
Position: C∗-Algebraic Machine Learning — Moving in a New Direction

Yuka Hashimoto 1 2 Masahiro Ikeda 2 3 Hachem Kadri 4

Abstract
Machine learning has a long collaborative tra-
dition with several fields of mathematics, such
as statistics, probability and linear algebra. We
propose a new direction for machine learning re-
search: C∗-algebraic ML—a cross-fertilization
between C∗-algebra and machine learning. The
mathematical concept of C∗-algebra is a natural
generalization of the space of complex numbers.
It enables us to unify existing learning strategies,
and construct a new framework for more diverse
and information-rich data models. We explain
why and how to use C∗-algebras in machine learn-
ing, and provide technical considerations that go
into the design of C∗-algebraic learning models
in the contexts of kernel methods and neural net-
works. Furthermore, we discuss open questions
and challenges in C∗-algebraic ML and give our
thoughts for future development and applications.

1. Introduction
Machine learning problems and methods are currently be-
coming more and more complicated. We have many types
of structured data, such as time-series data, image data, and
graph data. In addition, not only are the models large, but
multiple models and tasks have to be considered in some
situations.

To address these situations, we propose C∗-algebraic ma-
chine learning: application of C∗-algebra to machine learn-
ing methods. Typical examples of C∗-algebras are the space
of continuous functions on a compact space and the space
of bounded linear operators on a Hilbert space. C∗-algebra
was first proposed in quantum mechanics to model physical
observables and has been investigated in pure mathematics,
mathematical physics, and quantum mechanics. Whereas

1NTT corporation, Tokyo, Japan 2Center for Advanced
Intelligence Project, RIKEN, Tokyo, Japan 3Keio Univer-
sity, Yokohama, Japan 4Aix-Marseille University, CNRS, LIS,
Marseille, France. Correspondence to: Yuka Hashimoto
<yuka.hashimoto@ntt.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

its rich mathematical and theoretical investigations, its main
application is limited to quantum mechanics. In the current
situation in machine learning, we believe that it is time to
apply these rich investigations to machine learning meth-
ods. Since C∗-algebras enable us to unify complex values,
matrices, functions, and linear operators, we expect that
the generalization of machine learning methods using C∗-
algebras allows us to unify existing methods and construct a
framework for more complicated data and models. Figure 1
shows an overview of the C∗-algebraic machine learning.

In this paper, we mainly focus on two approaches: ker-
nel methods and neural networks. For kernel meth-
ods, most of existing methods are realized using repro-
ducing kernel Hilbert spaces (RKHSs) or vector-valued
RKHS (vvRKHS), which are constructed by positive defi-
nite kernels (Schölkopf & Smola, 2001; Saitoh & Sawano,
2016). The reproducing property enables us to evaluate the
value of a function at a point using the inner product, which
makes it easy for us to implement algorithms and analyze
them theoretically. Moreover, we can apply kernel meth-
ods to probabilistic and statistical settings by embedding
probability measures in an RKHS. This embedding is called
the kernel mean embedding. However, since RKHSs (resp.
vvRKHSs) are complex- (resp. vector-) valued function
spaces, the output of the models is usually complex- or
vector-valued. In addition, appropriate ways of the construc-
tion of positive definite kernels are not trivial. The gener-
alization of RKHS by means of the C∗-algebra enables us
to output more general data, such as functions and opera-
tors (Hashimoto et al., 2021). Moreover, C∗-algebras give
us a method to construct C∗-algebra-valued positive definite
kernels for structured data (Hasimoto et al., 2023a). The
noncommutative product structure in C∗-algebras (ab ̸= ba
for elements a, b in the C∗-algebra) enables us to construct
an operation that goes beyond the multiplication and convo-
lution.

As for neural networks, the models are becoming larger
and more complicated. For example, in ensemble learn-
ing (Dong et al., 2020; Ganaie et al., 2022), multitask
learning (Zhang et al., 2014; Ruder et al., 2019), and meta-
learning (Ravi & Larochelle, 2017; Finn et al., 2017; Rusu
et al., 2019), we need to consider multiple tasks and mod-
els. In addition, large language models (LLMs) have large
numbers of learning parameters and need large numbers of

1

Position: C*-Algebraic ML

training samples. To fully extract features of data in these
architectures, we expect that C∗-algebras play an important
role since they enable us to represent multiple models and
tasks simultaneously (Hashimoto et al., 2022). In addition,
although one reason for the success of current large modes
like LLMs is a large number of training samples, in some
applications, we do not have enough data to train models.
For example, we do not always have enough healthcare data,
and for anomaly detection, we do not always have enough
abnormal data. Moreover, federated learning has been in-
vestigated to analyze privacy data distributed in multiple
nodes without sharing it with other nodes (McMahan et al.,
2017; Bonawitz et al., 2021). In these cases, we cannot
rely on the powerfulness of neural network models coming
from large numbers of training samples. We believe that the
rich structure of models with C∗-algebras will offer a new
approach to address these situations.

In this paper, we discuss known advantages of applying
C∗-algebra to machine learning, as summarized as follows:

• We can generalize the complex-valued inner product to
a C∗-algebra-valued inner product. Since many machine
learning methods involve the inner product, such as pro-
jection and computing correlations, the generalization can
help us extract data features effectively in these methods.

• Using the C∗-algebra-valued inner product, we can gener-
alize RKHS by means of C∗-algebra and learn function-
and operator-valued maps (Subsection 5.1).

• We can design positive definite kernels for structured data
using the noncommutative product (Subsection 5.1).

• We can use the norm of the C∗-algebra to alleviate the
dependency of generalization error bound on the output
dimension (Subsection 5.1).

• Using the generalization of kernel mean embedding by
means of C∗-algebra, we can analyze operator-valued
measures such as positive operator-valued measures and
spectral measures (Subsection 5.1.1).

• We can continuously combine multiple models and use
the tools for functions, which can be applied to ensemble,
multitask, and meta-learning (Subsection 5.2).

• The noncommutative product structures in C∗-algebras
induce interactions among models (Subsection 5.2.3).

• We can construct group equivariant neural networks using
the products in group C∗-algebras (Subsection 5.2.3).

In each section and subsection, we discuss the above ad-
vantages in more detail. Then, we go into the technical
details to show that the notion of C∗-algebra can be adapted
to machine learning methods such as kernel methods and
neural networks. We also provide new results showing the
advantages of applying C∗-algebra. Specifically,

• By generalizing neural networks by means C∗-algebra,
we can show that even if the activation functions are linear,
the expressiveness of the generalized network, called C∗-

Figure 1. Overview of the C∗-algebraic machine learning

algebra net, grows as the depth grows (Subsection 5.2.1).
• C∗-algebra net fills the gap between convex and noncon-

vex optimization for neural networks (Subsection 5.2.2).

Finally, we discuss future directions of C∗-algebraic ma-
chine learning. We discuss open problems and several possi-
ble examples of C∗-algebras that could be useful in machine
learning problems.

2. C∗-algebra
C∗-algebra is a natural generalization of the space of com-
plex numbers. Thus, we can naturally generalize real- or
complex-valued notions necessary to construct machine
learning algorithms. In C∗-algebras, we have arithmetic op-
erations, addition, subtraction, and multiplication, which are
fundamental for arbitrary algorithms. Moreover, we have
the structure of involution, which is a generalization of the
complex conjugate and is necessary to generalize complex-
valued notions. For example, positive definite kernels for
defining RKHSs are, in general, defined as complex-valued
functions. Other important notions for machine learning
algorithms are the magnitude and the order. For example, to
evaluate the discrepancy between two values, we consider
the magnitude of the difference between the two values. In
addition, we consider minimization or maximization prob-
lems in many situations. The notions of minimum and
maximum are based on an order. We can generalize the
order for real values to that in C∗-algebras. In the follow-
ing, we will see how we can technically generalize real-
or complex-valued notions to C∗-algebra-valued ones. We
first recall the definition of C∗-algebra.

Definition 2.1 (C∗-algebra). A set A is called a C∗-algebra
if it satisfies the following three conditions:
1. A is an algebra over C and equipped with a bijection

(·)∗ : A → A that satisfies for α, β ∈ C and c, d ∈ A,

• (αc+ βd)∗ = αc∗ + βd∗,
• (cd)∗ = d∗c∗, • (c∗)∗ = c.

2. A is a Banach space equipped with the norm ∥ · ∥A, and
for c, d ∈ A, ∥cd∥A ≤ ∥c∥A∥d∥A holds.

2

Position: C*-Algebraic ML

3. For c ∈ A, ∥c∗c∥A = ∥c∥2A holds. (C∗-property)

The involution (·)∗ is a generalization of the complex conju-
gate. We can define an A-valued absolute value to evaluate
the magnitude of elements in A and compare the absolute
value of elements with the partial order defined as follows.

Definition 2.2 (Positive). An element c ∈ A is called
positive if there exists d ∈ A such that c = d∗d. We denote
c ≤A d if d− c is positive for c, d ∈ A. We denote by A+

the subset of A composed of all positive elements in A.

For c ∈ A, the A-valued absolute value |c|A is defined as
a unique element d ∈ A+ that satisfies d2 = c∗c. Using
the above notions, we can define an A+-valued objective
function and optimize it in the sense of the order ≤A.

We list typical examples of C∗-algebras that are useful for
machine learning below. We can find more theoretical prop-
erties and examples in, for example, Murphy (1990) and
Davidson (1996).

Example 2.3.
1. Let A = C(Z), the C∗-algebra of continuous functions

on a compact Hausdorff space Z . The product of two
functions c, d ∈ A is defined as (cd)(z) = c(z)d(z) for
z ∈ Z , the involution is defined as c∗(z) = c(z), the
norm is the supnorm. An element c ∈ A is positive
if and only if c(z) ≥ 0 for any z ∈ Z . Note that the
product is commutative, i.e., cd = dc for c, d ∈ A. For
example, we can use C(Z) for representing functional
data and combining multiple models continuously (see
Subsection 5.2).

2. Let A = B(W), the C∗-algebra of bounded linear opera-
tors on a Hilbert space W . The product is the product (the
composition) of operators, the involution is the adjoint,
and the norm is the operator norm. An element c ∈ A
is positive if and only if c is Hermitian positive semi-
definite. Note that, unlike the first example, the product
is noncommutative, i.e., cd ̸= dc for c, d ∈ A. For exam-
ple, we can use B(W) for treating spectral and positive
operator-valued measures (see Subsection 5.1.1).

3. If W is a d-dimensional space, then B(W) is the C∗-
algebra of squared matrices Cd×d. The space of block
diagonal squared matrix is a C∗-subalgebra of Cd×d. For
example, we can use Cd×d to represent adjoint matrices
of graphs and images.

4. The group C∗-algebra on a finite discrete group G, which
is denoted as C∗(G), is the set of maps from G to C. The
product is defined as (a · b)(g) =

∑
h∈G a(h)b(h−1g)

for g ∈ G, and the adjoint is defined as a∗(g) = a(g−1)
for g ∈ G. The norm is ∥a∥ = sup[π]∈Ĝ ∥π(a)∥, where

Ĝ is the set of equivalence classes of irreducible unitary
representations of G. Note that if G is an abelian group,

then the product is commutative. On the other hand, if G
is not an abelian group, then the product is noncommuta-
tive. For example, we can use C∗(G) to construct group
equivariant neural networks (see Subsection 5.2.3).

3. Representing Data and Models Using
C∗-algebra

Recently, machine learning problems are getting more and
more complicated. As we saw in Section 2, C∗-algebra is a
natural mathematical framework to generalize the notion of
complex values to functions and operators. Thus, applying
functions and operators in C∗-algebras helps us deal with
these complicated situations. We can effectively represent
structured data and multiple models using C∗-algebras. At
least, we have the following perspectives.

Data structure In many cases, data is not just composed
of finite dimensional vectors but composed of time series,
graphs, large images, and so on. To analyze these kinds of
data with higher accuracy, we need to consider the structure
of the data and represent it properly. C∗-algebra helps
us represent the data structure. For example, if we have
finite time-series data with a constant time interval, then
we can represent the series with a finite-dimensional vector.
However, if the series is infinite or if the time interval is
not constant, then it is more reasonable to use a function
to represent the time series. In addition, for graph data, we
can use adjacent matrices to represent the graphs. Images
can also be regarded as functions that map a pixel to the
intensity of the pixel. Functions and matrices (operators)
are perfect tools to represent the rich structure of data.

Multiple models In ensemble, multitask, and meta-
learning, we consider multiple models simultaneously. In
these cases, representing the models simultaneously using
functions in C∗-algebras is more effective than represent-
ing each of them individually since we can use tools of
functional analysis to extract common features of the mod-
els. Hashimoto et al. (2022) used integral and regression
to extract common features regarding the gradients of the
models.

Limited number of samples In few-shot learning, we try
to train models with a limited number of samples. We often
come across situations where the number of training samples
is limited. For example, we do not always have enough
healthcare data, biological data, abnormal data in anomaly
detection, and so on. In this case, we need to extract as
much information as possible from these samples. By using
functions in C∗-algebras, we can represent infinitely many
models, which enables us to extract a maximal amount of
features.

Regarding the data structure, we can also deal with struc-
tured data such as functional data with other methods.

3

Position: C*-Algebraic ML

For example, stochastic processes (Zhu et al., 2011), op-
erator learning (Kovachki et al., 2023), vector-valued
RKHSs (Kadri et al., 2016), the framework of functional
data analysis (Wang et al., 2016). Advantages of applying
C∗-algebras compared to them is summarized as follows.

Product structure A C∗-algebra has the product struc-
ture. It enables us to generalize algorithms on Hilbert spaces
to those on Hilbert C∗-modules. Regarding functional data,
we can also use other basic function spaces such as L2

spaces and Sobolev spaces that do not have product struc-
tures. However, the above generalizations are not possible
with them. Similarly, regarding graph data, we can also
vectorize a Cd×d adjacency matrix and regard it as a d2-
dimensional vector. However, we do not have the product
structure in that case. In addition, C∗-algebras allow ”flex-
ible” product structure. Depending on the C∗-algebra, we
can use and take advantage of different product structures.
For example, the product structure is the convolution for
group C∗-algebras (See Example 2.3.4). We can also ap-
ply noncommutative product structures to induce interac-
tions (See Subsection 5.2.3 for more details).

Norm The norm in C∗-algebras is useful for obtaining
theoretical evaluations with milder dependencies on the
data dimension than other norms. Indeed, for matrices,
we can use the operator norm to alleviate the dependency
of the generalization bound on the output data dimension,
compared to the case where we regard a d by d matrix as a
d2-dimensional vector and use the vector norms such as the
Euclidean norm (Hasimoto et al., 2023b).

Inner product We can naturally generalize the notion of
inner product and Hilbert space by using C∗-algebra, which
allows us to generalize RKHS to the space of C∗-algebra-
valued functions. Learning C∗-algebra-valued maps is of
great importance in many practical problems where the
outputs to be predicted are not scalars but complex and
structured data. The generalization of the notion of inner
product and Hilbert space is by virtue of the properties of
C∗-algebra, and this type of generalization is not easy for
other notions than C∗-algebra. See Section 4 and Subsec-
tion 5.1 for more details.

4. C∗-algebra-valued Inner Product: The First
Step in Constructing Algorithms

After representing data and models using C∗-algebras, we
incorporate them into algorithms. In the algorithms, we
generalize real- or complex-valued notions to C∗-algebra-
valued ones. For methods implemented in Hilbert spaces,
an important notion is the inner product. For example, a
projection of a vector onto a low-dimensional subspace is
obtained by computing inner products between the vector
and vectors in an orthonormal basis of the subspace. In

addition, for functions in RKHSs (Saitoh & Sawano, 2016;
Hashimoto et al., 2021), the evaluation of a function at a
point is obtained by computing the inner product of the func-
tion and the feature vector corresponding to the point (see
Subsection 5.1 for details). To analyze structured data such
as functional and graph data represented by a C∗-algebra,
generalizing the inner product to the C∗-algebra enables
us to extract more information than the standard complex-
valued inner product.

The space that has the structure of the C∗-algebra-valued
inner product is called Hilbert C∗-module (Lance, 1995),
which is a generalization of Hilbert space. In the follow-
ing, we review the definition of Hilbert C∗-module. We
first introduce C∗-module over a C∗-algebra A, which is a
generalization of a vector space.

Definition 4.1 (C∗-module). Let M be an abelian group
with an operation +. If M is equipped with a (right) A-
multiplication, M is called a (right) C∗-module over A.

We replace the vector space with a C∗-module to represent
data. For example, we use Rd or Cd to represent d real- or
complex-valued elements of a sample. If a sample is com-
posed of d elements in A, e.g., d functions, then we replace
Rd or Cd with a C∗-module Ad. Although we consider right
multiplications in this paper, considering left multiplications
instead of right multiplications is also possible.

In a C∗-module, we can consider an A-valued inner product.

Definition 4.2 (A-valued inner product). A C-linear map
with respect to the second variable ⟨·, ·⟩M : M×M → A is
called an A-valued inner product if it satisfies the following
properties for u, v, w ∈ M and c, d ∈ A:
1. ⟨u, vc+ wd⟩M = ⟨u, v⟩M c+ ⟨u,w⟩M d,
2. ⟨v, u⟩M = ⟨u, v⟩∗M,
3. ⟨u, u⟩M ≥A 0,
4. If ⟨u, u⟩M = 0 then u = 0.

Analogous to the case of C∗-algebra, we can define two
notions to measure the magnitude of an element in a C∗-
module M equipped with an A-valued inner product.

Definition 4.3 (A-valued absolute value and norm). For u ∈
M, the A-valued absolute value |u|M on M is defined by
the positive element |u|M of A such that |u|2M = ⟨u, u⟩M.
The (real-valued) norm ∥ · ∥M on M is defined by ∥u∥M =∥∥|u|M∥∥

A.

Definition 4.4 (Hilbert C∗-module). Let M be a C∗-
module over A equipped with an A-valued inner product. If
M is complete with respect to the norm ∥ · ∥M, it is called
a Hilbert C∗-module over A or Hilbert A-module.

4

Position: C*-Algebraic ML

Figure 2. Overview of kernel methods with RKHMs by Hasimoto
et al. (2023a). Here, A1 and A2 are C∗-algebras and ai,j is
the parameter of the C∗-algebra-valued positive definite kernel
associated with the feature maps ϕ1 and ϕ2. If A1 ⊆ A2, then the
RKHM over A1 is contained in the RKHM over A2.

5. C∗-algebraic Kernel Methods and Neural
Networks

We present two examples of machine learning methods,
kernel methods and neural networks, to show how and why
we apply C∗-algebra.

5.1. C∗-algebra and kernels: from Hilbert spaces to
Hilbert modules

Reproducing kernel Hilbert spaces (RKHSs) enable us to ex-
tract nonlinear features of data (Schölkopf & Smola, 2001;
Saitoh & Sawano, 2016). We first define a complex-valued
function k, which is called positive definite kernel, and con-
struct a Hilbert space called RKHS using k. Since RKHSs
have high representation power and are theoretically solid,
they have been applied to various machine learning meth-
ods, such as principal component analysis, support vector
machine, and regression. However, RKHSs and its vector-
valued generalization vvRKHSs are complex- and vector-
valued function spaces; the output of the models are the
usually complex- and vector-valued, respectively. Thus, we
cannot represent functions whose outputs are in C∗-algebras.
In addition, for structured data, complex-valued kernels de-
generate the data to a complex value and extracting the
information on the structure of data is difficult. There-
fore, the construction of an appropriate positive definite
kernel k is not easy. To resolve these issues, we gener-
alize the positive definite kernel and RKHS by means of
C∗-algebra (Heo, 2008; Hashimoto et al., 2022). Then, we
can define reproducing kernel Hilbert C∗-module (RKHM),
which is a generalization of RKHS. RKHMs are Hilbert C∗-
modules. Thus, they have C∗-algebra-valued inner products.
In addition, they are spaces of C∗-algebra-valued functions.
By setting a suitable C∗-algebra, we can design a suitable
RKHM for the given data. Figure 2 shows an overview of
kernel methods with RKHMs. Applying RKHMs gives us a
new twist on kernel methods.

We review the definition of RKHM below. First, we define
an A-valued positive definite kernel on a set X for data.

Definition 5.1 (A-valued positive definite kernel). An A-
valued map k : X × X → A is called a positive definite
kernel if it satisfies the following conditions:

1. k(x, y) = k(y, x)∗ for x, y ∈ X ,
2.

∑n
i,j=1 c

∗
i k(xi, xj)cj≥A 0 for n ∈ N, ci ∈ A, xi ∈ X .

Hasimoto et al. (2023a) proposed to constructing C∗-
algebra-valued kernels using the product structure of the
C∗-algebra. They considered a kernel with circulant ma-
trices and the product with matrix-valued parameters of
the kernel, which enables us to use an operation that goes
beyond the convolution.

Let ϕ : X → AX be the feature map associated with k,
which is defined as ϕ(x) = k(·, x) for x ∈ X . We construct
the following C∗-module composed of A-valued functions:

Mk,0 :=

{ n∑
i=1

ϕ(xi)ci

∣∣∣∣ n ∈ N, ci ∈ A, xi ∈ X
}
.

Let ⟨·, ·⟩Mk
: Mk,0 ×Mk,0 → A defined as〈 n∑

i=1

ϕ(xi)ci,

l∑
j=1

ϕ(yj)dj

〉
Mk

:=

n∑
i=1

l∑
j=1

c∗i k(xi, yj)dj

for ci, di ∈ A and xi, yi ∈ X . By the properties in Defini-
tion 5.1 of k, ⟨·, ·⟩Mk

is an A-valued inner product and has
the reproducing property

⟨ϕ(x), v⟩Mk
= v(x)

for v ∈ Mk,0 and x ∈ X . Since v is an A-valued func-
tion, this reproducing property enables us to deal with A-
valued functions, such as the regression of A-valued func-
tions (Hasimoto et al., 2023a).

The reproducing kernel Hilbert A-module (RKHM) asso-
ciated with k is defined as the completion of Mk,0. We
denote by Mk the RKHM associated with k.

An advantage of using C∗-algebras is that the operator norm
is available. For the case of A = Cd×d, we can also regard
A as a Hilbert space equipped with the Hilbert–Schmidt
inner product. However, in this case, the norm of a matrix
a ∈ Cd×d is calculated as

∑d
i=1

∑d
j=1 |ai,j |2, where ai,j

is the (i, j)-entry of a. On the other hand, the operator
norm of a is calculated as max∥v∥=1

∑d
i=1 |

∑d
j=1 ai,jvj |2.

Since |
∑d

j=1 ai,jvj | ≤
∑d

j=1 |ai,j | and
∑d

i=1 |vj |2 = 1,
the dependency of the operator norm on the dimension d is
milder than that of the Hilbert–Schmidt norm. This fact is
useful for deriving the generalization bound of the kernel
ridge regression. By virtue of introducing C∗-algebra and
using the operator norm, we can alleviate the dependency of
the generalization bound on the output dimension (Hasimoto
et al., 2023b).

5.1.1. KERNEL MEAN EMBEDDING

Kernel mean embedding enables us to generalize kernel
methods to analyze the distribution of data (Muandet et al.,

5

Position: C*-Algebraic ML

2017; Sriperumbudur et al., 2011). We define a map that
maps a distribution to a vector in an RKHS by integrating
the positive definite kernel with respect to the distribution.
This map is called kernel mean embedding and enables us
to analyze the distribution in the RKHS. We can generalize
the kernel mean embedding using C∗-algebras (Hashimoto
et al., 2022). Theoretically, to define the kernel mean em-
bedding, we need the Riesz representation theorem. Al-
though the Riesz representation theorem is always true for
Hilbert spaces, we do not always have the corresponding the-
orem for Hilbert C∗-modules. According to Skeide (2000),
we have the Riesz representation theorem if the Hilbert
C∗-module is in a special class called von-Neumann mod-
ule (see Definition 4.4 in Skeide 2000). In this case, in-
stead of the [0, 1]-valued (more generally, finite signed or
complex-valued) measure, we can map an A-valued mea-
sure (Hashimoto et al., 2021) to a vector in an RKHM.
A-valued measures are defined as the special case of vector
measures (Dinculeanu, 1967; 2000). Spectral measures
and positive operator-valued measures are examples of
B(W)-valued measures for some Hilbert space W . Pos-
itive operator-valued measures are introduced in quantum
mechanics and are used in extracting information on the
probabilities of outcomes from a state (Holevo, 2011). Us-
ing the kernel mean embedding for A-valued measures, we
can analyze positive operator-valued measures. Hashimoto
et al. (2021) used the principal component analysis with
kernel mean embedding to RKHM to analyze the strength
of interaction effects for functional data. They also propose
a MMD (maximal mean discrepancy) with kernel mean
embedding to RKHM. Using the MMD with RKHM, we
can define a distance between two positive operator-valued
measures. We can also apply it to anomaly detection for
quantum states (Hashimoto et al., 2020).

5.1.2. DEEP LEARNING WITH KERNELS

Combining kernel methods and deep learning to take advan-
tage of the representation power and the theoretical solidness
of kernel methods, and the flexibility of deep learning has
been investigated (Cho & Saul, 2009; Gholami & Hajisami,
2016; Bohn et al., 2019; Laforgue et al., 2019). A generaliza-
tion of these methods to RKHMs is also proposed (Hasimoto
et al., 2023b). In this method, instead of considering the
composition of functions in RKHSs, we consider the com-
position of functions in RKHMs. The high representation
power of RKHMs and the product structure of C∗-algebras
make the deep learning method with kernels more powerful.

5.2. Neural network parameters

In classical neural networks, the input and output are vec-
tors whose elements are real or complex values. The learn-
ing parameters are also real or complex values. If the in-
put and output are represented using C∗-algebras, then in

Figure 3. Overview of C∗-algebra net by Hashimoto et al. (2022).
They focused on the C∗-algebra C(Z) for a compact Hausdorff
space Z and generalized neural network parameters to C∗-algebra-
valued. We can continuously combine multiple (real-valued) neural
networks using a single C∗-algebra net.

some cases the corresponding parameters should also be
C∗-algebra-valued. Hashimoto et al. (2022) proposed C∗-
algebra net to combine multiple neural network models into
a neural network with C∗-algebra-valued parameters. Fig-
ure 3 shows an overview of the C∗-algebra net. Using this
new framework, we can combine multiple neural networks
continuously, which is expected to be effective for ensemble,
multitask, and meta-learning to fully extract features of data
from multiple models or tasks. In addition, the experiment
by Hashimoto et al. (2022) shows that this framework is
useful for the case where the number of training samples is
limited. As we stated in Section 3, we often come across
these situations.

We review the technical details of C∗-algebra net. In this
subsection, we focus on the case where A is the C∗-algebra
C(Z) for a compact Hausdorff space Z . Let L be the
number of layers, and for j = 0, . . . , L, let dj be the width
of the jth layer (d0 is the input dimension). Let W j ∈
Adj×dj−1 and bj ∈ Adj be the weight matrix and the bias
of the jth layer, each of whose element is in A. In addition,
let σj : Adj → Adj be a nonlinear activation function. The
C∗-algebra net f is defined as

f(x) = σL(W
LσL−1(· · ·σ1(W

1x+ b1) + · · ·) + bL)

for x ∈ Ad0 . If σj is pointwise, i.e., σj(x)(z) = σ̃j(x(z))
for any x ∈ Adj and some σ̃j : Cdj → Cdj , then we have

f(x)(z) = σ̃L(W
L(z)σ̃L−1(· · · σ̃1(W

1(z)x(z)

+b1(z)) · · ·) + bL(z)). (1)

Thus, we can represent infinitely many neural networks
{f(x)(z)}z∈Z by using a single C∗-algebra net. By learn-
ing the A-valued parameters, we can learn the parameters
of infinitely many neural networks simultaneously. In the
following, we denote f(x)(z) by fz(x).

A C∗-algebra net f provides infinitely many CdL-valued
networks fz indexed by z. If we need a single CdL-valued

6

Position: C*-Algebraic ML

network, we can integrate f over Z . Assume Z is a measur-
able space and for any x ∈ Ad0 , z 7→ fz(x) is measurable.
Let P be a probability measure on Z . Consider a map
f̃ : Ad0 → CdL defined as

f̃(x) =

∫
Z
fz(x)dP (z), (2)

which is an ensemble of functions {fz}z∈Z with respect to
the probability measure P .

In practical computations, we cannot deal with the infinite-
dimensional space A itself. Thus, we restrict A to a finite-
dimensional space. Let {v1, . . . , vm} be a basis of the
finite-dimensional space. We represent each element of the
weights as wj

i,k =
∑m

l=1 c
j
l,i,kvl with coefficients cjl,i,k ∈ C.

Here, wj
i,k is the (i, k)-element of the Adj×dj−1-valued

weight matrix W j . Then, the jth layer fj of the C∗-algebra
net is represented as

(fj(x))i = σj

(dj−1∑
k=1

m∑
l=1

cjl,i,kvlx
j−1
k + bji

)
∈ A, (3)

where (fj(x))i is the ith element of the Adj -valued vector
fj(x) ∈ Adj . In addition, x0 = x is the input and xj =
σj(Wxj−1 + bj) is the output of jth layer. In this case, the
weight parameters of the jth layer of the C∗-algebra net are
described by mdjdj−1 real- or complex-valued parameters.

In the following, we discuss advantages of C∗-algebra net.
We first show new results about expressiveness and opti-
mization. Then, we discuss existing investigations about
interactions among models.

5.2.1. EXPRESSIVENESS

An advantage of the C∗-algebra net is the expressiveness
with respect to the variable z. We focus on a simple case for
the discretized version of the C∗-algebra net (3) and show
that the representation power of fz(x) grows as L grows
even in this simple case. We will see that the C∗-algebra
net is a polynomial of v1(z), . . . , vl(z). The C∗-algebra
net depends on z and x in different ways. It can be useful
for the case where z and x have different attributions. For
example, z is a time variable, and x is a space variable.

Assume the activation function σj is linear, that is, it satis-
fies σj(

∑m
i=1 ciui + b) =

∑m
i=1 σj(ci)ui + σj(b) for any

c1, . . . , cm, u1, . . . , um, b ∈ C. In addition, for simplicity,
we assume the input and the biases are constant functions,
i.e., x(z) = x̂ and bj(z) = b̂j for any z ∈ Z , some x̂ ∈ Cd0 ,
and some b̂j ∈ Cdj . We have the following proposition.
Proposition 5.2. The C∗-algebra net fz(x) is a degree L
polynomial with respect to v1(z), . . . , vm(z).

See Appendix B for the proof of Proposition 5.2. Proposi-
tion 5.2 shows that even if this simple case of the activation

function σj is linear, fz(x) is nonlinear with respect to
z. We can also construct a network whose input space is
Cd0 ×Z . However, the situation of the C∗-algebra net with
a finite-dimensional approximation is totally different from
the case of the network on Cd0 × Z . For the case of the
network on Cd0 ×Z , if all the activation functions are the
ReLU, defined as σ(x) = max{0, x} for x ∈ R, then the
approximation is obtained by the piecewise linear functions
with respect to z (Hanin & Rolnick, 2019). On the other
hand, in the case of the C∗-algebra net, if all the activation
functions are linear, then the approximation is obtained by
the polynomials with respect to vl(z). This fact means that
even if the activation functions are linear, the representation
power of the network with respect to z grows as L becomes
large. In summary, the expressive power of C∗-algebra nets
is high enough so that they can represent polynomials with
respect to z even if the activation functions are linear. In ad-
dition, using C∗-algebra nets, we can induce a new type of
nonlinearity that is different from the nonlinearity induced
by the classical neural networks.

5.2.2. OPTIMIZATION

Another advantage of the C∗-algebra net is that it fills the
gap between convex and nonconvex optimization problems.
Since the weight matrices of C∗-algebra nets are functions,
they correspond to infinitely many weight matrices. There-
fore, if we set a C∗-algebra appropriately, then we can
represent an arbitrary scalar-valued network as a single C∗-
algebra network. As a result, the optimization problem of
the standard scalar-valued network is reduced to a convex
optimization problem of a C∗-algebra network. Convex
optimization of neural networks has been proposed and in-
vestigated (Bengio et al., 2005; Nitanda & Suzuki, 2017;
Chizat & Bach, 2018; Daneshmand et al., 2023). In these
studies, they consider learning the distribution of the weight
parameters, which makes the optimization problem convex.
On the other hand, the objective function becomes highly
nonconvex if we consider optimizing weight parameters
themselves, not the distribution of them. We show that the
framework of C∗-algebra nets fills the gap between these
convex and nonconvex optimizations.

For simplicity, we focus on neural networks with real-valued
parameters and assume the input x is in the form x(z) = x̂
for some x̂ ∈ Rd0 . Let Ω be an interval in R, and let W be a
compact space. Let αj

i,k : W → Ω be a surjective function
for j = 1, . . . , L, i = 1, . . . , dj , and k = 1, . . . , dj−1. The
simplest example is setting W = Ω and αj

i,k as the identity.

Let N =
∑L

j=1 dj(dj−1 + 1), the number of parameters
(weight and bias parameters), Z = WN , and A = C(Z).
Define W j : Z → Rdj×dj−1 and bj : ZN → Rdj as

wj
i,k(z

1
1,1, . . . , z

j
i−1,k, z, z

j
i+1,k, . . . , z

L
dL,dL−1+1) = αj

i,k(z)

7

Position: C*-Algebraic ML

bji (z
1
1,1, . . . , z

j
i−1,dj−1+1, z, z

j
i+1,dj−1+1, . . . , z

L
dL,dL−1+1)

= αj
i,k(z)

for any z11,1, . . . , z
j
i,k−1, z

j
i,k+1, . . . , z

L
dL,dL−1+1 ∈ Z

and z11,1, . . . , z
j
i−1,dj−1+1, z

j
i+1,dj−1+1, . . . , z

L
dL,dL−1+1, re-

spectively. Let σ̂ : Rdj → Rdj be an activation function for
standard scalar-valued networks. Set the activation function
σj : Adj → Adj as σj(x)(z) = σ̂j(x(z)) for any x ∈ Adj

and z ∈ Z . With the above W j , bj , and σj , we construct the
C∗-algebra net f . Then, we can show that we can represent
any real-valued neural network by the form of fz .

Let F be the class of the C∗-algebra nets defined above.
Assume for any x̂ ∈ Rd0 , f(x̂) is bounded on Z . Let P(Z)
be the set of probability measures on Z . As we mentioned
as Eq. (2), we integrate f ∈ F over Z with respect to a prob-
ability measure P ∈ P(Z) to get a scalar-valued function.
For P ∈ P(Z), let AP be the integral operator on F defined
as AP f(x̂) =

∫
Z fz(x̂)dP (z) for x̂ ∈ Rd0 . The averaged

C∗-algebra net AP f(x̂) is regarded as a continuation of
the (L + 1)-layer neural network

∑dL+1

i=1 pifzi(x̂), where
dL+1 ∈ N and pi is the weight parameter of the final layer.
Figure 4 schematically shows the averaged C∗-algebra net
AP f(x̂). We can see that the optimization problem of learn-
ing P is convex. See Appendix A for more details.

The cases 1) Fixing f ∈ F and optimizing P , and 2) opti-
mizing a real-valued network fz with respect to the weight
parameters are two extremes. By virtue of the C∗-algebra
net, we can define intermediate cases. Let K ∈ {0, . . . , N}
and let M1, . . . ,MK be disjoint subsets of I := {(j, i, k) |
j = 1, . . . , L, i = 1, . . . , dj , k = 1, . . . , dj−1} and let
Z = WK . If K = 0, then we set Z = W0 as a singleton,
and we also set M0 as an infinite set containing I . Note that
in the case where Z is a singleton, C(Z) is isomorphic to
C. For l = 1, . . . ,K, the variables zji,k for (j, i, k) ∈ Ml

are tied together and represented as a single variable. Let

wj
i,k(z1, . . . , zl−1, z, zl+1, . . . , zK) = αj

i,k(z)

for (j, i, k) ∈ Ml. If K = N , then we reconstruct the
case 1). If K = 0, then we have wj

i,k ∈ C, and αj
i,k is

necessarily a constant function. In addition, since Z is a
singleton, P(Z) = {1}. As a result, we reconstruct the case
2). As for the learning, if (j, k, i) ∈ Ml for some l with
|Ml| ≥ 2, then we learn αj

i,k. If (j, i, k) ∈ Ml for some l

with |Ml| = 1, then we fix αj
i,k. We also learn P .

5.2.3. INTERACTIONS AMONG MODELS

The product structure of the C∗-algebra gives the model
additional structures. A generalization of the C∗-algebra
net to noncommutative C∗-algebra is also proposed (Hataya
& Hashimoto, 2023). In the above framework of the C∗-
algebra network, we focus on the C∗-algebra of continuous

Figure 4. Overview of the averaged C∗-algebra net AP f(x). Here,
fz(x) = σ̂1(

∑3
i=1 α

1
i,1(z)xi). We can regard AP f(x) as a con-

tinuation of the 2-layer neural network
∑d2

i=1 pifzi(x).

functions, whose product structure is commutative. There-
fore, if we consider the original C∗-algebra net (1), not the
discretized one (3), then we have a separated neural net-
work fz for each z. The models do not interact without
designing additional regularization terms to the loss func-
tion. By regarding w ∈ C(Z) as the multiplication operator
Mw ∈ B(L2(Z)) defined as Mwv = w · v, we can regard
the C∗-algebra net over C(Z) as that over B(L2(Z)), where
L2(Z) is the space of square-integrable functions on Z . For
the case where Z is a finite set, C(Z) corresponds to the
space of squared diagonal matrices, and B(L2(Z)) corre-
sponds to the space of general squared matrices. Replacing
C(Z) with B(L2(Z)) and adding the nondiagonal part to
the weight parameter wj

i,k, we cannot separate each network
fz since the product structure becomes more complicated.
Hataya & Hashimoto (2023) also proposed C∗-algebra nets
over group C∗-algebras, which enable us to construct group
equivariant neural networks by virtue of the noncommuta-
tive product structure in the group C∗-algebra.

6. Future Directions
As we discussed in the previous sections, generalizing ma-
chine learning methods by means of C∗-algebra enables
us to go beyond the existing methods. However, there are
many challenges involved. We discuss some them.

6.1. Challenges

Implementation and computational cost When we im-
plement the methods with C∗-algebras, we have to represent
elements in the C∗-algebras so that they are suitable for the
computation. If the C∗-algebra is an infinite-dimensional
space, we have to somehow discretize elements in the C∗-
algebra. Hashimoto et al. (2021) use Fourier functions to
discretize the functions in a C∗-algebra. Using kernel ridge
regression to represent functions in a C∗-algebra is also
proposed (Hashimoto et al., 2022). However, the effect of
these methods on the entire algorithms has not been inves-

8

Position: C*-Algebraic ML

tigated, and representing elements in C∗-algebra properly
is an important future direction of research. Even if we
have an appropriate discretization method, the computa-
tional cost becomes expensive if the number of points for
the discretization is large. For example, for kernel methods,
if we represent elements in the C∗-algebra as d by d matri-
ces, then the size of the Gram matrix is nd by nd, where n is
the sample size. The cost for the computation involving the
Gram matrix is expensive if n and d are large. In addition,
for neural networks, if we represent weight parameters as
d by d matrices, then the number of learnable parameters
is d2 times as large as that for the standard neural network
with the same architecture. To alleviate the dependency on
d, appropriate representations of elements of C∗-algebras to
reduce computational costs should be investigated. In addi-
tion, although source codes are provided by the authors of
the papers, as far as we know, no software for C∗-algebraic
machine learning has been developed so far. The devel-
opment of software is crucial to familiarize the machine
learning community with the concept of C∗-algebra.

Lack of the inverse An element in a C∗-algebra does
not always have its inverse. This situation is different from
the standard complex- or real-valued case. This difference
makes it difficult for us to generalize algorithms and theo-
rems in Hilbert spaces straightforwardly. In fact, in Hilbert
C∗-modules, once we normalize a vector, we cannot recon-
struct the original vector exactly. However, we can obtain a
normalized vector reconstructing a vector that is sufficiently
close to the original vector (Hashimoto et al., 2023, Proposi-
tion 3.2). In addition, we only have an approximate version
of the representer theorem for RKHMs (Hashimoto et al.,
2023, Theorem 4.5). We sometimes have to give up con-
structing the exactly same algorithms and results as those in
Hilbert spaces and devote ourselves to investigate how we
can approximately obtain the algorithms and results.

Dealing with infinite-dimensional spaces Proving theo-
retical aspects of applying C∗-algebras to machine learning
is not always straightforward. For example, as we men-
tioned in Subsection 5.1.1, Riesz representation theorem is
not always true for Hilbert C∗-modules. In addition, for a
submodule of a Hilbert C∗-module, its orthogonal comple-
ment does not always exist (Manuilov & Troitsky, 2000).
Since these properties are fundamental for Hilbert spaces
and used in proving and guaranteeing the theoretical aspects
of machine learning methods, we have to be careful when
we try to analyze methods with C∗-algebras theoretically.

Designing kernels Further investigation for designing pos-
itive definite kernels using C∗-algebras would be interesting.
The kernel proposed by Hasimoto et al. (2023a), which we
discussed in Subsection 5.1, is based on the convolution and
is suitable for image data. Other kernels for other types of
data, such as graphs and functions, should be investigated.

Theory of C∗-algebra nets Investigating generalization
property and implicit regularization of the C∗-algebra net is
an interesting future work. For example, it would be inter-
esting to consider what types of C∗-algebra induce general-
ization or implicit regularization. In addition, understanding
the standard real-valued neural networks and developing
new methods regarding them through C∗-algebra net would
also be interesting. For example, constructing an optimiza-
tion method based on the observation in Subsection 5.2.2 to
obtain a better solution is future work.

C∗-algebraic quantum machine learning We can rep-
resent various notions in quantum machine learning using
C∗-algebra. For example, density matrices are represented
by matrices. Analyzing quantum states using RKHMs or
C∗-algebra nets is an interesting direction of research. In
addition, quantum gates are represented by unitary ma-
trices. Constructing or analyzing quantum circuits using
C∗-algebra nets is also an interesting direction of research.
C∗-algebras could also give rise to new machine learning
methods which can be implemented more efficiently using
a quantum computer.

6.2. Further examples of C∗-algebra for future work

Cuntz algebra Let W be a Hilbert space. Cuntz algebra
On is a C∗-algebra generated by the isometries on W , i.e.,
linear operators on W satisfying S∗

i Si = 1 (i = 1, . . . , n)
and

∑n
i=1 SiS

∗
i = 1, where 1 is the identity map on

W (Cuntz, 1977). We can represent variable-length data,
each of whose element is a discrete value. For example, we
can set S1, . . . , Sn as the dictionary of words and represent
sentence as the product of the words from S1, . . . , Sn. We
can also set S1, . . . , Sn as nodes and represent paths using
the product of the nodes from S1, . . . , Sn. Moreover, there
are existing studies for applying Cuntz algebras to represent
the filters in signal processing (Jorgensen, 2007).

Approximately finite dimensional C∗-algebra A C∗-
algebra is referred to as approximately finite (AF) dimen-
sional if it is the closure of an increasing union of finite
dimensional subalgebras (Davidson, 1996). We can use AF
C∗-algebras for representing data whose dimensions can
vary, such as the adjacent matrices of social network graphs.

7. Conclusion
We proposed C∗-algebraic machine learning and discussed
advantages and challenges of applying C∗-algebra to ma-
chine learning methods. We can represent structured data
and multiple models using C∗-algebras, and by incorporat-
ing them into algorithms, we can fully extract features of
data. C∗-algebra gives us a new twist on machine learning.
We hope that our analysis will lead to greater attention to
C∗-algebra in machine learning.

9

Position: C*-Algebraic ML

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements
Hachem Kadri is partially supported by grant ANR-19-
CE23-0011 from the French National Research Agency.
Masahiro Ikeda is partially supported by grant JPMJCR1913
from JST CREST.

References
Bengio, Y., Roux, N., Vincent, P., Delalleau, O., and Mar-

cotte, P. Convex neural networks. In Proceedings of
the 19th Conference on Neural Information Processing
Systems (NIPS), 2005.

Bohn, B., Griebel, M., and Rieger, C. A representer theorem
for deep kernel learning. Journal of Machine Learning
Research, 20(64):1–32, 2019.

Bonawitz, K., Kairouz, P., McMahan, B., and Ramage,
D. Federated learning and privacy: Building privacy-
preserving systems for machine learning and data science
on decentralized data. ACM Queue, 19(5):87–114, 2021.

Chizat, L. and Bach, F. On the global convergence of gradi-
ent descent for over-parameterized models using optimal
transport. In Proceedings of the 32nd Neural Information
Processing Systems (NeurIPS), 2018.

Cho, Y. and Saul, L. Kernel methods for deep learning. In
Proceedings of the 23rd Conference on Neural Informa-
tion Processing Systems (NIPS), 2009.

Cuntz, J. Simple C∗-algebras generated by isometrie. Com-
munications in Mathematical Physics, 57:173–185, 1977.

Daneshmand, H., Lee, J. D., and Jin, C. Efficient displace-
ment convex optimization with particle gradient descent.
In Proceedings of the 40th International Conference on
Machine Learning (ICML), 2023.

Davidson, K. R. C∗-Algebras by Example. American Math-
ematical Society, 1996.

Dinculeanu, N. Vector Measures. International Series of
Monographs in Pure and Applied Mathematics ; Volume
95. Pergamon Press, Oxford, England, 1967.

Dinculeanu, N. Vector Integration and Stochastic Integra-
tion in Banach Spaces. John Wiley & Sons, New York,
2000.

Dong, X., Yu, Z., Cao, W., Shi, Y., and Ma, Q. A survey on
ensemble learning. Frontiers of Computer Science, 14:
241–258, 2020.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), 2017.

Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., and
Suganthan, P. N. Ensemble deep learning: A review.
Engineering Applications of Artificial Intelligence, 115:
105151, 2022.

Gholami, B. and Hajisami, A. Kernel auto-encoder for semi-
supervised hashing. In Proceedings of 2016 IEEE Winter
Conference on Applications of Computer Vision (WACV),
2016.

Hanin, B. and Rolnick, D. Complexity of linear regions in
deep networks. In Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019.

Hashimoto, Y., Ishikawa, I., Ikeda, M., Komura, F., and
Kawahara, Y. Kernel mean embeddings of von Neumann-
algebra-valued measures. arXiv:2007.14698, 2020.

Hashimoto, Y., Ishikawa, I., Ikeda, M., Komura, F., Katsura,
T., and Kawahara, Y. Reproducing kernel Hilbert C∗-
module and kernel mean embeddings. Journal of Machine
Learning Research, 22(267):1–56, 2021.

Hashimoto, Y., Wang, Z., and Matsui, T. C∗-algebra net:
A new approach generalizing neural network parameters
to C∗-algebra. In Proceedings of the 39th International
Conference on Machine Learning (ICML), 2022.

Hashimoto, Y., Komura, F., and Ikeda, M. Hilbert C∗-
module for analyzing structured data. In Matrix and Oper-
ator Equations and Applications, pp. 633–659. Springer
Nature, 2023.

Hasimoto, Y., Ikeda, M., and Kadri, H. Learning in RKHM:
a C∗-algebraic twist for kernel machines. In Proceed-
ings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2023a.

Hasimoto, Y., Ikeda, M., and Kadri, H. Deep learning with
kernels through RKHM and the Perron-Frobenius oper-
ator. In Proceedings of the 37th Conference on Neural
Information Processing Systems (NeurIPS), 2023b.

Hataya, R. and Hashimoto, Y. Noncommutative C∗-algebra
net: Learning neural networks with powerful product
structure in C∗-algebra. arXiv: 2302.01191, 2023.

Heo, J. Reproducing kernel Hilbert C∗-modules and ker-
nels associated with cocycles. Journal of Mathematical
Physics, 49(10):103507, 2008.

10

Position: C*-Algebraic ML

Holevo, A. S. Probabilistic and Statistical Aspects of Quan-
tum Theory. Monographs (Scuola Normale Superiore) ;
1. Scuola Normale Superiore, Pisa, 2011.

Jorgensen, P. E. Analysis and Probability: Wavelets, Signals,
Fractals. Springer New York, 2007.

Kadri, H., Duflos, E., Preux, P., Canu, S., Rakotomamonjy,
A., and Audiffren, J. Operator-valued kernels for learn-
ing from functional response data. Journal of Machine
Learning Research, 17(20):1–54, 2016.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces with
applications to PDEs. Journal of Machine Learning Re-
search, 24(89), 2023.

Laforgue, P., Clémençon, S., and d’Alche Buc, F. Autoen-
coding any data through kernel autoencoders. In Proceed-
ings of the 22nd International Conference on Artificial
Intelligence and Statistics (AISTATS), 2019.

Lance, E. C. Hilbert C∗-modules – a Toolkit for Operator
Algebraists. London Mathematical Society Lecture Note
Series, vol. 210. Cambridge University Press, 1995.

Manuilov, V. and Troitsky, E. Hilbert C∗- and W ∗-modules
and their morphisms. Journal of Mathematical Sciences,
98:137–201, 2000.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
Arcas, B. A. y. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceed-
ings of the 20th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2017.

Muandet, K., Fukumizu, K., Sriperumbudur, B., and
Schölkopf, B. Kernel mean embedding of distributions: A
review and beyond. Foundations and Trends in Machine
Learning, 10(1–2), 2017.

Murphy, G. J. C*-Algebras and Hilbert Space Operators.
Academic Press, 1990.

Nitanda, A. and Suzuki, T. Stochastic particle gradient
descent for infinite ensembles. arXiv:1712.05438, 2017.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017.

Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. Latent
multi-task architecture learning. In Proceedings of the
33rd AAAI Conference on Artificial Intelligence, 2019.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu,
R., Osindero, S., and Hadsell, R. Meta-learning with
latent embedding optimization. In Proceedings of the 7th

International Conference on Learning Representations
(ICLR), 2019.

Saitoh, S. and Sawano, Y. Theory of reproducing kernels
and applications. Springer Singapore, 2016.

Schölkopf, B. and Smola, A. J. Learning with kernels:
Support vector machines, regularization, optimization,
and beyond. MIT Press, Cambridge, MA, USA, 2001.

Skeide, M. Generalised matrix C∗-algebras and representa-
tions of Hilbert modules. Mathematical Proceedings of
the Royal Irish Academy, 100A(1):11–38, 2000.

Sriperumbudur, B. K., Fukumizu, K., and Lanckriet, G. R. G.
Universality, characteristic kernels and RKHS embedding
of measures. Journal of Machine Learning Research, 12
(70):2389–2410, 2011.

Wang, J.-L., Chiou, J.-M., and Müller, H.-G. Functional data
analysis. Annual Review of Statistics and Its Application,
3:257–295, 2016.

Zhang, Z., Luo, P., Loy, C. C., and Tang, X. Facial landmark
detection by deep multi-task learning. In Proceedings
of the 13th European Conference on Computer Vision
(ECCV), 2014.

Zhu, B., Song, P., and Taylor, J. Stochastic functional data
analysis: a diffusion model-based approach. Biometrics,
67(4):1295–1304., 2011.

11

Position: C*-Algebraic ML

Appendix

A. Details of Subsection 5.2.2
We provide the details of Subsection 5.2.2. With W j , bj , and σj defined in Subsection 5.2.2, let

fj(x) = σj(W
jx+ bj) (j = 1, . . . , L). (4)

We consider the set of C∗-algebra nets defined as FZ = {fz | f = fL ◦ · · · ◦ f1 with fj in Eq. (4), z ∈ Z}. In addition, we
set the following function class of the standard real-valued networks:

F̂ = {f̂L ◦ · · · ◦ f̂1 | f̂j(x) = σ̂j(Ŵ
jx+ b̂j), Ŵ j ∈ Ωdj×dj−1 , b̂j ∈ Ωdj}.

Proposition A.1. We have FZ = F̂ as sets.

Proof. Let fz ∈ FZ for some z ∈ Z . Let ŵj
i,k = wj

i,k(z) and b̂ji = bji (z) for any j = 1, . . . , L, i = 1, . . . , dj , and
k = 1, . . . , dj−1. In addition, let σ̂j(x) = σj(x1A)(z) for x ∈ Rdj , where 1A is the constant map defined as 1A(z) = 1 for
any z ∈ Z . We construct f̂ = f̂L ◦ · · · ◦ f̂1 as f̂j(x) = σ̂j(Ŵ

jx+ b̂j) with Ŵ j , b̂j , and σ̂j defined above. Then, we have
fz = f̂ and fz ∈ F̂ . The converse is trivial by the definition of FZ .

Let F be the class of the functions f = fL ◦ · · · ◦ f1 defined as Eq. (4). Assume for any x̂ ∈ Rd0 , f(x̂) is bounded on Z .
Let P(Z) be the set of probability measures on Z . As we mentioned as Eq. (2), we integrate f ∈ F over Z with respect
to a probability measure P ∈ P(Z) to get a scalar-valued function. For P ∈ P(Z), let AP be the integral operator on F
defined as AP f(x̂) =

∫
Z fz(x̂)dP (z) for x̂ ∈ Rd0 . The following proposition shows the optimization problem of learning

P is convex.

Proposition A.2. Let L : RdL × RdL → R+ be a loss function that is continuous and where for any y ∈ RdL , the function
L(·, y) on RdL is convex. Fix f as a network defined as (4). Then, for any x̂ ∈ Rd0 and any y ∈ RdL , the map P(Z) → R+

defined as P 7→ L(AP f(x̂), y) is convex.

Proof. Since L(·, y) is convex, for P,Q ∈ P(Z) and t ∈ [0, 1], we have

L(AtP+(1−t)Qf(x), y) = L(tAP f(x) + (1− t)AQf(x), y)

≤ tL(AP f(x), y) + (1− t)L(AQf(x), y),

which completes the proof of the proposition.

Remark A.3. Let P = δz , where δz is the Dirac measure centered at z ∈ Z . Then, Aδzf = fz . Proposition A.1 implies
that learning z of fz for a C∗-algebra network f corresponds to learning the weights Ŵ j and biases b̂j of the scalar-valued
network f̂ . Note that the set {Aδz | z ∈ Z} is not convex. By expanding the search space to the set of probability measures,
the optimization problem becomes convex.

B. Proof of Proposition 5.2

Proposition 5.2 The C∗-algebra net fz(x) is a degree L polynomial with respect to v1(z), . . . , vm(z).

Proof. The kLth element of the output of fz(x) is written as

(fz(x))kL

= σL

(dL−1∑
kL−1=1

m∑
lL=1

cLlL,kL,kL−1
vlL(z)σL−1

(
· · ·σ2

(d1∑
k1=1

m∑
l2=1

c2l2,k2,k1
vl2(z)σ1

(d0∑
k0=1

c1l1,k1,k0
vl1(z)x̂k0

+ b̂1k1

)
+ b̂2k2

)
· · ·

)
+ b̂LkL

)
12

Position: C*-Algebraic ML

=

m∑
l1,...,lL=1

vlL(z) · · · vl1(z)σL

(dL−1∑
kL−1=1

cLlL,kL,kL−1
σL−1

(
· · ·σ1

(d0∑
k0=1

c1l1,k1,k0
x̂k0

)
· · ·

)

+

m∑
l2,...,lL=1

vlL(z) · · · vl2(z)σL

(dL−1∑
kL−1=1

cLlL,kL,kL−1
σL−1

(
· · ·σ2

(d1∑
k1=1

c2l2,k2,k1
σ1(b̂

1
k1
)

)
· · ·

)

+

m∑
lL=1

vlL(z)σL

(dL−1∑
kL−1=1

cLlL,kL,kL−1
σL−1(b̂

L−1
kL−1

)

)
+ σL(b̂

L
kL

),

which completes the proof of the proposition.

13

