast, the algorithm in (Liu et al., 2024) (and other similar online algorithms)
achieves higher performance but relies on significantly more interactions. For example, in the
BallCircle environment, (Liu et al., 2024) utilized 1.5 million environment interactions, whereas
our method required only 120,000 interactions (with an average of 600 interactions per gradient
update). This significant reduction highlights the efficiency of our approach, particularly in resource-
constrained and safety-critical settings where the number of online interactions is strictly limited.

To validate the correctness of our implementation of SAC-lag, we conducted additional experiments
comparing it to the SAC-lag implementation provided by the FSRL library under the same experi-
mental settings (including both environment interaction steps and policy update frequencies). The
results, presented in Fig. 13, show that both implementations demonstrate similar performance in
terms of reward and cost. This validates the correctness of our implementation and ensures its relia-
bility as a baseline for comparisons in our study.
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Figure 11: The three numbers within “[ ]” represent the three parameters for adaptively adjusting
Kp, Ki and Kd, namely α, β and γ.

Figure 12: The two numbers inside “[ ]” represent the values of α and αc used in VPA, as described
in Eqs. (8) and (9).

D.7 WITHOUT VPA BUT WITH GOOD INITIAL VALUES OF THE LAGRANGIAN MULTIPLIERS

As shown in Fig. 14, when VPA is not used and the Lagrange multipliers are updated using dual
ascent (as described in Eq. (3)), even with appropriately chosen initial values for the Lagrange
multipliers (“Warm Start w/ lag init”), the performance, while better than initializing with zero
(“Warm Start”), still falls short of achieving optimal results.
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Figure 13: “Our SAC-lag” refers to the SAC-lag algorithm implemented in this paper, while “FSRL
SAC-lag” represents the SAC-lag algorithm provided by the FSRL library. Using the same environ-
ment settings (including interaction steps) and update frequencies as in this paper, the results from
the FSRL library are shown to be similar to ours.

Figure 14: In the figure, “Marvel” and “Warm Start” follow the legend defined in Fig. 1. “Warm
Start w/ lag init” represents the approach of empirically selecting appropriate initial values for the
Lagrange multipliers and performing online fine-tuning.

D.8 PERFORMANCE OF O2O RL WITHOUT CONSIDERING SAFE RL

In the O2O safe RL setting, when the O2O unconstrained RL algorithm is applied, the online fine-
tuning results are shown in Figure Fig. 15. As can be seen, the unconstrained RL algorithm, which
focuses solely on maximizing reward without controlling the cost, achieves a high reward but re-
sults in a cost that exceeds the threshold, thereby violating the constraint. This experiment further
demonstrates the necessity of incorporating safe settings in such environments.
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Figure 15: In the figure, the labels are consistent with those in Fig. 3.

E MORE ANALYSIS OF MARVEL

Similar to the analysis presented in Liu et al. (2023a), this section introduces an alternative way
to evaluate safe RL performance beyond training curves, as shown in Fig. 16. The cumulative
cost represents the total cost accumulated from all environment interactions up to a given timestep
during training, while the max reward denotes the highest reward achieved up to that timestep. The
relationship between these two metrics reflects the algorithm’s ability to achieve maximum reward
performance under a certain amount of cost incurred in the environment.

The figure shows that Marvel achieves the best max reward for a given cumulative cost. Moreover,
when targeting a specific performance level (i.e., reward), Marvel requires the least cumulative cost.
This further highlights Marvel’s superior performance from another perspective.

Figure 16: The legends in this figure follow the conventions of this paper and illustrate the relation-
ship between cumulative cost and maximum reward.

F EXPERIMENTAL DETAILS

F.1 SPEARMAN’S RANK CORRELATION COEFFICIENTS

We aim to explore the effect of VPA on the distribution of the Q and Qc networks. Specifically,
for different state-action pairs, we need to analyze the true Q and Qc values versus the predicted
values from the Q and Qc networks. To achieve this, we choose to use Spearman’s rank correlation
coefficient, which allows us to quantify the ranking accuracy of the Q and Qc values over a sequence
of state-action pairs.

Spearman’s rank correlation coefficient, denoted as ρ, is a non-parametric measure of the strength
and direction of the association between two ranked variables. It evaluates how well the relationship
between two variables can be described using a monotonic function, rather than assuming a linear
relationship. This makes it particularly useful in our case, where we are more concerned with the
rank ordering of predicted versus true Q and Qc values rather than their exact numerical differences.

Mathematically, Spearman’s rank correlation coefficient is given by:

23



1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Under review as a conference paper at ICLR 2025

ρ = 1−
6
∑

d2i
n(n2 − 1)

(13)

where di is the difference between the ranks of the corresponding values of the two variables (in this
case, the true and predicted Q or Qc values) for each state-action pair. n is the number of state-action
pairs.

Spearman’s coefficient ranges from−1 to 1, where ρ = 1 indicates a perfect positive rank correlation
(i.e., the predicted Q and Qc values perfectly match the rank of the true values) ρ = −1 indicates a
perfect negative rank correlation, ρ = 0 indicates no correlation between the ranks of the predicted
and true values.

By applying this measure, we can rigorously assess how well the Q and Qc networks preserve the
relative rankings of the true values across various state-action pairs, thus quantifying the alignment
between the predicted and true distributions.

F.2 ESTIMATION OF Q-VALUES AND QC-VALUES THROUGH MONTE CARLO SIMULATIONS

IN TABLE 1

The Q-values represent the expected cumulative reward from a given state when following a specific
policy, while the Qc-values represent the expected cumulative cost. These values are estimated
through Monte Carlo (MC) simulations, making them accurate because the simulations explicitly
capture the sequential interactions of the agent with the environment under the given policy.

For the MC simulations, we use the pre-trained policy derived from the training phase. Each sim-
ulation starts from a selected initial state. The number of interaction steps with the environment
depends on the specific settings of the environment. For instance, in the BallCircle environment, the
maximum number of steps is 200. A total of 10 Monte Carlo simulations are performed, and at each
timestep, we record both the reward and the cost. To compute the true Q-values and Qc-values, the
recorded rewards and costs are averaged cumulatively across all steps in the episodes.

Regarding the choice of the initial state, the term ”dataset” refers to selecting the initial state from
the offline dataset used during VPA, whereas ”random” indicates that the initial state is chosen
randomly. This approach ensures a diverse evaluation and enhances the robustness of the estimated
values.

F.3 EXPERIMENTAL SETUP

In Table 3, we present the specific hyper-parameters used in the experiments. Table 4 lists the
configurations of the environments used in the experiments.

G LIMITATION

While Marvel performs well in most environments, it does not exhibit the same effectiveness in
certain scenarios, such as in the AntRun environment. As depicted in Fig. 6, during finetuning, Mar-
vel does not significantly improve cost and reward metrics. Consequently, aPID evidently does not
function optimally in these settings. This suggests that further enhancements are needed for VPA to
increase the agent’s exploratory behavior during online finetuning. Combined with aPID’s efficient
control over costs, this approach could achieve optimal performance with minimal interaction with
the environment, thus minimizing the time required.
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Table 2: In the table, the content following ”Offline” represents the performance of the pretrained
policy, while the rest shows the results of online finetuning based on the pretrained policy using
baseline methods and the Marvel algorithm.

(a) Result of Fig. 3

Environment Algorithm Reward Cost

BallCircle

Offline 166.00 11.00

From Scratch 241.70 10.94

Warm Start 176.63 18.53

SO2 58.41 1.95

JSRL 1.62 165.39

PEX -4.27 39.85

Marvel (ours) 603.94 19.75

BallRun

Offline 262.00 3.00

From Scratch 315.21 5.58

Warm Start 132.16 22.99

SO2 286.79 12.13

JSRL 174.04 92.10

PEX -555.58 88.84

Marvel (ours) 306.55 5.48

CarCircle

Offline 265.00 14.00

From Scratch 115.20 12.73

Warm Start 141.55 24.05

SO2 115.91 9.07

JSRL 1.06 130.01

PEX -12.64 142.94

Marvel (ours) 341.32 19.45

CarRun

Offline 544.00 72.00

From Scratch 293.50 7.20

Warm Start 391.40 16.90

SO2 522.23 16.22

JSRL 126.59 128.21

PEX 152.99 38.79

Marvel (ours) 547.52 18.20

AntCircle

Offline 4.00 39.00

From Scratch 1.48 0.01

Warm Start 1.28 0.00

SO2 3.69 1.31

JSRL 0.56 1.91

PEX 6.93 2.27

Marvel (ours) 5.56 0.87

HalfCheetah

Offline 113.00 17.00

From Scratch 1074.27 28.81

Warm Start 974.10 15.44

SO2 559.40 23.89

JSRL 27.55 3.83

PEX -155.56 0.18

Marvel (ours) 1543.17 20.31

(b) Result of Fig. 6

Environment Algorithm Reward Cost

DroneCircle

Offline 32.00 6.00

From Scratch 0.77 28.81

Warm Start 0.63 18.25

SO2 136.84 17.49

JSRL 0.21 5.87

PEX 3.22 74.86

Marvel (ours) 117.54 22.19

AntRun

Offline 42.00 0.00

From Scratch 30.87 0.11

Warm Start 12.16 0.18

SO2 59.40 0.00

JSRL 2.47 0.00

PEX 175.63 18.27

Marvel (ours) 61.05 0.00

Hopper

Offline 62.00 15.00

From Scratch 467.07 35.19

Warm Start 234.03 8.44

SO2 730.94 5.28

JSRL 3.54 2.93

PEX 215.63 12.32

Marvel (ours) 310.82 7.09

Swimmer

Offline 4.00 2.00

From Scratch 18.37 19.28

Warm Start 17.04 18.80

SO2 18.73 19.59

JSRL 0.11 0.00

PEX -12.98 0.00

Marvel (ours) 37.90 18.21
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Hyper-parameter Value

Policy Learning Rate 5e-5

Q-network Learning Rate 3e-5

Qc-network Learning Rate 8e-5

Lagrangian Learning Rate 1e-4

SAC-lag: α 5e-3

VPA Entropy Coefficient : α 1e-3

VPA Entropy Coefficient : αc 5e-4

aPID: Kp 1e-4

aPID: Ki 1e-5

aPID: Kd 1e-5

aPID: α 0.05

aPID: β 0.05

aPID: γ 0.05

Batch Size 256

MLP hidden layer size [256, 256]

discount 0.99

τ 5e-2

replay buffer size 1e6

Table 3: Experiment hyper-parameters

Environment Episode length Cost threshold

BallCircle 200 20

BallRun 100 20

CarCircle 200 20

CarRun 200 20

AntCircle 500 20

AntRun 200 20

DroneCircle 200 20

HalfCheetah 1000 20

Hopper 1000 20

Swimmer 1000 20

Table 4: Environment setup
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