
Neural Networks 189 (2025) 107541

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

FedPPD: Towards effective subgraph federated learning via pseudo

prototype distillation
Qi Lin a,1, Jishuo Jia a,1, Yinlin Zhu b, Xunkai Li c , Bin Jiang a ,∗, Meixia Qu a

a Shandong University, School of Mechanical, Electrical and Information Engineering, Weihai, 264209, China
b Sun Yat-sen University, School of Computer Science and Engineering, Guangzhou, 510275, China
c Beijing Institute of Technology, School of Computer Science and Technology, Beijing, 100081, China

A R T I C L E I N F O

Keywords:
Subgraph federated learning
Data-free knowledge distillation
Semi-supervised node classification

 A B S T R A C T

Subgraph federated learning (subgraph-FL) is a distributed machine learning paradigm enabling cross-client
collaborative training of graph neural networks (GNNs). However, real-world subgraph-FL scenarios often
face subgraph heterogeneity problem, i.e., variations in nodes and topology across multiple subgraphs. As
a result, the global model experiences a decline in performance. Despite several well-designed methods being
proposed, most still rely on parameter aggregation-based global GNN for inference, which oversimplifies
the subgraph knowledge and leads to sub-optimal performance. To this end, we propose achieving effective
subgraph federated learning via pseudo prototype distillation (FedPPD). Specifically, FedPPD first utilizes a
generator under the guidance of local prototypes to explore the global input space. Subsequently, the generated
pseudo graph is used for distilling knowledge from the local GNNs to the vanilla-aggregated global GNN to
convey reliable knowledge oversimplified during aggregation. Extensive experimental validation on six public
datasets demonstrates that FedPPD consistently outperforms state-of-the-art baselines. Our code is available at
https://github.com/KyrieLQ/FedPPD.
1. Introduction

Graph neural networks (GNNs) have emerged as the most popu-
lar paradigm for graph-based deep learning and demonstrated strong
performance across various applications, including e-commerce recom-
mendation systems (Wu, Sun et al., 2022), molecular structure analysis
(Wang, Wang et al., 2022), and citation network categorization (Wu
et al., 2021). However, most existing studies assume a centralized data
storage setup, where the entire graph data is collected and accessed by
a single institution. Unfortunately, this assumption often does not hold
in real-world scenarios, where graph data is typically distributed across
multiple institutions and is subject to local access restrictions. For
example, each social media company maintains its own social network
of registered users and wishes to collaborate on training a GNN for user
classification. Due to user privacy policies and competitive business
concerns, these companies are reluctant to share their private networks
directly (Liu et al., 2022). In such scenarios, research on GNNs based on
centralized settings becomes inadequate. This underscores the growing
necessity for developing methods to train GNNs with collaborative
intelligence in distributed environments.

∗ Corresponding author.
E-mail addresses: 202100800115@mail.sdu.edu.cn (Q. Lin), jiajishuo@mail.sdu.edu.cn (J. Jia), jiangbin@sdu.edu.cn (B. Jiang).

1 These authors contributed to the work equally.

To address this challenge, the concept of federated graph learning
(FGL) has emerged, which combines the principles of federated learning
(FL) to enable GNN training across decentralized scenarios. A notable
variant of FGL is subgraph-FL, where each client retains an induced
subgraph of an implicitly global graph and collaborates to execute node
or edge-level downstream tasks (Zhang, Yang et al., 2021).

As a straightforward yet effective approach to implement subgraph-
FL, FedAvg (McMahan et al., 2017) is originally developed for FL
in the computer vision domain, which aggregates the global model
by averaging the parameters from all local models. However, due to
inherent differences in data sources and collection methods, there are
significant variations in node features and graph topology arise across
subgraphs, which have been shown to degrade the performance of
the global GNN, known as the subgraph heterogeneity problem (Zhu
et al., 2024).

To address this issue, Fed-PUB (Baek et al., 2023) introduces a
personalized aggregation strategy based on subgraph similarity measur-
ing. AdaFGL (Li, Wu, Zhang, Sun et al., 2024) conducts personalized
local fine-tune based on local subgraphs and federated knowledge
https://doi.org/10.1016/j.neunet.2025.107541
Received 16 August 2024; Received in revised form 4 February 2025; Accepted 23
vailable online 8 May 2025
893-6080/© 2025 Elsevier Ltd. All rights are reserved, including those for text and
 April 2025

data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://orcid.org/0000-0002-1230-7603
https://orcid.org/0000-0002-2897-5745
https://orcid.org/0000-0001-7607-8195
https://github.com/KyrieLQ/FedPPD
mailto:202100800115@mail.sdu.edu.cn
mailto:jiajishuo@mail.sdu.edu.cn
mailto:jiangbin@sdu.edu.cn
https://doi.org/10.1016/j.neunet.2025.107541
https://doi.org/10.1016/j.neunet.2025.107541
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2025.107541&domain=pdf

Q. Lin et al. Neural Networks 189 (2025) 107541
Fig. 1. An illustration of the subgraph knowledge oversimplifying problem caused by
vanilla parameter aggregation. An intuitive solution is to fine-tune the global model
using subgraph knowledge. 𝑊 represents the model parameters of the local client,
while 𝛼 denotes the aggregation weight.

extractor. FedGTA (Li, Wu, Zhang, Zhu et al., 2024) employs topology-
aware aggregation through local smoothing confidence and hybrid
neighbor moments. Despite their effectiveness, these methods have a
common Limitation 1: Relying on an aggregation-based global model
for inference, which oversimplifies the subgraph knowledge and leads
to sub-optimal performance. As illustrated in Fig. 1, during model
aggregation, the node features and topological structures of each local
subgraph are encoded into a single value (i.e., aggregation weight), los-
ing essential local subgraph information and oversimplify the complex
heterogeneity relationships across multiple local subgraphs.

Building on this insight, FedTAD (Zhu et al., 2024) further fine-tune
the vanilla-aggregated global model through topology-aware data-free
knowledge distillation. However, it suffers from Limitation 2: lacking
sufficiently reliable guidance during fine-tuning. The optimization of
generator in FedTAD is relies entirely on accurate predictions of local
models on the pseudo graph, lacking more reliable guidance. As a
result, the poor quality of the pseudo graph generated by FedTAD
undermines the effectiveness of the distillation process.

To tackle these two limitations, we propose achieving federated
learning through pseudo prototype distillation (FedPPD), which im-
proves the performance of the vanilla-aggregated global model by
leveraging local prototypes as a reliable local subgraph knowledge.
Specifically, on the Client side, each client computes local prototypes
to capture the nodes and topological information of its local subgraph.
On the Server side, FedPPD uses a generator to produce a pseudo
graph. Both the global model and local models use the pseudo graph
to generate pseudo prototypes. By aligning pseudo local prototypes
with real local prototypes, we obtain a well-trained generator. By
aligning pseudo global prototypes with pseudo local prototypes, we
fine-tune the global model to convey reliable knowledge oversimplified
during aggregation. Notably, FedPPD is orthogonal to most model
aggregation-based FGL algorithms, making it a hot-pluggable method
for performance enhancement.

In summary, the contributions of this work can be summarized as
follows:

• Novel Method. We introduce FedPPD, a new federated graph
learning approach that addresses the oversimplification of knowl-
edge in parameter aggregation. Instead of relying solely on tradi-
tional model averaging, FedPPD leverages prototypes to fine-tune
2
Table 1
Description of notations commonly used in this paper.
 Notations Definitions
 𝐺 Original graph data
 Node set
 𝑿 Node feature matrix
 Adjacency matrix
 𝒀 Label matrix
 𝐾 Number of clients
 𝑘 dataset of k-client
 𝜔 Global model parameters
 𝜔𝑘 k-client model parameters
 𝜃 generator parameters
 real prototype
 ̃ pseudo prototype
 𝑀(𝑡) Set of clients selected for round t

the global model via data-free knowledge distillation. This mech-
anism effectively preserves important local structural information
while ensuring data privacy.

• State-of-the-Art Performance. We conduct extensive experiments
on six benchmark datasets, covering various graph learning tasks
and data distributions. The experimental results demonstrate that
FedPPD consistently outperforms existing state-of-the-art feder-
ated graph learning methods by a clear margin. These improve-
ments validate the robustness and generalizability of our method
across diverse scenarios.

• Hot-Plugging Capability. We show that FedPPD can be seamlessly
integrated into many other FGL frameworks without requiring
major architectural changes or additional training data. By simply
incorporating the prototype-based distillation step, FedPPD effec-
tively boosts performance and provides a flexible plugin option
for existing methods, making it a practical choice in real-world
federated graph applications.

2. Preliminaries

2.1. Notation definitions

Given an attributed graph 𝐺 = (, ,𝑿), where denotes the node
set, denotes the adjacency matrix, and 𝑿 =

{

𝒙1,𝒙2,… ,𝒙𝑁
}

∈ R𝑁×𝐹

is the node feature matrix, 𝒙𝑖 ∈ R𝐹 is the 𝐹 -dimensional feature vector
of node 𝑣𝑖, and 𝑁 = || holds. Besides, 𝒀 =

{

𝒚1, 𝒚2,… , 𝒚𝑁
}

∈ R𝑁
is the label matrix, 𝒚𝑖 ∈ R is a one-hot vector and represents the
number of the classes. Further definitions of notations commonly used
in the paper is shown in Table 1.

2.2. Problem formulation

Let 𝜔 be the model parameter in the server and 𝜔𝑘 in the 𝑘th client.
In the work, there are 𝐾 clients, where 𝑘 =

{(

𝑥𝑖𝑘, 𝑦
𝑖
𝑘
)}𝑁𝑘

𝑖=1 is the dataset
stored in 𝑘-th client, 𝑁𝑘 is the corresponding number of samples. Each
client possesses a distinct subgraph. Overall, federated graph learning
can be formulated as the following problem:

min
𝜔

1
𝐾

𝐾
∑

𝑘=1
𝑓 (𝜔𝑘),

𝑓 (𝜔𝑘) = − 1
𝑁𝑘

𝑁𝑘
∑

𝑖=1

(

𝑥𝑖𝑘, 𝑦
𝑖
𝑘, 𝐸𝑘;𝜔𝑘

)

,

(

𝑥𝑖𝑘, 𝑦
𝑖
𝑘, 𝐸𝑘;𝜔𝑘

)

=
∑

𝑖∈𝑙

∑

𝑗
Y𝑖𝑗 log

(

sof tmax(Ŷ)𝑖𝑗
)

,

(1)

where is the loss function which quantifies the difference between
the predicted and actual results of the model, 𝐸𝑘 is adjacency matrix
for client 𝑘 and dataset 𝑘 for each 𝑘 ∈ {1, 2,… , 𝐾} could be distributed
heterogeneously. Limited by the privacy protection mechanism in FGL,

Q. Lin et al.

),

Neural Networks 189 (2025) 107541
the server is unable to directly access the local data of clients. To solve
Eq. (1), for each communication round 𝑡, existing methods send the
global model 𝜔 to a random set of clients 𝑀(𝑡) and optimize it by
min𝜔𝑓𝑘(𝜔), 𝑘 ∈ 𝑀(𝑡). The server collects the local models {𝜔𝑘}𝑘∈𝑀(𝑡),
and aggregates them by averaging the gradients to update the global
model 𝜔.

Unfortunately, due to heterogeneity issues between clients, there
are significant differences between different local models. It is worth
noting that the heterogeneity issue discussed here differs from the
heterogeneity in heterogeneous networks (Shi et al., 2014). In the
context of federated graph learning, heterogeneity refers to the differ-
ences in subgraph topological structures, as well as the heterogeneity in
node or edge features. Thus, traditional gradient averaging could cause
information loss in local models, and the updated global model has
weak generalization ability which means it is difficult to fully utilize
the training capabilities of local models. To solve this issue,we propose
a new method to adjust the global model in Section 3, so that the global
model can preserve the knowledge in local models and maintain their
performance as much as possible.

2.3. Related works

2.3.1. Graph neural networks (GNNs)
Previous researches applied convolutional neural networks (CNNs)

to graph by using spatial and spectral convolution methods (Bruna
et al., 2014). However, the cost of computing the proposed convolu-
tional operation and eigenvalue of a large matrix is enormous (Kipf
and Welling, 2017). To avoid diagonalizing, fast Chebyshev polyno-
mial approximation up to K-order was used (Hammond et al., 2011).
GCN (Kipf and Welling, 2017) further simplifies the computation by
confining the filters only to operate in first-order neighborhood of
each node. However, the computational process relies on the Lapla-
cian eigenbasis, which is inherently reliant on the graph’s topology.
Consequently, this reliance hinders generalization. To this end, GAT
(Veličković et al., 2018) introduces attention mechanism by using
masked self-attentional layer. Furthermore, in real-world scenarios, the
topology of the graph may not be readily accessible. Thus, inferring
graph structures from available information is of great significance.
SLAPS (Fatemi et al., 2021) uses a generator which selects top k
neighbors by employing KNN algorithm and cosine similarity, and
updates these edges to infer a task-specific latent structure to mitigate
the problem. Additionally, numerous alternative graph neural network
architectures, such as SGC (Wu et al., 2019) and VGAE (Kipf and
Welling, 2016), have demonstrated efficacy in practical applications.

2.3.2. Federated graph learning (FGL)
Federated learning (FL) (McMahan et al., 2017) is a novel dis-

tributed machine learning paradigm enabling collaborative training
on distributed data while ensuring privacy-preserving. As a special
instance of FL, federated graph learning (FGL) adapts these principles
to graph-structured data. FGL can be categorized into two main types:
(i) inter-graph federated learning; (ii) intra-graph federated learning
(Zhang et al., 2021). Inter-graph federated learning involves a dis-
tributed learning paradigm where each client holds an entire graph
dataset, while the server performs graph-level tasks. But in intra-
graph federated learning, which aims to solve node-level tasks, clients
possess partial, latent representations of the entire graph. Conventional
federated learning overlooks the topological characteristics inherent in
graphs, consequently exhibiting sub-optimal performance when applied
to graph data. Considering the topological structure of the graph,
FedSage+ (Zhang, Yang et al., 2021) employs a mechanism for gen-
erating absent neighbors to address the issue of missing links within
local subgraphs. FED-PUB (Baek et al., 2023) introduces an innovative
aggregation methodology predicated on the similarity among subgraph
embeddings, aimed at mitigating data heterogeneity. FedGTA (Li, Wu,
3
Zhang, Zhu et al., 2024) employs mixed moments of neighbor fea-
tures to quantify the similarity of subgraphs and accomplish topology-
aware aggregation. AdaFGL (Li, Wu, Zhang, Sun et al., 2024) employs
knowledge distillation to perform personalized training process.

FGL can be effectively integrated with various other machine learn-
ing methodologies, including prototype learning (Zhang, Liu et al., 2024
knowledge distillation (Zhang et al., 2022), and others. Their applica-
tion within graph data can yield significant enhancements in model
performance.

2.3.3. Data-free knowledge distillation (DFKD)
Knowledge distillation (KD) is a technique that transfers knowledge

from a well-trained model (i.e., teacher model) to a less-trained model
(i.e., student model). (Hinton et al., 2015). However, substantial orig-
inal datasets are required for knowledge distillation, which cannot be
satisfied in distributed scenarios. To this end, DFKD generates pseudo
data to supplement datasets. To meet the demand, DFAD-GNN (Zhuang
et al., 2022) use two discriminators and a generator to infuse the
knowledge into global model. CMI (Fang et al., 2021) combines DFKD
with contrastive learning to address model collapse.

Integrating federated learning with data-free knowledge distillation
has been shown to facilitate the maintenance of large federated models
(Wu, Wu et al., 2022) and mitigate the phenomenon of global model
drift caused by data heterogeneity (Zhu et al., 2021). Recent researches
like FedGen and FedFTG (Zhang et al., 2022) introduces DFKD to FL
scenarios. However, it should be noted that all of these methodologies
are specifically tailored for Euclidean data and may not be directly
applicable in the context of FGL.

2.3.4. Homogeneity and heterogeneity
The issue of homogeneity and heterogeneity has become a promi-

nent topic in the fields of network science and graph analysis. In
the domain of network science, heterogeneous information networks
are conceptual structures composed of various types of objects and
various types of links that represent distinct relationships, in contrast
to homogeneous networks (Shi et al., 2014). Most recent studies treat
practical systems as homogeneity information networks, overlooking
distinctions between various types of entity and relationships within the
networks. However, this modeling approach neglects the rich semantic
and structural information inherent in the networks (Shi et al., 2017).

In the context of federated graph learning, the issue of homogene-
ity and heterogeneity refers to the consistency or disparity in the
topological structures, node or edge attributes of graph data across
different clients (Xie et al., 2024). The heterogeneity in FGL essentially
reflects the topological divergence among multiple clients, specifically
homophily or heterophily (Li, Wu, Zhang, Sun et al., 2024).

3. Proposed method

In this section, we describe the proposed FedPPD, which is depicted
in Fig. 2. Concretely, on the client side, each client calculates its own
local prototype using its local subgraph (i.e., real local prototype).
Then the client sends three parts to the server, including: (i) real
local prototype; (ii) model parameters; (iii) label distribution. On the
server side, FedPPD utilizes a generator to explore the global input
space and uses the generated pseudo graph to transfer knowledge
from clients to the server. Then FedPPD fine-tunes the global model
parameter through prototypes under the guidance of the pseudo graph
to convey reliable knowledge oversimplified during aggregation. The
corresponding algorithm is summarized in Algorithm 1.

3.1. Client side

Local prototype representation. To address the aggregation bias and sub-
optimal performance issues of global GNN, our key insight is that

Q. Lin et al. Neural Networks 189 (2025) 107541
Fig. 2. An overview of proposed FedPPD. On the client side, each client initializes model parameters and collects knowledge by real local prototypes. On the server side, FedPPD
integrates knowledge to generate a pseudo graph and further guides the optimization of global model, achieving reliable knowledge transfer.
using only model parameters leads to knowledge simplification, thus
requiring a new knowledge carrier as training guidance. To better
illustrate the features and topological information of subgraph nodes,
we employ the real local prototype of the client as the information
carrier. Prototype 𝑐 represents the class 𝑐 in all label classes 𝐶. Each
client has a specific embedding function 𝑓𝑖. We denote 𝑓𝑖(𝑥) as the first-
order embedding of node feature 𝑥 for client 𝑖 obtained by GCN. To
further represent client information,
𝑐
𝑖 = 1

|𝑆𝑐 |
∑

(𝑥𝑗 ,𝑦𝑗)∈𝑆𝑐
𝑓𝑖(𝑥𝑗), (2)

is the prototype of class 𝑐 in client 𝑖, where 𝑆𝑐 means the set of real
samples belonging to class 𝑐.

3.2. Server side

Knowledge generation. Due to the limitation of subgraph federated
learning inability to share data, each client model is only trained by its
own data, which weakens the generalization ability of the aggregated
global model. In this case, we reconstruct the pseudo graph that is
infinitely close to the original graph, as the output of knowledge
aggregation on the server side, and apply them to the global GNN train-
ing process. As mentioned earlier, we propose a data-free knowledge
distillation method, which means the server maintains a generator 𝐺
that generates the pseudo graph to capture the data distribution of
clients as follows:
�̃� = 𝐺(𝑧, 𝑦; 𝜃), (3)

where �̃� ∈ R×𝐹 , is the number of generated nodes, 𝐹 is the
dimension of generated node feature, 𝜃 is parameter of 𝐺, 𝑧∼ (0, 1) is a
standard Gaussian noise and 𝑦 is the label of �̃� sampled from predefined
distribution 𝜓(𝑦). Then we construct the topology structure of the
pseudo graph based on �̃� with the 𝐾 −𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 strategy.
Specifically, the pseudo adjacency matrix ̃ is computed as follows:

̃[𝑚, 𝑛] =

{

1, if 𝑚 ∈ 𝑇 𝑜𝑝𝐾(𝐇[𝑚, ∶]),𝐇 = 𝜎(�̃��̃�𝑇);
0, others , (4)

where 𝜎(⋅) represents the sigmoid function. The obtained pseudo graph
is denoted as �̃� = (̃ , ̃) with the pseudo features �̃� and the pseudo
labels �̃�.

Each round, selected clients calculate the real local prototype repre-
sentation 𝑘 and send it to server with both the local model parameter
𝜔𝑘 and label distribution 𝑦. After receiving the information from the
client, The server firstly aggregate selected client model parameters
into a preliminary global model 𝝎 by objective function of FedAvg
(McMahan et al., 2017) as follows:

𝜔 =
𝑘
∑

𝑖=1

𝑛𝑖
𝑛
𝜔𝑖, (5)

where 𝑘 is the number of selected clients, 𝑛𝑖 is the number of samples
for client 𝑖 and 𝑛 is the total number of all selected clients in current
epoch.
4
Knowledge distillation. The ultimate purpose of FedPPD for knowledge
distillation is to achieve effective transfer of knowledge from clients
to server, thereby fine-tuning the global model. For this purpose, the
key insight is to generate samples that are highly consistent with
real samples. We introduce a prototype-based optimization method of
generator 𝐺. Formally, the overall collaborative training objective is

𝑚𝑖𝑛
𝜃
𝑔𝑒𝑛 =

1
|𝑀(𝑡)| × 𝐶

∑

𝑖∈𝑀(𝑡)

𝐶
∑

𝑐=1
𝜙(𝑐

𝑖 , ̃
𝑐
𝑖), (6)

where 𝑀(𝑡) is the set of clients selected in current round, each 𝑐 belongs
to total number of classes 𝐶, is the real local prototype transmitted by
the client and ̃ is the pseudo local prototype obtained by the pseudo
graph via the local model parameters, 𝜙(⋅, ⋅) represents the Euclidean
distance between two variables.

For a specific class 𝑐 and client 𝑖, the pseudo prototype is denoted
as ̃𝑐

𝑖 ∈ R𝑑 which is the representative of nodes belonging to class 𝑐
in client 𝑖. We obtain that by averaging the first-order embedding of
features in the same class:
̃𝑐
𝑖 = 1

|�̃�𝑐 |

∑

(𝑥𝑗 ,𝑦𝑗)∈�̃�𝑐
𝑓𝑖(𝑥𝑗), (7)

where �̃�𝑐 means the set of pseudo samples in class 𝑐, 𝑓𝑖(𝑥) is the
first-order embedding through GNN model in client 𝑖. We opt for
first-order embedding primarily because the original GCN framework
restricts the receptive field of each node to its immediate neighbors
(one-hop). Adhering to this established principle not only preserves
consistency with the foundational GCN design but also ensures that
the local neighborhood structure is effectively captured without in-
troducing additional model complexity. The initial pseudo prototype
of each node is a typical representative of their respective semantic
information. Restricted by the instability of the generator, obtaining the
pseudo prototype solely from a single node is unreliable. We propose
a neighbor protection mechanism to alleviate the issue of unreliable
pseudo prototypes in this situation. Specifically, we assign weights to
the initial pseudo prototype of a node and the prototype of its one hop
neighbor node then aggregating them, the formula is as follows:

̃𝑐
𝑖 = 1

|𝑆𝑐 |
∑

(𝑥𝑗 ,𝑦𝑗)∈𝑆𝑐
𝑔𝑖(𝑥𝑗),

𝑔𝑖(𝑥𝑗) = 𝛼𝑓𝑖(𝑥𝑗) + 𝛽E𝑡∼𝜒(𝑗)𝑓𝑖(𝑥𝑡),
(8)

where 𝜒(𝑗) represents one-hop neighbors of node 𝑗. Unlike the previous
strategy that all nodes in the pseudo graph have the same number of
neighbors, we allow each node to have a different number of neighbors,
which not only enhances the authenticity and reliability of the pseudo
graph structure, but also improves the similarity between adjacent
nodes. FedPPD believes that when there is a significant difference
between 𝑔(𝑥𝑗) and 𝑓 (𝑥𝑗), neighbors will have a negative impact on the
initial prototype representation. Therefore, we will reduce neighbors to
alleviate this unfavorable factor.

Q. Lin et al.

Neural Networks 189 (2025) 107541
Our goal in optimizing the generator is to enable the pseudo graph
to better describe the data state of clients and provide sufficient client
knowledge for using its local pseudo prototypes. In this context, we
represent the global model in form of global pseudo prototype. To
facilitate effective knowledge transfer, we utilize pseudo local global
prototype loss 𝐿𝑙𝑔 in Eq. (9). By minimizing 𝐿𝑙𝑔 , knowledge transfers
from local models to the global model.

𝑙𝑔 =
1

|𝑀(𝑡)| × 𝐶
∑

𝑖∈𝑀(𝑡)

𝐶
∑

𝑐=1
𝜙(̃𝑐

𝑖 , ̃
𝑐
𝑔), (9)

where ̃𝑔 is a pseudo global prototype obtained by propagating the
pseudo graph forward through the global model.

In general, the entire training process on the server side can be
formulated as an adversarial learning scheme:
min
𝒘

max
𝜽

E𝒛∼ (𝟎,𝟏),𝒚∼𝜓(𝑦)[𝑙𝑔 − 𝑔𝑒𝑛]. (10)

Algorithm 1 FedPPD Execution on Client and Server
Input: attributed graph 𝐺 = (, ,𝑿), communication rounds 𝑇 , client

numbers 𝐾, client participating proportion 𝜉, generation iteration
𝐼𝑔 , training iteration 𝐼𝑡, server training rounds 𝐼 ;

1: for each communication round 𝑡 = 1, ..., 𝑇 do
2: Select clients for round t, 𝑀(𝑡) = {random set of ⌈𝜉 ×𝐾⌉ clients};

3: Client side:
4: Update local model {𝜔𝑘}𝑘∈𝑀(𝑡) = 𝜔;
5: Calculate real local prototype according to Eq. (7);
6: Server side:
7: Aggregate local models 𝜔𝑖 according to Eq. (5);
8: Label sampling and generating noise (𝑧,𝑦);
9: for each server training round 𝑖 = 1, ..., 𝐼 do
10: for each training iteration 𝑖𝑔 = 1, ..., 𝐼𝑔 do
11: Generate a pseudo graph �̃� according to Eqs. (3),(4);
12: Calculate and update pseudo local prototypes according to

Eqs. (7),(8);
13: Update generator parameter 𝜃 according to Eq. (6);
14: end for
15: for each generation iteration 𝑖𝑡 = 1, ..., 𝐼𝑡 do
16: Update global model parameter 𝜔 according to Eq. (9);
17: end for
18: end for
19: end for

4. Experiments

In this section, we provide a detailed introduction to a series of
experiments used to explore the effectiveness of proposed FedPPD.
Our experiment has been demonstrated from multiple perspectives to
answer the following questions: Q1: Compared with other state-of-the-
art FGL studies, can FedPPD achieve better performance? Q2: Where is
the necessity of each component in FedPPD reflected? Q3: Is FedPPD
sensitive to the hyperparameters? Q4: What are the underlying reasons
for the effectiveness of our proposed method? Q5: As a dynamic hot-
plugging method, what level of performance enhancement can FedPPD
bring?

4.1. Experimental setup

Datasets. We perform experiments using six benchmark datasets of dif-
ferent scales to make our experimental results more objective and con-
vincing. These include two smaller citation networks, Cora and Citeseer
(Yang et al., 2016); a medium-sized citation network PubMed (Yang
et al., 2016); dense co-purchase and co-author networks, Amazon-
Computers and Coauthor Physics (Shchur et al., 2019); a large citation
network ogb-arxiv (Hu et al., 2020). More details can be found in
5
Table 2
Statistics of the six public benchmark datasets.
 Dataset #Nodes #Features #Edges #Classes
 Cora 2,708 1,433 5,278 7
 CiteSeer 3,327 3,703 4,552 6
 PubMed 19,717 500 44,324 3
 Amazon-Computers 13,752 767 245,861 10
 Coauthor Physics 34,493 8,415 247,962 5
 ogb-arxiv 169,343 128 1,166,243 40

Table 2. According to above datasets, we utilize Louvain algorithm
(Blondel et al., 2008) which is extensively utilized in FGL (Wang, Kuang
et al., 2022) to emulate distributed scenarios in subgraph-FL.
Baselines. We compare the proposed FedPPD with different FL opti-
mization strategies, including three traditional FL optimization strate-
gies (FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020) and
Moon (Li et al., 2021)), two personalized subgraph FL optimization
strategies (Fed-PUB (Baek et al., 2023) and FedGTA (Li, Wu, Zhang, Zhu
et al., 2024)), a knowledge distillation subgraph FL method (FedTAD
(Zhu et al., 2024)), two FL optimization strategies for client hetero-
geneity (FedProto (Tan et al., 2022) and FedTGP (Zhang, Liu, Hua and
Cao, 2024)).
Hyperparameter settings. Unless otherwise specified, we use the follow-
ing configuration for all algorithms. We use a two-layer GCN as our
basic model with the hidden layer dimension set to 64 and the learning
rate set to 1e-3. We set the number of clients to 10, the communication
rounds to 100. The dropout, weight decay, batch size and the optimizer
are set to 0.5, 1e-5, 128 and Adam respectively. For the generator, we
set the number of generated nodes in the pseudo graph to 140 and the
initial value of the number of neighbors 𝐾 selected by the 𝐾 −𝑁𝑁
algorithm is set to 5. To ensure the stability of the generated pseudo
graph, the number of edges for each node in the pseudo graph cannot
be reduced to less than 2. Then we conduct automated hyperparameters
tuning by using Optuna toolkit (Akiba et al., 2019). We choose random
hyperparameters search strategy to optimize our method. Below is the
meaning of hyperparameters we searched for: (i) the training round of
the server-side generator 𝐼𝑔 , (ii) training round of global parameter 𝐼𝑡,
(iii) the learning rate of aligning the pseudo global prototypes towards
the pseudo local prototypes process 𝑙𝑟𝑡 (iv) the learning rate of the
generator 𝑙𝑟𝑔 . The search space for the hyperparameters are : (i) 𝐼𝑔 :
from 1 to 10. (ii) 𝐼𝑡: from 1 to 10. (iii) 𝑙𝑟𝑡: from 1e-6 to 1e-3. (iv) 𝑙𝑟𝑔 :
from 1e-6 to 1e-3.
Experiment environment. We conducted our experiment on the com-
puter with Intel(R) Core(TM) i9-14900HX CPU @ 2.20 GHz and NVIDIA
GeForce RTX 4070 with 16 GB memory. The operation system is
Windows 11.

4.2. Experimental results

To answer Q1, we compare the classification performance of differ-
ent algorithms in this section on six datasets with 10 clients. As shown
in the Table 3, the proposed FedPPD outperforms state-of-the-art base-
lines. Specifically, compared to FedAvg, it can achieve a performance
prompt of up to 4.56%. And compared to the most competitive method
FedTAD, FedPPD has also improved accuracy by 2.13%. Particularly,
FedPPD increases by up to 10.06% compared to the FedProto on the
CiteSeer dataset. We also test the accuracy of our method in different
number of clients scenarios. We conduct the experiment on the Cora
and Coauthor Physics dataset. The experiment result is shown in Fig.
3(b) and Fig. 3(c). The accuracy generally increases as the number of
participating clients decreases. Meanwhile, we measure the accuracy
under different client participation ratios in CiteSeer dataset, ranging
from 0.3 to 1, with an interval of 0.1. As observed in Fig. 3(a), both
excessive and insufficient participation ratios have a negative impact
on the accuracy of the algorithms.

Q. Lin et al. Neural Networks 189 (2025) 107541
Table 3
Performance comparison of test accuracy achieved by FedPPD and baseline models on six datasets with ten clients. The best results are
highlighted in bold, sub-optimal results are marked with an underline, and the third-best results are indicated by shading .

Dataset
Method FedAvg FedProx MOON Fed-PUB FedGTA FedTAD FedProto FedTGP FedPPD (Ours)

Cora 75.87 75.96 76.68 78.46 78.74 78.38 77.75 77.39 80.43
CiteSeer 69.98 69.91 69.54 70.37 70.94 70.80 62.74 63.03 72.80
PubMed 83.65 83.84 83.46 84.87 84.45 85.17 83.79 83.79 86.99

Amazon-Computers 84.89 84.92 85.46 86.85 87.10 87.47 83.08 82.03 89.27
Coauthor Physics 91.62 91.61 91.65 92.91 92.96 93.19 91.72 91.60 94.99

obg-arxiv 65.15 65.08 65.10 66.78 66.58 66.58 62.23 64.29 68.71
Fig. 3. (a): Performance with different participating rate on CiteSeer dataset in 10 clients scenarios. (b) and (c): Convergence curves of different number of clients participating
on Cora and Physics dataset.
Fig. 4. Hyperparameters analysis with the training process of the proposed FedPPD.

4.3. Ablation study

To answer Q2, we conduct ablation experiments to explore the
importance of each component. FedPPD consists of two main modules
and an auxiliary module, including utilizing a generator under the
guidance of local prototypes to explore the global input space, distill-
ing knowledge from the local GNNs to the vanilla-aggregated global
GNN and neighbor protection mechanism. After configuring the Cora
and Amazon-Computer datasets, we conduct ablation experiment by
discarding generator training process (w/o Gen. for short), neighbor
prototypes aggregation process (w/o Neig. for short) and pseudo-global
prototypes approaching pseudo-local prototypes process (w/o Appr.
for short) respectively. The experiment result is shown in Table 4.
After comparison, we can find that deleting any module will lead to
a decrease in algorithm performance.

4.4. Hyperparameters sensitivity analysis

To answer Q3, we conduct the hyperparameters sensitivity analysis
experiment on the Cora dataset using GCN as a regular GNN model
to evaluate the accuracy of the model under different hyperparameter
settings.

Firstly, to analyze whether the feature information of neighboring
nodes will provide excessive guidance to this node, we change the ag-
gregation ratio 𝛼 between the neighboring prototype and this prototype

6
Table 4
Ablation Experiment Result on the Cora and Amazon-Computers datasets.
 Datasets Method Accuracy (%)

Cora

FedPPD 80.43
 FedPPD (w/o Gen.) 79.99
 FedPPD (w/o Neig.) 79.81
 FedPPD (w/o Appr.) 79.80

Amazon-Computers

FedPPD 89.27
 FedPPD (w/o Gen.) 88.93
 FedPPD (w/o Neig.) 89.00
 FedPPD (w/o Appr.) 88.75

to verify the difference in classification accuracy at different values. As
shown in Fig. 4(a), with the change of alpha, the accuracy of the model
remains stable between 80% and 81%, indicating that the model is not
sensitive to alpha.

Secondly, we investigate the differences in models with different
numbers of vertices in the generated pseudo graph. As shown in Fig.
4(b), when the number of vertices varies between 100 and 800, the ac-
curacy difference in each round is still controlled within 2%, indicating
that the number of vertices does not have a significant impact on the
model.

Finally, we investigate the impact of different noise dimensions
on model accuracy. As shown in Fig. 4(c), even at the location with

Q. Lin et al. Neural Networks 189 (2025) 107541
Fig. 5. Performance comparison with different hyperparameters of our method FedPPD.
Fig. 6. Effectiveness analysis of the proposed method FedPPD on the Cora dataset.

the largest difference, the impact of 24 dimensional noise and 48
dimensional noise on the accuracy of the model is only 1%, indicating
that the model is not sensitive to the noise dimension.

Simultaneously, we compare the highest test set accuracy achieved
under different values of three hyperparameters to investigate the
impact of hyperparameters on the optimal training results of the model.
The result shown in Fig. 5 indicates that different parameter values
have little effect on the training performance of the model.

In summary, FedPPD demonstrates low sensitivity to the aggrega-
tion ratio 𝛼, which governs the weighting between the prototype of
neighboring nodes and its own prototype, as well as to the number
of the generated pseudo graph vertices and the dimension of the
generator’s original input, thereby making the model highly robust.

4.5. Effectiveness analysis

To answer Q4, we analyze the reasons why FedPPD works. In
FedPPD, the prototype is the carrier of knowledge, the optimization
of server-side model parameters depends on the extent to which the
pseudo local prototype approaches the real local prototype, which
fundamentally depends on the quality of the pseudo graph generated by
the generator. We record the distance between the global pseudo graph
and the real graph at each training iteration. The result is shown in Fig.
6. Apparently, as training progresses, the distance between the global
pseudo graph and the real graph decreases, indicating an improvement
in the quality of the generated pseudo graph. It demonstrates the
effectiveness of proposed FedPPD, as it indicates that the optimization
of server-side parameters is successfully guided by the improved quality
of the pseudo graph.

4.6. Hot-plugging performance enhancement

To answer Q5, we integrate FedPPD as a plugin into several FGL
baseline methods, especially in the situation of subgraph-FL, includ-
7
Table 5
Performance improvement attributed to the integration of the
FedPPD plugin on the Cora dataset.
 Methods w/o FedPPD with FedPPD
 Fed-PUB 78.46 79.98
 FedGTA 78.74 80.25

ing Fed-PUB and FedGTA. Since Fed-PUB and FedGTA both optimize
the aggregation of federated parameters as well as the client-side
update process, and given that our method primarily relies on server-
side computation without personalized parameter aggregation, we can
incorporate their personalized learning strategies and client-side proce-
dures. Through this integration, we can fully leverage resources on both
the client and server sides, thereby enhancing overall performance. We
evaluate their performance improvement on the Cora dataset with ten
participating clients. The experiment result is shown in Table 5. As
observed, these two algorithms show a significant increase in accuracy
after integration, which indicates that it can improve the performance
when FedPPD is applied as a plugin to other algorithms.

5. Discussion

Privacy concerns. At each communication round, FedPPD need to up-
load the model parameters, label distribution and real local prototypes.
The additional upload prototypes may raise privacy concerns. However,
prototypes are high-dimensional representations of data, making it
challenging to interpret their actual meaning. Moreover, the generator
is trained by prototypes of the clients. Consequently, the generated
pseudo graph tends to reveal the whole feature of the local subgraphs,
and personalized features are ignored.
Limitations. In our methods, the client is responsible for calculating
the real local prototypes based on the local dataset and subsequently
uploading these prototypes to the server. The server side needs to
generate the pseudo graph and guide the global model parameter to
update. As a result, compared to other simple aggregation FL methods
such as FedAvg, the server side needs to have a stronger load bearing
capacity, and due to the training time of the generator, the server incurs
additional time overhead.

6. Conclusion

This paper investigates the issue of performance degradation that
arises from the naive aggregation of model parameters in the presence
of subgraph heterogeneity. To this end, we propose FedPPD, which
conveys reliable knowledge which is oversimplified during the aggre-
gation process to generator by means of prototypes. Consequently,
FedPPD can fine-tune the global model to a better performance. We
consider the topological structure of graph by aggregating neighbor
prototypes and own prototypes, which is proved to have better perfor-
mance in subgraph-FL. Extensive experiments revealing the effective-
ness of FedPPD, which outperforms various state-of-the-art baselines
consistently.

Q. Lin et al. Neural Networks 189 (2025) 107541
CRediT authorship contribution statement

Qi Lin: Writing – review & editing, Writing – original draft, Method-
ology, Investigation. Jishuo Jia: Writing – review & editing, Writing –
original draft, Visualization, Methodology, Investigation. Yinlin Zhu:
Methodology, Investigation. Xunkai Li: Methodology, Investigation.
Bin Jiang: Supervision. Meixia Qu: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This paper is supported by the Shenzhen Fundamental Research
Program, China under Grant JCYJ20230807094104009.

Data availability

Data will be made available on request.

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining (pp.
2623–2631). New York, NY, USA: Association for Computing Machinery, http:
//dx.doi.org/10.1145/3292500.3330701.

Baek, J., Jeong, W., Jin, J., Yoon, J., & Hwang, S. J. (2023). Personalized subgraph
federated learning. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
& J. Scarlett (Eds.), Proceedings of machine learning research: 202, Proceedings of
the 40th international conference on machine learning (pp. 1396–1415). PMLR, URL
https://proceedings.mlr.press/v202/baek23a.html.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10), P10008.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2014). Spectral networks and locally
connected networks on graphs. arXiv:1312.6203.

Fang, G., Song, J., Wang, X., Shen, C., Wang, X., & Song, M. (2021). Contrastive model
inversion for data-free knowledge distillation. arXiv:2105.08584.

Fatemi, B., El Asri, L., & Kazemi, S. M. (2021). SLAPS: Self-supervision
improves structure learning for graph neural networks. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P. Liang, & J. W. Vaughan (Eds.), Advances
in neural information processing systems: vol. 34, (pp. 22667–22681). Curran
Associates, Inc., URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
bf499a12e998d178afd964adf64a60cb-Paper.pdf.

Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs
via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2),
129–150.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network.
arXiv:1503.02531.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., & Leskovec, J.
(2020). Open graph benchmark: Datasets for machine learning on graphs. In
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances
in neural information processing systems: vol. 33, (pp. 22118–22133). Curran
Associates, Inc., URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf.

Kipf, T. N., & Welling, M. (2016). Variational graph auto-encoders. arXiv:1611.07308.
Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph

convolutional networks. arXiv:1609.02907.
Li, Q., He, B., & Song, D. (2021). Model-contrastive federated learning. In Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition (pp.
10713–10722).

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020).
Federated optimization in heterogeneous networks. In I. Dhillon, D. Papail-
iopoulos, & V. Sze (Eds.), 2, Proceedings of machine learning and systems
(pp. 429–450). URL https://proceedings.mlsys.org/paper_files/paper/2020/file/
1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf.

Li, X., Wu, Z., Zhang, W., Sun, H., Li, R.-H., & Wang, G. (2024). AdaFGL: A new
paradigm for federated node classification with topology heterogeneity. arXiv:
2401.11750. URL https://arxiv.org/abs/2401.11750.
8
Li, X., Wu, Z., Zhang, W., Zhu, Y., Li, R.-H., & Wang, G. (2024). FedGTA:
Topology-aware averaging for federated graph learning. arXiv:2401.11755.

Liu, Z., Yang, L., Fan, Z., Peng, H., & Yu, P. S. (2022). Federated social recommendation
with graph neural network. ACM Transactions on Intelligent Systems and Technology,
13(4).

McMahan, B., Moore, E., Ramage, D., Hampson, S., & Arcas, B. A. y. (2017).
Communication-efficient learning of deep networks from decentralized data. In
A. Singh, & J. Zhu (Eds.), Proceedings of machine learning research: vol. 54, Pro-
ceedings of the 20th international conference on artificial intelligence and statistics (pp.
1273–1282). PMLR, URL https://proceedings.mlr.press/v54/mcmahan17a.html.

Shchur, O., Mumme, M., Bojchevski, A., & Günnemann, S. (2019). Pitfalls of graph
neural network evaluation. arXiv:1811.05868. URL https://arxiv.org/abs/1811.
05868.

Shi, C., Kong, X., Huang, Y., S. Yu, P., & Wu, B. (2014). HeteSim: A general framework
for relevance measure in heterogeneous networks. IEEE Transactions on Knowledge
and Data Engineering, 26(10), 2479–2492.

Shi, C., Li, Y., Zhang, J., Sun, Y., & Yu, P. S. (2017). A survey of heterogeneous
information network analysis. IEEE Transactions on Knowledge and Data Engineering,
29(1), 17–37.

Tan, Y., Long, G., LIU, L., Zhou, T., Lu, Q., Jiang, J., & Zhang, C. (2022). FedProto:
Federated prototype learning across heterogeneous clients. 36, In Proceedings of the
AAAI conference on artificial intelligence (8), (pp. 8432–8440).

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018).
Graph attention networks. arXiv:1710.10903.

Wang, Z., Kuang, W., Xie, Y., Yao, L., Li, Y., Ding, B., & Zhou, J. (2022).
FederatedScope-GNN: Towards a unified, comprehensive and efficient package
for federated graph learning. In Proceedings of the 28th ACM SIGKDD confer-
ence on knowledge discovery and data mining (pp. 4110–4120). New York, NY,
USA: Association for Computing Machinery, http://dx.doi.org/10.1145/3534678.
3539112.

Wang, Y., Wang, J., Cao, Z., & Barati Farimani, A. (2022). Molecular contrastive
learning of representations via graph neural networks. Nature Machine Intelligence,
4(3), 279–287.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2021). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 32(1), 4–24.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019). Simplifying
graph convolutional networks. In K. Chaudhuri, & R. Salakhutdinov (Eds.), Proceed-
ings of machine learning research: 97, Proceedings of the 36th international conference
on machine learning (pp. 6861–6871). PMLR, URL https://proceedings.mlr.press/
v97/wu19e.html.

Wu, S., Sun, F., Zhang, W., Xie, X., & Cui, B. (2022). Graph neural networks in
recommender systems: A survey. ACM Computing Surveys, 55(5).

Wu, C., Wu, F., Lyu, L., Huang, Y., & Xie, X. (2022). Communication-efficient federated
learning via knowledge distillation. Nature Communications, 13(1), 2032.

Xie, Z., Li, L., Chen, X., Yu, H., & Huang, Q. (2024). FedDGL: Federated dynamic graph
learning for temporal evolution and data heterogeneity. In Proceedings of machine
learning research: vol. 260, Asian conference on machine learning, ACML 2024, 5-8
December, Hanoi, Vietnam (pp. 1–16).

Yang, Z., Cohen, W., & Salakhudinov, R. (2016). Revisiting semi-supervised learning
with graph embeddings. In M. F. Balcan, & K. Q. Weinberger (Eds.), Proceedings
of machine learning research: vol. 48, Proceedings of the 33rd international conference
on machine learning (pp. 40–48). New York, New York, USA: PMLR, URL https:
//proceedings.mlr.press/v48/yanga16.html.

Zhang, J., Liu, Y., Hua, Y., & Cao, J. (2024). FedTGP: Trainable global prototypes with
adaptive-margin-enhanced contrastive learning for data and model heterogeneity
in federated learning. arXiv:2401.03230.

Zhang, J., Liu, Y., Hua, Y., & Cao, J. (2024). FedTGP: Trainable global prototypes with
adaptive-margin-enhanced contrastive learning for data and model heterogeneity in
federated learning. 38, In Proceedings of the AAAI conference on artificial intelligence
(15), (pp. 16768–16776).

Zhang, L., Shen, L., Ding, L., Tao, D., & Duan, L.-Y. (2022). Fine-tuning global model via
data-free knowledge distillation for non-IID federated learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition (pp. 10174–10183).

Zhang, H., Shen, T., Wu, F., Yin, M., Yang, H., & Wu, C. (2021). Federated graph
learning – A position paper. arXiv:2105.11099.

Zhang, K., Yang, C., Li, X., Sun, L., & Yiu, S. M. (2021). Subgraph federated learning
with missing neighbor generation. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. Liang, & J. W. Vaughan (Eds.), Advances in neural information processing systems:
vol. 34, (pp. 6671–6682). Curran Associates, Inc., URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/34adeb8e3242824038aa65460a47c29e-Paper.pdf.

Zhu, Z., Hong, J., & Zhou, J. (2021). Data-free knowledge distillation for heterogeneous
federated learning. In M. Meila, & T. Zhang (Eds.), Proceedings of machine learning
research: vol. 139, Proceedings of the 38th international conference on machine learning
(pp. 12878–12889). PMLR, URL https://proceedings.mlr.press/v139/zhu21b.html.

Zhu, Y., Li, X., Wu, Z., Wu, D., Hu, M., & Li, R.-H. (2024). FedTAD: Topology-aware
data-free knowledge distillation for subgraph federated learning. arXiv:2404.14061.

Zhuang, Y., Lyu, L., Shi, C., Yang, C., & Sun, L. (2022). Data-free adversarial knowledge
distillation for graph neural networks. arXiv:2205.03811.

http://dx.doi.org/10.1145/3292500.3330701
http://dx.doi.org/10.1145/3292500.3330701
http://dx.doi.org/10.1145/3292500.3330701
https://proceedings.mlr.press/v202/baek23a.html
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb3
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb3
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb3
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb3
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb3
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/2105.08584
https://proceedings.neurips.cc/paper_files/paper/2021/file/bf499a12e998d178afd964adf64a60cb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bf499a12e998d178afd964adf64a60cb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bf499a12e998d178afd964adf64a60cb-Paper.pdf
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb7
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb7
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb7
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb7
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb7
http://arxiv.org/abs/1503.02531
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb12
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb12
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb12
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb12
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb12
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2020/file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf
http://arxiv.org/abs/2401.11750
http://arxiv.org/abs/2401.11750
http://arxiv.org/abs/2401.11750
https://arxiv.org/abs/2401.11750
http://arxiv.org/abs/2401.11755
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb16
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb16
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb16
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb16
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb16
https://proceedings.mlr.press/v54/mcmahan17a.html
http://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1811.05868
https://arxiv.org/abs/1811.05868
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb19
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb19
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb19
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb19
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb19
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb20
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb20
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb20
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb20
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb20
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb21
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb21
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb21
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb21
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb21
http://arxiv.org/abs/1710.10903
http://dx.doi.org/10.1145/3534678.3539112
http://dx.doi.org/10.1145/3534678.3539112
http://dx.doi.org/10.1145/3534678.3539112
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb24
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb24
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb24
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb24
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb24
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb25
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb25
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb25
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb25
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb25
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb27
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb27
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb27
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb28
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb28
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb28
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb29
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb29
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb29
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb29
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb29
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb29
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb29
https://proceedings.mlr.press/v48/yanga16.html
https://proceedings.mlr.press/v48/yanga16.html
https://proceedings.mlr.press/v48/yanga16.html
http://arxiv.org/abs/2401.03230
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb32
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb32
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb32
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb32
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb32
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb32
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb32
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb33
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb33
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb33
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb33
http://refhub.elsevier.com/S0893-6080(25)00420-4/sb33
http://arxiv.org/abs/2105.11099
https://proceedings.neurips.cc/paper_files/paper/2021/file/34adeb8e3242824038aa65460a47c29e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/34adeb8e3242824038aa65460a47c29e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/34adeb8e3242824038aa65460a47c29e-Paper.pdf
https://proceedings.mlr.press/v139/zhu21b.html
http://arxiv.org/abs/2404.14061
http://arxiv.org/abs/2205.03811

	FedPPD: Towards effective subgraph federated learning via pseudo prototype distillation
	Introduction
	Preliminaries
	Notation Definitions
	Problem Formulation
	Related Works
	Graph Neural Networks (GNNs)
	Federated Graph Learning (FGL)
	Data-Free Knowledge Distillation (DFKD)
	Homogeneity and Heterogeneity

	Proposed Method
	Client Side
	Server Side

	Experiments
	Experimental Setup
	Experimental Results
	Ablation Study
	Hyperparameters Sensitivity Analysis
	Effectiveness Analysis
	Hot-plugging Performance Enhancement

	Discussion
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

