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 A B S T R A C T

Subgraph federated learning (subgraph-FL) is a distributed machine learning paradigm enabling cross-client 
collaborative training of graph neural networks (GNNs). However, real-world subgraph-FL scenarios often 
face subgraph heterogeneity problem, i.e., variations in nodes and topology across multiple subgraphs. As 
a result, the global model experiences a decline in performance. Despite several well-designed methods being 
proposed, most still rely on parameter aggregation-based global GNN for inference, which oversimplifies 
the subgraph knowledge and leads to sub-optimal performance. To this end, we propose achieving effective 
subgraph federated learning via pseudo prototype distillation (FedPPD). Specifically, FedPPD first utilizes a 
generator under the guidance of local prototypes to explore the global input space. Subsequently, the generated 
pseudo graph is used for distilling knowledge from the local GNNs to the vanilla-aggregated global GNN to 
convey reliable knowledge oversimplified during aggregation. Extensive experimental validation on six public 
datasets demonstrates that FedPPD consistently outperforms state-of-the-art baselines. Our code is available at 
https://github.com/KyrieLQ/FedPPD.
1. Introduction

Graph neural networks (GNNs) have emerged as the most popu-
lar paradigm for graph-based deep learning and demonstrated strong 
performance across various applications, including e-commerce recom-
mendation systems (Wu, Sun et al., 2022), molecular structure analysis 
(Wang, Wang et al., 2022), and citation network categorization (Wu 
et al., 2021). However, most existing studies assume a centralized data 
storage setup, where the entire graph data is collected and accessed by 
a single institution. Unfortunately, this assumption often does not hold 
in real-world scenarios, where graph data is typically distributed across 
multiple institutions and is subject to local access restrictions. For 
example, each social media company maintains its own social network 
of registered users and wishes to collaborate on training a GNN for user 
classification. Due to user privacy policies and competitive business 
concerns, these companies are reluctant to share their private networks 
directly (Liu et al., 2022). In such scenarios, research on GNNs based on 
centralized settings becomes inadequate. This underscores the growing 
necessity for developing methods to train GNNs with collaborative 
intelligence in distributed environments.

∗ Corresponding author.
E-mail addresses: 202100800115@mail.sdu.edu.cn (Q. Lin), jiajishuo@mail.sdu.edu.cn (J. Jia), jiangbin@sdu.edu.cn (B. Jiang).

1 These authors contributed to the work equally.

To address this challenge, the concept of federated graph learning 
(FGL) has emerged, which combines the principles of federated learning 
(FL) to enable GNN training across decentralized scenarios. A notable 
variant of FGL is subgraph-FL, where each client retains an induced 
subgraph of an implicitly global graph and collaborates to execute node 
or edge-level downstream tasks (Zhang, Yang et al., 2021).

As a straightforward yet effective approach to implement subgraph-
FL, FedAvg (McMahan et al., 2017) is originally developed for FL 
in the computer vision domain, which aggregates the global model 
by averaging the parameters from all local models. However, due to 
inherent differences in data sources and collection methods, there are 
significant variations in node features and graph topology arise across 
subgraphs, which have been shown to degrade the performance of 
the global GNN, known as the subgraph heterogeneity problem (Zhu 
et al., 2024).

To address this issue, Fed-PUB (Baek et al., 2023) introduces a 
personalized aggregation strategy based on subgraph similarity measur-
ing. AdaFGL (Li, Wu, Zhang, Sun et al., 2024) conducts personalized 
local fine-tune based on local subgraphs and federated knowledge 
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Fig. 1. An illustration of the subgraph knowledge oversimplifying problem caused by 
vanilla parameter aggregation. An intuitive solution is to fine-tune the global model 
using subgraph knowledge. 𝑊  represents the model parameters of the local client, 
while 𝛼 denotes the aggregation weight.

extractor. FedGTA (Li, Wu, Zhang, Zhu et al., 2024) employs topology-
aware aggregation through local smoothing confidence and hybrid 
neighbor moments. Despite their effectiveness, these methods have a 
common Limitation 1: Relying on an aggregation-based global model 
for inference, which oversimplifies the subgraph knowledge and leads 
to sub-optimal performance. As illustrated in Fig.  1, during model 
aggregation, the node features and topological structures of each local 
subgraph are encoded into a single value (i.e., aggregation weight), los-
ing essential local subgraph information and oversimplify the complex 
heterogeneity relationships across multiple local subgraphs.

Building on this insight, FedTAD (Zhu et al., 2024) further fine-tune 
the vanilla-aggregated global model through topology-aware data-free 
knowledge distillation. However, it suffers from Limitation 2: lacking 
sufficiently reliable guidance during fine-tuning. The optimization of 
generator in FedTAD is relies entirely on accurate predictions of local 
models on the pseudo graph, lacking more reliable guidance. As a 
result, the poor quality of the pseudo graph generated by FedTAD 
undermines the effectiveness of the distillation process.

To tackle these two limitations, we propose achieving federated 
learning through pseudo prototype distillation (FedPPD), which im-
proves the performance of the vanilla-aggregated global model by 
leveraging local prototypes as a reliable local subgraph knowledge. 
Specifically, on the Client side, each client computes local prototypes 
to capture the nodes and topological information of its local subgraph. 
On the Server side, FedPPD uses a generator to produce a pseudo 
graph. Both the global model and local models use the pseudo graph 
to generate pseudo prototypes. By aligning pseudo local prototypes 
with real local prototypes, we obtain a well-trained generator. By 
aligning pseudo global prototypes with pseudo local prototypes, we 
fine-tune the global model to convey reliable knowledge oversimplified 
during aggregation. Notably, FedPPD is orthogonal to most model 
aggregation-based FGL algorithms, making it a hot-pluggable method 
for performance enhancement.

In summary, the contributions of this work can be summarized as 
follows:

• Novel Method. We introduce FedPPD, a new federated graph 
learning approach that addresses the oversimplification of knowl-
edge in parameter aggregation. Instead of relying solely on tradi-
tional model averaging, FedPPD leverages prototypes to fine-tune 
2 
Table 1
Description of notations commonly used in this paper.
 Notations Definitions  
 𝐺 Original graph data  
  Node set  
 𝑿 Node feature matrix  
  Adjacency matrix  
 𝒀 Label matrix  
 𝐾 Number of clients  
 𝑘 dataset of k-client  
 𝜔 Global model parameters  
 𝜔𝑘 k-client model parameters  
 𝜃 generator parameters  
  real prototype  
 ̃ pseudo prototype  
 𝑀(𝑡) Set of clients selected for round t 

the global model via data-free knowledge distillation. This mech-
anism effectively preserves important local structural information 
while ensuring data privacy.

• State-of-the-Art Performance. We conduct extensive experiments 
on six benchmark datasets, covering various graph learning tasks 
and data distributions. The experimental results demonstrate that 
FedPPD consistently outperforms existing state-of-the-art feder-
ated graph learning methods by a clear margin. These improve-
ments validate the robustness and generalizability of our method 
across diverse scenarios.

• Hot-Plugging Capability. We show that FedPPD can be seamlessly 
integrated into many other FGL frameworks without requiring 
major architectural changes or additional training data. By simply 
incorporating the prototype-based distillation step, FedPPD effec-
tively boosts performance and provides a flexible plugin option 
for existing methods, making it a practical choice in real-world 
federated graph applications.

2. Preliminaries

2.1. Notation definitions

Given an attributed graph 𝐺 = ( ,  ,𝑿), where  denotes the node 
set,  denotes the adjacency matrix, and 𝑿 =

{

𝒙1,𝒙2,… ,𝒙𝑁
}

∈ R𝑁×𝐹

is the node feature matrix, 𝒙𝑖 ∈ R𝐹  is the 𝐹 -dimensional feature vector 
of node 𝑣𝑖, and 𝑁 = || holds. Besides, 𝒀 =

{

𝒚1, 𝒚2,… , 𝒚𝑁
}

∈ R𝑁
is the label matrix, 𝒚𝑖 ∈ R  is a one-hot vector and  represents the 
number of the classes. Further definitions of notations commonly used 
in the paper is shown in Table  1.

2.2. Problem formulation

Let 𝜔 be the model parameter in the server and 𝜔𝑘 in the 𝑘th client. 
In the work, there are 𝐾 clients, where 𝑘 =

{(

𝑥𝑖𝑘, 𝑦
𝑖
𝑘
)}𝑁𝑘

𝑖=1 is the dataset 
stored in 𝑘-th client, 𝑁𝑘 is the corresponding number of samples. Each 
client possesses a distinct subgraph. Overall, federated graph learning 
can be formulated as the following problem: 

min
𝜔

1
𝐾

𝐾
∑

𝑘=1
𝑓 (𝜔𝑘),

𝑓 (𝜔𝑘) = − 1
𝑁𝑘

𝑁𝑘
∑

𝑖=1

(

𝑥𝑖𝑘, 𝑦
𝑖
𝑘, 𝐸𝑘;𝜔𝑘

)

,


(

𝑥𝑖𝑘, 𝑦
𝑖
𝑘, 𝐸𝑘;𝜔𝑘

)

=
∑

𝑖∈𝑙

∑

𝑗
Y𝑖𝑗 log

(

sof tmax(Ŷ)𝑖𝑗
)

,

(1)

where  is the loss function which quantifies the difference between 
the predicted and actual results of the model, 𝐸𝑘 is adjacency matrix 
for client 𝑘 and dataset 𝑘 for each 𝑘 ∈ {1, 2,… , 𝐾} could be distributed 
heterogeneously. Limited by the privacy protection mechanism in FGL, 
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the server is unable to directly access the local data of clients. To solve 
Eq. (1), for each communication round 𝑡, existing methods send the 
global model 𝜔 to a random set of clients 𝑀(𝑡) and optimize it by 
min𝜔𝑓𝑘(𝜔), 𝑘 ∈ 𝑀(𝑡). The server collects the local models {𝜔𝑘}𝑘∈𝑀(𝑡), 
and aggregates them by averaging the gradients to update the global 
model 𝜔.

Unfortunately, due to heterogeneity issues between clients, there 
are significant differences between different local models. It is worth 
noting that the heterogeneity issue discussed here differs from the 
heterogeneity in heterogeneous networks (Shi et al., 2014). In the 
context of federated graph learning, heterogeneity refers to the differ-
ences in subgraph topological structures, as well as the heterogeneity in 
node or edge features. Thus, traditional gradient averaging could cause 
information loss in local models, and the updated global model has 
weak generalization ability which means it is difficult to fully utilize 
the training capabilities of local models. To solve this issue,we propose 
a new method to adjust the global model in Section 3, so that the global 
model can preserve the knowledge in local models and maintain their 
performance as much as possible.

2.3. Related works

2.3.1. Graph neural networks (GNNs)
Previous researches applied convolutional neural networks (CNNs) 

to graph by using spatial and spectral convolution methods (Bruna 
et al., 2014). However, the cost of computing the proposed convolu-
tional operation and eigenvalue of a large matrix is enormous (Kipf 
and Welling, 2017). To avoid diagonalizing, fast Chebyshev polyno-
mial approximation up to K-order was used (Hammond et al., 2011). 
GCN (Kipf and Welling, 2017) further simplifies the computation by 
confining the filters only to operate in first-order neighborhood of 
each node. However, the computational process relies on the Lapla-
cian eigenbasis, which is inherently reliant on the graph’s topology. 
Consequently, this reliance hinders generalization. To this end, GAT 
(Veličković et al., 2018) introduces attention mechanism by using 
masked self-attentional layer. Furthermore, in real-world scenarios, the 
topology of the graph may not be readily accessible. Thus, inferring 
graph structures from available information is of great significance. 
SLAPS (Fatemi et al., 2021) uses a generator which selects top k 
neighbors by employing KNN algorithm and cosine similarity, and 
updates these edges to infer a task-specific latent structure to mitigate 
the problem. Additionally, numerous alternative graph neural network 
architectures, such as SGC (Wu et al., 2019) and VGAE (Kipf and 
Welling, 2016), have demonstrated efficacy in practical applications.

2.3.2. Federated graph learning (FGL)
Federated learning (FL) (McMahan et al., 2017) is a novel dis-

tributed machine learning paradigm enabling collaborative training 
on distributed data while ensuring privacy-preserving. As a special 
instance of FL, federated graph learning (FGL) adapts these principles 
to graph-structured data. FGL can be categorized into two main types: 
(i) inter-graph federated learning; (ii) intra-graph federated learning 
(Zhang et al., 2021). Inter-graph federated learning involves a dis-
tributed learning paradigm where each client holds an entire graph 
dataset, while the server performs graph-level tasks. But in intra-
graph federated learning, which aims to solve node-level tasks, clients 
possess partial, latent representations of the entire graph. Conventional 
federated learning overlooks the topological characteristics inherent in 
graphs, consequently exhibiting sub-optimal performance when applied 
to graph data. Considering the topological structure of the graph, 
FedSage+ (Zhang, Yang et al., 2021) employs a mechanism for gen-
erating absent neighbors to address the issue of missing links within 
local subgraphs. FED-PUB (Baek et al., 2023) introduces an innovative 
aggregation methodology predicated on the similarity among subgraph 
embeddings, aimed at mitigating data heterogeneity. FedGTA (Li, Wu, 
3 
Zhang, Zhu et al., 2024) employs mixed moments of neighbor fea-
tures to quantify the similarity of subgraphs and accomplish topology-
aware aggregation. AdaFGL (Li, Wu, Zhang, Sun et al., 2024) employs 
knowledge distillation to perform personalized training process.

FGL can be effectively integrated with various other machine learn-
ing methodologies, including prototype learning (Zhang, Liu et al., 2024
knowledge distillation (Zhang et al., 2022), and others. Their applica-
tion within graph data can yield significant enhancements in model 
performance.

2.3.3. Data-free knowledge distillation (DFKD)
Knowledge distillation (KD) is a technique that transfers knowledge 

from a well-trained model (i.e., teacher model) to a less-trained model 
(i.e., student model). (Hinton et al., 2015). However, substantial orig-
inal datasets are required for knowledge distillation, which cannot be 
satisfied in distributed scenarios. To this end, DFKD generates pseudo 
data to supplement datasets. To meet the demand, DFAD-GNN (Zhuang 
et al., 2022) use two discriminators and a generator to infuse the 
knowledge into global model. CMI (Fang et al., 2021) combines DFKD 
with contrastive learning to address model collapse.

Integrating federated learning with data-free knowledge distillation 
has been shown to facilitate the maintenance of large federated models 
(Wu, Wu et al., 2022) and mitigate the phenomenon of global model 
drift caused by data heterogeneity (Zhu et al., 2021). Recent researches 
like FedGen and FedFTG (Zhang et al., 2022) introduces DFKD to FL 
scenarios. However, it should be noted that all of these methodologies 
are specifically tailored for Euclidean data and may not be directly 
applicable in the context of FGL.

2.3.4. Homogeneity and heterogeneity
The issue of homogeneity and heterogeneity has become a promi-

nent topic in the fields of network science and graph analysis. In 
the domain of network science, heterogeneous information networks 
are conceptual structures composed of various types of objects and 
various types of links that represent distinct relationships, in contrast 
to homogeneous networks (Shi et al., 2014). Most recent studies treat 
practical systems as homogeneity information networks, overlooking 
distinctions between various types of entity and relationships within the 
networks. However, this modeling approach neglects the rich semantic 
and structural information inherent in the networks (Shi et al., 2017).

In the context of federated graph learning, the issue of homogene-
ity and heterogeneity refers to the consistency or disparity in the 
topological structures, node or edge attributes of graph data across 
different clients (Xie et al., 2024). The heterogeneity in FGL essentially 
reflects the topological divergence among multiple clients, specifically 
homophily or heterophily (Li, Wu, Zhang, Sun et al., 2024).

3. Proposed method

In this section, we describe the proposed FedPPD, which is depicted 
in Fig.  2. Concretely, on the client side, each client calculates its own 
local prototype using its local subgraph (i.e., real local prototype). 
Then the client sends three parts to the server, including: (i) real 
local prototype; (ii) model parameters; (iii) label distribution. On the 
server side, FedPPD utilizes a generator to explore the global input 
space and uses the generated pseudo graph to transfer knowledge 
from clients to the server. Then FedPPD fine-tunes the global model 
parameter through prototypes under the guidance of the pseudo graph 
to convey reliable knowledge oversimplified during aggregation. The 
corresponding algorithm is summarized in Algorithm 1.

3.1. Client side

Local prototype representation. To address the aggregation bias and sub-
optimal performance issues of global GNN, our key insight is that 
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Fig. 2. An overview of proposed FedPPD. On the client side, each client initializes model parameters and collects knowledge by real local prototypes. On the server side, FedPPD 
integrates knowledge to generate a pseudo graph and further guides the optimization of global model, achieving reliable knowledge transfer.
using only model parameters leads to knowledge simplification, thus 
requiring a new knowledge carrier as training guidance. To better 
illustrate the features and topological information of subgraph nodes, 
we employ the real local prototype of the client as the information 
carrier. Prototype 𝑐 represents the class 𝑐 in all label classes 𝐶. Each 
client has a specific embedding function 𝑓𝑖. We denote 𝑓𝑖(𝑥) as the first-
order embedding of node feature 𝑥 for client 𝑖 obtained by GCN. To 
further represent client information, 
𝑐
𝑖 = 1

|𝑆𝑐 |
∑

(𝑥𝑗 ,𝑦𝑗 )∈𝑆𝑐
𝑓𝑖(𝑥𝑗 ), (2)

is the prototype of class 𝑐 in client 𝑖, where 𝑆𝑐 means the set of real 
samples belonging to class 𝑐.

3.2. Server side

Knowledge generation. Due to the limitation of subgraph federated 
learning inability to share data, each client model is only trained by its 
own data, which weakens the generalization ability of the aggregated 
global model. In this case, we reconstruct the pseudo graph that is 
infinitely close to the original graph, as the output of knowledge 
aggregation on the server side, and apply them to the global GNN train-
ing process. As mentioned earlier, we propose a data-free knowledge 
distillation method, which means the server maintains a generator 𝐺
that generates the pseudo graph to capture the data distribution of 
clients as follows: 
�̃� = 𝐺(𝑧, 𝑦; 𝜃), (3)

where �̃� ∈ R×𝐹 ,   is the number of generated nodes, 𝐹  is the 
dimension of generated node feature, 𝜃 is parameter of 𝐺, 𝑧∼ (0, 1) is a 
standard Gaussian noise and 𝑦 is the label of �̃� sampled from predefined 
distribution 𝜓(𝑦). Then we construct the topology structure of the 
pseudo graph based on �̃� with the 𝐾 −𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 strategy. 
Specifically, the pseudo adjacency matrix ̃ is computed as follows: 

̃[𝑚, 𝑛] =

{

1, if 𝑚 ∈ 𝑇 𝑜𝑝𝐾(𝐇[𝑚, ∶]),𝐇 = 𝜎(�̃��̃�𝑇 );
0, others , (4)

where 𝜎(⋅) represents the sigmoid function. The obtained pseudo graph 
is denoted as �̃� = (̃ , ̃) with the pseudo features �̃� and the pseudo 
labels �̃�.

Each round, selected clients calculate the real local prototype repre-
sentation 𝑘 and send it to server with both the local model parameter 
𝜔𝑘 and label distribution 𝑦. After receiving the information from the 
client, The server firstly aggregate selected client model parameters 
into a preliminary global model 𝝎 by objective function of FedAvg 
(McMahan et al., 2017) as follows: 

𝜔 =
𝑘
∑

𝑖=1

𝑛𝑖
𝑛
𝜔𝑖, (5)

where 𝑘 is the number of selected clients, 𝑛𝑖 is the number of samples 
for client 𝑖 and 𝑛 is the total number of all selected clients in current 
epoch.
4 
Knowledge distillation. The ultimate purpose of FedPPD for knowledge 
distillation is to achieve effective transfer of knowledge from clients 
to server, thereby fine-tuning the global model. For this purpose, the 
key insight is to generate samples that are highly consistent with 
real samples. We introduce a prototype-based optimization method of 
generator 𝐺. Formally, the overall collaborative training objective is 

𝑚𝑖𝑛
𝜃
𝑔𝑒𝑛 =

1
|𝑀(𝑡)| × 𝐶

∑

𝑖∈𝑀(𝑡)

𝐶
∑

𝑐=1
𝜙(𝑐

𝑖 , ̃
𝑐
𝑖 ), (6)

where 𝑀(𝑡) is the set of clients selected in current round, each 𝑐 belongs 
to total number of classes 𝐶,  is the real local prototype transmitted by 
the client and ̃ is the pseudo local prototype obtained by the pseudo 
graph via the local model parameters, 𝜙(⋅, ⋅) represents the Euclidean 
distance between two variables.

For a specific class 𝑐 and client 𝑖, the pseudo prototype is denoted 
as ̃𝑐

𝑖 ∈ R𝑑 which is the representative of nodes belonging to class 𝑐
in client 𝑖. We obtain that by averaging the first-order embedding of 
features in the same class: 
̃𝑐
𝑖 = 1

|�̃�𝑐 |

∑

(𝑥𝑗 ,𝑦𝑗 )∈�̃�𝑐
𝑓𝑖(𝑥𝑗 ), (7)

where �̃�𝑐 means the set of pseudo samples in class 𝑐, 𝑓𝑖(𝑥) is the 
first-order embedding through GNN model in client 𝑖. We opt for 
first-order embedding primarily because the original GCN framework 
restricts the receptive field of each node to its immediate neighbors 
(one-hop). Adhering to this established principle not only preserves 
consistency with the foundational GCN design but also ensures that 
the local neighborhood structure is effectively captured without in-
troducing additional model complexity. The initial pseudo prototype 
of each node is a typical representative of their respective semantic 
information. Restricted by the instability of the generator, obtaining the 
pseudo prototype solely from a single node is unreliable. We propose 
a neighbor protection mechanism to alleviate the issue of unreliable 
pseudo prototypes in this situation. Specifically, we assign weights to 
the initial pseudo prototype of a node and the prototype of its one hop 
neighbor node then aggregating them, the formula is as follows: 

̃𝑐
𝑖 = 1

|𝑆𝑐 |
∑

(𝑥𝑗 ,𝑦𝑗 )∈𝑆𝑐
𝑔𝑖(𝑥𝑗 ),

𝑔𝑖(𝑥𝑗 ) = 𝛼𝑓𝑖(𝑥𝑗 ) + 𝛽E𝑡∼𝜒(𝑗)𝑓𝑖(𝑥𝑡),
(8)

where 𝜒(𝑗) represents one-hop neighbors of node 𝑗. Unlike the previous 
strategy that all nodes in the pseudo graph have the same number of 
neighbors, we allow each node to have a different number of neighbors, 
which not only enhances the authenticity and reliability of the pseudo 
graph structure, but also improves the similarity between adjacent 
nodes. FedPPD believes that when there is a significant difference 
between 𝑔(𝑥𝑗 ) and 𝑓 (𝑥𝑗 ), neighbors will have a negative impact on the 
initial prototype representation. Therefore, we will reduce neighbors to 
alleviate this unfavorable factor.
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Our goal in optimizing the generator is to enable the pseudo graph 
to better describe the data state of clients and provide sufficient client 
knowledge for using its local pseudo prototypes. In this context, we 
represent the global model in form of global pseudo prototype. To 
facilitate effective knowledge transfer, we utilize pseudo local global 
prototype loss 𝐿𝑙𝑔 in Eq. (9). By minimizing 𝐿𝑙𝑔 , knowledge transfers 
from local models to the global model. 

𝑙𝑔 =
1

|𝑀(𝑡)| × 𝐶
∑

𝑖∈𝑀(𝑡)

𝐶
∑

𝑐=1
𝜙(̃𝑐

𝑖 , ̃
𝑐
𝑔 ), (9)

where ̃𝑔 is a pseudo global prototype obtained by propagating the 
pseudo graph forward through the global model.

In general, the entire training process on the server side can be 
formulated as an adversarial learning scheme: 
min
𝒘

max
𝜽

E𝒛∼ (𝟎,𝟏),𝒚∼𝜓(𝑦)[𝑙𝑔 − 𝑔𝑒𝑛]. (10)

Algorithm 1 FedPPD Execution on Client and Server
Input: attributed graph 𝐺 = ( ,  ,𝑿), communication rounds 𝑇 , client 

numbers 𝐾, client participating proportion 𝜉, generation iteration 
𝐼𝑔 , training iteration 𝐼𝑡, server training rounds 𝐼 ; 

1: for each communication round 𝑡 = 1, ..., 𝑇  do 
2: Select clients for round t, 𝑀(𝑡) = {random set of ⌈𝜉 ×𝐾⌉ clients};

3: Client side:
4: Update local model {𝜔𝑘}𝑘∈𝑀(𝑡) = 𝜔; 
5: Calculate real local prototype according to Eq. (7); 
6: Server side:
7: Aggregate local models 𝜔𝑖 according to Eq. (5); 
8: Label sampling and generating noise (𝑧,𝑦); 
9: for each server training round 𝑖 = 1, ..., 𝐼 do 
10: for each training iteration 𝑖𝑔 = 1, ..., 𝐼𝑔 do 
11: Generate a pseudo graph �̃� according to Eqs. (3),(4); 
12: Calculate and update pseudo local prototypes according to 

Eqs. (7),(8); 
13: Update generator parameter 𝜃 according to Eq. (6);
14: end for
15: for each generation iteration 𝑖𝑡 = 1, ..., 𝐼𝑡 do 
16: Update global model parameter 𝜔 according to Eq. (9);
17: end for
18: end for
19: end for

4. Experiments

In this section, we provide a detailed introduction to a series of 
experiments used to explore the effectiveness of proposed FedPPD. 
Our experiment has been demonstrated from multiple perspectives to 
answer the following questions: Q1: Compared with other state-of-the-
art FGL studies, can FedPPD achieve better performance? Q2: Where is 
the necessity of each component in FedPPD reflected? Q3: Is FedPPD 
sensitive to the hyperparameters? Q4: What are the underlying reasons 
for the effectiveness of our proposed method? Q5: As a dynamic hot-
plugging method, what level of performance enhancement can FedPPD 
bring?

4.1. Experimental setup

Datasets. We perform experiments using six benchmark datasets of dif-
ferent scales to make our experimental results more objective and con-
vincing. These include two smaller citation networks, Cora and Citeseer 
(Yang et al., 2016); a medium-sized citation network PubMed (Yang 
et al., 2016); dense co-purchase and co-author networks, Amazon-
Computers and Coauthor Physics (Shchur et al., 2019); a large citation 
network ogb-arxiv (Hu et al., 2020). More details can be found in 
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Table 2
Statistics of the six public benchmark datasets.
 Dataset #Nodes #Features #Edges #Classes 
 Cora 2,708 1,433 5,278 7  
 CiteSeer 3,327 3,703 4,552 6  
 PubMed 19,717 500 44,324 3  
 Amazon-Computers 13,752 767 245,861 10  
 Coauthor Physics 34,493 8,415 247,962 5  
 ogb-arxiv 169,343 128 1,166,243 40  

Table  2. According to above datasets, we utilize Louvain algorithm 
(Blondel et al., 2008) which is extensively utilized in FGL (Wang, Kuang 
et al., 2022) to emulate distributed scenarios in subgraph-FL.
Baselines. We compare the proposed FedPPD with different FL opti-
mization strategies, including three traditional FL optimization strate-
gies (FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020) and 
Moon (Li et al., 2021)), two personalized subgraph FL optimization 
strategies (Fed-PUB (Baek et al., 2023) and FedGTA (Li, Wu, Zhang, Zhu 
et al., 2024)), a knowledge distillation subgraph FL method (FedTAD 
(Zhu et al., 2024)), two FL optimization strategies for client hetero-
geneity (FedProto (Tan et al., 2022) and FedTGP (Zhang, Liu, Hua and 
Cao, 2024)).
Hyperparameter settings. Unless otherwise specified, we use the follow-
ing configuration for all algorithms. We use a two-layer GCN as our 
basic model with the hidden layer dimension set to 64 and the learning 
rate set to 1e-3. We set the number of clients to 10, the communication 
rounds to 100. The dropout, weight decay, batch size and the optimizer 
are set to 0.5, 1e-5, 128 and Adam respectively. For the generator, we 
set the number of generated nodes in the pseudo graph to 140 and the 
initial value of the number of neighbors 𝐾 selected by the 𝐾 −𝑁𝑁
algorithm is set to 5. To ensure the stability of the generated pseudo 
graph, the number of edges for each node in the pseudo graph cannot 
be reduced to less than 2. Then we conduct automated hyperparameters 
tuning by using Optuna toolkit (Akiba et al., 2019). We choose random 
hyperparameters search strategy to optimize our method. Below is the 
meaning of hyperparameters we searched for: (i) the training round of 
the server-side generator 𝐼𝑔 , (ii) training round of global parameter 𝐼𝑡, 
(iii) the learning rate of aligning the pseudo global prototypes towards 
the pseudo local prototypes process 𝑙𝑟𝑡 (iv) the learning rate of the 
generator 𝑙𝑟𝑔 . The search space for the hyperparameters are : (i) 𝐼𝑔 : 
from 1 to 10. (ii) 𝐼𝑡: from 1 to 10. (iii) 𝑙𝑟𝑡: from 1e-6 to 1e-3. (iv) 𝑙𝑟𝑔 : 
from 1e-6 to 1e-3.
Experiment environment. We conducted our experiment on the com-
puter with Intel(R) Core(TM) i9-14900HX CPU @ 2.20 GHz and NVIDIA
GeForce RTX 4070 with 16 GB memory. The operation system is 
Windows 11.

4.2. Experimental results

To answer Q1, we compare the classification performance of differ-
ent algorithms in this section on six datasets with 10 clients. As shown 
in the Table  3, the proposed FedPPD outperforms state-of-the-art base-
lines. Specifically, compared to FedAvg, it can achieve a performance 
prompt of up to 4.56%. And compared to the most competitive method 
FedTAD, FedPPD has also improved accuracy by 2.13%. Particularly, 
FedPPD increases by up to 10.06% compared to the FedProto on the 
CiteSeer dataset. We also test the accuracy of our method in different 
number of clients scenarios. We conduct the experiment on the Cora 
and Coauthor Physics dataset. The experiment result is shown in Fig. 
3(b) and Fig.  3(c). The accuracy generally increases as the number of 
participating clients decreases. Meanwhile, we measure the accuracy 
under different client participation ratios in CiteSeer dataset, ranging 
from 0.3 to 1, with an interval of 0.1. As observed in Fig.  3(a), both 
excessive and insufficient participation ratios have a negative impact 
on the accuracy of the algorithms.
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Table 3
Performance comparison of test accuracy achieved by FedPPD and baseline models on six datasets with ten clients. The best results are 
highlighted in bold, sub-optimal results are marked with an underline, and the third-best results are indicated by shading .

Dataset
Method FedAvg FedProx MOON Fed-PUB FedGTA FedTAD FedProto FedTGP FedPPD (Ours)

Cora 75.87 75.96 76.68 78.46 78.74 78.38 77.75 77.39 80.43
CiteSeer 69.98 69.91 69.54 70.37 70.94 70.80 62.74 63.03 72.80
PubMed 83.65 83.84 83.46 84.87 84.45 85.17 83.79 83.79 86.99

Amazon-Computers 84.89 84.92 85.46 86.85 87.10 87.47 83.08 82.03 89.27
Coauthor Physics 91.62 91.61 91.65 92.91 92.96 93.19 91.72 91.60 94.99

obg-arxiv 65.15 65.08 65.10 66.78 66.58 66.58 62.23 64.29 68.71
Fig. 3. (a): Performance with different participating rate on CiteSeer dataset in 10 clients scenarios. (b) and (c): Convergence curves of different number of clients participating 
on Cora and Physics dataset.
Fig. 4. Hyperparameters analysis with the training process of the proposed FedPPD.
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 

4.3. Ablation study

To answer Q2, we conduct ablation experiments to explore the
importance of each component. FedPPD consists of two main modules
and an auxiliary module, including utilizing a generator under the
guidance of local prototypes to explore the global input space, distill-
ing knowledge from the local GNNs to the vanilla-aggregated global
GNN and neighbor protection mechanism. After configuring the Cora
and Amazon-Computer datasets, we conduct ablation experiment by
discarding generator training process (w/o Gen. for short), neighbor
prototypes aggregation process (w/o Neig. for short) and pseudo-global
prototypes approaching pseudo-local prototypes process (w/o Appr.
for short) respectively. The experiment result is shown in Table  4.
After comparison, we can find that deleting any module will lead to
a decrease in algorithm performance.

4.4. Hyperparameters sensitivity analysis

To answer Q3, we conduct the hyperparameters sensitivity analysis
experiment on the Cora dataset using GCN as a regular GNN model
to evaluate the accuracy of the model under different hyperparameter
settings.

Firstly, to analyze whether the feature information of neighboring
nodes will provide excessive guidance to this node, we change the ag-
gregation ratio 𝛼 between the neighboring prototype and this prototype
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Table 4
Ablation Experiment Result on the Cora and Amazon-Computers datasets.
 Datasets Method Accuracy (%) 
 
Cora

FedPPD 80.43  
 FedPPD (w/o Gen.) 79.99  
 FedPPD (w/o Neig.) 79.81  
 FedPPD (w/o Appr.) 79.80  
 
Amazon-Computers

FedPPD 89.27  
 FedPPD (w/o Gen.) 88.93  
 FedPPD (w/o Neig.) 89.00  
 FedPPD (w/o Appr.) 88.75  

to verify the difference in classification accuracy at different values. As 
shown in Fig.  4(a), with the change of alpha, the accuracy of the model 
remains stable between 80% and 81%, indicating that the model is not 
sensitive to alpha.

Secondly, we investigate the differences in models with different 
numbers of vertices in the generated pseudo graph. As shown in Fig. 
4(b), when the number of vertices varies between 100 and 800, the ac-
curacy difference in each round is still controlled within 2%, indicating 
that the number of vertices does not have a significant impact on the 
model.

Finally, we investigate the impact of different noise dimensions 
on model accuracy. As shown in Fig.  4(c), even at the location with 
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Fig. 5. Performance comparison with different hyperparameters of our method FedPPD.
Fig. 6. Effectiveness analysis of the proposed method FedPPD on the Cora dataset.

the largest difference, the impact of 24 dimensional noise and 48 
dimensional noise on the accuracy of the model is only 1%, indicating 
that the model is not sensitive to the noise dimension.

Simultaneously, we compare the highest test set accuracy achieved 
under different values of three hyperparameters to investigate the 
impact of hyperparameters on the optimal training results of the model. 
The result shown in Fig.  5 indicates that different parameter values 
have little effect on the training performance of the model.

In summary, FedPPD demonstrates low sensitivity to the aggrega-
tion ratio 𝛼, which governs the weighting between the prototype of 
neighboring nodes and its own prototype, as well as to the number 
of the generated pseudo graph vertices and the dimension of the 
generator’s original input, thereby making the model highly robust.

4.5. Effectiveness analysis

To answer Q4, we analyze the reasons why FedPPD works. In 
FedPPD, the prototype is the carrier of knowledge, the optimization 
of server-side model parameters depends on the extent to which the 
pseudo local prototype approaches the real local prototype, which 
fundamentally depends on the quality of the pseudo graph generated by 
the generator. We record the distance between the global pseudo graph 
and the real graph at each training iteration. The result is shown in Fig. 
6. Apparently, as training progresses, the distance between the global 
pseudo graph and the real graph decreases, indicating an improvement 
in the quality of the generated pseudo graph. It demonstrates the 
effectiveness of proposed FedPPD, as it indicates that the optimization 
of server-side parameters is successfully guided by the improved quality 
of the pseudo graph.

4.6. Hot-plugging performance enhancement

To answer Q5, we integrate FedPPD as a plugin into several FGL 
baseline methods, especially in the situation of subgraph-FL, includ-
7 
Table 5
Performance improvement attributed to the integration of the 
FedPPD plugin on the Cora dataset.
 Methods w/o FedPPD with FedPPD 
 Fed-PUB 78.46 79.98  
 FedGTA 78.74 80.25  

ing Fed-PUB and FedGTA. Since Fed-PUB and FedGTA both optimize 
the aggregation of federated parameters as well as the client-side 
update process, and given that our method primarily relies on server-
side computation without personalized parameter aggregation, we can 
incorporate their personalized learning strategies and client-side proce-
dures. Through this integration, we can fully leverage resources on both 
the client and server sides, thereby enhancing overall performance. We 
evaluate their performance improvement on the Cora dataset with ten 
participating clients. The experiment result is shown in Table  5. As 
observed, these two algorithms show a significant increase in accuracy 
after integration, which indicates that it can improve the performance 
when FedPPD is applied as a plugin to other algorithms.

5. Discussion

Privacy concerns. At each communication round, FedPPD need to up-
load the model parameters, label distribution and real local prototypes. 
The additional upload prototypes may raise privacy concerns. However, 
prototypes are high-dimensional representations of data, making it 
challenging to interpret their actual meaning. Moreover, the generator 
is trained by prototypes of the clients. Consequently, the generated 
pseudo graph tends to reveal the whole feature of the local subgraphs, 
and personalized features are ignored.
Limitations. In our methods, the client is responsible for calculating 
the real local prototypes based on the local dataset and subsequently 
uploading these prototypes to the server. The server side needs to 
generate the pseudo graph and guide the global model parameter to 
update. As a result, compared to other simple aggregation FL methods 
such as FedAvg, the server side needs to have a stronger load bearing 
capacity, and due to the training time of the generator, the server incurs 
additional time overhead.

6. Conclusion

This paper investigates the issue of performance degradation that 
arises from the naive aggregation of model parameters in the presence 
of subgraph heterogeneity. To this end, we propose FedPPD, which 
conveys reliable knowledge which is oversimplified during the aggre-
gation process to generator by means of prototypes. Consequently, 
FedPPD can fine-tune the global model to a better performance. We 
consider the topological structure of graph by aggregating neighbor 
prototypes and own prototypes, which is proved to have better perfor-
mance in subgraph-FL. Extensive experiments revealing the effective-
ness of FedPPD, which outperforms various state-of-the-art baselines 
consistently.
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