
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEW-SHOT IN-CONTEXT PREFERENCE LEARNING US-
ING LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing reward functions is a core component of reinforcement learning but
can be challenging for truly complex behavior. Reinforcement Learning from
Human Feedback (RLHF) has been used to alleviate this challenge by replacing
a hand-coded reward function with a reward function learned from preferences.
However, it can be exceedingly inefficient to learn these rewards as they are of-
ten learned tabula rasa. We investigate whether Large Language Models (LLMs)
can reduce this query inefficiency by converting an iterative series of human pref-
erences into code representing the rewards. We propose In-Context Preference
Learning (ICPL), a method that uses the grounding of an LLM to accelerate learn-
ing reward functions from preferences. ICPL takes the environment context and
task description, synthesizes a set of reward functions, and then repeatedly updates
the reward functions using human feedback over videos of the resultant policies
over a small number of trials. Using synthetic preferences, we demonstrate that
ICPL is orders of magnitude more efficient than RLHF and is even competitive
with methods that use ground-truth reward functions instead of preferences. Fi-
nally, we perform a series of human preference-learning trials and observe that
ICPL extends beyond synthetic settings and can work effectively with humans-in-
the-loop.

1 INTRODUCTION

Reward functions are a critical component of reinforcement learning (RL). However, specifying
these functions becomes increasingly challenging as the complexity of the desired tasks grows.
Recent advancements in pretrained foundation models have inspired approaches that leverage large
language models to synthesize reward functions from task descriptions (Yu et al., 2023a; Ma et al.,
2024; Yu et al., 2023b). Despite these innovations, existing methods still depend on human-designed
sparse rewards or task-specific metrics to construct the reward functions. This is challenging for
tasks where we cannot define any clear reward signals as the task is primarily semantically defined.
For example, it is tricky to write down a reward function for a humanoid robot that corresponds to
"moving like a human".

Preference-based RL offers a potential solution to this problem. Instead of relying on a human to
write the reward function, we learn a reward model based on human preferences across different
trajectories. This interactive approach has shown success in various RL tasks, including standard
benchmarks (Christiano et al., 2017; Ibarz et al., 2018), encouraging novel behaviors (Liu et al.,
2020; Wu et al., 2021), and overcoming reward exploitation (Lee et al., 2021a). However, in more
complex tasks requiring extensive agent-environment interactions, preference-based RL often ne-
cessitates hundreds or even thousands of human queries to provide effective feedback. This is likely
because the reward models are typically learned tabula rasa. For instance, a robotic arm button-
pushing task requires over 10k queries to learn reasonable behavior (Lee et al.), which can be a
major bottleneck.

In this work, we introduce a novel method, In-Context Preference Learning (ICPL), which signifi-
cantly enhances the sample efficiency of preference-based RL through LLM guidance. Our primary
insight is to harness the coding capabilities of LLMs to autonomously generate reward functions,
then utilize human preferences through in-context learning to refine these functions. Specifically,
ICPL leverages an LLM, such as GPT-4, to generate executable, diverse reward functions based on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the task description and environment source code. We acquire preferences by evaluating the agent
behaviors resulting from these reward functions, selecting the most and least preferred behaviors.
The selected functions, along with historical data such as reward traces of the generated reward
functions from RL training, are then fed back into the LLM to guide subsequent iterations of reward
function generation. We hypothesize that as a result of its grounding in text data, ICPL will be able
to improve the quality of the reward function through incorporating the preferences and the history
of the generated reward functions, ensuring they align more and more closely with human prefer-
ences. Unlike evolutionary search methods like EUREKA Ma et al. (2023), there is no ground-truth
reward function that the LLM can use to evaluate agent performance, and thus, success here would
demonstrate that LLMs have some native preference-learning capabilities.

To study the effectiveness of ICPL, we perform experiments on a diverse set of RL tasks. For
scalability, we first study tasks with synthetic preferences where a ground-truth reward function is
used to assign preference labels. We observe that compared to traditional preference-based RL al-
gorithms, ICPL achieves over a 30 times reduction in the required number of preference queries to
achieve equivalent or superior performance. Moreover, ICPL achieves performance comparable to
reward-generation methods that utilize a ground truth sparse reward as feedback (Ma et al., 2023).
Finally, we test ICPL on a particularly challenging task, “making a humanoid jump like a real hu-
man,” where designing a reward is difficult. By using real human feedback, our method successfully
trained an agent capable of bending both legs and performing stable, human-like jumps, showcasing
the potential of ICPL in tasks where human intuition plays a critical role.

In summary, the contributions of the paper are the following:

• We propose ICPL, an LLM-based preference learning algorithm. Over a synthetic set of
preferences, we demonstrate that ICPL can iteratively output rewards that increasingly re-
flect preferences. Via a set of ablations, we demonstrate that this improvement is relatively
monotonic, suggesting that preference learning is occurring as opposed to a random search.

• We demonstrate, via human-in-the-loop trials, that ICPL is able to work effectively with
humans-in-the-loop despite significantly noisier preference labels.

• We demonstrate that ICPL sharply outperforms tabula-rasa RLHF methods and is also com-
petitive with methods that rely on access to a ground-truth reward.

2 RELATED WORK

Reward Design. In reinforcement learning, reward design is a core challenge, as most rewards both
represent a desired set of behaviors and provide enough signal for learning. The most common ap-
proach to reward design is handcrafting, which requires a large number of trials by experts (Sutton,
2018; Singh et al., 2009). Since hand-coded reward design requires extensive engineering effort,
several prior works have studied modeling the reward function with precollected data. For example,
Inverse Reinforcement Learning (IRL) aims to recover a reward function from expert demonstration
data (Arora & Doshi, 2021; Ng et al., 2000). With advances in pretrained foundation models, some
recent works have also studied using large language models or vision-language models to provide
reward signals (Ma et al., 2022; Fan et al., 2022; Du et al., 2023; Karamcheti et al., 2023; Kwon
et al., 2023; Wang et al., 2024; Ma et al., 2024; Holk et al., 2024). Among these approaches, EU-
REKA (Ma et al., 2023) is the closest to our work, instructing the LLM to generate and select novel
reward functions based on environment feedback with an evolutionary framework. However, EU-
REKA’s primary goal is to test whether LLMs can produce better reward functions than humans by
leveraging human-designed sparse rewards as fitness scores to evolve reward functions. In contrast,
ICPL is designed for tasks even without available sparse rewards and leverages LLM grounding
to accelerate learning reward functions directly from human preferences. We note that EUREKA
also has a small, preliminary investigation combining human preferences with an LLM to generate
human-preferred behaviors in a single scenario. Our approach relies solely on preferences, yield-
ing higher human-involvement efficiency. This paper is a significantly scaled-up version of that
investigation as well as a methodological study of how best to incorporate prior rounds of feedback.

Human-in-the-loop Reinforcement Learning. Feedback from humans has been proven to be ef-
fective in training reinforcement learning agents that better match human preferences (Retzlaff et al.,
2024; Mosqueira-Rey et al., 2023; Kwon et al., 2023). Previous works have investigated human

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

feedback in various forms, such as trajectory comparisons, preferences, demonstrations, and correc-
tions (Wirth et al., 2017; Ng et al., 2000; Jeon et al., 2020; Peng et al., 2024). Among these various
methods, preference-based RL has been successfully scaled to train large foundation models for hard
tasks like dialogue, e.g. ChatGPT (Ouyang et al., 2022). In LLM-based applications, prompting is
a simple way to provide human feedback in order to align LLMs with human preferences (Giray,
2023; White et al., 2023; Chen et al., 2023). Iteratively refining the prompts with feedback from
the environment or human users has shown promise in improving the output of the LLM (Wu et al.,
2021; Nasiriany et al., 2024). This work extends the usage of the ability to control LLM behavior
via in-context prompts. We aim to utilize interactive rounds of preference feedback between the
LLM and humans to guide the LLM to generate reward functions that can elicit behaviors that align
with human preferences.

3 PROBLEM DEFINITION

Our goal is to design a reward function that can be used to train reinforcement learning agents that
demonstrate human-preferred behaviors. It is usually hard to design proper reward functions in
reinforcement learning that induce policies that align well with human preferences.

Markov Decision Process with Preferences(Wirth et al. (2017)) A Markov Decision Process with
Preferences (MDPP) is defined as a tuple M = ⟨S, A, µ, σ, γ, ρ⟩ where S denotes the state space,
A denotes the action space, µ is the distribution of initial states, σ is the state transition model,
γ ∈ [0, 1) is the discount factor. ρ is the preference relation over trajectories, i.e. ρ(τi ≻ τj)
denotes the probability with which trajectory τi is preferred over τj . Given a set of preferences ζ,
the goal in an MDPP is to find a policy π∗ that maximally complies with ζ. A preference τ1 ≻ τ2 is
satisfied by π if and only if Prπ(τ1) > Prπ(τ2) where Prπ(τ) = µ(s0)

∏|τ |
t=0 π(at|st)σ(st+1|st, at).

This can be viewed as finding a π∗ that minimizes a preference loss L(πζ) =
∑
i L(π, ζi), where

L(π, τ1 ≻ τ2) = −(Prπ(τ1)− Prπ(τ2)).

Reward Design Problem with Preferences. A reward design problem with preferences (RDPP)
is a tuple P = ⟨M,R, AM , ζ⟩, where M is a Markov Decision Process with Preferences, R is the
space of reward functions, AM (·) : R → Π is a learning algorithm that outputs a policy π that
optimizes a reward R ∈ R in the MDPP. ζ = {(τ1, τ2)} is the set of preferences. In an RDPP,
the goal is to find a reward function R ∈ R such that the policy π = AM (R) that optimizes R
maximally complies with the preference set ζ. In Preference-based Reinforcement Learning, the
learning algorithms usually involve multiple iterations, and the preference set ζ is constructed in
every iteration by sampling trajectories from the policy or policy population.

4 METHOD

Our proposed method, In-Context Preference Learning (ICPL), integrates LLMs with human prefer-
ences to synthesize reward functions. The LLM receives environmental context and a task descrip-
tion to generate an initial set of K executable reward functions. ICPL then iteratively refines these
functions. In each iteration, the LLM-generated reward functions are trained within the environ-
ment, producing a set of agents; we use these agents to generate videos of their behavior. A ranking
is formed over the videos, from which we retrieve the best and worst reward functions correspond-
ing to the top and bottom videos in the ranking. These selections serve as examples of positive and
negative preferences. The preferences, along with additional contextual information, such as reward
traces and differences from previous good reward functions, are provided as feedback prompts to the
LLM. The LLM takes in this context and is asked to generate a new set of rewards. Algo. 1 presents
the pseudocode, and Fig. 1 illustrates the overall process of ICPL.

4.1 REWARD FUNCTION INITIALIZATION

To enable the LLM to synthesize effective reward functions, it is essential to provide task-specific
information, which consists of two key components: a description of the environment, including
the observation and action space, and a description of the task objectives. At each iteration, ICPL
ensures thatK executable reward functions are generated by resampling until there areK executable
reward functions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: ICPL employs the LLM to generate initial K executable reward functions based on the
task description and environment context. Using RL, agents are trained with these reward functions.
Videos are generated of the resultant agent behavior from which human evaluators select their most
and least preferred. These selections serve as examples of positive and negative preferences. The
preferences, along with additional contextual information, are provided as feedback prompts to the
LLM, which is then requested to synthesize a new set of reward functions. For experiments simu-
lating human evaluators, task scores are used to determine the best and worst reward functions.

Algorithm 1: In-Context Preference Learning (ICPL)
Input: Number of iterations N , Number of samples K, Environment Env, Coding LLM LLMRF
// Initialize the prompt with environment context and task description

1 Prompt← InitializePrompt(Env)
2 for i← 1 to N do
3 RF1, . . . , RFK ← LLMRF (Prompt,K)

// Render videos for each reward function
4 Video1, . . . , VideoK ← Render(Env, RF1), . . . , Render(Env, RFK)

// Human selects the most preferred (G) and least preferred (B) videos
5 G,B ← Human(Video1, . . . , VideoK)

// Retrieve the best and worst reward functions
6 GoodRF, BadRF← RFG, RFB

// Update the prompt with feedback
7 Prompt← GoodRF+ BadRF+ HistoricalDifference+ RewardTrace
8 end

4.2 SEARCH REWARD FUNCTIONS BY HUMAN PREFERENCES

For tasks without reward functions, the traditional preference-based approach typically involves
constructing a reward model, which often demands substantial human feedback. Our approach,
ICPL, aims to enhance efficiency by leveraging LLMs to directly search for optimal reward functions
without the need to learn a reward model. To expedite this search process, we use an LLM-guided
search to find well-performing reward functions. Specifically, we generateK = 6 executable reward
functions per iteration across N = 5 iterations. In each iteration, humans select the most preferred
and least preferred videos, resulting in a good reward function and a bad one. These are used as a
context for the LLM to use to synthesize a new set of K reward functions. These reward functions
are then used in a PPO (Schulman et al., 2017) training loop, and videos are rendered of the final
trained agents.

4.3 AUTOMATIC FEEDBACK

In each iteration, the LLM not only incorporates human preferences but also receives automatically
synthesized feedback. This feedback is composed of three elements: the evaluation of selected
reward functions, the differences between historical good reward functions, and the reward trace of
these historical reward functions.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Evaluation of reward functions: The component values that make up the good and bad reward
functions are obtained from the environment during training and provided to the LLM. This helps
the LLM assess the usefulness of different parts of the reward function by comparing the two.

Differences between historical reward functions: The best reward functions selected by humans
from each iteration are taken out, and for any two consecutive good reward functions, their differ-
ences are analyzed by another LLM. These differences are supplied to the primary LLM to assist in
adjusting the reward function.

Reward trace of historical reward functions: The reward trace, consisting of the values of the
good reward functions during training from all prior iterations, is provided to the LLM. This reward
trace enables the LLM to evaluate how well the agent is actually able to optimize those reward
components.

5 EXPERIMENTS

In this section, we conducted two sets of experiments to evaluate the effectiveness of our method:
one using proxy human preferences and the other using real human preferences.

1) Proxy Human Preference: In this experiment, human-designed rewards, taken from EU-
REKA (Ma et al., 2023), were used as proxies of human preferences. Specifically, if ground truth
reward R1 > R2, sample 1 is preferred over sample 2. This method enables rapid and quantitative
evaluation of our approach. It corresponds to a noise-free case that is likely easier than human trials;
if ICPL performed poorly here it would be unlikely to work in human trials. Importantly, human-
designed rewards were only used to automate the selection of samples and were not included in
the prompts sent to the LLM; the LLM never observes the functional form of the ground truth
rewards nor does it ever receive any values from them. Since proxy human preferences are free
from noise, they offer a reliable comparison to evaluate our approach efficiently. However, as dis-
cussed later in the limitations section, these proxies may not correctly measure challenges in human
feedback such as inability to rank samples, intransitive preferences, or other biases.

2) Human-in-the-loop Preference: To further validate our method, we conducted a second set of
experiments with human participants. These participants repeated the tasks from the Proxy Hu-
man Preferences and engaged in an additional task that lacked a clear reward function: “Making a
humanoid jump like a real human.”

5.1 TESTBED

All experiments were conducted on tasks from the Eureka benchmark (Ma et al., 2023) based on
IsaacGym, covering a diverse range of environments: Cartpole, BallBalance, Quadcopter, Anymal,
Humanoid, Ant, FrankaCabinet, ShadowHand, and AllegroHand. We adhered strictly to the orig-
inal task configurations, including observation space, action space, and reward computation. This
ensures that our method’s performance was evaluated under consistent and well-established condi-
tions across a variety of domains.

5.2 BASELINES

We consider three preference-based RL methods as baselines, which update reward models during
training. B-Pref (Lee et al.), a benchmark specifically designed for preference-based reinforcement
learning, provides two of our baseline algorithms: PrefPPO and PEBBLE. PrefPPO is based on
the on-policy RL algorithm PPO, while PEBBLE builds upon the off-policy RL algorithm SAC.
Additionally, we include SURF (Park et al., 2022), which enhances PEBBLE by utilizing unlabeled
samples with data augmentation to improve feedback efficiency. For each task, we use the default
hyperparameters of PPO and SAC provided by IsaacGym, which were fine-tuned for high perfor-
mance. This ensures a fair comparison across methods. Further details can be found in Appendix
A.3.

5.3 EXPERIMENT SETUP

Training Details. We trained policies and rendered videos on a single A100 GPU machine. The
total time for a full experiment was less than one day of wall clock time. We utilized GPT-4,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: The final task score of all methods across different tasks in IssacGym. The top result and
those within one standard deviation are highlighted in bold. Standard deviations are provided in
Table 6 of Appendix A.5.1 due to space limitations.

Cart. Ball. Quad. Anymal Ant Human. Franka Shadow Allegro

PrefPPO-49 499 499 -1.066 -1.861 0.743 0.457 0.0044 0.0746 0.0125
PEBBLE-49 499 499 -1.190 -1.521 5.9891 0.903 0.0453 0.2142 0.1467

SURF-49 499 499 -1.208 -1.35 0.815 1.675 0.0039 0.1500 0.1116
PrefPPO-15k 499 499 -0.250 -1.357 4.626 1.317 0.0399 0.0468 0.0157
PEBBLE-15k 499 499 -0.231 -0.730 8.543 4.074 0.6089 0.2438 0.2401

SURF-15k 499 499 -0.266 -0.346 7.859 3.292 0.3434 0.2145 0.2352
ICPL(Ours) 499 499 -0.0195 -0.007 12.04 9.227 0.9999 13.231 25.030

Eureka 499 499 -0.023 -0.003 10.86 9.059 0.9999 11.532 25.250

specifically the GPT-4-0613, as the backbone LLM in the Proxy Human Preference experiment. For
the Human-in-the-loop Preference experiment, we employ GPT-4o.

Evaluation Metric. Here, we provide a specific explanation of how sparse rewards (detailed in
Appendix A.4) are used as task metrics in the adopted IsaacGym tasks. The task metric is the
average of the sparse rewards across parallel environments. To assess the generated reward function
or the learned reward model for each RL run, we take the maximum task metric value sampled
at fixed intervals, marked as task score of reward function/model (RTS). In each iteration, ICPL
generates 6 RL runs and selects the highest RTS as the result for that iteration. ICPL performs
5 iterations and then selects the highest RTS from these iterations as the task score (TS) for each
experiment. Due to the inherent randomness of LLMs, we run 5 experiments for all methods, and
report the highest TS as the final task score (FTS) for each approach. A higher FTS indicates better
performance across all tasks.

5.4 RESULTS OF PROXY HUMAN PREFERENCE

5.4.1 MAIN RESULTS

In ICPL, we use human-designed sparse rewards as proxies to simulate ideal human preferences.
Specifically, in each iteration, we select the reward function with the highest RTS as the good ex-
ample and the reward function with the lowest RTS as the bad example for feedback. All baseline
methods leverage dense rewards to simulate proxy human preference, offering a stronger and more
informative signal for labeling preferences. If the cumulative dense reward of trajectory 1 is greater
than that of trajectory 2, then trajectory 1 is preferred over trajectory 2. We also tried sparse rewards
as proxy human preference in baseline methods and observed similar performance. Table 1 shows
the final task score (FTS) for all methods across IsaacGym tasks.

For ICPL and baselines, we track the number of synthetic queries Q required as a proxy for measur-
ing the likely real human effort involved, which is crucial for methods that rely on human-in-the-loop
preference feedback. Specifically, we define a single query as a human comparing two trajectories
and providing a preference. In ICPL, each iteration generates K reward function samples, resulting
in K corresponding videos. The human compares these videos, first selecting the best one, then
picking the worst from the remaining K − 1 videos. After N = 5 iterations, the best video of each
iteration is compared to select the overall best. The number of human queries Q can be calculated
as Q = (K − 1)× 2N − 1. For ICPL, with K = 6 and N = 5, this results in Q = 49. In baselines,
the simulated human teacher compares two sampled trajectories and provides a preference label to
update the reward model. We set the maximum number of queries to Q = 49, matching ICPL, and
also test Q = 15k, denoted as Baseline-#Q in Table 1, to compare the final task score (FTS) across
different tasks. Additional results with Q = 150, 1.5k can be found in Table 6 of Appendix A.5.1.

As shown in Table 1, for the simpler tasks like Cartpole and BallBalance, all methods achieve equal
performance. Notably, we observe that for these particularly simple tasks, ICPL can generate correct
reward functions in a zero-shot manner, without requiring feedback. As a result, ICPL only requires
querying the human 5 times, while baseline methods, after 5 queries, fail to train a reasonable reward
model with the preference-labeled data. For relatively more challenging tasks, Baseline-49 performs
significantly worse than ICPL when using the same number of human queries. In fact, Baseline-49
fails in most tasks. As the number of human queries increases, baselines’ performance improves

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Ablation studies on ICPL modules. The runs have fairly high variance so we highlight the
top two results in bold. The full table with std. deviations included can be found in Appendix A.5.1.
We observe that ICPL with all of the components is consistently the best performing, suggesting
that most of the components are useful.

Cart. Ball. Quad. Anymal Ant Human. Franka Shadow Allegro

ICPL w/o RT 499 499 -0.0340 -0.387 10.50 8.337 0.9999 10.769 25.641
ICPL w/o RTD 499 499 -0.0216 -0.009 10.53 9.419 1.0000 11.633 23.744

ICPL w/o RTDB 499 499 -0.0136 -0.014 11.97 8.214 0.5129 13.663 25.386
OpenLoop 499 499 -0.0410 -0.016 9.350 8.306 0.9999 9.476 23.876
ICPL(Ours) 499 499 -0.0195 -0.007 12.04 9.227 0.9999 13.231 25.030

across most tasks, but it still falls noticeably short compared to ICPL. This demonstrates that ICPL,
with the integration of LLMs, can reduce human effort in preference-based learning by at least 30
times.

Figure 2: Distribution of which
iteration is selected as the top-
scoring iteration. While it is not
perfectly monotonic, we observe
that the final iteration is generally
the best one, suggesting that the
inferred reward is gradually ap-
proaching the ground-truth reward.

Performance Analysis with Eureka We further report Eu-
reka’s performance (Ma et al., 2023) as an approximate up-
per bound on the expected performance ICPL could achieve.
Eureka is an LLM-powered reward design method that uses
sparse rewards as fitness scores. Specifically, the reward func-
tion with the highest RTS is selected as the candidate reward
function for feedback in each iteration and RTS is incorpo-
rated as the “task score” in the reward reflection. Original Eu-
reka generates 16 reward functions in each iteration without
checking their executability, assuming at least one will typi-
cally work across all considered environments in the first it-
eration. To ensure a fair comparison, we modified Eureka
to generate a fixed number of executable reward functions,
specifically K = 6 per iteration, the same as ICPL. This ad-
justment improves Eureka’s performance in more challenging
tasks, where it often generates fewer executable reward func-
tions. As shown in Table 1, ICPL surprisingly achieves com-
parable performance, indicating that ICPL’s use of LLMs for
preference learning is effective.

From the analysis conducted across 7 tasks where zero-shot generation of optimal reward functions
was not feasible in the first iteration, we examined which iteration’s RTS was chosen as the final
FTS. The distribution of RTS selections over iterations is illustrated in Fig. 2. The results indicate
that FTS selections do not always come from the last iteration; some are also derived from earlier
iterations. However, the majority of FTS selections originate from iterations 4 and 5, suggesting
that ICPL is progressively refining and enhancing the reward functions over successive iterations as
opposed to randomly generating diverse reward functions.

5.5 METHOD ANALYSIS

To validate the effectiveness of ICPL’s module design, we conducted ablation studies. We aim to
answer several questions that could undermine the results presented here:

1. Are components such as the reward trace or the reward difference helpful?
2. Is the LLM actually performing preference learning? Or is it simply zero-shot outputting

the correct reward function due to the task being in the training data?

5.5.1 ABLATIONS

The results of the ablations are shown in Table 2. In these studies, “ICPL w/o RT” refers to removing
the reward trace from the prompts sent to the LLMs. “ICPL w/o RTD” indicates the removal of both
the reward trace and the differences between historical reward functions from the prompts. “ICPL
w/o RTDB” removes the reward trace, differences between historical reward functions, and bad
reward functions, leaving only the good reward functions and their evaluation in the prompts. The
“OpenLoop” configuration samples K ×N reward functions without any feedback, corresponding
to the ability of the LLM to zero-shot accomplish the task.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Due to the large variance of the experiments (see Appendix), we mark the top two results in bold.
As shown, ICPL achieves top 2 results in 8 out of 9 tasks and is comparable on the Allegro task. The
“OpenLoop” configuration performs the worst, indicating that our method does not solely rely on
GPT-4’s either having randomly produced the right reward function or having memorized the reward
function during its training. This improvement is further demonstrated in Sec. 5.5.2, where we show
the step-by-step improvements of ICPL through proxy human preference feedback. Additionally,
“ICPL w/o RT” underperforms on multiple tasks, highlighting the importance of incorporating the
reward trace of historical reward functions into the prompts.

5.5.2 IMPROVEMENT ANALYSIS

Figure 3: Average improvement of
the Reward Task Score (RTS) over
successive iterations relative to the
first iteration in ICPL for the Ant
and ShadowHand tasks, demon-
strating the method’s effectiveness
in refining reward functions over
time.

Table 1 presents the performance achieved by ICPL. While it
is possible that the LLMs could generate an optimal reward
function in a zero-shot manner, the primary focus of our anal-
ysis is not solely on absolute performance values. Rather, we
emphasize whether ICPL is capable of enhancing performance
through the iterative incorporation of preferences. We calcu-
lated the average RTS improvement over iterations relative to
the first iteration for the two tasks with the largest improve-
ments compared with “OpenLoop”, Ant and ShadowHand. As
shown in Fig. 3, the RTS exhibits an upward trend, demon-
strating its effectiveness in improving reward functions over
time. We note that this trend is roughly monotonic, indicating
that on average the LLM is using the preferences to construct
reward functions that are closer to the ground-truth reward. We
further use an example in the Humanoid task to demonstrate
how ICPL progressively generated improved reward functions
over successive iterations in Appendix A.5.2.

5.6 RESULTS OF HUMAN-IN-THE-LOOP PREFERENCE

To address the limitations of proxy human preferences, which simulate idealized human preference
and may not fully capture the challenges humans may face in providing preferences, we conducted
experiments with real human participants. We recruited 7 volunteers for human-in-the-loop ex-
periments, with 5 assigned to IsaacGym tasks and 2 to a newly designed task. Additionally, 20
volunteers were recruited to evaluate the performance of different methods. None of the volunteers
had prior experience with these tasks, ensuring an unbiased evaluation based on their preferences.

5.6.1 HUMAN EXPERIMENT SETUP

Before the experiment, each volunteer was provided with a detailed explanation of the experiment’s
purpose and process. Additionally, volunteers were fully informed of their rights, and written con-
sent was obtained from each participant. The experimental procedure was approved by the de-
partment’s ethics committee to ensure compliance with institutional guidelines on human subject
research.

In ICPL experiments, each volunteer was assigned an account with a pre-configured environment
to ensure smooth operation. After starting the experiment, LLMs generated the first iteration of
reward functions. Once the reinforcement learning training was completed, videos corresponding to
the policies derived from each reward function were automatically rendered. Volunteers compared
the behaviors in the videos with the task descriptions and selected both the best and the worst-
performing videos. They then entered the respective identifiers of these videos into the interactive
interface and pressed “Enter” to proceed. The human preference was processed as an LLM prompt
for generating feedback, leading to the next iteration of reward function generation.

This training-rendering-selection process was repeated across several iterations. At the end of the
final iteration, the volunteers were asked to select the best video from those previously marked as
good, designating it as the final result of the experiment. For IsaacGym tasks, the corresponding RTS
was recorded as TS. It is important to note that, unlike proxy human preference experiments where
the TS is the maximum RTS across iterations, in the human-in-the-loop preference experiment, TS
refers to the highest RTS chosen by the human, as human selections are not always based on the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: The final task score of human-in-the-loop preference across 5 IsaacGym tasks. The values
in parentheses represent the standard deviation.

Quadcopter Ant Humanoid Shadow Allegro

OpenLoop -0.0410(0.32) 9.350(2.35) 8.306(1.63) 9.476(2.44) 23.876(7.91)
ICPL-proxy -0.0195(0.09) 12.040(1.69) 9.227(0.93) 13.231(1.88) 25.030(3.72)
ICPL-real -0.0183(0.29) 11.142(0.37) 8.392(0.53) 10.74(0.92) 24.134 (6.52)

maximum RTS at each iteration. Given that ICPL required reinforcement learning training in every
iteration, each experiment lasted two to three days. Each volunteer was assigned a specific task
and conducted five experiments, one for each task, with the highest TS being recorded as FTS in
IsaacGym tasks.

5.6.2 ISAACGYM TASKS

Due to the simplicity of the Cartpole, BallBalance, Franka tasks, where LLMs were able to zero-
shot generate correct reward functions without any feedback, these tasks were excluded from the
human trials. The Anymal task, which involved commanding a robotic dog to follow random com-
mands, was also excluded as it was difficult for humans to evaluate whether the commands were
followed based solely on the videos. For the 5 adopted tasks, we describe in the Appendix A.6.2
how humans infer tasks through videos and the potential reasons that may lead to preference rank-
ings that do not accurately reflect the task.

Table 3 presents the FTS for the human-in-the-loop preference experiments conducted across 5 suit-
able IsaacGym tasks, labeled as “ICPL-real”. The results of the proxy human preference experiment
are labeled as “ICPL-proxy”. As observed, the performance of “ICPL-real” is comparable or slightly
lower than that of “ICPL-proxy” in all 5 tasks, yet it still outperforms the “OpenLoop” results in 3
out of 5 tasks. This indicates that while humans may have difficulty providing consistent prefer-
ences from videos as proxies, their feedback can still be effective in improving performance when
combined with LLMs.

5.6.3 HUMANOIDJUMP TASK

Figure 4: A common behavior.

In our study, we introduced a new task: HumanoidJump, with
the task description being “to make humanoid jump like a real
human.” Defining a precise task metric for this objective is
challenging, as the criteria for human-like jumping are not eas-
ily quantifiable. The task-specific prompts used in this experi-
ment are detailed in the Appendix A.6.3.

The most common behavior observed in this task, as illustrated in Fig. 4, is what we refer to as the
“leg-lift jump.” This behavior involves initially lifting one leg to raise the center of mass, followed
by the opposite leg pushing off the ground to achieve lift. The previously lifted leg is then lowered
to extend airtime. Various adjustments of the center of mass with the lifted leg were also noted.
This behavior meets the minimal metric of a jump: achieving a certain distance off the ground. If
feedback were provided based solely on this minimal metric, the “leg-lift jump” would likely be
selected as a candidate reward function. However, such candidates show limited improvement in
subsequent iterations, failing to evolve into more human-like jumping behaviors.

Conversely, when real human preferences were used to guide the task, the results were notably
different. The volunteer judged the overall quality of the humanoid’s jump behavior instead of just
the metric of leaving the ground. Fig. 5 illustrates an example where the volunteer successfully
guided the humanoid towards a more human-like jump by selecting behaviors that, while initially
not optimal, displayed promising movement patterns. The reward functions are shown in Appendix
A.6.3. In the first iteration, “leg-lift jump” was not selected despite the humanoid jumping off the
ground. Instead, a video where the humanoid appears to attempt a jump using both legs, without
leaving the ground, was chosen. By the fifth and sixth iterations, the humanoid demonstrated more
sophisticated behaviors, such as bending both legs and lowering the upper body to shift the center
of mass, behaviors that are much more akin to a real human jump.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: The humanoid learns a human-like jump by bending both legs and lowering the upper
body to shift the center of mass in a trial of human-in-the-loop experiments. Note that both legs are
used to jump and the agent bends at the hips.

Method Vote
OpenLoop 3/20

ICPL 17/20

Table 4: Human Preferences

Quantitative Evaluation. We conducted additional experiments
using the “OpenLoop” configuration, which generates K × N re-
ward functions without any feedback, on the HumanoidJump task.
In this configuration, we performed 5 independent experiments,
each comprising 6 iterations with 6 samples per iteration. A vol-
unteer selected the most preferred video as the final result. For
quantitative evaluation, 20 additional volunteers were recruited to compare the performance of ICPL
and OpenLoop. Each volunteer indicated their preference between two videos presented in random
order—one generated by ICPL and the other by OpenLoop. The results showed that 17 out of 20
participants preferred the ICPL agent, demonstrating that ICPL produces behaviors more aligned
with human preferences.

6 CONCLUSION

Our proposed method, In-Context Preference Learning (ICPL), demonstrates significant potential
for addressing the challenges of preference learning tasks through the integration of large language
models. By leveraging the generative capabilities of LLMs to autonomously produce reward func-
tions, and iteratively refining them using human feedback, ICPL reduces the complexity and human
effort typically associated with preference-based RL. Our experimental results, both in proxy human
and human-in-the-loop settings, show that ICPL not only surpasses traditional RLHF in efficiency
but also competes effectively with methods utilizing ground-truth rewards instead of preferences.
Furthermore, the success of ICPL in complex, subjective tasks like humanoid jumping highlights its
versatility in capturing nuanced human intentions, opening new possibilities for future applications
in complex real-world scenarios where traditional reward functions are difficult to define.

Limitations. While ICPL demonstrates significant potential, it faces limitations in tasks where hu-
man evaluators struggle to assess performance from video alone, such as Anymal’s "follow random
commands." In such cases, subjective human preferences may not provide adequate guidance. Fu-
ture work will explore integrating human preferences with artificially designed metrics to enhance
the ease with which humans can assess the videos, ensuring more reliable performance in complex
tasks. Additionally, we observe that the performance of the task is qualitatively dependent on the di-
versity of the initial reward functions that seed the search. While we do not study methods to achieve
this here, relying on the LLM to provide this initial diversity is a current limitation. Furthermore,
the limited number of participants in human-in-the-loop experiments may restrict the generalizabil-
ity of our findings, as it might not fully capture the broad range of human preferences. Another
limitation of ICPL is that each iteration involves training new RL policies, resulting in a waiting
period of several hours for participants before they can provide additional feedback. This could
be addressed by continuously training an RL agent under non-stationary reward functions, which
presents a promising direction for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artificial Intelligence, 297:103500, 2021.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené, and Shengxin Zhu. Unleashing the poten-
tial of prompt engineering in large language models: a comprehensive review. arXiv preprint
arXiv:2310.14735, 2023.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors. arXiv preprint
arXiv:2303.07280, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

Louie Giray. Prompt engineering with chatgpt: a guide for academic writers. Annals of biomedical
engineering, 51(12):2629–2633, 2023.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https://
arxiv.org/abs/1801.01290.

Simon Holk, Daniel Marta, and Iolanda Leite. Predilect: Preferences delineated with zero-shot
language-based reasoning in reinforcement learning. In 2024 19th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI), pp. 259–268, 2024.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying
formalism for reward learning. Advances in Neural Information Processing Systems, 33:4415–
4426, 2020.

Siddharth Karamcheti, Suraj Nair, Annie S Chen, Thomas Kollar, Chelsea Finn, Dorsa Sadigh,
and Percy Liang. Language-driven representation learning for robotics. arXiv preprint
arXiv:2302.12766, 2023.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based
reinforcement learning. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1).

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021a.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training, 2021b. URL https://arxiv.
org/abs/2106.05091.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based
reinforcement learning. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1), 2021c. URL https://openreview.net/forum?id=
ps95-mkHF_.

11

https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2106.05091
https://arxiv.org/abs/2106.05091
https://openreview.net/forum?id=ps95-mkHF_
https://openreview.net/forum?id=ps95-mkHF_

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fei Liu et al. Learning to summarize from human feedback. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 2020.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. arXiv preprint arXiv:2310.12931, 2023.

Yecheng Jason Ma, William Liang, Hung-Ju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert Bas-
tani, and Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer. arXiv
preprint arXiv:2406.01967, 2024.

Eduardo Mosqueira-Rey, Elena Hernández-Pereira, David Alonso-Ríos, José Bobes-Bascarán, and
Ángel Fernández-Leal. Human-in-the-loop machine learning: a state of the art. Artificial Intelli-
gence Review, 56(4):3005–3054, 2023.

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie, Danny
Driess, Ayzaan Wahid, Zhuo Xu, et al. Pivot: Iterative visual prompting elicits actionable knowl-
edge for vlms. arXiv preprint arXiv:2402.07872, 2024.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. SURF:
Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
reinforcement learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=TfhfZLQ2EJO.

Zhenghao Mark Peng, Wenjie Mo, Chenda Duan, Quanyi Li, and Bolei Zhou. Learning from active
human involvement through proxy value propagation. Advances in neural information processing
systems, 36, 2024.

Carl Orge Retzlaff, Srijita Das, Christabel Wayllace, Payam Mousavi, Mohammad Afshari, Tianpei
Yang, Anna Saranti, Alessa Angerschmid, Matthew E Taylor, and Andreas Holzinger. Human-in-
the-loop reinforcement learning: A survey and position on requirements, challenges, and oppor-
tunities. Journal of Artificial Intelligence Research, 79:359–415, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from. In Proceed-
ings of the annual conference of the cognitive science society, pp. 2601–2606. Cognitive Science
Society, 2009.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erick-
son. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. arXiv
preprint arXiv:2402.03681, 2024.

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf El-
nashar, Jesse Spencer-Smith, and Douglas C Schmidt. A prompt pattern catalog to enhance
prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382, 2023.

12

https://openreview.net/forum?id=TfhfZLQ2EJO
https://arxiv.org/abs/1707.06347

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fürnkranz. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, and Paul Chris-
tiano. Recursively summarizing books with human feedback. arXiv preprint arXiv:2109.10862,
2021.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Are-
nas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to
rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023a.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter,
Ted Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval
Tassa, and Fei Xia. Language to rewards for robotic skill synthesis. In Jie Tan, Marc Toussaint,
and Kourosh Darvish (eds.), Conference on Robot Learning, CoRL 2023, 6-9 November 2023,
Atlanta, GA, USA, volume 229 of Proceedings of Machine Learning Research, pp. 374–404.
PMLR, 2023b. URL https://proceedings.mlr.press/v229/yu23a.html.

13

https://proceedings.mlr.press/v229/yu23a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

We would suggest visiting https://sites.google.com/view/few-shot-icpl/home for more in-
formation and videos.

A.1 FULL PROMPTS

The prompts used in ICPL for synthesizing reward functions are presented in Prompts 1, 2, and 3.
The prompt for generating the differences between various reward functions is shown in Prompt 4.

Prompt 1: Initial System Prompts of Synthesizing Reward Functions
You are a reward engineer trying to write reward functions to solve reinforcement learning

tasks as effective as possible.
Your goal is to write a reward function for the environment that will help the agent learn the

task described in text.
Your reward function should use useful variables from the environment as inputs. As an example

, the reward function signature can be:
@torch.jit.script
def compute_reward(object_pos: torch.Tensor , goal_pos: torch.Tensor) -> Tuple[torch.Tensor ,

Dict[str , torch.Tensor]]:
...
return reward , {}

Since the reward function will be decorated with @torch.jit.script , please make sure that the
code is compatible with TorchScript (e.g., use torch tensor instead of numpy array).

Make sure any new tensor or variable you introduce is on the same device as the input tensors.

Prompt 2: Feedback Prompts
The reward function has been iterated {current_iteration} rounds.
In each iteration , a good reward function and a bad reward function are generated.
The good reward function generated in the x-th iteration is denoted as "iterx -good", and the

bad reward function generated is denoted as "iterx -bad".
The following outlines the differences between these reward functions.

We trained an RL policy using iter1 -good reward function code and tracked the values of the
individual components in the reward function after every {epoch_freq} epochs and the
maximum , mean , minimum values encountered:

<REWARD FEEDBACK >

The difference between iter2 -good and iter1 -good is: <DIFFERENCE >

<REPEAT UNTIL THE CURRENT ITERATION >

Next , the two reward functions generated in the {current_iteration_ordinal} iteration are
provided.

The 1st generated reward function is as follows:
<REWARD FUNCTION >
We trained an RL policy using the 1st reward function code and tracked the values of the

individual components in the reward function after every {epoch_freq} epochs and the
maximum , mean , minimum values encountered:

<REWARD FEEDBACK >

The 2nd generated reward function is as follows:
<REWARD FUNCTION >
We trained an RL policy using the 2nd reward function code and tracked the values of the

individual components in the reward function after every {epoch_freq} epochs and the
maximum , mean , minimum values encountered:

<REWARD FEEDBACK >

The following content is the most important information.
Good example: 1st reward function. Bad example: 2nd reward function.
You need to modify based on the good example. DO NOT based on the code of the bad example.
Please carefully analyze the policy feedback and provide a new , improved reward function that

can better solve the task. Some helpful tips for analyzing the policy feedback:
(1) If the values for a certain reward component are near identical throughout , then this
means RL is not able to optimize this component as it is written. You may consider

(a) Changing its scale or the value of its temperature parameter
(b) Re-writing the reward component
(c) Discarding the reward component

(2) If some reward components ’ magnitude is significantly larger , then you must re-scale
its value to a proper range

Please analyze each existing reward component in the suggested manner above first , and then
write the reward function code.

14

https://sites.google.com/view/few-shot-icpl/home

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Prompt 3: Prompts of Tips for Writing Reward Functions
The output of the reward function should consist of two items:

(1) the total reward ,
(2) a dictionary of each individual reward component.

The code output should be formatted as a python code string: "‘‘‘python ... ‘‘‘".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components
(2) If you choose to transform a reward component , then you must also introduce a
temperature parameter inside the transformation function; this parameter must be a named
variable in the reward function and it must not be an input variable. Each transformed
reward component should have its own temperature variable
(3) Make sure the type of each input variable is correctly specified; a float input
variable should not be specified as torch.Tensor
(4) Most importantly , the reward code ’s input variables must contain only attributes of
the provided environment class definition (namely , variables that have prefix self.).
Under no circumstance can you introduce new input variables.

Prompt 4: Prompts of Describing Differences
You are an engineer skilled at comparing the differences between two reward function code

snippets used in reinforcement learning.
Your goal is to describe the differences between two reward function code snippets.
The following are two reward functions written in Python code used for the task:
<TASK_DESCRIPTION >
The first reward function is as follows:
<REWARD_FUNCTION >
The second reward function is as follows:
<REWARD_FUNCTION >
Please directly describe the differences between these two codes. No additional descriptions

other than the differences are required.

A.2 ICPL DETAILS

The full pseudocode of ICPL is listed in Algo. 2.

A.3 BASELINE DETAILS

A.3.1 PREFPPO

The baseline PrefPPO adopted in our experiments comprises two primary components: agent learn-
ing and reward learning, as outlined in Lee et al. (2021c). Algo. 3 illustrates the pseudocode for
PrefPPO. Throughout this process, the method maintains a policy denoted as πφ and a reward model
represented by r̂ψ .

Agent Learning. In the agent learning phase, the agent interacts with the environment and col-
lects experiences. The policy is subsequently trained using reinforcement learning, to maximize
the cumulative rewards provided by the reward model r̂ψ . We utilize the on-policy reinforcement
learning algorithm PPO (Schulman et al., 2017) as the backbone algorithm for training the policy.
Additionally, we apply unsupervised pre-training to match the performance of the original bench-
mark. Specifically, during earlier iterations, when the reward model has not collected sufficient
trajectories and exhibits limited progress, we utilize the state entropy of the observations, defined
as H(s) = −Es∼p(s)[log p(s)], as the goal for agent training. During this process, trajectories of
varying lengths are collected. Formally, a trajectory σ is defined as a sequence of observations and
actions (s1, a1), . . . , (st, at) that represents the complete interaction of the agent with the environ-
ment, concluding at timestep t.

Reward Learning. A preference predictor is developed using the current reward model to align
with human preferences, formulated as follows:

Pψ[σ
1 ≻ σ0] =

exp
(∑

t r̂ψ(s
1
t , a

1
t)
)∑

i∈{0,1} exp
(∑

t r̂ψ(s
i
t, a

i
t)
) , (1)

where σ0 = (s01, a
0
1), . . . , (s

0
l0
, a0l0) and σ1 = (s11, a

1
1), . . . , (s

1
l1
, a1l1) represent two complete trajec-

tories with different trajectory length l0 and l1. Pψ[σ1 ≻ σ0] denotes the probability that trajectory

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 2: ICPL
Input: # iterations N , # samples in each iterations K, environment Env, coding LLM LLMRF ,

difference LLM LLMDiff
1 Function Feedback(Env, RF):
2 return The values of each component that make up RF during the training process in Env
3 Function History(RFlist, Env, LLMDiff):
4 HistoryFeedback← “”
5 for i← 1 to len(RFlist)− 1 do

// The reward trace of historical reward functions
6 HistoryFeedback← HistoryFeedback+ Feedback(Env, RFlist[i− 1])

// The differences between historical reward functions
7 HistoryFeedback←

HistoryFeedback+ LLMDiff (DifferencePrompt+ RFlist[i]+ RFlist[i− 1])
8 end
9 return HistoryFeedback
// Initialize the prompt containing the environment context and task description

10 Prompt← InitializePrompt
11 RFlist← []
12 for i← 1 to N do
13 RF1, . . . , RFK ← LLMRF (Prompt,K)
14 while any of RF1, . . . , RFK is not executable do
15 j1, . . . , jK′ ← Index of non-executable reward functions

// Regenerate non-executable reward functions
16 RFj1 , . . . , RFj′K ← LLMRF (Prompt,K

′)

17 end
// Render videos for sampled reward functions

18 Video1, . . . , VideoK ← Render(Env, RF1), . . . , Render(Env, RFK)
// Human selects the most preferred and least preferred videos

19 G,B ← Human(Video1, . . . , VideoK)
20 GoodRF, BadRF← RFG, RFB
21 RFlist.append(GoodRF)

// Update prompt for feedback
22 Prompt←

GoodRF+Feedback(Env, GoodRF)+BadRF+Feedback(Env, BadRF)+PreferencePrompt
23 Prompt← Prompt+ History(RFlist, Env, LLMDiff)
24 end

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

σ1 is preferred over σ0 as indicated by the preference predictor. In the original PrefPPO framework,
test task trajectories are of fixed length, allowing for the extraction of fixed-length segments to train
the reward model. However, the tasks in this paper have varying trajectory lengths, so we use full
trajectory pairs as training data instead of segments. We also tried zero-padding trajectories to the
maximum episode length and then segmenting them, but this approach was ineffective in practice.

To provide more effective labels, the original PrefPPO utilizes dense rewards r to simulate oracle
human preferences, which is

P [σ1 ≻ σ0] =

{
1 If

∑
t r(s

1
t , a

1
t) >

∑
t r(s

1
t , a

1
t)

0 Otherwise
. (2)

The probability P [σ1 ≻ σ0] reflects the preference of the ideal teacher, which is perfectly rational
and deterministic, without incorporating noise. We utilize the default dense rewards in the adopted
IsaacGym tasks, which differ from ICPL and EUREKA, both of which use sparse rewards (task
metrics) as the proxy preference. While we also experimented with sparse rewards in PrefPPO and
found similar performance (refer to Table 8), we opted to retain the original PrefPPO approach in
all experiments. The reward model is trained by minimizing the cross-entropy loss between the
predictor and labels, utilizing trajectories sampled from the agent learning process. Note that since
the agent learning process requires significantly more experiences for training than reward training,
we only use trajectories from a subset of the environments for reward training.

To sample trajectories for reward learning, we employ the disagreement sampling scheme from Lee
et al. (2021c) to enhance the training process. This scheme first generates a larger batch of trajectory
pairs uniformly at random and then selects a smaller batch with high variance across an ensemble of
preference predictors. The selected pairs are used to update the reward model.

For a fair comparison, we recorded the number of times PrefPPO queried the oracle human simulator
to compare two trajectories and obtain labels during the reward learning process, using this as a
measure of the human effort involved. In the proxy human experiment, we set the maximum number
of human queries Q to 49, 150, 1.5k, 15k. Once this limit is reached, the reward model ceases to
update, and only the policy model is updated via PPO. Algo. 4 illustrates the pseudocode for reward
learning.

A.3.2 PEBBLE

PEBBLE (Lee et al., 2021b) is a popular feedback-efficient preference-based RL algorithm. It im-
proves the feedback efficiency of the algorithm by mainly utilizing two modules: unsupervised pre-
training and off-policy learning. The unsupervised pre-training module is introduced in the PrefPPO
section, and we also include it in PEBBLE with the same setting. PEBBLE utilizes the off-policy
algorithm SAC (Haarnoja et al., 2018) instead of PPO as the backbone RL algorithm. SAC stores the
agent’s past experiences in a replay buffer and reuses these experiences during the training process.
PEBBLE relabels all past experiences in the replay buffer every time it updates the reward model.

A.3.3 SURF

SURF (Park et al., 2022) is a framework that uses unlabeled samples with data augmentation to
improve the efficiency of reward training. In our experiments, the length of trajectories is varied
and may affect the evaluation of the trajectories. Therefore, we do not apply the data augmentation
technique and only utilize the semi-supervised learning method in SURF.

In addition to the labeled pairs of trajectories Dl = {(σ0
l , σ

1
l , y)

i}Nl
i=1, SURF samples another unla-

beled dataset DU = {(σ0
u, σ

1
u)
i}Nu
u=1 to optimize the reward model. Specifically, during each update

of the reward model, SURF not only samples a set of trajectories and queries a human teacher for
labels, but also samples additional trajectory pairs. These additional pairs are assigned pseudo-labels
generated by the current reward model.

ŷu(σ
0
u, σ

1
u) =

{
1 If Pψ[σ

1
u ≻ σ0

u] > 0.5.

0 Otherwise.
(3)

Here ψ is the preference predictor based on the current reward model. During the training process
of reward model, SURF will also use the unlabeled samples for training if the confidence of the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

predictor is higher than a pre-defined threshold. In experiments, we follows the implementation of
SURF (Park et al., 2022).

Algorithm 3: PrefPPO
Input: # iterations B, # unsupervised learning iterations M , # rollout steps S, reward model

r̂ψ , # environments for reward learning E, # iterations for collecting trajectories
RewardTrainingInterval,maximal number of human queries Q, environments Env

1 HumanQueryCount← 0
2 Trajectories← []
3 Function TrainReward(r̂ψ , Trajectories):
4 Function CollectRollout(RewardType, S, Policy, r̂ψ, Env):
5 RolloutBuffer← []
6 for j ← 1 to S do
7 Action← Policy(Observation)

// Here EnvDones is a binary sequence replied from the envrionment,
representing whether the environments are done.

8 NewObservation, EnvReward, EnvDones← Env(Actions)
9 if RewardType == Unsuper then

10 PredReward← ComputeStateEntropy(Observation)
11 end
12 else
13 PredReward← r̂ψ(Observation, Action)
14 end

// Collect trajectories for reward learning
15 Trajectories← Trajectories+ (Observation, Action, EnvDones, EnvReward)

// Add complete trajectory to reward model
16 for k ← 1 to E do
17 if EnvDones[Env[k]] then
18 AddTrajectory(r̂ψ, Trajectories[k])
19 Trajectories[k]← []
20 end
21 end

// Reward Learning
22 if j is divisible by RewardTrainingInterval and HumanQueryCount < Q then
23 r̂ψ ←TrainReward(r̂ψ, Trajectories)
24 end

// Collect rollouts for agent learning
25 RolloutBuffer← RolloutBuffer+ (Observation, Action, PredReward)
26 Observation← NewObservation
27 end
28 return RolloutBuffer
29 Policy← Initialize
30 for i← 1 to B do

// Collect rollouts and trajectories
31 if i < M then
32 RolloutBuffer← CollectRollout(Unsuper, S, Policy, r̂ψ, Env)
33 end
34 else
35 RolloutBuffer← CollectRollout(RewardModel, S, Policy, r̂ψ, Env)
36 end

// Agent Learning: Train agent with the collect RolloutBuffer via PPO, omitted
here

37 AgentLearning(Policy, RolloutBuffer)
38 end

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 4: Reward Learning of PrefPPO
Input: reward model r̂ψ , # samples for human queries per time MbSize, # maximal iterations

for reward learning MaxUpdate, maximal number of human queries Q, environments
Env

1 LabeledQueries← []
2 HumanQueryCount← 0
3 Function TrainReward(r̂ψ , Trajectories):

// Use disagreement sampling to sample trajectories
4 σ0, σ1 ← DisagreementSampling(Trajectories, MbSize)
5 for (x0, x1) in (σ0, σ1) do

// Give oracle human preferences between two trajectories according to the sum
of dense reward.

6 LabeledQueries← LabeledQueries+ (x0, x1, HumanQuery(x0, x1))
// In experiments, we do not add HumanQueryCount if the pair has already been

queried before
7 HumanQueryCount← HumanQueryCount+ 1
8 if HumanQueryCount > Q then
9 BREAK

10 end
11 end
12 for i← 1 to MaxUpdate do

// Update reward model by minimizing the cross entropy loss and record the
accuracy on all pairs.

13 r̂ψ , Accuracy← RewardLearning(r̂ψ , LabeledQueries)
14 if Accuracy ≥ 97% then
15 BREAK
16 end
17 end
18 return r̂ψ

A.4 ENVIRONMENT DETAILS

In Table 5, we present the observation and action dimensions, along with the task description and
task metrics for 9 tasks in IsaacGym.

A.5 PROXY HUMAN PREFERENCE

A.5.1 ADDITIONAL RESULTS

Due to the high variance in LLMs performance, we report the standard deviation across 5 experi-
ments as a supplement, which is presented in Table 6 and Table 7. We also report the final task score
of PrefPPO using sparse rewards as the preference metric for the simulated teacher in Table 8.

A.5.2 IMPROVEMENT ANALYSIS

We use a trial of the Humanoid task to illustrate how ICPL progressively generated improved reward
functions over successive iterations. The task description is “to make the humanoid run as fast
as possible”. Throughout five iterations, adjustments were made to the penalty terms and reward
weightings. In the first iteration, the total reward was calculated as 0.5 × speed_reward + 0.25 ×
deviation_reward+0.25×action_reward, yielding an RTS of 5.803. The speed reward and deviation
reward motivate the humanoid to run fast, while the action reward promotes smoother motion. In the
second iteration, the weight of the speed reward was increased to 0.6, while the weights for deviation
and action rewards were adjusted to 0.2 each, improving the RTS to 6.113. In the third iteration,
the action penalty was raised and the reward weights were further modified to 0.7× speed_reward,
0.15× deviation_reward, and 0.15× action_reward, resulting in an RTS of 7.915. During the fourth
iteration, the deviation penalty was reduced to 0.35 and the action penalty was lowered, with the
reward weights set to 0.8, 0.1, and 0.1 for speed, deviation, and action rewards, respectively. This

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Environment (obs dim, action dim)
Task Description
Task Metric
Cartpole (4, 1)
To balance a pole on a cart so that the pole stays upright
duration
Quadcopter (21, 12)
To make the quadcopter reach and hover near a fixed position
-cur_dist
FrankaCabinet (23, 9)
To open the cabinet door
1 if cabinet_pos > 0.39
Anymal (48, 12)
To make the quadruped follow randomly chosen x, y, and yaw target velocities
-(linvel_error + angvel_error)
BallBalance (48, 12)
To keep the ball on the table top without falling
duration
Ant (60, 8)
To make the ant run forward as fast as possible
cur_dist - prev_dist
AllegroHand (88, 16)
To make the hand spin the object to a target orientation
number of consecutive successes where current success is 1 if rot_dist < 0.1
Humanoid (108, 21)
To make the humanoid run as fast as possible
cur_dist - prev_dist
ShadowHand (211, 20)
To make the shadow hand spin the object to a target orientation
number of consecutive successes where current success is 1 if rot_dist < 0.1

Table 5: Details of IssacGym Tasks.

Cart. Ball. Quad. Anymal Ant Human. Franka Shadow Allegro

PrefPPO-49 499(0) 499(0) -1.066(0.16) -1.861(0.03) 0.743(0.20) 0.457(0.09) 0.0044(0.00) 0.0746(0.02) 0.0125(0.003)
PEBBLE-49 499(0) 499(0) -1.1904(0.14) -1.521 5.9891 0.903 0.0453 0.2142 0.1467

SURF-49 499(0) 499(0) -1.208(0.03) -1.35 0.815 1.675 0.0039 0.15 0.1116
PrefPPO-150 499(0) 499(0) -0.959(0.15) -1.818(0.07) 0.171(0.05) 0.607(0.02) 0.0179(0.01) 0.0617(0.01) 0.0153(0.004)
PEBBLE-150 499(0) 499(0) -1.059(0.07) -1.436 7.257 3.254 0.0532 0.2369 0.2811

SURF-150 499(0) 499(0) -1.114(0.06) -1.42 4.246 4.312 0.0453 0.2096 0.2
PrefPPO-1.5k 499(0) 499(0) -0.486(0.11) -1.417(0.21) 4.458(1.30) 1.329(0.33) 0.3248(0.12) 0.0488(0.01) 0.0284(0.005)
PEBBLE-1.5k 499(0) 499(0) -0.529(0.14) -1.332 8.282 4.075 0.1622 0.2416 0.2615

SURF-1.5k 499(0) 499(0) -0.308(0.06) -1.278 7.921 2.999 0.2639 0.2355 0.2283
PrefPPO-15k 499(0) 499(0) -0.250(0.06) -1.357(0.02) 4.626(0.57) 1.317(0.34) 0.0399(0.02) 0.0468(0.00) 0.0157(0.003)
PEBBLE-15k 499(0) 499(0) -0.231(0.04) -0.730 8.543 4.074 0.6089 0.2438 0.2401

SURF-15k 499(0) 499(0) -0.266(0.02) -0.760 7.859 3.2922 0.3434 0.2145 0.2352
ICPL(Ours) 499(0) 499(0) -0.0195(0.09) -0.007(0.35) 12.04(1.69) 9.227(0.93) 0.9999(0.24) 13.231(1.88) 25.030(3.721)

Eureka 499(0) 499(0) -0.023(0.07) -0.003(0.38) 10.86(0.85) 9.059(0.83) 0.9999(0.23) 11.532(1.38) 25.250(9.583)

Table 6: The final task score of all methods across different tasks in IssacGym. The values in
parentheses represent the standard deviation.

Cart. Ball. Quad. Anymal Ant Human. Franka Shadow Allegro

ICPL w/o RT 499(0) 499(0) -0.0340(0.05) -0.387(0.26) 10.50(0.45) 8.337(0.60) 0.9999(0.25) 10.769(2.30) 25.641(9.46)
ICPL w/o RTD 499(0) 499(0) -0.0216(0.14) -0.009(0.38) 10.53(0.39) 9.419(2.10) 1.0000(0.18) 11.633(1.25) 23.744(8.80)

ICPL w/o RTDB 499(0) 499(0) -0.0136(0.03) -0.014(0.42) 11.97(0.71) 8.214(2.88) 0.5129(0.06) 13.663(1.83) 25.386(3.42)
OpenLoop 499(0) 499(0) -0.0410(0.32) -0.016(0.50) 9.350(2.34) 8.306(1.63) 0.9999(0.22) 9.476(2.44) 23.876(7.91)
ICPL(Ours) 499(0) 499(0) -0.0195(0.09) -0.007(0.35) 12.04(1.69) 9.227(0.93) 0.9999(0.24) 13.231(1.88) 25.030(3.721)

Table 7: Ablation studies on ICPL modules. The values in parentheses represent the standard devi-
ation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Cart. Ball. Quad. Anymal Ant Human. Franka Shadow Allegro

PrefPPO-49 499(0) 499(0) -1.288(0.04) -1.833(0.05) 0.281(0.06) 0.855(0.24) 0.0009(0.00) 0.1178(0.03) 0.1000(0.024)
PrefPPO-150 499(0) 499(0) -1.288(0.02) -1.814(0.07) 0.545(0.16) 0.546(0.09) 0.0012(0.00) 0.0517(0.01) 0.0544(0.010)
PrefPPO-1.5k 499(0) 499(0) -1.292(0.05) -1.583(0.13) 2.235(0.63) 2.480(0.59) 0.0077(0.00) 0.0495(0.01) 0.0667(0.017)
PrefPPO-15k 499(0) 499(0) -1.322(0.04) -1.611(0.12) 3.694(0.86) 1.867(0.19) 0.0066(0.00) 0.0543(0.01) 0.1002(0.030)

Eureka 499(0) 499(0) -0.023(0.07) -0.003(0.38) 10.86(0.85) 9.059(0.83) 0.9999(0.23) 11.532(1.38) 25.250(9.583)
(Ours) 499(0) 499(0) -0.0195(0.09) -0.007(0.35) 12.04(1.69) 9.227(0.93) 0.9999(0.24) 13.231(1.88) 25.030(3.721)

Table 8: The final task score of all methods across different tasks in IssacGym, where PrefPPO
uses sparse rewards as the preference metric for the simulated teacher. The values in parentheses
represent the standard deviation.

change led to an RTS of 8.125. Finally, in the fifth iteration, an additional upright reward term was
incorporated, with the total reward calculated as 0.7×speed_reward+0.1×deviation_reward+0.1×
action_reward+0.1×upright_reward. This adjustment produced the highest RTS of 8.232, allowing
ICPL to generate reward functions that were more effectively aligned with the task description.
Below are the specific reward functions produced at each iteration during one experiment.

Humanoid Task: Reward Function with highest RTS (5.803) of Iteration 1

def compute_reward(root_states: torch.Tensor , actions: torch.Tensor
) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
velocity = root_states [: , 7:10]
forward_velocity = velocity[:, 0]
target_velocity = 5.0
deviation_penalty = 0.5
action_penalty = 0.1

Measure how fast the humanoid is going
speed_reward = torch.exp((forward_velocity - target_velocity))

Penalize deviation from the target velocity
deviation = torch.abs(forward_velocity - target_velocity)
deviation_reward = torch.exp(-deviation_penalty * deviation)

Penalize actions , to induce smoother motion
sum_actions = torch.sum(actions ** 2, dim=1)
action_reward = torch.exp(-action_penalty * sum_actions)

rewards = {’speed_reward ’: speed_reward , ’deviation_reward ’:
deviation_reward , ’action_reward ’: action_reward }

total_reward = 0.5 * speed_reward + 0.25 * deviation_reward +
0.25 * action_reward
total_reward = total_reward.to(deviation.device)

return total_reward , rewards

Humanoid Task: Reward Function with highest RTS (6.113) of Iteration 2

def compute_reward(root_states: torch.Tensor , actions: torch.Tensor
) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
velocity = root_states [: , 7:10]
forward_velocity = velocity[:, 0]
target_velocity = 5.0
deviation_penalty = 0.5
action_penalty = 0.1

Measure how fast the humanoid is going
speed_reward = torch.exp((forward_velocity - target_velocity))

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Penalize deviation from the target velocity
deviation = torch.abs(forward_velocity - target_velocity)
deviation_reward = torch.exp(-deviation_penalty * deviation)
Penalize actions , to induce smoother motion
sum_actions = torch.sum(actions ** 2, dim=1)
action_reward = torch.exp(-action_penalty * sum_actions)

rewards = {’speed_reward ’: speed_reward , ’deviation_reward ’:
deviation_reward , ’action_reward ’: action_reward }

Adjusted weights in total reward calculation
total_reward = 0.6 * speed_reward + 0.2 * deviation_reward +
0.2 * action_reward # Changed weights
total_reward = total_reward.to(deviation.device)

return total_reward , rewards

Humanoid Task: Reward Function with highest RTS (7.915) of Iteration 3

def compute_reward(root_states: torch.Tensor , actions: torch.Tensor
) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
velocity = root_states [: , 7:10]
forward_velocity = velocity[:, 0]
target_velocity = 5.0
deviation_penalty = 0.5
action_penalty = 0.15 # Increased action penalty

Measure how fast the humanoid is going
speed_reward = torch.exp((forward_velocity - target_velocity))
Penalize deviation from the target velocity
deviation = torch.abs(forward_velocity - target_velocity)
deviation_reward = torch.exp(-deviation_penalty * deviation)
Penalize actions , to induce smoother motion
sum_actions = torch.sum(actions ** 2, dim=1)
action_reward = torch.exp(-action_penalty * sum_actions)

rewards = {’speed_reward ’: speed_reward , ’deviation_reward ’:
deviation_reward , ’action_reward ’: action_reward }

Adjusted weights in total reward calculation
total_reward = 0.7 * speed_reward + 0.15 * deviation_reward +
0.15 * action_reward # Changed weights
total_reward = total_reward.to(deviation.device)

return total_reward , rewards

Humanoid Task: Reward Function with highest RTS (8.125) of Iteration 4

def compute_reward(root_states: torch.Tensor , actions: torch.Tensor
) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
velocity = root_states [:, 7:10]
forward_velocity = velocity[:, 0]
target_velocity = 5.0
deviation_penalty = 0.35 # decrease penalty for deviation
action_penalty = 0.1 # decrease penalty for action

Measure how fast the humanoid is going
speed_reward = torch.exp((forward_velocity - target_velocity))

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Penalize deviation from the target velocity
deviation = torch.abs(forward_velocity - target_velocity)
deviation_reward = torch.exp(-deviation_penalty * deviation)
Penalize actions , to induce smoother motion
sum_actions = torch.sum(actions ** 2, dim=1)
action_reward = torch.exp(-action_penalty * sum_actions)

rewards = {’speed_reward ’: speed_reward , ’deviation_reward ’:
deviation_reward , ’action_reward ’: action_reward }

Adjust the weights in total reward calculation
total_reward = 0.8 * speed_reward + 0.1 * deviation_reward +
0.1 * action_reward # Changed weights
total_reward = total_reward.to(deviation.device)

return total_reward , rewards

Humanoid Task: Reward Function with highest RTS (8.233) of Iteration 5

def compute_reward(root_states: torch.Tensor , actions: torch.Tensor
, up_vec: torch.Tensor) -> Tuple[torch.Tensor , Dict[str , torch.
Tensor]]:
velocity = root_states [: , 7:10]
forward_velocity = velocity[:, 0]
target_velocity = 5.0
deviation_penalty = 0.35 # Reduced deviation penalty
action_penalty = 0.1 # Decreased action penalty

Measure how fast the humanoid is going
speed_reward = torch.exp((forward_velocity - target_velocity))
Penalize deviation from the target velocity
deviation = torch.abs(forward_velocity - target_velocity)
deviation_reward = torch.exp(-deviation_penalty * deviation)
Penalize actions , to induce smoother motion
sum_actions = torch.sum(actions ** 2, dim=1)
action_reward = torch.exp(-action_penalty * sum_actions)
Reward for maintaining an upright position
upright_penalty = 1.0 # New upright penalty for the humanoid
upright_reward = torch.exp(-upright_penalty * (1 - up_vec[:,
2])) # Added upright reward

rewards = {’speed_reward ’: speed_reward , ’deviation_reward ’:
deviation_reward , ’action_reward ’: action_reward , ’
upright_reward ’: upright_reward }

Adjusted weights in total reward calculation
total_reward = 0.7 * speed_reward + 0.1 * deviation_reward +
0.1 * action_reward + 0.1 * upright_reward # Added upright
reward to total
total_reward = total_reward.to(deviation.device)

return total_reward , rewards

A.6 HUMAN-IN-THE-LOOP PREFERENCE

A.6.1 DEMOGRAPHIC DATA

The participants in the human-in-the-loop preference experiments consisted of 7 individuals aged
19 to 30, including 2 women and 5 men. Their educational backgrounds included 2 undergraduate

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

students and 5 graduate students. The 20 volunteers recruited to evaluate the performance of differ-
ent methods were aged 23 to 28, comprising 5 women and 15 men, with 3 undergraduates and 17
graduate students.

A.6.2 ISAACGYM TASKS

We evaluate human-in-the-loop preference experiments on tasks in IsaacGym, including Quad-
copter, Humanoid, Ant, ShadowHand, and AllegroHand. In these experiments, volunteers were
limited to comparing reward functions based solely on videos showcasing the final policies derived
from each reward function.

In the Quadcopter task, humans evaluate performance by observing whether the quadcopter moves
quickly and efficiently, and whether it stabilizes in the final position. For the Humanoid and Ant
tasks, where the task description is "make the ant/humanoid run as fast as possible," humans esti-
mate speed by comparing the time taken to cover the same distance and assessing the movement
posture. However, due to the variability in movement postures and directions, estimating speed can
introduce inaccuracies. In the ShadowHand and AllegroHand tasks, where the goal is “to make
the hand spin the object to a target orientation,” Humans find it challenging to calculate the precise
difference between the current orientation and the target orientation at every moment, even though
the target orientation is displayed nearby. Nevertheless, humans still can estimate the duration of ef-
fective rotations with the target orientation in the video, thus evaluating the performance of a single
spin. Since the target orientation regenerates upon being reached, the frequency of target orientation
changes can also aid in facilitating the assessment of evaluating performance.

Due to the lack of precise environmental data, volunteers cannot make absolutely accurate judgments
during the experiments. For instance, in the Humanoid task, robots may move in varying directions,
which can introduce biases in volunteers’ assessments of speed. However, volunteers are still able
to filter out extremely poor results and select videos with relatively better performance. In most
cases, the selected results closely align with those derived from proxy human preferences, enabling
effective improvements in task performance.

Below is a specific case from the Humanoid task that illustrates the potential errors humans
may make during evaluation and the learning process of the reward function under this as-
sumption. The reward task scores (RTS) chosen by the volunteer across five iterations are
4.521, 6.069, 6.814, 6.363, 6.983.

In the first iteration, the ground-truth task scores of each policy were
0.593, 2.744, 4.520, 0.192, 2.517, 5.937, although the volunteer was unaware of these scores.
Initially, the volunteer eliminated policies 0 and 3, as the robots in those videos primarily exhibited
spinning behavior. Subsequently, the volunteer assessed the speed of the remaining robots based
on how quickly a specific robot moved out of the field. The volunteer correctly identified that the
robots in policies 1 and 4 were slightly slower. However, due to minor differences in the movement
directions of the robots in policies 2 and 5, the volunteer mistakenly selected policy 2 as the best
option, incorrectly concluding that the robot in policy 2 was faster.

Thus, the reward function selected in iteration 1 consists of several key components: velocity reward,
upright reward, force penalty, unnatural pose penalty, and action penalty. These components not only
promote faster training, which is the primary objective, but also encourage the maintenance of an
upright pose. Additionally, the function penalizes excessive force usage, extreme joint angles, and
large action values to foster smoother and more controlled movements.

In subsequent iterations, the volunteer effectively identified reward functions that exhibited relatively
better and worse performance outcomes. Adjustments were made to the weights of each component,
and specific temperature values were introduced for each. These modifications resulted in a more
balanced reward structure, ensuring that critical aspects exert a stronger influence, thereby allowing
for greater control over the learning dynamics and improving the agent’s performance in achieving
the task. Even in Iteration 4, the volunteer did not select the reward function with the highest RTS
(6.813) but instead opted for the second-highest reward function (RTS = 6.363). Nevertheless, the
reward function exhibited consistent improvement during these iterations.

Here we show the full reward function during the process.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Humanoid Task: Reward Function chosen by volunteer with RTS (4.521) of Iteration 1

def compute_reward(
velocity: torch.Tensor ,
dof_pos: torch.Tensor ,
dof_force_tensor: torch.Tensor ,
actions: torch.Tensor ,
up_vec: torch.Tensor ,
heading_vec: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Reward for forward velocity (run as fast as possible)
velocity_reward = velocity[:, 0]

Encouragement for upright pose (penalize for deviation from
vertical)
upright_reward = up_vec[:, 2]

Penalize high force usage (energy efficiency)
force_penalty = torch.sum(torch.abs(dof_force_tensor), dim=1)

Penalize unnatural joint positions (for instance , avoid
extreme angles)
unnatural_pose_penalty = torch.sum(torch.abs(dof_pos), dim=1)

Penalize for large actions (to promote smoother movement)
action_penalty = torch.sum(torch.abs(actions), dim=1)

Normalize the rewards and penalties
velocity_reward = torch.exp(velocity_reward) - 1
upright_reward = torch.exp(upright_reward) - 1
temperature = 1.0
force_penalty = torch.exp(-force_penalty / temperature)
unnatural_pose_penalty = torch.exp(-unnatural_pose_penalty /
temperature)
action_penalty = torch.exp(-action_penalty / temperature)

Combine the rewards and penalties into a single reward
total_reward = (

velocity_reward +
0.5 * upright_reward -
0.01 * force_penalty -
0.01 * unnatural_pose_penalty -
0.01 * action_penalty

)

Return the total reward and each component for analysis
reward_components = {

"velocity_reward": velocity_reward ,
"upright_reward": upright_reward ,
"force_penalty": force_penalty ,
"unnatural_pose_penalty": unnatural_pose_penalty ,
"action_penalty": action_penalty

}

return total_reward , reward_components

Humanoid Task: Reward Function chosen by volunteer with RTS (6.069) of Iteration 2

def compute_reward(
velocity: torch.Tensor ,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

dof_pos: torch.Tensor ,
dof_force_tensor: torch.Tensor ,
actions: torch.Tensor ,
up_vec: torch.Tensor ,
heading_vec: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Reward for forward velocity (run as fast as possible)
velocity_reward = velocity[:, 0]
velocity_temperature = 1.2 # increased slightly
velocity_reward = torch.exp(velocity_reward /
velocity_temperature) - 1

Encouragement for upright pose (penalize for deviation from
vertical)
upright_reward = up_vec[:, 2]
upright_temperature = 0.5 # introduce a specific temperature
upright_reward = torch.exp(upright_reward / upright_temperature
) - 1

Penalize high force usage (energy efficiency)
force_penalty = torch.sum(torch.abs(dof_force_tensor), dim=1)
force_temperature = 0.1 # decreased to make it more
significant
force_penalty = torch.exp(-force_penalty / force_temperature)

Penalize unnatural joint positions (for instance , avoid
extreme angles)
unnatural_pose_penalty = torch.sum(torch.abs(dof_pos), dim=1)
pose_temperature = 0.1 # decreased to make it more significant
unnatural_pose_penalty = torch.exp(-unnatural_pose_penalty /
pose_temperature)

Penalize for large actions (to promote smoother movement)
action_penalty = torch.sum(torch.abs(actions), dim=1)
action_temperature = 0.1 # decreased to make it more
significant
action_penalty = torch.exp(-action_penalty / action_temperature
)

Combine the rewards and penalties into a single reward
total_reward = (

velocity_reward +
0.5 * upright_reward -
0.01 * force_penalty -
0.01 * unnatural_pose_penalty -
0.01 * action_penalty

)

Return the total reward and each component for analysis
reward_components = {

"velocity_reward": velocity_reward ,
"upright_reward": upright_reward ,
"force_penalty": force_penalty ,
"unnatural_pose_penalty": unnatural_pose_penalty ,
"action_penalty": action_penalty

}

return total_reward , reward_components

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Humanoid Task: Reward Function chosen by volunteer with RTS (6.814) of Iteration 3

def compute_reward(
velocity: torch.Tensor ,
dof_pos: torch.Tensor ,
dof_force_tensor: torch.Tensor ,
actions: torch.Tensor ,
up_vec: torch.Tensor ,
heading_vec: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Reward for forward velocity (run as fast as possible)
velocity_reward = velocity[:, 0]
velocity_temperature = 1.1 # minor adjustment
velocity_reward = torch.exp(velocity_reward /
velocity_temperature) - 1

Encouragement for upright pose (penalize for deviation from
vertical)
upright_reward = up_vec[:, 2]
upright_temperature = 0.6 # slight adjustment
upright_reward = torch.exp(upright_reward / upright_temperature
) - 1

Penalize high force usage (energy efficiency)
force_penalty = torch.sum(torch.abs(dof_force_tensor), dim=1)
force_temperature = 0.15 # increased to try to make it
effective
force_penalty = torch.exp(-force_penalty / force_temperature)

Penalize unnatural joint positions (for instance , avoid
extreme angles)
unnatural_pose_penalty = torch.sum(torch.abs(dof_pos), dim=1)
pose_temperature = 0.2 # increased to try to make it effective
unnatural_pose_penalty = torch.exp(-unnatural_pose_penalty /
pose_temperature)

Penalize for large actions (to promote smoother movement)
action_penalty = torch.sum(torch.abs(actions), dim=1)
action_temperature = 0.2 # increased to try to make it
effective
action_penalty = torch.exp(-action_penalty / action_temperature
)

Combine the rewards and penalties into a single reward
total_reward = (

velocity_reward +
0.5 * upright_reward -
0.02 * force_penalty - # increased slightly for more

impact
0.02 * unnatural_pose_penalty - # increased slightly for

more impact
0.02 * action_penalty # increased slightly for more impact

)

Return the total reward and each component for analysis
reward_components = {

"velocity_reward": velocity_reward ,
"upright_reward": upright_reward ,
"force_penalty": force_penalty ,
"unnatural_pose_penalty": unnatural_pose_penalty ,
"action_penalty": action_penalty

}

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

return total_reward , reward_components

Humanoid Task: Reward Function chosen by volunteer with RTS (6.363) of Iteration 4

def compute_reward(
velocity: torch.Tensor ,
dof_pos: torch.Tensor ,
dof_force_tensor: torch.Tensor ,
actions: torch.Tensor ,
up_vec: torch.Tensor ,
heading_vec: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Reward for forward velocity (run as fast as possible)
velocity_reward = velocity[:, 0]
velocity_temperature = 1.05 # slight adjustment to refine the
impact
velocity_reward = torch.exp(velocity_reward /
velocity_temperature) - 1

Encouragement for upright pose (penalize for deviation from
vertical)
upright_reward = up_vec[:, 2]
upright_temperature = 0.65 # slight loosening for more upright
reward
upright_reward = torch.exp(upright_reward / upright_temperature
) - 1

Penalize high force usage (energy efficiency)
force_penalty = torch.sum(torch.abs(dof_force_tensor), dim=1)
force_temperature = 0.2 # increased to make it more
significant
force_penalty = torch.exp(-force_penalty / force_temperature)

Penalize unnatural joint positions (for instance , avoid
extreme angles)
unnatural_pose_penalty = torch.sum(torch.abs(dof_pos), dim=1)
pose_temperature = 0.25 # slight increase to make this
component effective
unnatural_pose_penalty = torch.exp(-unnatural_pose_penalty /
pose_temperature)

Penalize for large actions (to promote smoother movement)
action_penalty = torch.sum(torch.abs(actions), dim=1)
action_temperature = 0.25 # slightly adjusted for more
prominent constraint
action_penalty = torch.exp(-action_penalty / action_temperature
)

Combine the rewards and penalties into a single reward
total_reward = (

velocity_reward +
0.5 * upright_reward -
0.015 * force_penalty - # slight increase for more impact
0.015 * unnatural_pose_penalty - # slight increase for

more impact
0.015 * action_penalty # slight increase for more impact

)

Return the total reward and each component for analysis
reward_components = {

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

"velocity_reward": velocity_reward ,
"upright_reward": upright_reward ,
"force_penalty": force_penalty ,
"unnatural_pose_penalty": unnatural_pose_penalty ,
"action_penalty": action_penalty

}

return total_reward , reward_components

Humanoid Task: Reward Function with best RTS (6.813) of Iteration 4(not chosen by vol-
unteer)

def compute_reward(
velocity: torch.Tensor ,
dof_pos: torch.Tensor ,
dof_force_tensor: torch.Tensor ,
actions: torch.Tensor ,
up_vec: torch.Tensor ,
heading_vec: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Reward for forward velocity (run as fast as possible)
velocity_reward = velocity[:, 0]
velocity_temperature = 1.15
velocity_reward = torch.exp(velocity_reward /
velocity_temperature) - 1

Encouragement for upright pose (penalize for deviation from
vertical)
upright_reward = up_vec[:, 2]
upright_temperature = 0.55
upright_reward = torch.exp(upright_reward / upright_temperature
) - 1

Penalize high force usage (energy efficiency)
force_penalty = torch.sum(torch.abs(dof_force_tensor), dim=1)
force_temperature = 0.12
force_penalty = torch.exp(-force_penalty / force_temperature)

Penalize unnatural joint positions (for instance , avoid
extreme angles)
unnatural_pose_penalty = torch.sum(torch.abs(dof_pos), dim=1)
pose_temperature = 0.18
unnatural_pose_penalty = torch.exp(-unnatural_pose_penalty /
pose_temperature)

Penalize for large actions (to promote smoother movement)
action_penalty = torch.sum(torch.abs(actions), dim=1)
action_temperature = 0.18
action_penalty = torch.exp(-action_penalty / action_temperature
)

Combine the rewards and penalties into a single reward
total_reward = (

velocity_reward +
0.5 * upright_reward -
0.02 * force_penalty -
0.02 * unnatural_pose_penalty -
0.02 * action_penalty

)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Return the total reward and each component for analysis
reward_components = {

"velocity_reward": velocity_reward ,
"upright_reward": upright_reward ,
"force_penalty": force_penalty ,
"unnatural_pose_penalty": unnatural_pose_penalty ,
"action_penalty": action_penalty

}

return total_reward , reward_components

Humanoid Task: Reward Function chosen by volunteer with RTS (6.983) of Iteration 5

def compute_reward(
velocity: torch.Tensor ,
dof_pos: torch.Tensor ,
dof_force_tensor: torch.Tensor ,
actions: torch.Tensor ,
up_vec: torch.Tensor ,
heading_vec: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Adjusted parameters based on analysis
velocity_temperature = 1.1
upright_temperature = 0.65
force_temperature = 0.25
pose_temperature = 0.3
action_temperature = 0.3

Reward for forward velocity (run as fast as possible)
velocity_reward = velocity[:, 0]
velocity_reward = torch.exp(velocity_reward /
velocity_temperature) - 1

Encouragement for upright pose (penalize for deviation from
vertical)
upright_reward = up_vec[:, 2]
upright_reward = torch.exp(upright_reward / upright_temperature
) - 1

Penalize high force usage (energy efficiency)
force_penalty = torch.sum(torch.abs(dof_force_tensor), dim=1)
force_penalty = torch.exp(-force_penalty / force_temperature)

Penalize unnatural joint positions (for instance , avoid
extreme angles)
unnatural_pose_penalty = torch.sum(torch.abs(dof_pos), dim=1)
unnatural_pose_penalty = torch.exp(-unnatural_pose_penalty /
pose_temperature)

Penalize for large actions (to promote smoother movement)
action_penalty = torch.sum(torch.abs(actions), dim=1)
action_penalty = torch.exp(-action_penalty / action_temperature
)

Combine the rewards and penalties into a single reward
total_reward = (

velocity_reward +
0.5 * upright_reward -
0.02 * force_penalty -
0.02 * unnatural_pose_penalty -

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0.02 * action_penalty
)

Return the total reward and each component for analysis
reward_components = {

"velocity_reward": velocity_reward ,
"upright_reward": upright_reward ,
"force_penalty": force_penalty ,
"unnatural_pose_penalty": unnatural_pose_penalty ,
"action_penalty": action_penalty

}

return total_reward , reward_components

A.6.3 HUMANOIDJUMP TASK

In our study, we introduced a novel task: HumanoidJump, with the task description being “to make
humanoid jump like a real human.” The prompt of environment context in this task is shown in
Prompt 5.

Prompt 5: Prompts of Environment Context in HumanoidJump Task
class HumanoidJump(VecTask):

""" Rest of the environment definition omitted ."""
def compute_observations(self):

self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_force_sensor_tensor(self.sim)
self.gym.refresh_dof_force_tensor(self.sim)

self.obs_buf [:], self.torso_position [:],
self.prev_torso_position [:], self.velocity_world [:],
self.angular_velocity_world [:], self.velocity_local [:],
self.angular_velocity_local [:], self.up_vec [:],
self.heading_vec [:], self.right_leg_contact_force [:],
self.left_leg_contact_force [:] = \

compute_humanoid_jump_observations(
self.obs_buf , self.root_states , self.torso_position ,
self.inv_start_rot , self.dof_pos , self.dof_vel ,
self.dof_force_tensor , self.dof_limits_lower ,
self.dof_limits_upper , self.dof_vel_scale ,
self.vec_sensor_tensor , self.actions ,
self.dt, self.contact_force_scale ,
self.angular_velocity_scale ,
self.basis_vec0 , self.basis_vec1)

def compute_humanoid_jump_observations(obs_buf , root_states , torso_position , inv_start_rot
, dof_pos , dof_vel , dof_force , dof_limits_lower , dof_limits_upper , dof_vel_scale ,
sensor_force_torques , actions , dt, contact_force_scale , angular_velocity_scale ,
basis_vec0 , basis_vec1):

type: (Tensor , Tensor , Tensor , Tensor , Tensor , Tensor , Tensor , Tensor , Tensor , float
, Tensor , Tensor , float , float , float , Tensor , Tensor) -> Tuple[Tensor , Tensor , Tensor ,
Tensor , Tensor , Tensor , Tensor , Tensor , Tensor , Tensor , Tensor]

prev_torso_position_new = torso_position.clone()

torso_position = root_states [:, 0:3]
torso_rotation = root_states [:, 3:7]
velocity_world = root_states [:, 7:10]
angular_velocity_world = root_states [:, 10:13]

torso_quat , up_proj , up_vec , heading_vec = compute_heading_and_up_vec(
torso_rotation , inv_start_rot , basis_vec0 , basis_vec1 , 2)

velocity_local , angular_velocity_local , roll , pitch , yaw = compute_rot_new(
torso_quat , velocity_world , angular_velocity_world)

roll = normalize_angle(roll).unsqueeze (-1)
yaw = normalize_angle(yaw).unsqueeze (-1)
dof_pos_scaled = unscale(dof_pos , dof_limits_lower , dof_limits_upper)
scale_angular_velocity_local = angular_velocity_local * angular_velocity_scale

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

obs = torch.cat((root_states [:, 0:3]. view(-1, 3), velocity_local ,
scale_angular_velocity_local ,
yaw , roll , up_proj.unsqueeze (-1),
dof_pos_scaled , dof_vel * dof_vel_scale ,
dof_force * contact_force_scale ,
sensor_force_torques.view(-1, 12) * contact_force_scale ,
actions), dim=-1)

right_leg_contact_force = sensor_force_torques [:, 0:3]
left_leg_contact_force = sensor_force_torques [:, 6:9]

abdomen_y_pos = dof_pos[:, 0]
abdomen_z_pos = dof_pos[:, 1]
abdomen_x_pos = dof_pos[:, 2]
right_hip_x_pos = dof_pos[:, 3]
right_hip_z_pos = dof_pos[:, 4]
right_hip_y_pos = dof_pos[:, 5]
right_knee_pos = dof_pos[:, 6]
right_ankle_x_pos = dof_pos[:, 7]
right_ankle_y_pos = dof_pos[:, 8]
left_hip_x_pos = dof_pos[:, 9]
left_hip_z_pos = dof_pos[:, 10]
left_hip_y_pos = dof_pos[:, 11]
left_knee_pos = dof_pos[:, 12]
left_ankle_x_pos = dof_pos[:, 13]
left_ankle_y_pos = dof_pos[:, 14]
right_shoulder1_pos = dof_pos[:, 15]
right_shoulder2_pos = dof_pos[:, 16]
right_elbow_pos = dof_pos[:, 17]
left_shoulder1_pos = dof_pos[:, 18]
left_shoulder2_pos = dof_pos[:, 19]
left_elbow_pos = dof_pos[:, 20]

right_shoulder1_action = actions[:, 15]
right_shoulder2_action = actions[:, 16]
right_elbow_action = actions[:, 17]
left_shoulder1_action = actions[:, 18]
left_shoulder2_action = actions[:, 19]
left_elbow_action = actions[:, 20]

return obs , torso_position , prev_torso_position_new , velocity_world ,
angular_velocity_world , velocity_local , scale_angular_velocity_local ,
up_vec , heading_vec , right_leg_contact_force , left_leg_contact_force

Reward functions. We show the reward functions in a trial that successfully evolved a human-like
jump: bending both legs to jump. Initially, the reward function focused on encouraging vertical
movement while penalizing horizontal displacement, high contact force usage, and improper joint
movements. Over time, the scaling factors for the rewards and penalties were gradually adjusted
by changing the temperature parameters in the exponential scaling. These adjustments aimed to en-
hance the model’s sensitivity to different movement behaviors. For example, the vertical movement
reward’s temperature was reduced, leading to more precise rewards for positive vertical movements.
Similarly, the horizontal displacement penalty was fine-tuned by modifying its temperature across
iterations, either decreasing or increasing the penalty’s impact on lateral movements. The contact
force penalty evolved by decreasing its temperature to penalize excessive force usage more strongly,
especially in the later iterations, making the task more sensitive to leg contact forces. Finally, the
joint usage reward was refined by adjusting the temperature to either encourage or discourage cer-
tain joint behaviors, with more focus on leg extension and contraction patterns. Overall, the changes
primarily revolved around adjusting the sensitivity of different components, refining the balance
between rewards and penalties to better align the humanoid’s behavior with the desired jumping
performance.

HumanoidJump Task: Reward Function of Iteration 1

def compute_reward(torso_position: torch.Tensor ,
prev_torso_position: torch.Tensor , velocity_world: torch.Tensor ,

right_leg_contact_force: torch.Tensor ,
left_leg_contact_force: torch.Tensor , dof_pos: torch.Tensor) ->
Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Ensure all tensors are on the same device

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

device = torso_position.device

Compute vertical torso movement reward
vertical_movement = torso_position [:, 2] - prev_torso_position
[:, 2]
vertical_movement_reward = torch.clamp(vertical_movement , min
=0.0) # Reward positive vertical movement
vertical_movement_reward = torch.exp(vertical_movement_reward /
0.1) # Use exponential scaling with temperature

Compute horizontal displacement penalty
horizontal_displacement = torch.sum(torch.abs(torso_position [:,
:2] - prev_torso_position [:, :2]), dim=-1)
horizontal_displacement_penalty = torch.exp(-
horizontal_displacement / 0.1) # Penalize large movements with
temperature

Compute leg forces usage reward
contact_force_usage = torch.sum(torch.abs(
right_leg_contact_force) + torch.abs(left_leg_contact_force),
dim=-1)
contact_force_usage_penalty = torch.exp(-contact_force_usage /
10.0) # Penalize high contact force usage with temperature

Compute joint usage reward (encourages proper leg extension
and contraction)
leg_joints_indices = torch.tensor ([6, 7, 8, 12, 13, 14], device
=device) # Indices of leg joints
leg_joint_usage = torch.mean(dof_pos[:, leg_joints_indices],
dim=-1)
leg_joint_usage_reward = torch.exp(-torch.abs(leg_joint_usage)
/ 0.1) # Encourage movements from neutral position

Sum all rewards and penalties
total_reward = vertical_movement_reward +
horizontal_displacement_penalty + contact_force_usage_penalty +
leg_joint_usage_reward

Create a dictionary for individual reward components
reward_components = {

’vertical_movement_reward ’: vertical_movement_reward ,
’horizontal_displacement_penalty ’:

horizontal_displacement_penalty ,
’contact_force_usage_penalty ’: contact_force_usage_penalty ,
’leg_joint_usage_reward ’: leg_joint_usage_reward

}

return total_reward , reward_components

HumanoidJump Task: Reward Function of Iteration 2

def compute_reward(
torso_position: torch.Tensor ,
prev_torso_position: torch.Tensor ,
velocity_world: torch.Tensor ,
right_leg_contact_force: torch.Tensor ,
left_leg_contact_force: torch.Tensor ,
dof_pos: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Ensure all tensors are on the same device

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

device = torso_position.device

Compute vertical torso movement reward
vertical_movement = torso_position [:, 2] - prev_torso_position
[:, 2]
vertical_movement_reward = torch.clamp(vertical_movement , min
=0.0) # Reward positive vertical movement
temperature_vertical = 0.05
vertical_movement_reward = torch.exp(vertical_movement_reward /
temperature_vertical) # Use exponential scaling

Compute horizontal displacement penalty
horizontal_displacement = torch.sum(torch.abs(torso_position [:,
:2] - prev_torso_position [:, :2]), dim=-1)
temperature_horizontal = 0.1
horizontal_displacement_penalty = torch.exp(-
horizontal_displacement / temperature_horizontal) # Penalize
large movements with temperature

Compute leg forces usage reward
contact_force_usage = torch.sum(torch.abs(
right_leg_contact_force) + torch.abs(left_leg_contact_force),
dim=-1)
temperature_force = 1.0
contact_force_usage_penalty = torch.exp(-contact_force_usage /
temperature_force) # Penalize high contact force usage with
temperature

Compute joint usage reward (encourages proper leg extension
and contraction)
leg_joints_indices = torch.tensor ([6, 7, 8, 12, 13, 14], device
=device) # Indices of leg joints
leg_joint_usage = torch.mean(dof_pos[:, leg_joints_indices],
dim=-1)
temperature_joints = 0.05
leg_joint_usage_reward = torch.exp(-torch.abs(leg_joint_usage)
/ temperature_joints) # Encourage movements from the neutral
position

Sum all rewards and penalties
total_reward = vertical_movement_reward +
horizontal_displacement_penalty + contact_force_usage_penalty +
leg_joint_usage_reward

Create a dictionary for individual reward components
reward_components = {

’vertical_movement_reward ’: vertical_movement_reward ,
’horizontal_displacement_penalty ’:

horizontal_displacement_penalty ,
’contact_force_usage_penalty ’: contact_force_usage_penalty ,
’leg_joint_usage_reward ’: leg_joint_usage_reward

}

return total_reward , reward_components

HumanoidJump Task: Reward Function of Iteration 3

def compute_reward(
torso_position: torch.Tensor ,
prev_torso_position: torch.Tensor ,

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

velocity_world: torch.Tensor ,
right_leg_contact_force: torch.Tensor ,
left_leg_contact_force: torch.Tensor ,
dof_pos: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Ensure all tensors are on the same device
device = torso_position.device

Compute vertical torso movement reward
vertical_movement = torso_position [:, 2] - prev_torso_position
[:, 2]
vertical_movement_reward = torch.clamp(vertical_movement , min
=0.0) # Reward positive vertical movement
temperature_vertical = 0.05
vertical_movement_reward = torch.exp(vertical_movement_reward /
temperature_vertical) # Use exponential scaling

Compute horizontal displacement penalty
horizontal_displacement = torch.sum(torch.abs(torso_position [:,
:2] - prev_torso_position [:, :2]), dim=-1)
temperature_horizontal = 0.05 # Adjusted temperature for finer
tuning
horizontal_displacement_penalty = torch.exp(-
horizontal_displacement / temperature_horizontal) # Penalize
large movements

Compute leg forces usage reward
contact_force_usage = torch.sum(torch.abs(
right_leg_contact_force) + torch.abs(left_leg_contact_force),
dim=-1)
temperature_force = 5.0 # Adjusted to make contact force usage
more noticeable
contact_force_usage_penalty = torch.exp(-contact_force_usage /
temperature_force) # Penalize high contact force usage

Compute joint usage reward (encourages proper leg extension
and contraction)
leg_joints_indices = torch.tensor ([6, 7, 8, 12, 13, 14], device
=device) # Indices of leg joints
leg_joint_usage = torch.mean(dof_pos[:, leg_joints_indices],
dim=-1)
temperature_joints = 0.05
leg_joint_usage_reward = torch.exp(-torch.abs(leg_joint_usage)
/ temperature_joints) # Encourage movements from the neutral
position

Sum all rewards and penalties
total_reward = vertical_movement_reward +
horizontal_displacement_penalty + contact_force_usage_penalty +
leg_joint_usage_reward

Create a dictionary for individual reward components
reward_components = {

’vertical_movement_reward ’: vertical_movement_reward ,
’horizontal_displacement_penalty ’:

horizontal_displacement_penalty ,
’contact_force_usage_penalty ’: contact_force_usage_penalty ,
’leg_joint_usage_reward ’: leg_joint_usage_reward

}

return total_reward , reward_components

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

HumanoidJump Task: Reward Function of Iteration 4

def compute_reward(
torso_position: torch.Tensor ,
prev_torso_position: torch.Tensor ,
velocity_world: torch.Tensor ,
right_leg_contact_force: torch.Tensor ,
left_leg_contact_force: torch.Tensor ,
dof_pos: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Ensure all tensors are on the same device
device = torso_position.device

Compute vertical torso movement reward
vertical_movement = torso_position [:, 2] - prev_torso_position
[:, 2]
vertical_movement_reward = torch.clamp(vertical_movement , min
=0.0) # Reward positive vertical movement
temperature_vertical = 0.04 # Adjusted temperature for better
sensitivity
vertical_movement_reward = torch.exp(vertical_movement_reward /
temperature_vertical) # Use exponential scaling

Compute horizontal displacement penalty
horizontal_displacement = torch.sum(torch.abs(torso_position [:,
:2] - prev_torso_position [:, :2]), dim=-1)
temperature_horizontal = 0.1 # Increased temperature to
penalize horizontal movement more
horizontal_displacement_penalty = torch.exp(-
horizontal_displacement / temperature_horizontal) # Penalize
large movements

Compute leg forces usage reward
contact_force_usage = torch.sum(torch.abs(
right_leg_contact_force) + torch.abs(left_leg_contact_force),
dim=-1)
temperature_force = 0.1 # Significantly increase sensitivity
to contact forces
contact_force_usage_penalty = torch.exp(-contact_force_usage /
temperature_force) # Penalize high contact force usage

Compute joint usage reward (encourages proper leg extension
and contraction)
leg_joints_indices = torch.tensor ([6, 7, 8, 12, 13, 14], device
=device) # Indices of leg joints
leg_joint_usage = torch.mean(dof_pos[:, leg_joints_indices],
dim=-1)
temperature_joints = 0.02 # Adjusted for joint usage
sensitivity
leg_joint_usage_reward = torch.exp(-torch.abs(leg_joint_usage)
/ temperature_joints) # Encourage movements from the neutral
position

Sum all rewards and penalties
total_reward = vertical_movement_reward +
horizontal_displacement_penalty + contact_force_usage_penalty +
leg_joint_usage_reward

Create a dictionary for individual reward components
reward_components = {

’vertical_movement_reward ’: vertical_movement_reward ,
’horizontal_displacement_penalty ’:

horizontal_displacement_penalty ,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

’contact_force_usage_penalty ’: contact_force_usage_penalty ,
’leg_joint_usage_reward ’: leg_joint_usage_reward

}

return total_reward , reward_components

Humanoid Task: Reward Function of Iteration 5

def compute_reward(
torso_position: torch.Tensor ,
prev_torso_position: torch.Tensor ,
velocity_world: torch.Tensor ,
right_leg_contact_force: torch.Tensor ,
left_leg_contact_force: torch.Tensor ,
dof_pos: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Ensure all tensors are on the same device
device = torso_position.device

Compute vertical torso movement reward
vertical_movement = torso_position [:, 2] - prev_torso_position
[:, 2]
vertical_movement_reward = torch.clamp(vertical_movement , min
=0.0) # Reward positive vertical movement
temperature_vertical = 0.04 # Adjusted temperature for better
sensitivity
vertical_movement_reward = torch.exp(vertical_movement_reward /
temperature_vertical) # Use exponential scaling

Compute horizontal displacement penalty
horizontal_displacement = torch.sum(torch.abs(torso_position [:,
:2] - prev_torso_position [:, :2]), dim=-1)
temperature_horizontal = 0.05 # Decreased temperature for more
sensitivity
horizontal_displacement_penalty = torch.exp(-
horizontal_displacement / temperature_horizontal) # Penalize
large movements

Compute leg forces usage penalty (Rewritten to reduce contact
force)
contact_force_usage = torch.sum(torch.abs(
right_leg_contact_force) + torch.abs(left_leg_contact_force),
dim=-1)
temperature_force = 0.5 # Adjusted to penalize contact force
usage
contact_force_usage_penalty = torch.exp(-contact_force_usage /
temperature_force) # Penalize high contact force usage

Compute joint usage reward (encourages proper leg extension
and contraction)
leg_joints_indices = torch.tensor ([6, 7, 8, 12, 13, 14], device
=device) # Indices of leg joints
leg_joint_usage = torch.mean(torch.abs(dof_pos[:,
leg_joints_indices]), dim=-1)
temperature_joints = 0.02 # Adjusted for joint usage
sensitivity
leg_joint_usage_reward = torch.exp(-leg_joint_usage /
temperature_joints) # Encourage movements from the neutral
position

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Sum all rewards and penalties
total_reward = vertical_movement_reward +
horizontal_displacement_penalty + contact_force_usage_penalty +
leg_joint_usage_reward

Create a dictionary for individual reward components
reward_components = {

’vertical_movement_reward ’: vertical_movement_reward ,
’horizontal_displacement_penalty ’:

horizontal_displacement_penalty ,
’contact_force_usage_penalty ’: contact_force_usage_penalty ,
’leg_joint_usage_reward ’: leg_joint_usage_reward

}

return total_reward , reward_components

Humanoid Task: Reward Function of Iteration 6

def compute_reward(
torso_position: torch.Tensor ,
prev_torso_position: torch.Tensor ,
velocity_world: torch.Tensor ,
right_leg_contact_force: torch.Tensor ,
left_leg_contact_force: torch.Tensor ,
dof_pos: torch.Tensor

) -> Tuple[torch.Tensor , Dict[str , torch.Tensor]]:
Ensure all tensors are on the same device
device = torso_position.device

Compute vertical torso movement reward
vertical_movement = torso_position [:, 2] - prev_torso_position
[:, 2]
vertical_movement_reward = torch.clamp(vertical_movement , min
=0.0) # Reward positive vertical movement
temperature_vertical = 0.03 # Fine -tuned temperature for
better sensitivity
vertical_movement_reward = torch.exp(vertical_movement_reward /
temperature_vertical) # Use exponential scaling

Compute horizontal displacement penalty
horizontal_displacement = torch.sum(torch.abs(torso_position [:,
:2] - prev_torso_position [:, :2]), dim=-1)
temperature_horizontal = 0.04 # Decreased temperature for more
sensitivity
horizontal_displacement_penalty = torch.exp(-
horizontal_displacement / temperature_horizontal) # Penalize
large movements

Compute leg forces usage penalty (encourage minimal contact
force)
contact_force_usage = torch.sum(torch.abs(
right_leg_contact_force) + torch.abs(left_leg_contact_force),
dim=-1)
temperature_force = 0.5 # Adjusted to penalize contact force
usage
contact_force_usage_penalty = torch.exp(-contact_force_usage /
temperature_force) # Penalize high contact force usage

Compute joint usage reward (encourages proper leg extension
and contraction)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

leg_joints_indices = torch.tensor ([6, 7, 8, 12, 13, 14], device
=device) # Indices of leg joints
leg_joint_usage = torch.mean(torch.abs(dof_pos[:,
leg_joints_indices]), dim=-1)
temperature_joints = 0.02 # Fine -tuned for joint usage
sensitivity
leg_joint_usage_reward = torch.exp(-torch.abs(leg_joint_usage)
/ temperature_joints) # Encourage movements from the neutral
position

Sum all rewards and penalties
total_reward = vertical_movement_reward +
horizontal_displacement_penalty + contact_force_usage_penalty +
leg_joint_usage_reward

Create a dictionary for individual reward components
reward_components = {

’vertical_movement_reward ’: vertical_movement_reward ,
’horizontal_displacement_penalty ’:

horizontal_displacement_penalty ,
’contact_force_usage_penalty ’: contact_force_usage_penalty ,
’leg_joint_usage_reward ’: leg_joint_usage_reward

}

return total_reward , reward_components

39

	Introduction
	Related Work
	Problem Definition
	Method
	Reward Function Initialization
	Search Reward Functions by Human Preferences
	Automatic Feedback

	Experiments
	Testbed
	Baselines
	Experiment Setup
	Results of Proxy Human Preference
	Main Results

	Method Analysis
	Ablations
	Improvement Analysis

	Results of Human-in-the-loop Preference
	Human experiment setup
	IsaacGym Tasks
	HumanoidJump Task

	Conclusion
	Appendix
	Full Prompts
	ICPL Details
	Baseline Details
	PrefPPO
	PEBBLE
	SURF

	Environment Details
	Proxy Human Preference
	Additional Results
	Improvement Analysis

	Human-in-the-loop Preference
	Demographic Data
	IsaacGym Tasks
	HumanoidJump Task

