Under review as a conference paper at ICLR 2025

GROWING EFFICIENT ACCURATE AND ROBUST
NEURAL NETWORKS ON THE EDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

The ubiquitous deployment of deep learning systems on resource-constrained Edge
devices is hindered by their high computational complexity coupled with their
fragility to out-of-distribution (OOD) data, especially to naturally occurring com-
mon corruptions. Current solutions rely on the Cloud to train and compress models
before deploying to the Edge. This incurs high energy and latency costs in trans-
mitting locally acquired field data to the Cloud while also raising privacy concerns.
We propose Growing Efficient, Accurate, and Robust neural networks (GEARnn)
to grow and train robust networks in-situ, i.e., completely on the Edge device.
Starting with a low-complexity initial backbone network, GEARnn employs One-
Shot Growth (OSG) to grow a network satisfying the memory constraints of the
Edge device using clean data, and robustifies the network using Efficient Robust
Augmentation (ERA) to obtain the final network. We demonstrate results on a
NVIDIA Jetson Xavier NX, and analyze the trade-offs between accuracy, robust-
ness, model size, energy consumption, and training time. Our results demonstrate
the construction of efficient, accurate, and robust networks entirely on an Edge
device.

1 INTRODUCTION

The ubiquitous practical deployment of deep neural networks is mainly hindered by their lack
of robustness and high computational cost. Prior art has shown that these deep networks are ex-
tremely fragile to adversarial perturbations |Szegedy et al.| (2013)Goodfellow et al.| (2014) and
out-of-distribution (OOD) data Hendrycks & Dietterich| (2019)Mintun et al.|(2021). Natural corrup-
tions [Hendrycks & Dietterich| (2019) (a specific type of OOD data) are more commonly encountered
at the Edge where real-time data is being continually acquired, e.g., video sequences acquired by
on-board cameras in autonomous agents (self-driving cars, field robots, drones), which tend to
be distorted by weather and blur. The state-of-the-art defense against these corruptions employs
robust data augmentation [Hendrycks et al.| (2019; [2021)); Modas et al.| (2022)) which incurs a huge
computational cost when implemented on an Edge device. Fig. [I|indicates that it takes more than
2 days to robustly train a VGG-19 network |Simonyan & Zisserman|(2014)) on a simple CIFAR-10
dataset when implemented on NVIDIA Jetson Xavier NX Edge device NVIDIA|(a). Even for a small
5% VGG-19 network it takes more than a day, thus highlighting the non-trivial nature of the problem.
This is a huge concern because Edge devices are typically battery-powered and such large training
costs reduce their operational life-time.

Traditional solutions for reducing network complexity such as pruning [Han et al.| (2015)); [L1 et al.
(2016); Ditfenderfer et al.| (2021)), quantization Rastegari et al.| (2016); [Hubara et al.| (2016)) and
neural architecture search (NAS) Liu et al.|(2018)); [Zoph et al.|(2018)) mainly target Edge inference,
and are not suited for Edge training since they start with hard-to-fit over-parameterized networks
that require the large computational resources of the Cloud. However, transmitting local data to
the Cloud incurs energy and latency costs while raising privacy concerns, thus requiring training to
happen completely on the Edge. Given the above challenges, the primary objective of our work is: To
design and train compact robust networks completely in-situ on Edge devices. Our proposed solution
Growing Efficient, Accurate, and Robust neural networks (GEARnn) is based on the family of growth
algorithms (Chen et al.| (2015)); Wu et al.| (2020); [Evci et al.|(2022); [Yuan et al.| (2020) that gradually
increase the size of an initial backbone network to reach the robust accuracy of a full network but at a
fraction of its size, training complexity, and energy consumption.

Under review as a conference paper at ICLR 2025

Prior work on network growth Wu et al.| (2020j
2019)); 'Yuan et al.| (2023) do not consider ro-
bustness to common corruptions since they use
clean data during training, while works that con-
sider robustness train fixed-sized networks us-
ing augmented data Hendrycks et al.| (2019);
Modas et al.|(2022) without considering the ef-
ficiency of robust training. Hence, in order to
grow robust networks on the Edge and achieve
good robustness vs. training efficiency trade-
off, we ask the following questions: Q1) should
networks be grown using augmented data only
(1-Phase), or should they be grown using clean
data first and then trained with augmented data
(2-Phase)? Q2) for growth, how many steps
should be employed? We answer these ques-
tions by proposing our method GEARnn to effi-
ciently grow robust networks. Fig. [T|shows that
GEARnn achieves significant improvements in
robust accuracy over vanilla trained baselines
while requiring much smaller training energy
consumption compared to robustly trained base-
lines.

Contributions: We make the following contri-

90

goal 5x
7 3x .

®

85

80 4

+12% | +11%

vanilla-trained full baseline
robust-trained full baseline
@ vanilla-trained small baseline
® robust-trained small baseline
70 4 Y GEARNN-2 (ours)

Robust Accuracy (%)

500 1500 3000
Training Time (min)

Figure 1: Improvements in robust accuracy, train-
ing time, and model size (area of circles) of our
proposed GEARnn method measured on NVIDIA
Jetson Xavier NX Edge device NVIDIA(a). Ro-
bust accuracy is evaluated on CIFAR-10-C for
GEARnn, full network baselines (VGG-19), and
small network baselines (5% VGG-19 networks
with same topology as GEARnn-2). For robust
training, we employ AugMix Hendrycks et al.
(2019). GEARnn demonstrates significant reduc-
tion in training complexity over robust baselines at

similar robust and clean accuracies (shown in Sec-

tion[6.2).
1. Problem Statement: To the best of our
knowledge, our work is the first to grow networks robust to common corruptions and the
first to train robust networks efficiently on an Edge device.

butions (Fig. [2):

2. Key Questions: We answer Q1 as: 2-Phase (growth with clean data followed by robust
training using augmented data) provides improved robustness over a 1-Phase (growth
using augmented data) at iso-model size. This result indicates the importance of proper
initialization for efficient robust training (Sections [6.1] [6.2] & [6.3). We answer Q2 as: One-
Shot Growth (OSG) achieves the best training efficiency, clean and robust accuracies at
iso-model size compared to m-Shot (m > 1) Growth (Section[6.3).

3. Algorithm: We propose two Growing Efficient Accurate and Robust neural networks
(GEARnN) algorithms (see Fig.[2]and Section[d.3)) by combining 1-Phase/2-Phase with OSG
and Efficient Robust Augmentation (ERA). We show that GEARnn generated networks
shine on all four metrics simultaneously — clean accuracy, robust accuracy, training efficiency
and inference efficiency — by implementing them on a real-life Edge device, the NVIDIA
Jetson Xavier NX (Section[6.2).

4. Interpretability: We explain the network topologies generated during OSG, and also provide
rationale for the efficacy of 2-Phase approach (Section g).

2 BACKGROUND AND RELATED WORK

Robust Data Augmentation: This is the most commonly used method for addressing corruptions
due to its ease of integration into the training flow and ability to replicate low-level structural
distortions. AugMix Hendrycks et al.| (2019), PRIME Modas et al.| (2022) and FourierMix Sun
et al.| (2021) combine chains of stochastic image transforms and enforce consistency using a suitable
loss function to generate an augmented sample from a clean image. DeepAugment Hendrycks
et al.| (2021) randomly distorts the parameters of an image-to-image network to generate augmented
images. CARDs Diffenderfer et al.| (2021) combines data augmentation |Hendrycks et al.| (2019)
and pruning |[Frankle & Carbin| (2018)) to find compact robust networks embedded in large over-
parameterized networks. Adversarial augmentations|Zhao et al.| (2020); Rusak et al.| (2020); |Calian
et al.|(2021) have also been proposed to handle common corruptions. Unlike our proposed GEARnn
algorithm, all these techniques significantly increase the complexity over vanilla training and are thus
inappropriate for Edge deployment.

Under review as a conference paper at ICLR 2025

Growth Techniques: A GEARnn-1

typical growth algorithm g7 D o ! .

starts with a small ini- Pn—} = ZS:: : & >
tial backbone model whose 1 el)

size is gradually increased E--- oARLTTTTTTTT

until the desired perfor- el s i
mance or network topology Dy, ERA e !

is reached. Neural network ! ¥ :

: 0sG f: Trai
growth has been previously B RENR me
| CE aug 1

used in optimization [Fuku " ~ —
v v Phase-1 Phase-2 |
mizu & Amari| (2000), con- e Ry

tinual learning Rusu et al.|
(2016); [Hung et al| (2019) Figure 2: Proposed approach: GEARnn-1 performs One-Shot Growth

and in speeding up the train- (OSG) on augmented data (D,y,) generated by Efficient Robust Aug-
ing of large networks[Chen| mentation (ERA) (using clean data (Dj,)) in a single phase (1-Phase).
et al] 2015). Recent GEARnn-2 performs OSG using D, first followed by parametric train-
works [Evci et al] (2022); ingon Dy in two consecutive phases (2-phase). Here Lcg and Layg
Yuan et al) (2023) look at denote the cross-entropy loss and augmented loss, respectively.

improving the training dy-

namics and efficiency for growth by using better neuron initializations. Others find efficient networks
by growing the width Wu et al.| (2019), depth Wen et al.|(2020) or both [Wu et al.[(2020)); 'Yuan et al.
(2020). However, none of these methods address the issue of robustness to common corruptions
or demonstrate the utility for training on a resource-constrained Edge setting, which is our focus.
Though our work GEARnn builds upon Firefly [Wu et al.| (2020), it is flexible and can incorporate
other growth methods mentioned above.

3 NOTATION AND PROBLEM SETUP

Notation: Let f : R? — [C] be a hard classifier which classifies input x € R< into one of C classes.
We choose f to be a convolutional neural network (CNN) with L layers (depth), {wl}lL:1 output
channels (widths), and (K, K) sized kernels. The network f is trained on n samples (x,y) ~ Dj,,
where (x,7) € R? x [C] and D;, denotes the “in-distribution” or “clean” data. Lcg represents the
cross-entropy loss and L, = Lcg + ALjsp represents the augmentation loss where Lysp is the
Jensen-Shannon divergence loss described in [Hendrycks et al.[(2019).

During inference, f can be exposed to samples from both D;, and Dy, (“out-of-distribution” or
“corrupted” data). In case of common corruptions, (Xout, §¥) ~ Doyt is obtained by Xou = £(Xin, $),
where (Xin, y) ~ Din, & is a corruption filter and s is the severity level of the corruption. We denote
pe = Pr(§ # y) as the classification error at inference where § = f(Xest). When (Xeest; ¥) ~ Dins
we define (1 — p.) as clean accuracy Ay, and when (Xeest, ¥) ~ Dou, we define (1 — p,) as robust
accuracy A;op. The value of p. is determined empirically in this work.

Problem: Our primary objective is to maximize the empirical clean and robust accuracies (A, and

A:ob) While ensuring the network complexity (Zle wy) is small. Along with these two criteria, we
also prioritize reduction in training time (¢) and training energy consumption (£) on hardware.

4 GROWING EFFICIENT ACCURATE AND ROBUST NEURAL NETWORKS
(GEARNN)

As shown in Fig. 2] two flavors of GEARnn algorithms are proposed —- GEARnn-1 and GEARnn-2.
While GEARnn-1 leverages the 1-Phase (joint growth and robust training) training, GEARnn-2
employs the 2-Phase (sequential growth and robust training) approach. Both flavors incorporate
One-Shot Growth (OSG) and Efficient Robust Augmentation (ERA) in different ways. In this section,
we first describe OSG and ERA, and then formally present the GEARnn algorithms.

4.1 ONE-SHOT GROWTH (OSG)

One-Shot Growth (OSG) employs labeled data to perform a single growth step sandwiched between
two training stages. The initial backbone fj is first trained for £; epochs. The resulting network f; is
grown over &, epochs to obtain the grown network fy, i.e., f, = G(f1|7, D, L, &,), where G is the

Under review as a conference paper at ICLR 2025

One-Shot Growth (OSG)
Labeled Data D

1 1

1 1

T 1

1 1

backbone fy 1 grown network fg trained grown network f !
1 o 1

Voreai @ Grow (D Train (D) @ !

Train (D) tow (D)

—<. : —>o 0@ —> P — >o @ o -0 o fz:
. (L&)) £,&y) - o (£,&2) ® P - .

1 ® @ 1

1 d 1

Figure 3: OSG takes in labeled data (D) and backbone network fj, and performs a training step,
a growth step, and a training step in sequence to generate network f>. The 2-tuple (£,E) = (loss
function, number of epochs) employed in each step.

growth technique which is nominally Firefly [Wu et al.| (2020) in our work. The final network f5 is
obtained by training f, over & epochs. Either clean (Dj;) or augmented (Dy,g) data can be used in
OSG. For instance, OSG in GEARnn-1 and GEARnn-2 employs augmented data (D ~ Dy,s) and
clean data (D ~ Dy,), respectively.

The growth technique G is described below:
fo = argmin L(f,D|f1)
f

s.t. f€d(fi,e)
C(f) < (1+7)C(fr)

where O(f1, €) represents the growth neighbourhood for topology search, C(f) = Zlel wj represents
the complexity estimate of network f and ~ denotes the growth ratio. The neighbourhood 9(f1, €) is
expanded in two ways - splitting and growing new neurons - as described in Wu et al.| (2020; [2019).
We perform growth only in the width dimension and keep the number of layers L and the kernel size
(K, K) constant for reasons described in/Wu et al|(2020) and [Simonyan & Zisserman| (2014).

ey

Existing growth methods|Wu et al.[(2019;2020); Evci et al.| (2022)) use several growth steps (typically
10 steps) and large number of training epochs (typically 1600 total epochs) which makes them
inefficient for training. This directs us to pick OSG over multi-step growth (validated in Section [6.3)
and reduce the training epochs significantly (20 x) compared to prior growth algorithms. The drop
in accuracy observed due to these modifications is compensated for using a 2-Phase approach

(Section[6.1)).

4.2 EFFICIENT ROBUST AUGMENTATION (ERA)

Efficient Robust Augmentation (ERA) em-
ploys clean data (D;,) to generate aug-

Efficient Robust Augmentation (ERA)

mented data (D,,g) in an efficient man-
ner. The clean sample x (where (x,y) ~

stochastic row
of d, transforms

A1)
X8

Din) is passed through a set of transforms clean
ai, az,...,aq; to obtain the transformed sample
sample A;(z), which is then combined *

linearly with the clean sample to give
the augmented sample x3'¢. We concate-
nate (J — 1) such augmented samples
{x;”g}jt ! along with the clean sample to
obtain our Efficient Robust Augmentation

R(9)IT).

- J—1 times

: m Daug
J
A1 () X"t |samples
"| of d;_;transforms

stochastic row

Augmented Data R(Djn|T")

Figure 4: ERA takes in clean data (Dj,) as input and
applies a set of stochastic transforms to generate aug-

mented data (D, in an efficient manner.
Aj(x)=ai0az0...0 adjt(xs aug)

X =px + (1= p)A;(x)
R(G,y)|T) = ({x1%,....,x5%,,x},y) == Daye 1= R(Dinl|T)
where a; ~ Unif(7), p ~ 8(1,1), d; ~ Unif({1,...,D}), j€{1,...,J — 1}
(2)

where 7T denotes the set of transforms, () and Unif() represent the beta and uniform distributions,
respectively. SOTA robust data augmentation Hendrycks et al.[(2019); Modas et al.| (2022); |Sun et al.

Under review as a conference paper at ICLR 2025

(2021)) methods for common corruptions also employ stochastic chains of transforms with width W,
depth D, and enforce consistency across J — 1 augmented and clean samples using the L, loss
function (described in Section[3)). The SOTA augmentation framework increases the training time
and energy by 3x to 4x compared to vanilla training. We choose (W, D, J) = (1, 3,4) based on our
diagnosis (shown in Appendix [B.T]) to improve the efficiency without compromising on robustness
compared to SOTA approaches Hendrycks et al.[(2019); Modas et al.|(2022). In GEARnn-2, grown
network f5 (see Fig. [3) obtained using clean data OSG is trained for &, epochs using D, generated
by ERA.

4.3 GEARNN ALGORITHMS

Algorithms [I] and [2] describe GEARnn-
1 and GEARnn-2, respectively. Algo-
rithms [T|and 2] output final compact and ro-

Algorithm 1 GEARnn-1

1: Input: clean training data D;,, initial backbone network fj, growth ratio

P R I N

¢ fg U117, Daugs Laugs €9)
c fore=1,...,& do

7, set of augmentation transforms 7, training epochs {&1, &y, &2}

: Output: compact and robust model f7,,
: /* Phase-1: OSG */
: fore=1,...,& do
Dag == R(Din|T) //ERA
fi < argmin Laug(f, Dave|fo) // backbone robust training
: end for !

// augmented growth

Dyg := R(Din|T) 1/ ERA
fo <= argmin Layg(f, Daglfy) // grown-network robust training
f

: end for
e S
: return f7,

Algorithm 2 GEARnn-2

: Input: clean training data Dy, initial backbone network fj, growth ratio

7, set of augmentation transforms 7, training epochs {&1, &, &2, &, }

: Output: compact and robust model f3,
: /* Phase-1: OSG */
: fore=1,...,& do

f1 < argmin Lcg(f, Din|fo) // backbone clean training
f

: end for
 fg < G(f117, Din, Lck, &)
:fore=1,...,& do

/I clean growth

fo <= argmin Lcg(f, Din|fy) // grown-network clean training
f

: end for
: /* Phase-2: Train */
:fore=1,...,& do

Diug 1= R(Din|T) //ERA
I3, < argmin Lo (f, Dag|f2) // grown-network robust training
f

: end for
: return f3,

bust models f, and f3,, respectively. For
empirical results in Section [6] the growth
technique G and the set of transforms 7
are chosen from Firefly [Wu et al.| (2020)
and AugMix Hendrycks et al.|(2019), re-
spectively, though other growth|Yuan et al.
(2023); 'Wu et al| (2019) and augmenta-
tion Modas et al.| (2022)); Sun et al.| (2021
methods can be substituted to obtain dif-
ferent GEARnn variants.

5 EXPERIMENTAL SETUP

Datasets and Architectures: All re-
sults are shown on CIFAR-10, CIFAR-
100 |Krizhevsky et al. (2009) and Tiny
ImageNet Le & Yang (2015) (Din)
datasets. CIFAR-10-C, CIFAR-100-
C and Tiny ImageNet-C Hendrycks &
Dietterichl (2019) (D,y) are used to
benchmark corruption robustness. Con-
volutional neural network architectures
MobileNet-V1Howard et al.|(2017), VGG-
19Simonyan & Zisserman|(2014), ResNet-
18He et al.| (2016) are employed to demon-
strate the results.

Hardware: For the server-based experi-
ments, we use a single NVIDIA Quadro
RTX 6000 GPU with 24GB RAM, 16.3
TFLOPS peak performance and an Intel
Xeon Silver 4214R CPU. This machine
is referred to as “Quadro”. For the Edge-
based experiments, we use the NVIDIA
Jetson Xavier NX NVIDIA| (a) which has

a Volta GPU with 8GB RAM, 21 TOPS peak performance and a Carmel CPU. We refer to this device
as “Jetson”.

Metrics: Clean accuracy A, (%) measured on clean test data D;,, and robust accuracy Ao (%)
measured on corrupted test data D,, are used as accuracy metrics (both computed using Robust-
Bench |Croce et al.|(2021)). The number of floating-point parameters (model size), wall-clock training
time ¢, (in minutes), per-sample wall-clock inference time ¢;,¢ (in seconds) and energy consumption
E (in Joule) are used as the efficiency metrics. Size (%) represents the fraction of the full model
size. In case of growth algorithms, training times include both the time taken for training and growth.
The power is measured from the Quadro and Jetson using Nvidia-SMI [NVIDIA| (b) and Jetson
Stats Bonghi, respectively, and the energy E is computed by summing the mean power values polled.

Under review as a conference paper at ICLR 2025

Baselines: In the absence of prior work on robust growth, we propose our own baselines Small (Dy,)
and Small (D,yg), both of which use 160 training epochs to be consistent with Diffenderfer et al.
(2021). They are networks with the same size and topology as the final GEARnn-2 network (f3, in
Fig.[2) trained with random initialization on clean data and augmented data (AugMix |[Hendrycks et al.
(2019)), unless specified otherwise), respectively.

We pick Small (D,y,) as the main baseline for a fair comparison with GEARnn as it depicts a typical
private-Edge training scenario. We do not compare with compression techniques since they have
been shown to have worse training efficiency compared to growth|Yuan et al.| (2020), and require a
robust-trained full baseline, and this is clearly more expensive than training Small (Dy,) (see Fig. E[)

6 MAIN RESULTS

In this section, we first compare Typle |: GEARnn hyperparameters for different networks
the performance of GEARnn across ;4 datasets.

different network architectures and
datasets on Quadro. We then show

D Growth Ratio () | Small(D) | GEARnn-1| GEARnn-2
results for CIFAR-10 and CIFAR-100 AL \Mob. VGG Res.| £ |& & & |& & & &
using VGG-19 and MobileNeton Jet- ""cipar-10 | 1.8 09 06| 160 [40 1 40(40 1 40 40
son. Finally, we compare OSG with CIFAR-100 | 20 15 08| 160 |50 1 50 (40 1 40 50
m-shot growth methods on Jetson. Tiny ImageNet| 20 15 08| 160 |50 1 50(40 1 40 50

6.1 RESULTS ACROSS NETWORK
ARCHITECTURES AND DATASETS

Table shows GEARnn
is consistently better in
terms of training time and
training energy consump-
tion over the best baseline
Small (Daye) over multiple
network architectures and
datasets. Specifically, an av-

o
S
o
o
o
=)

[
N
[
v
N
w»

55.0

(
v
v
5}

u
d
wn
u
N
n

Robust Accuracy (%)
w
o
o

Robust Accuracy (%)
«
<)
=)

—o— Small (Daug)
—— GEARNN-1

—o— Small (Dayg)
—&— GEARNN-1

IS
N
[
IS
N
[

erage reduction in training 45.0 8- GEARnn-2 450 =@~ GEARnN=2
] 1 0 60 80 00 20 0 60 0 00 0 200
time (energy Consumptlon) N Eplochs ! W ! ° ! Training Tir1n5e(min)

of 3.5x, 2.9x and 1.8x b

(3.7x, 2.0x and 2.0x) @ (b)

is observed for CIFAR-10,
CIFAR-100 and Tiny Im-
ageNet, respectively. Fur-
thermore, we find GEARnn-
1 is inferior to GEARnn-2
on all the four metrics thereby answering Q1 in Section [I|- 2-Phase approach is better than 1-Phase
approach for efficiently growing robust networks.

Figure 5: GEARnn-2 achieves higher robustness at the same: (a)
number of robust training epochs at final model size, and (b) training
time, for VGG-19/CIFAR-100 on Quadro.

A key reason underlying GEARnn-2’s training efficiency is the reduction in the number of robust
training epochs &, made possible by the OSG initialization in Phase-1. Fig. 5| shows that for the
same training time, GEARnn-2 provides better robustness than Small (D,,¢) and GEARnn-1. Similar
results were obtained for CIFAR-10 and other network architectures as shown in Appendix [C.I]

6.2 RESULTS ON THE EDGE

We now study GEARnn when mapped onto the Edge device NVIDIA Jetson Xavier NX. The training
hyperparameters for Jetson are described in Appendix [A] Results on Jetson (Table[T3) show similar
trends to those on Quadro (Table|12).

Specifically, Table[T3]shows that GEARnn-2 achieves comparable clean and robust accuracies to
the baseline Small (D,,,) but at a fraction of its training cost —a 2.3 (2.8 x) reduction in training
time (training energy) when averaged across both networks and datasets. Additionally, GEARnn-2
beats GEARnn-1 on almost all metrics, again confirming our answer to Q1 in favour of 2-Phase.
Interestingly, GEARnn-2 achieves a clean accuracy within 1% of Small (D;,) at a similar training
cost. These results confirm that it is possible to grow efficient and robust networks on the Edge.

Under review as a conference paper at ICLR 2025

Table 2: Comparison of accuracy, robustness, and efficiency between the baselines and GEARnn
across various network architectures for CIFAR-10, CIFAR-100 and Tiny ImageNet on Quadro.
See Fig. E]for robustness comparison between Small (D,,,) and GEARnn-2 at similar training cost.

Architecture | I CIFAR-10 I CIFAR-100 I Tiny ImageNet
(full model Method Size Accuracy Training Size Accuracy Training Size Accuracy Training
size) (%) | Acn (%) Awob(%) | tu(min) EKI) || (%) | Acn(%) Awob(%) | te(min) EKI) || (%) | Acn(%) Arwob(%) | te(min) E(kT)

| Small (Di,) || 8 | 9228 66311 | 42 192 || 8 | 67.66 39.04, | 45 274 || 8 | 55.13 1848)| 262 2030

MobileNetV1|Small (Do) || 8 | 9290 8321 | 211 1130 | 8 | 68.88 5495 | 212 1330 8 | 5646 28.17 | 765 7200
(3M) | GEARm-1 | 7 | 9064 8071 | 88 379 | 8 | 6507 5146 | 93 651 || 8 | 5457 2746 | 506 4410
GEARmn-2 | 8 | 9135 8196 | 56 270 || 8 | 67.95 5328 | 72 432 | 8 | 5616 28.56 | 429 3565

| Small (Di) || 5 | 9269 7057, | 31 241 || 9 | 68.07 4124, | 38 335 | 9 | 539 1778]| 218 2040

VGG-19 [Small (Do) | 5 | 93.08 8573 | 215 1140 9 | 7001 5694 | 219 927 || 9 | 5551 3001 | 668 7120
(0M) | GEARmn-1 | 5 | 9125 8286 | 86 552 || 9 | 6573 5268 | 111 779 | 9 | 5438 2856 | 428 4220
GEARm-2 | 5 | 9218 8377 | 53 298 || 9 | 6844 5431 | 65 566 | 9 | 5619 2979 | 357 3219

| Small (Di,) || 6 | 93.34 6885, | 61 546 || 7 | 68.74 4083, | 67 490 || 7 | 5472 18.11]| 381 3390

ResNet-18 [Small (Do) || 6 | 9418 8650 | 217 1730 7 | 7197 57.30 | 219 1250 7 | 54.50 2574 | 1103 12400
(12M) | GEARmn-1 | 6 | 9236 83.86 | 108 747 || 8 | 69.15 5562 | 142 1020 | 7 | 53.17 2493 | 898 9100
GEARm-2 | 6 | 9314 8445 | 77 567 || 7 | 7094 5654 | 97 905 | 7 | 5479 2664 | 649 7270

Table 3: Comparison of accuracy, robustness, inference and training efficiency between the baselines
and GEARnn for CIFAR-10 and CIFAR-100 using MobileNet-V1 and VGG-19 on Jetson. Due to
computational limitations, the results for Tiny ImageNet and ResNet-18 are excluded for Jetson.

I I CIFAR-10 I CIFAR-100
Accuracy Inference Training Accuracy Inference Training

Network H Method H Acn(%) Aron(%) | Size% tine(ms) | t,(min) E(kJ)HAcln) Awb(%) | Size% tin(ms) | t(min) E(kJ)
|| Small (Dy,) | 91.88 6835 | 7 09 | 6 175 || 68.59 3947, | 8 09 | 7 166
MobileNet-V1 || Small (D,) | 92.58 83.84 7 0.9 1216 511 69.24 54.84 8 0.9 1333 586
GEARnn-1 || 90.20 79.65 7 0.9 560 238 | 65.48 50.46 8 1.0 704 226
GEARnn-2 | 9143 81.64 7 0.9 553 162 || 6742 52.39 8 0.9 690 216
| Small (Diy) | 9297 71.08) | 5 1.0 | 533 128 || 67.92 4049) | 9 14 | 714 187
VGG-19 Small (D,,) || 93.36 85.73 5 1.0 1543 522 || 70.07 56.68 9 14 2016 678
GEARnn-1 | 90.94 82.25 5 1.2 652 207 || 62.89 49.63 9 1.5 936 281
GEARnn-2 || 92.07 8345 5 1.0 596 155 || 67.59 53.64 9 14 884 328

6.3 ONE-SHOT VS. MULTI-SHOT GROWTH

Since GEARnn employs OSG (One-Shot Growth) for growing networks, it begs the question if we
are missing anything if multiple growth steps (m-Shot Growth) were to be permitted, i.e., question
Q2 from Section[I] To answer this question, we compare the clean and robust accuracies along with
training time and energy for different growth steps between GEARnn-1 and GEARnn-2 in Table]
All m-Shot Growth methods start with the same initial backbone f; (1.4% of full model size) and
perform growth to reach fo (5% of full model size) using different growth ratios. All methods use
VGG-19 model and perform 80 epochs parametric training during the growth phase. The experiments
are done on CIFAR-10 data and the hardware measurements are taken from Jetson.

Table M indicates that OSG _ o .
is comparable or better than Table 4: Comparison of training complexities, clean and robust accu-

the other m-Shot Growth Tacies for different growth methods implemented using VGG-19 and
methods in all the metrics, CIFAR-10 on Jetson. 2-Phase approach and OSG provide the best
thereby answering Q2. This solution for growing robust networks on the Edge.

result can be attributed to

the lower training overhead =~ Growth GEARnn-1 GEARmn-2
of growth stage in OSG Steps Acln(%) Amb(%) te (min) E (kJ) Acln(%) -Arob(%) ty (min) E (kJ)
Compared to the m-Shot 1 90.94 82.25 652 207 92.07 83.45 596 155

2 90.01 81.92 640 191 | 9194 8334 593 157
3 89.73 80.86 653 194 | 91.79 83.05 624 177
4 89.90 81.08 845 223 | 91.65 8275 645 173

Growth methods. It should
be noted that as the growth
steps increase, the accura-
cies go down and training
cost goes up, thus indicating that the optimal solution cannot be found by further increasing the
growth steps. Another comparison that is highlighted by Table [4{is the one between GEARnn-1
and GEARnn-2. For each growth step, GEARnn-2 is better than the corresponding GEARnn-1
solution on all the metrics. The numbers highlighted in red indicate the best solution across the
table. Thus, Table 4| clearly highlights that 2-Phase approach using One-Shot Growth is the best

Under review as a conference paper at ICLR 2025

combination to grow robust networks efficiently on the Edge. More comparisons between OSG and
Multi-Shot growth are shown in Appendix [B.2]

7 ABLATION STUDY

In this section, we look at the generalization of GEARnn to other robust augmentations and then
understand the robustness and efficiency breakdowns for GEARnn.

7.1 GENERALIZATION ACROSS ROBUST AUGMENTATION METHODS

The results thus far employed AugMix Hendrycks et al.| (2019) tranforms (7) to generate Dy,
for robust training. In this section, we see if the benefits of GEARnn are maintained across other
augmentation transforms. Table [5] compares the implementation of PRIME Modas et al| (2022)
augmentation across different methods. The accuracy and efficiency trend observed are similar to the
results in Table[I2] The important aspect to notice is the increase in training complexity gap (~ 2x)
between GEARnn-1 and GEARnn-2. This is because OSG with PRIME is more expensive than OSG
with AugMix.

Table 5: Accuracy and Efﬁcie.ncy.comparisons Table 6: Training time and energy breakdown
for PRIME (D,,¢) augmentation implemented for GEARnn on CIFAR-10 using VGG-19 on
for VGG-19 and CIFAR-10 on Quadro. Quadro.
Method ~ An(%) Arob (%)t (min) E (KJ) Quantity | GEARnn-1 | GEARnn-2
Small (D) 92.69 70.57| 31 241 |0SG-1 0SG-2 Total |0SG-1 OSG-2 ERA Total
training 38 48 86 5 10 38 53
Small (D) 91.30 87.01 829 2550 time (min)| 44% 56% 100%| 9% 19% 72% 100%
GEARnn-1 88.37 83.18 458 1410 energy 180 372 552 26 71 201 298
GEARnn-2 90.26 84.45 234 856 (k) ‘ 33% 67% 100%| 9% 24% 67% 100%

7.2 EFFICIENCY AND ROBUSTNESS BREAKDOWN

Table[6|shows the breakdown of energy and training)

time for different stages of GEARnn-1 and GEARnn- Table 7: Impact of using OSG and ERA for
2. OSG-1 involves the training of backbone fy and CIFAR-100 and VGG-19 on Quadro.
OSG-2 includes both the growth stage and training
of fg. The key aspect to notice in Table [f] is the — Phase-l (Dw)|[Phase-2 Dus) | 4 (54 1, (min) E ()
small fraction of training cost required by OSG-1 and ~ vanilla OSG | AugMix ERA |

OSG-2 in GEARnn-2 to provide a good initialization. v 3872 18 16l

v 38.01 16 118
Table [7l shows the ablation studies of different com- v 4650 62 385
ponents used in GEARnn-2 and compares it with a v v v ‘S‘g;i ‘7‘8 ggg
fixed network robust training. Firstly, we notice that v v | 5431 64 515

OSG is more efficient than vanilla (fixed network)
training, both in terms of training time and energy
while achieving comparable accuracy. Similar observations can be made for ERA over AugMix.
Performing 2-Phase approach by using either vanilla or OSG as initialization provides a significant
boost in robustness while incurring a minimal overhead in training cost. Thus the 2-Phase approach
is a clear winner over the 1-Phase approach, and in particular the combination of OSG and ERA
used for GEARnn-2 is optimal. More comparisons between AugMix and ERA on Jetson are shown

in Appendix

8 DISCUSSION

Until now we have looked at extensive empirical simulations that highlight the efficacy of GEARnn-2.
In this section, we will look at the inner workings of this algorithm. Specifically, we will see what
network topologies are generated when OSG designs compact networks, and also understand why
clean data initialization benefits robust training.

8.1 IMPACT OF OSG ON NETWORK TOPOLOGY

In this section, we look at the growth topology patterns ({wl}lL: 1) as a function of layer index
l. Specifically, we investigate these patterns in the simple setting of OSG (Dj,) implemented on
CIFAR-10 for (&1, &>) = (40, 40) and an initial backbone fy with {w;}% ; = 45. The bar plots
represent the mean width (E[w;]) across four random seeds.

Under review as a conference paper at ICLR 2025

I\”I\ l] 100 H|‘|‘ |‘|‘|‘
o‘ |\‘l ll\ 1 0‘ M‘llll‘| 0| | |“IIIIII
1 5 10 15 1 5 10 15 1 5 10 15

layer index layer index layer index
= f,[VGG-19] mm f,[ResNet-18] mm H[VGG-19] & =1 £IVGG-19] & =50 mm f,[VGG-19] GEARNN-2 Emm f,[VGG-19] GEARnn-1

(a) (b) (©)

-
N
1S5)
-
N
o
-
o
o

"
o
o
-
=
o
-
oy
o

©
S

N
S o

#output channels
=
U 9 N ® © O
& & & & o o
#output channels

o

S
#output channels
=
v 9 N ©® © O
S & 5 & & &

v
=)

IS

IS
IS

Figure 6: Average output channels vs. layer index for CIFAR-10 on Quadro is shown. Plot (a) looks
at the impact of network architecture and highlights the non-uniform growth pattern in plain CNNs
versus steady zigzag pattern in residual CNNs. Plots (b) and (c) indicate that modifying the number of
growth epochs (£,) or performing 1-Phase robust growth does not affect the topology pattern much.

Backbone architecture: For plain CNNs like VGG-19 |Simonyan & Zisserman|(2014) - the initial
layers have higher number of convolutional filters compared to final layers. This correlates with the
observations seen in quantization |[Sakr & Shanbhag| (2018)) where the initial layers require higher
precision compared to the final layers. However, in case of residual networks like ResNet-18, the
pattern is largely invariant to network depth and is oscillating as shown in Fig.[6a] The invariance in
depth can be attributed to the direct gradient flow facilitated by the shortcut connections making each
residual block act independently of the depth. In each residual block, the macro-level pattern in plain
CNN s is observed at a micro-level, i.e. initial layer has more output channels than the final layer.

Growth Epochs and Data: All the above experiments were performed for a single growth epoch
(4 = 1) and on clean data. The effect of increasing £, to 50 and using ERA data for growth
(GEARnn-1) is shown in Fig.[6b]and Fig. The topology pattern in both cases remains roughly the
same as OSG (Dy,) £, = 1.

8.2 RATIONALE FOR 2-PHASE APPROACH

In this section, we provide insights for the efficacy of GEARnn-2 and the 2-Phase approach. In
particular, we highlight why training or growth done on clean data provides a good initialization
for robust training. We look at the loss curves for the 1-Phase approaches (Small (AugMix), Small
(ERA), GEARnn-1) and the 2-Phase approach (GEARnn-2) in Fig. [/} The initial dip in GEARnn-2
loss function in Fig.[7a]is due to the loss landscape being different for Phase-1 done on clean data
compared to Phase-2 done on augmented data. One can clearly see that GEARnn-2 achieves a lower
loss at a faster rate compared to the other 1-Phase approaches, thus justifying the importance of clean
growth initialization. We also plot the filter normalized loss curves [Li et al| (2018) in Fig. [7b] to
observe the loss landscapes around the converged weights. GEARnn-2 finds the smallest minima
while also having a wide curve which enables better generalization |L1 et al.| (2018).

The above explanation illustrates why GEARnn-2 has a good training and generalization performance.
However, in order to understand why initialization with clean data aids faster convergence of
robust training, we look at the Fourier spectrums of the clean, augmented and corrupted images
in Fig. 8] Fig. Ba|indicates that the clean images lie in the low frequency domain, while the corrupted
samples occupy a wide range of frequencies (Figs.[8b| & [8c). Crucially, the spectrum containing all
the augmentations (in AugMix) Fig.[8d|and all the corruptions (in CIFAR-10-C) Fig. [8e]is also in
the low-frequency domain, similar to the clean image spectrum Fig. [8a] This is unlike the scenario
of adversarial or Gaussian noise perturbations, which lie in the high-frequency domain [Yin et al.
(2019) and hence may not benefit from clean data initialization. Thus, robust training for common
corruptions benefits from initialization with clean data.

9 LIMITATIONS AND BROADER IMPACTS

While our work has conclusively shown that a 2-Phase approach for growing robust networks is
computationally efficient, a theoretical convergence analysis for this result is currently lacking. Such
a result would help identify favorable initial conditions for robust training to achieve high accuracy in
fewer epochs.

Under review as a conference paper at ICLR 2025

Small (AugMix)
Small (ERA)
GEARnNN-1 (ours)
GEARNN-2 (ours)

Small (AugMix)
Small (ERA)

GEARNN-1 (ours)
GEARNN-2 (ours)

it

2.5 31
%] %]
wv [
S0 S
2,
1.5
14
1.0
0 20 40 60 80 -0.10 —-0.05 0.00 0.05 0.10
Trainina time (min) Parameter Space

(a) (b)

Figure 7: Loss comparisons for 2-Phase (GEARnn-2) and 1-Phase (rest) approaches for CIFAR-100
and VGG-19 on Quadro with 50 epochs of robust training at final model size. Fig. [7al highlights
that GEARnn-2 loss converges to the minimum faster than other approaches. Fig.[7b|shows the loss
landscapes where GEARnn-2 achieves the smallest minima with a wide curve, thus aiding better
generalization |Li et al.[(2018)).

A ORES

(a) clean data (b) snow (c) JPEG comp. (d) AugMix (e) all corruptions

Figure 8: The Fourier spectrum of clean images (from CIFAR-10), their corresponding augmented
(AugMix) and corrupted versions (CIFAR-10-C at severity 3) are shown. The augmentation and
corruption spectrums (Figs. [8b] Bd & are obtained by taking Fourier Transform of the
difference with the clean image (Eg: k(Xin, 3) — Xin). Snow(Fig. and JPEG compression(Fig.
corruptions are shown to highlight the range of possible frequencies in the corrupted spectrums. The
similarity in the spectrums of clean (Fig. [8a), augmented (Fig.[8d) and all-corrupted (Fig. images
highlights the importance of OSG initialization using clean data.

The impact of our work is broadly positive since it enables efficient robust training on Edge devices.
We do not see any direct negative impact of our work.

10 CONCLUSION

We addressed the problem of growing robust networks efficiently on Edge devices. Specifically,
we concluded that a 2-Phase approach with distinct clean growth and robust training phases is
significantly more efficient than a 1-Phase approach which employs augmented data for growth. We
encapsulated this result into the GEARnn algorithm and experimentally demonstrated its benefits
on a real-life Edge device. An interesting and non-trivial extension of our work would be to use
unlabeled data for growing efficient and robust networks. Another extension would be to design
robust networks for complex tasks such as object detection on highly resource-constrained Edge
platforms.

11 REPRODUCIBILITY STATEMENT

We list all the experimental setup details in Section[5]and Appendix [A] We use fixed seeds during the
simulation runs so that our results can be reproduced. We will make the code public along with the
software versions if the paper is accepted so that the community can use and reproduce our results.

10

Under review as a conference paper at ICLR 2025

REFERENCES
Raffaello Bonghi. Jetson-stats. https://pypi.org/project/jetson-stats/.

Dan A Calian, Florian Stimberg, Olivia Wiles, Sylvestre-Alvise Rebuffi, Andras Gyorgy, Timothy
Mann, and Sven Gowal. Defending against image corruptions through adversarial augmentations.
arXiv preprint arXiv:2104.01086, 2021.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
robustness benchmark. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2021. URL https://openreview.net/forum?id=
SSKzZPJCt /B.

James Diffenderfer, Brian Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya Kailkhura. A
winning hand: Compressing deep networks can improve out-of-distribution robustness. Advances
in neural information processing systems, 34:664—676, 2021.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Max Vladymyrov, and Fabian Pedregosa.
Gradmax: Growing neural networks using gradient information. arXiv preprint arXiv:2201.05125,
2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Kenji Fukumizu and Shun-ichi Amari. Local minima and plateaus in hierarchical structures of
multilayer perceptrons. Neural networks, 13(3):317-327, 2000.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770-778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv preprint arXiv:1912.02781, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 8340-8349, 2021.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. Advances in neural information processing systems, 29, 2016.

Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-Song
Chen. Compacting, picking and growing for unforgetting continual learning. Advances in Neural
Information Processing Systems, 32, 2019.

11

https://pypi.org/project/jetson-stats/
https://openreview.net/forum?id=SSKZPJCt7B
https://openreview.net/forum?id=SSKZPJCt7B

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings
of the European conference on computer vision (ECCV), pp. 19-34, 2018.

Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmentations and
corruptions in natural corruption robustness. Advances in Neural Information Processing Systems,
34:3571-3583, 2021.

Apostolos Modas, Rahul Rade, Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and
Pascal Frossard. Prime: A few primitives can boost robustness to common corruptions. In
European Conference on Computer Vision, pp. 623-640. Springer, 2022.

Corporation NVIDIA. Nvidia jetson xavier nx for embedded and edge systems. https:
//www.nvidia.com/en—-sg/autonomous—machines/embedded-systems/
Jjetson-xavier—-nx/, a.

Corporation NVIDIA. System management interface smi. https://developer.nvidia,
com/nvidia-system—-management—-interface,b.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525-542. Springer, 2016.

Evgenia Rusak, Lukas Schott, Roland Zimmermann, Julian Bitterwolfb, Oliver Bringmann, Matthias
Bethge, and Wieland Brendel. Increasing the robustness of dnns against im-age corruptions by
playing the game of noise. 2020.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Charbel Sakr and Naresh Shanbhag. An analytical method to determine minimum per-layer precision
of deep neural networks. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1090-1094. IEEE, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Jiachen Sun, Akshay Mehra, Bhavya Kailkhura, Pin-Yu Chen, Dan Hendrycks, Jihun Hamm, and
Z Morley Mao. Certified adversarial defenses meet out-of-distribution corruptions: Benchmarking
robustness and simple baselines. arXiv preprint arXiv:2112.00659, 2021.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Wei Wen, Feng Yan, Yiran Chen, and Hai Li. Autogrow: Automatic layer growing in deep con-
volutional networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 833-841, 2020.

Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural architectures.
Advances in neural information processing systems, 32, 2019.

Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly neural architecture descent: a general
approach for growing neural networks. Advances in neural information processing systems, 33:
22373-22383, 2020.

12

https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-sg/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

Under review as a conference paper at ICLR 2025

Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
perspective on model robustness in computer vision. Advances in Neural Information Processing
Systems, 32, 2019.

Xin Yuan, Pedro Savarese, and Michael Maire. Growing efficient deep networks by structured
continuous sparsification. arXiv preprint arXiv:2007.15353, 2020.

Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. Accelerated training via in-
crementally growing neural networks using variance transfer and learning rate adaptation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https
//openreview.net/forum?id=Hla7bVVnPK.

Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas. Maximum-entropy adversarial data augmen-
tation for improved generalization and robustness. Advances in Neural Information Processing
Systems, 33:14435-14447, 2020.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697-8710, 2018.

13

https://openreview.net/forum?id=H1a7bVVnPK
https://openreview.net/forum?id=H1a7bVVnPK

Under review as a conference paper at ICLR 2025

APPENDIX / SUPPLEMENTAL MATERIAL
A TRAINING SETUP

Hyperparameters: The setup for growth and robust augmentation follows closely with what is
described in Firefly Wu et al| (2020) and AugMix Hendrycks et al.| (2019), respectively. The
parametric training is done for 160 epochs using a batch-size of 128 and an initial learning rate of
0.1. The learning rate scheduler decays by 0.1 at half and three-fourths of the total number of epochs.
We use the Swish loss function for MobileNet-V1 as used in [Wu et al.| (2020), while employing
ReLU for the other two networks. Instead of using three fully-connected layers at the end of VGG-19,
we use only one as done in|Wu et al.|(2020). Stochastic Gradient Descent (SGD) optimizer is used
with momentum 0.9 and weight decay 10~. As for the standard growth process, we use a Root
Mean Square Propagation (RMSprop) optimizer with momentum 0.9, alpha 0.1 and initial learning
rate of 9 x 1075, The number of workers is chosen as 4. For ERA, (W, D, J) = (1, 3,4) is picked.
The augmentation transforms 7 are same as that of AugMix Hendrycks et al.| (2019)) for all the
results except Table[5] where we pick the transforms from PRIME Modas et al.|(2022). As specified
in AugMix, we also do not use any augmentations which are directly present in the corrupted test
dataset.

In case of OSG, the initial backbone fj is chosen as a network with w; = 45 foralll = {1, ..., L}

and is thus extremely small. The number of randomly initialized neurons at each growth stage

is 70. We ensure that & of GEARnn-1 and &, of GEARnn-2 are same for a fair compari-

son. &, is chosen as 1 based on Firefly Wu et al.| (2020). The transforms used in AugMix are

autocontrast, equalize, posterize, rotate, solarize, shear_x,
shear_y, translate_x, translate_y.

Jetson Training: The two changes to the GEARnn algorithm when implementing on NVIDIA Jetson
Xavier are - one we use j = 3 instead of j = 4, and two, we allow only 40 randomly initialized new
neurons per layer in the growth step (as compared to 70 in|Wu et al.[|(2020)). These measures are
taken to stay within the memory constraints of the Edge device. We also reduce the batch size (and
learning rate) appropriately in case the above measures are insufficient.

B ABLATION STUDIES

B.1 DIAGNOSTICS OF ROBUST AUGMENTATION METHODS

In this section, we investigate which aspects of the ro- Experiment W D J Aw(h) tlmin
bust augmentation framework described in Section[4.2] S S
contribute most to the robustness while being training * depth R
efficient. Table [§] shows different modifications of + width + depth 303 0 8047 21
the stochastic chains obtained by varying (W, D, J) 1322:21?28:2 A A
values. It can be observed that the basic version with e o S S S S
(VV7 _D7 J) = (17 1’ O) (uses Only Standard CIross en- AugMix|Hendrycks et al.|(2019) 3 3 3 84.05 41

tropy loss with the label and augmented data as input)
has the least training time, but suffers a significant
drop in Ao compared to standard AugMix. Cru- V.)
cially, we note that increase in D and J has more ~ Ume. Network f; from OSG is used as the
impact on robustness at a lesser training cost com- Starting network and &, = 40. All the meth-
pared to T. For ERA, we pick the modification with ~ ds are implemented for CIFAR-10 and 5%
(W,D,J) = (1,3,4) as it provides the highest ro- ~YGG-19 network on Quadro. W, D, .J rep-

bustness while simultaneously reducing training time ~ fesent the width, depth and consistency sam-
over AugMix. ples used in the stochastic chains.

Table 8: Impact of training AugMix-
variants on the robust accuracy and training

B.2 OSG VERSUS MULTI-SHOT GROWTH COMPARISONS

In this section, we first look at clean data growth comparisons on Jetson in Table[9] Then we look at
robust data growth comparisons on Quadro in Table When comparing various growth methods
on clean data in Table[9] we also include the Small (Dj,) results to highlight the efficiency benefits
of growth. We can see that OSG has comparable or better training efficiency than all the methods
including Small (Dy,). In case of clean accuracy, we observe that OSG has the highest among growth

14

Under review as a conference paper at ICLR 2025

methods while being slightly lower than Small (D;j,). Looking at Table [I0] we see that for both
datasets OSG again provides comparable or best solution among all the growth methods across all
metrics. Thus our choice of OSG over other Multi-Shot Growth methods is justified.

Taglef: Comparison "fdt.ll;?mmf C"mlzllf’““gf Table 10: OSG versus Multi-Shot Growth using ERA
anc clean aceuracy [of GLIETENt SIOWHLICN data, i.e. GEARnn-1 with Multi-Shot Growth. Re-
ods implemented using VGG-19 and clean sults are shown for VGG-19 on Quadro

CIFAR-10 data on Jetson. ’

Growth | CIFAR-10 \ CIFAR-100
Steps | Awop (%) t (min) E (k)) | Awop (%) ty (min) E (kJ)
I | 8286 75 449 | 5268 84 426

Growth Steps | Acin (%)t (min) E (kJ)
Small (Dy,) | 91.96 267 73
1 9080 210 51

2 | 8231 81 329 | 5134 100 554
g gg-g? gg? gg 3 8194 8 506 | 5052 103 517
; ooy Bl 4 | 8181 86 389 | 5045 102 590

B.3 BENEFITS OF ERA ON JETSON

In this section we will look at the benefits of using Table 11: Comparison of ERA versus Aug-
ERA over AugMix. Previously, we had looked at Mix on Jetson for VGG-19 and CIFAR-10
this comparison on Quadro using CIFAR-100 and When trained for 160 epochs

VGG-19 in Table Here, we will look at these

results for CIFAR-10 and VGG-19 on Jetson when Method | Acn(%) ty (min) E (kJ)
training a fixed-size Small (D,,g) network for 160 Small (AugMix)| 9336 85.73 1543 522
epochs. Table [IT] indicates that ERA is better than Small (ERA) | 9342 8574 1542 486

AugMix on all the metrics. Thus our choice of ERA
over AugMix is justified.

B.4 GAUSSIAN AUGMENTATION

Table 12: Gaussian Augmentation comparison between the baselines and GEARnn on VGG-19 for
CIFAR-10, CIFAR-100 on Quadro.

Architecture | I CIFAR-10 I CIFAR-100
(full model Method ‘ Size Accuracy Training Size Accuracy Training
size) (%) «Acln(%) Arob(%) ttr(min) E(kJ) (%) Acln(%) «Arob(%) ttr(min) E(kj)
| Small (D) || 5 | 92.69 70.57) | 31 241 || 9 | 68.07 41.24] | 38 335
VGG-19 |Small (Dye)| 5 | 8693 75.90 50 269 9 | 57.82 4513 46 298
(20M) GEARnn-1 | 5 | 84.07 73.81 28 93 9 | 51.16 40.30 30 114
GEARmn-2 || 5 | 86.65 76.21 27 114 9 | 56.93 45.55 31 203

B.5 RESULTS ON NVIDIA JETSON ORIN NANO

Table 13: Comparison of between the baselines and GEARnn for CIFAR-10 and CIFAR-100 using
VGG-19 on Jetson Orin Nano.

[[CIFAR-10 [CIFAR-100

Inference
Size% tinr(ms)

Inference
Size% tinr(ms)

Training
te(min) E(KJ)

Training Accuracy

tlr<min) E(kJ) H -Ac]n(%) «Amb(%)

Accuracy

Method HAC]“(%) Ao (%)

Network

| Small (Dy,) || 92.84 7003, | 5 03 | 149 49 || 6707 4029 | 9 03 | 175 59
VGG-19 || Small (Dy) | 93.00 8519 | 5 03 | 411 173 || 69.23 5572 | 9 03 | 492 206
GEARmn-1 | 9072 8213 | 5 03 | 196 72 | 63.02 50016 | 9 04 | 201 104
GEARmn-2 | 9223 8329 | 5 03 | 174 57 | 6714 5356 | 9 03 | 231 82

15

Under review as a conference paper at ICLR 2025

C ACCURACY-ROBUSTNESS-EFFICIENCY TRADE-OFFS

C.1

TRAINING TIME VERSUS ACCURACIES

In Section [6] and Fig. [5] we observed that GEARnn-2 can achieve high robustness even when the
robust training epochs are low. This is due to better initialization provided by OSG. We show the
same results ablated for both VGG-19 and MobileNet-V1 for CIFAR-10 and CIFAR-100 in Fig.[9]

86 86
g 85 g 85 g 3
> > g
9 9
g < £o
384 384 2
v} v
< < 2
k7]] c
283 283 S 01
2 —— Small (Dayg) 2 —8— Small (Dayg) o —8— Small (Dayg)
82 —@— GEARnN-1 82 —@— GEARnn-1 —8— GEARnn-1
—@— GEARnn-2 —@— GEARnn-2 920 —®— GEARNn-2
40 60 80 100 120 140 160 50 100 150 200 50 100 150 200
Epochs Training Time (min) Training Time (min)
(a) (b) (©
93.5
84.0 84.0
93.0
835 835 .
g 8 K925
>83.0 >83.0 >
8 @ 892.0
2825 2825 5
< < gois
+ 82.0 = 82.0 T
a3 a $91.0
2 2 3}
2 8L5 —@— Small (Dayg) 2 8L5 —@— Small (Dayg) v} —8— Small (Daug)
810 —e— GEARnn-1 1.0 —e— GEARnn-1 905 -~ GEARnn-1
: —8— GEARnn-2 : —8— GEARnn-2 90.0 —®— GEARnn-2
40 60 80 100 120 140 160 50 75 100 125 150 175 200 50 75 100 125 150 175 200
Epochs Training Time (min) Training Time (min)
() © ®
60.0 60.0
72.5
57.5 57.5
— ~ __70.0
Los0 5o g
> 7 567.5
e e <]
5525 5525 Ses0
9 g S
< < <
 50.0 1 50.0 T 625
2 2 3
2475 —@— Small (Dayg) 2475 —@— Small (Dayg) T 60.0 —8— Small (Daug)
—@— GEARnn-1 —@— GEARnN-1 —8— GEARnn-1
57.5
45.0 —@— GEARnn-2 45.0 —@— GEARNN-2 —8— GEARNn-2
40 60 80 100 120 140 160 50 100 150 200 50 100 150 200
Epochs Training Time (min) Training Time (min)
(€9) () ®
56 56 70
gss gss e
354 354 >
o o ®
= = 5
353 353 366
< < £
52 52 =
3] ©
2 2 64
251 —— Small (Dayg) 251 —@— Small (Dayg) o] —8— Small (Dayg)
50 —&— GEARnn-1 50 —@— GEARNn-1 —8— GEARnn-1
—&— GEARnn-2 —&— GEARnn-2 62 —&— GEARnn-2
49 49
40 60 80 100 120 140 160 50 100 150 200 50 100 150 200
Epochs Training Time (min) Training Time (min)

@

(9]

®

Figure 9: Plots (a)-(c) are implemented for VGG-19/CIFAR-10, (d)-(f) are for MobileNet-V 1/CIFAR-
10, (g)-(i) are for VGG-19/CIFAR-100, and (j)-(1) are for MobileNet-V 1/CIFAR-100 on Quadro.
First two plots of each row indicates the robust accuracy as a function of epochs and training time
respectively. The last plot in each row shows the clean accuracy as a function of training time.
GEARnNnN-2 clearly achieves the best clean and robust accuracy at the same training cost.

16

Under review as a conference paper at ICLR 2025

C.2 MODEL SIZE VERSUS ACCURACIES

Fig.[T0aand Fig. [I0b]show the results of L1-Unstructured pruning performed on GEARnn-2 final
network. The global sparsity is varied from 10% to 90% in steps of 20%. Fig. shows the impact

of varying the growth ratio v in GEARnn-2’s OSG.

accuracy (%)
ey m
3 g

N
S

N
5}

—@- clean accuracy
-@- robust accuracy
GEARNN-2 clean

--- accuracy
-~ GEARNN-2 robust accuracy

accuracy (%)
P ™
3 3

IS
S

~N
S

—@- clean accuracy
~@- robust accuracy

/--- GEARNNn-2 (1M) clean accuracy

GEARNN-2 (1M) robust accuracy
0.2 0.4 0.6 0.8

robust accuracy (%)

84.5

10 20 30 40 50 60 70 80 90

sparsity (%)

(a)

no. of non-zero params (in millions)

(b)

0.6 038 1.0 12 14
no. of params (in millions)

()

Figure 10: Plots (a) & (b) show the impact of L1-unstructured pruning done on the final network
f5, obtained from GEARnn-2 (1 million params). Plot (a) represents the sparsity-controlled pruning
and Plot (b) shows the corresponding points plotted in parameter-space. Plot (c) indicates the impact
of parameters on robust accuracy of GEARnn-2 when the growth ratio v of OSG is varied. All
experiments are conducted on CIFAR-10 data using VGG-19 network.

D PRIOR WORKS

D.1 FIREFLY

In this section, we explain how the splitting and growing new neurons in Firefly (2020)
(and our growth technique G) is implemented. We explain it in terms of fully-connected layers and
neurons, but this can be easily extended to CNNs. Consider a multi-layered perception with two
neurons in the hidden layer as shown in Figure 1 of (2020). If is the input to the neurons,
0; and 1 are the weights, o is the activation function, then we can write the input to the final layer as
o(x,0;). In case of splitting growth, we add a new incoming weight by perturbing the existing weight
(o(x,0; — £;0;)) and adding the new perturbed weight (o (z,0; + £;9;)). When adding a random
new-grown weight, we add a randomly initialized weight §; such that the input to the final layer is
g;0(x,0;). We can write the function as follows:

!
m m+m

1
= Z) (o(z,0; —€id;) + o(x,0; + €:;)) + Z gio(x,0;)

=1 i=m-+1
min{£(fes) st llello <1C(), llelloe < € [18]l00 < 1}

fe,&

where m denotes the number of split neurons and m’ denotes the number of newly grown neurons.
Solving the above minimization problem (denoted as G) provides us the grown network.

D.2 AUGMIX

The working of AugMix [Hendrycks et al| (2019) is similar to that of ERA. However AugMix uses
parallel concurrent transforms which makes it more inefficient than ERA. Below equations indicate
the working of AugMix. The notation is same as ERA and W denotes the width of the block of
transforms.

AY(x) =aio0az0..0a4,(x)
W

453 = 3 A (x)
w=1

x5 = px+ (1= p)A4;(x)
R((Xa y)|T) = ({X?ug7...,x?fl’x}7y) — Daug = R(Dm‘T)
where a; ~ Unif(7), p ~ 5(1,1), d; ~ Unif({1,...,D}), j € {1,...,J — 1}, a ~ Dirichlet(W)
3

17

	Introduction
	Background and Related Work
	Notation and Problem Setup
	Growing Efficient Accurate and Robust Neural Networks (GEARnn)
	One-Shot Growth (OSG)
	Efficient Robust Augmentation (ERA)
	GEARnn Algorithms

	Experimental Setup
	Main Results
	Results across Network Architectures and Datasets
	Results on the Edge
	One-Shot vs. Multi-Shot Growth

	Ablation Study
	Generalization across robust augmentation methods
	Efficiency and Robustness breakdown

	Discussion
	Impact of OSG on Network Topology
	Rationale for 2-Phase Approach

	Limitations and Broader Impacts
	Conclusion
	Reproducibility Statement
	Training Setup
	Ablation Studies
	Diagnostics of Robust Augmentation Methods
	OSG versus Multi-Shot Growth Comparisons
	Benefits of ERA on Jetson
	blueGaussian Augmentation
	blueResults on NVIDIA Jetson Orin Nano

	blueAccuracy-Robustness-Efficiency Trade-offs
	blueTraining Time versus Accuracies
	blueModel Size versus Accuracies

	Prior Works
	Firefly
	AugMix

