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Abstract

Flow-based latent generative models such as Stable Diffusion 3 are able to gen-
erate images with remarkable quality, even enabling photorealistic text-to-image
generation. Their impressive performance suggests that these models should also
constitute powerful priors for inverse imaging problems, but that approach has
not yet led to comparable fidelity. There are several key obstacles: (i) the data
likelihood term is usually intractable; (ii) learned generative models cannot be
directly conditioned on the distorted observations, leading to conflicting objectives
between data likelihood and prior; and (iii) the reconstructions can deviate from the
observed data. We present FLAIR, a novel, training-free variational framework that
leverages flow-based generative models as prior for inverse problems. To that end,
we introduce a variational objective for flow matching that is agnostic to the type
of degradation, and combine it with deterministic trajectory adjustments to guide
the prior towards regions which are more likely under the posterior. To enforce
exact consistency with the observed data, we decouple the optimization of the data
fidelity and regularization terms. Moreover, we introduce a time-dependent calibra-
tion scheme in which the strength of the regularization is modulated according to
off-line accuracy estimates. Results on standard imaging benchmarks demonstrate
that FLAIR consistently outperforms existing diffusion- and flow-based methods
in terms of reconstruction quality and sample diversity. Source code is available at
https://inverseflair.github.io/.

1 Introduction

Flow-based generative models are at the core of modern image generators like Stable Diffusion or
FLUX [14]. Beyond image generation based on text prompts, these models have emerged as powerful
data-driven priors for a whole range of visual computing tasks. Their comprehensive representation
of the visual world, learned from internet-scale training datasets, makes them an attractive alternative
to traditional handcrafted image priors. Often, they can be used without any task-specific retraining.

While it is evident that a model capable of generating photorealistic images should be suitable as prior
(a.k.a. regularizer) for inverse imaging problems, a practical implementation faces several challenges.
On the one hand, flow-based models normally operate in the lower-dimensional latent space of a
variational autoencoder (VAE), which means that the forward operator (the relationship between
the observed, degraded image and the desired, clean target image) is no longer linear. On the other
hand, the iterative nature of the generative process means that intermediate stages are corrupted
with (time-dependent) random noise. Hence, one cannot explicitly evaluate their data likelihood,
which renders the data term intractable. Moreover, learned generative models tend to overly favor
regions of the training distribution that have a high sample density. For test samples that fall in
low-density regions, the prior will have a too strong tendency to pull towards outputs with higher
a-priori likelihood, compromising fidelity to the input observations.
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Figure 1: Starting from the adjoint based initialization, we alternate between (i) regularizer updates
via a flow-matching loss that aligns the velocity ut of the variational distribution with the learned
velocity field vθ, and (ii) hard data consistency steps that project the current estimate onto the
measurement manifold.

Here, we propose flow-based latent adaptive inference with deterministic re-noising (FLAIR), a novel,
training-free variational framework explicitly tailored to integrate flow-based latent diffusion models
into inverse problem-solving. To the best of our knowledge, FLAIR is the first scheme that combines
latent generative modeling, flow matching and variational inference into a unified formulation for
inverse problems. Our main contributions are

• A novel variational objective for inverse problems with flow-matching priors.

• Deterministic trajectory adjustments guide the prior towards regions which are more consis-
tent with the observed data.

• Decoupled optimization of data and regularization terms, enabling hard data consistency.

• A novel, time-dependent weighting scheme, calibrated via offline accuracy estimates, that
adapts the regularization along the flow trajectory to match the changing reliability of the
model’s predictions, ensuring robust inference.

2 Related Work

Deep learning based priors. Deep learning–based methods typically follow one of two main
approaches: they either directly learn an inverse mapping [27, 18, 29, 4, 59], or aim to learn a suitable
prior, either through non-generative approaches like unrolled optimization networks [15, 28, 1, 35]
or through generative models such as generative adversarial networks [36, 7, 45], or diffu-
sion [17, 48, 51] respectively flow based models [30, 32]. The latter have demonstrated impressive
performance in image generation tasks, sparking growing interest in leveraging them as priors for
solving inverse problems, particularly through posterior sampling techniques.

Posterior sampling. Although incorporating the prior learned from a diffusion or flow-
based model seems straightforward, problems arise due to the inherent time-dependent structure of
diffusion models, which makes the likelihood term intractable [11]. A variety of approaches have
been proposed for diffusion-based posterior sampling [57, 19, 34, 20]: enforcing the trajectory to
stay on the respective noise manifold [11, 12, 60], applying an SVD to run diffusion in the spectral
domain [24], utilizing range-null space decomposition during the reverse diffusion process [24],
guidance by the pseudo-inverse of the forward operator [49].

Many prior methods perform well in pixel space but are difficult to apply in latent diffusion models
due to VAE non-linearity or memory constraints. In order to circumvent this issue, the authors of
ReSample [47] rely on enforcing hard data consistency through optimization and resampling during
the reverse diffusion process. PSLD [41], introduces additional objectives terms to ensure that all
gradient updates point to the same optima in the latent space. FlowChef [38] incorporates guidance
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into the flow trajectory during inference, whereas FlowDPS [25] separates the update step into two
components: one for estimating the clean image and another for estimating the noise.

In contrast FLAIR follows another class of posterior sampling-based methods, which integrate
diffusion priors with inverse problems by directly optimizing a variational objective that approximates
the data posterior [33]. This framework was recently extended by RSD [61], which incorporates a
repulsion mechanism to promote sample diversity and applied to latent diffusion models. A known
issue with this type of optimization is mode collapse [39], which leads to blurry results for these
methods. Our method targets this problem by introducing a deterministic trajectory adjustment.

3 Background

3.1 Inverse problems

In many imaging tasks, such as inpainting [5], super-resolution [37] or tomographic reconstruc-
tion [46], one aims to recover a target signal x ∈ R

n from a distorted observation y ∈ R
m. The

observation is regarded as the result of applying a forward operator A : Rn 7→ R
m to the target

signal, corrupted by additive Gaussian noise ν ∈ R
m with standard deviation σν .

y = Ax+ ν. (1)

In most practical applications, the forward operator A is either non-invertible or severely ill-
conditioned, making (1) generally ill-posed.

Variational methods solve ill-posed inverse problems by minimizing an energy functional

E(x, y) = D(x, y) +R(x). (2)

to recover the solution.

Interpreted probabilistically via Bayes’ theorem, the posterior distribution p(x|y) is proportional to
the product p(y|x)p(x). In the negative log-domain, this yields the data term D(x, y) = − log p(y|x)
and the regularizer R(x) = − log p(x). Handcrafted priors based on regularity assumptions like
sparsity [43, 44, 10, 13, 9] have long been the standard, but have largely been replaced by deep
learning-based methods in modern data-driven schemes.

3.2 Flow based priors

Models based on flow matching [30] learn a time-dependent vector field vθ(xt, t) that continuously
transforms samples from a simple initial distribution p1(x) to a complex target data distribution p0(x).
Formally, this transformation is described by solving the ordinary differential equation (ODE):

d

dt
ψt(x) = vθ,t(ψt(x)), t ∈ [0, 1], (3)

where ψt(x) represents the trajectory of a sample, evolving smoothly from an initial value drawn at
t = 1 toward a target value at t = 0.

Since the integrated ODE path maps the simple distribution p1(x) to the complex target p0(x), the
learned flow-based model captures the structure of the data and can therefore serve as a powerful
prior for solving inverse problems. To make this approach tractable for high-resolution data, we
adopt the latent diffusion model (LDM) framework [40], which shifts the generative process to a
lower-dimensional latent space using a pretrained autoencoder with encoder E : Rn 7→ R

d and
decoder D : Rd 7→ R

n, where d≪ n. However, applying such priors to inverse problems introduces
challenges, as the non-linearity of the VAE disrupts the linear relationship between measurements
and the target signal, resulting in a nonlinear forward operator.

3.3 Variational flow sampling

To solve inverse problems from a Bayesian perspective, we aim to sample from the posterior

p(x0|y) ∝ p(y|x0)p(x0), (4)

where the likelihood is given by p(y|x0) = N (Ax0, σ2Id), and p(x0) represents the prior modeled
by the flow-based generative model.
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Inspired by previous work [33, 61] we introduce a variational distribution q(x0|y) = N (µx, σ
2
x) to

approximate the true posterior p(x0|y), by minimizing their Kullback–Leibler divergence:

q(x0|y) ∈ arg min
q(x0|y)

KL(q(x0|y)∥p(x0|y)). (5)

Rewriting the KL divergence by means of the variational lower bound leads to:

KL(q(x0|y)∥p(x0|y)) = −Eq(x0|y)[log p(y|x0)]
︸ ︷︷ ︸

D(x, y)

+KL(q(x0|y)∥p(x0))
︸ ︷︷ ︸

R(x)

+ log p(y)
︸ ︷︷ ︸

const

. (6)

Since a single Gaussian cannot capture a multi-modal posterior, we simplify to a deterministic
approximation, setting σ2

x = 0. Equivalently, this corresponds to a single-particle approximation
in the sense of Stein variational methods [31]. As shown in [50], rewriting Equation 6 under this
approximation and extending it to the time-dependent noisy posterior yields:

arg min
q(x0|y)

Eq(x0|y)

[∥y − f(µx)∥2
2σ2

ν

]

︸ ︷︷ ︸

D(x, y)

+

∫ T

0

ω(t) Eq(xt|y)

[

∥∇x log q(xt|y)−∇x log p(xt)∥2
]

dt

︸ ︷︷ ︸

R(x)

(7)
The first term in Equation 7 describes the data term D(x, y) and the second the regularizer R(x),
where the integral ensures optimization over the entire diffusion trajectory. Notably, the latter
constitutes a weighted score-matching objective, where ∇x log p(xt) represents the score function
[51], which may be extracted from a pretrained diffusion or flow model.

The score of the noisy variational distribution depends on the forward diffusion process and can be
computed analytically.

Note that for ω(t) = β(t)/2 the weighted score-matching loss recovers the gradient of the diffusion
model’s evidence lower bound, so that optimizing it yields the maximum likelihood estimate of the
data distribution [50]. However, optimizing Equation 7 is costly, as it requires computing the gradient
through the flow model. As shown in [53] this can be circumvented by reformulating the regularizer
in terms of the Wasserstein gradient flow:

∇µx
R(x) = Et,q(xt|y)




ω(t)( ∇x log q(xt|y)

︸ ︷︷ ︸

score of noisy variational distribution

− ∇x log p(xt)
︸ ︷︷ ︸

score of noisy prior distribution

)




 (8)

Note that optimizing only the regularization term, without the data term, at test time is equivalent to
the objective of Score Distillation Sampling (SDS) [39].

4 Method

Flow Formulation. The variational formulation in Equation 7 is formulated for the score, but can
be reformulated into a denoising or ϵθ parameterization [51, 33]. However, we are interested in a
variational objective that depends on the velocity field vθ(xt, t), which characterizes the probabilistic
trajectory that connects the noise and data distributions.

Proposition 1. We propose to replace the score-based regularizer in the standard variational
objective with a flow matching formulation, resulting in the following objective function:

arg min
q(x0|y)

Eq(x0|y)

[∥y − f(µx)∥2
2σ2

ν

]

︸ ︷︷ ︸

D(x, y)

+

∫ T

0

λR(t) Eq(xt|y)

[

∥vθ(xt, t)− ut(xt|ϵ)∥2
]

dt

︸ ︷︷ ︸

R(x)

(9)

∇µx
R(x) = Et,q(xt|y) [λR(t)vθ(xt, t)− ut(xt | ϵ)] (10)

The flow-matching term that defines the regularizer arises by reparameterizing the variational dis-
tribution to q(xt|y) = N ((1− t)µx, t

2 I). This corresponds to sampling via the deterministic map
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ψt(x0 | ϵ) = (1 − t)x0 + t ϵ, with ϵ ∼ N (0, I). By reformulating the score in terms of the target
velocity field ut, we get:

∇x log q(xt|y) = − (1− t)ut(xt|ϵ) + xt
t

(11)

For the learned velocity vθ(xt, t) a similar approximation holds – for a full derivation, see the
supplementary material subsection A.3.

vθ(xt, t) ≈
−t∇x log p(xt)− xt

1− t
(12)

We can therefore approximate the score of the noisy prior with our learned velocity field vθ

∇x log p(xt) ≈ − (1− t)vθ(xt, t) + xt
t

. (13)

Hard Data Consistency. Existing variational posterior sampling approaches [33, 61] impose soft
constraints on the data fidelity term D(x, y). In contrast, recent work [47] has demonstrated that,
when sampling from latent diffusion models, enforcing hard data consistency generally leads to
better reconstructions with improved visual fidelity. Our method shares this motivation, but differs in
that we optimize over a variational distribution, i.e., we compute min Eq(x0|y)[− log p(y|x0)]. An
additional advantage of this variational setup is that it allows us to initialize the optimization variable
with an adjoint based initialization µx = E(A⊤y), with E being the encoder of the VAE and A⊤ the
adjoint of the linear forward operator in pixel space. Other initialization strategies are also possible.

Accuracy Calibration. As our framework evaluates the trajectory at each time step, we aim to weight
the regularizer’s contribution according to its reliability. The difficulty of the prediction task has been
shown to depend on the network parameterization, as well as on the specific time step t [21]. Since
the regularization term R(x) in our approach is equivalent to the training objective of the pre-trained
flow model, we can easily weight it by the expected model error, which we calibrate on a small set of
images. Specifically, we sample N calibration images and compute the conditional flow matching
objective for 100 linearly spaced time steps between 0 and 1, then average the error over all images
to obtain the expected model error at each time step. Different functions of the model error can be
chosen as weight for the regularizer. We choose:

λR(t) =
1

N

(
N∑

i=1

∥
∥
∥vθ(x

(i)
t , t)− ut(x

(i)
t | ϵ)

∥
∥
∥

2
)−1

(14)

and set λR(t) = 0 for all t < 0.2, since the accuracy of SD3 is heavily degraded for low noise levels.

Deterministic Trajectory Adjustment. Score distillation sampling relies on the assumption that
xt = (1 − t)µx + tϵ lies in a region of the learned prior that has reasonably high support/density.
In practice, this is not always the case. When not tightly conditioned (usually with extensive text
prompts), even the best available diffusion models assign low density to many plausible regions of
the latent space, leading to bad gradient steps. Therefore, we increase the probability of p(xt) by
additionally conditioning xt on the estimated "end-point" µ.

Proposition 2. We introduce a reparameterized variational distribution with a mean that linearly
interpolates between the posterior mean µx and a model-guided x̂1:

q(xt | y) = N
(
(1− t)µx + tαx̂1, t

2(1− α2)I
)
, (15)

where x̂1 = xt+δt + (1 − t − δt)vθ(xt+δt, t + δt) is a single-step velocity-based predictor, and
α ∈ [0, 1] controls the trade-off between deterministic guidance and random noise. This reparameter-
ization induces the following reference velocity field:

ut(xt | ϵ) =
αx̂1 +

√
1− α2ϵ− xt
1− t

. (16)

Intuitively, changing the formulation in this manner ensures that the model relocates the sample
to its expected position on the learned manifold rather than injecting arbitrary noise, which could
drive it in a direction that has high prior likelihood but is not consistent with the observation. To
further encourage exploration and avoid collapsing onto the trajectory of the adjoint measurement,
we inject an additional stochastic component ϵ during this process. A full derivation can be found in
the supplementary material, subsection A.3.
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4.1 Algorithm

The following pseudo-code summarizes our method, integrating all the components discussed above.

We adapt the standard scheme [33, 61] of linearly traversing time in a descending manner and stop
at t = 0.2 as explained in section 4. We choose α = 1− t. Gradient updates to enforce hard data
consistency are performed using stochastic gradient descent. For further implementation details and
ablations, see subsection A.4

Algorithm 1: The FLAIR solver for inverse imaging problems

Input: µx = µinit, λR, α, y, A, vθ
Output: µx

ϵ̂ ∼ N (0, I); ▷ initial noise sample

for t← 1 to 0 by −∆t do
xt ← (1− t)µx + t ϵ̂; ▷ sample noisy latent

ut(xt | ϵ̂)← ϵ̂− xt

1− t
;

∇µx
R← vθ(xt, t)− ut(xt | ϵ̂);

µx ← µx − λR∇µx
R; ▷ update w.r.t. regularizer

µx ← argminµx
∥y −A(µx)∥2; ▷ hard data consistency

ϵ ∼ N (0, I);
x̂1 ← xt + (1− t) vθ(xt, t); ▷ predict deterministic noise

ϵ̂← α x̂1 +
√
1− α2 ϵ; ▷ update noise estimate

5 Experiments

We evaluate the performance of FLAIR in a variety of inverse imaging tasks and compare it against
several baselines, using the SD3 backbone without any fine-tuning. We used several metrics including
SSIM [54], LPIPS [58] and patchwise FID [16] (pFID) to comprehensively assess the perceptual
and quantitative quality of the reconstructions. FID is computed using InceptionV3 features on
patches of 256x256 resolution. All experiments were performed on a NVidia RTX 4090 GPU with
24GB of VRAM. For completeness we also show PSNR values, but point out that the metric is
not well suited for our purposes: PSNR favors the posterior mean, while the goal of the variational
approach is to sample from the posterior distribution. Accordingly, PSNR is known to prefer over-
smoothed, blurry outputs over sharp ones [6]. To demonstrate that our model can also produce
accurate MMSE estimates, we performed ensemble predictions by running posterior sampling eight
times and averaging the results. As shown in subsection A.11, ensembling improves PSNR values
while reducing LPIPS. This confirms that our samples are distributed around the posterior mean.
Moreover, it shows that results closer to the posterior mean – such as those produced by baseline
methods – are perceptually farther from the ground truth (in LPIPS) compared to our samples.

5.1 Setup

Datasets. We utilize two high-resolution image datasets: FFHQ [22] and DIV2K [2]. FFHQ consists
of 70k diverse face images at 1024×1024 resolution of which we take the first 1000 samples. It is
covering variations in age, pose, lighting, and ethnicity. DIV2K contains 800 high-quality images in
2K resolution that span a range of natural scenes with varied textures and structures.

Baselines. Our method is benchmarked against several recent inverse imaging solvers based on
posterior sampling. Specifically, we compare to ReSample [47], FlowDPS [25], FlowChef [38], and
RSD [61]. The latter is used without repulsive term as it delivers better results. To ensure a fair and
meaningful comparison, all methods are evaluated with the same number of function evaluations.

Problem Setting. We run and evaluate all methods at a fixed output resolution of 768×768 pixels.
For single image super-resolution, we consider scaling factors of 8× and 12×. The corresponding
low-resolution inputs are generated by bicubic downsampling. Motion blur is simulated with a blur
kernel of size 61. For box inpainting, we mask large, continuous rectangles that cover approximately
one third of the observation. All synthesized observations are corrupted with additive Gaussian noise,
with standard deviation σν of 0.5%.
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For inference on the FFHQ dataset, we use a predefined text prompt of the form "A high quality photo
of a face", and for DIV2k "A high quality photo of" concatenated with an image-specific description
retrieved by applying DAPE [55] to the observation.

5.2 Experimental Results

Inverse Problems. Our experiments clearly demonstrate that FLAIR outperforms existing flow-based
approaches in terms of all perceptual metrics, see Table 1.

In the case of image inpainting, our method produces high-quality reconstructions that fully leverage
the power of the generative model and blend naturally into the surrounding context, avoiding
degradations and artifacts that we observe in the baselines. In particular, FlowDPS tends to produce
implausible textures in the inpainted regions, while FlowChef regularly fails to generate semantically
consistent content at all.

For single-image super-resolution, FLAIR consistently delivers the most perceptually convincing and
realistic outputs. Notably, the FID scores remain low for both ×8 and ×12 magnification, indicating
an effective usage of the generative prior to overcome the increasing ill-posedness. Again, FlowDPS
suffers from blur and low texture quality, whereas FlowChef tends to lose semantic coherence.

In motion deblurring, FLAIR also restores sharper and semantically more credible content than
competing approaches, which often suffer from residual blur or inconsistent details. The boost in
reconstruction quality is quantitatively reflected by all metrics, confirming that FLAIR reconstructs
images with high fidelity. For further qualitative examples, see subsection A.13.

Table 1: Quantitative results with 50 NFE and σν = 0.5%.

SR ×8 SR ×12 Motion Deblurring Inpainting

Method LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑
FFHQ 768×768

ReSample 0.400 55.6 0.815 26.37 0.474 80.3 0.786 25.47 0.457 82.9 0.788 25.45 0.366 70.8 0.827 21.83
FlowDPS 0.374 38.5 0.756 29.24 0.413 44.0 0.741 28.05 0.431 54.3 0.732 27.64 0.344 42.5 0.771 19.19
RSD 0.391 51.7 0.776 29.69 0.462 71.7 0.743 28.11 0.458 77.3 0.743 27.67 0.478 73.3 0.736 21.97
FlowChef 0.341 30.5 0.760 28.42 0.373 46.5 0.730 27.00 0.406 40.2 0.716 25.81 0.394 69.8 0.780 18.18
Ours 0.213 13.3 0.777 29.54 0.271 16.2 0.740 27.71 0.236 10.7 0.772 29.61 0.184 8.7 0.828 23.69

DIV2K 768×768

ReSample 0.533 55.0 0.625 22.34 0.643 88.1 0.562 20.85 0.556 79.7 0.617 21.79 0.285 51.9 0.796 22.68
FlowDPS 0.476 44.4 0.567 23.01 0.547 54.0 0.528 21.79 0.558 65.5 0.536 21.88 0.328 29.2 0.692 21.71
RSD 0.539 60.9 0.591 23.45 0.684 95.7 0.523 21.96 0.638 97.6 0.551 22.10 0.464 63.9 0.678 23.23
FlowChef 0.490 36.5 0.539 21.84 0.525 43.8 0.492 20.52 0.561 49.6 0.486 19.90 0.489 58.3 0.659 20.87
Ours 0.353 26.5 0.607 23.30 0.421 32.1 0.525 21.39 0.315 21.1 0.653 24.44 0.163 11.0 0.815 23.75

Posterior Variance. To demonstrate that FLAIR does not suffer from mode collapse, we assess the
posterior variance Var[x|y] for the task of ×12 Super Resolution, by drawing 32 samples for a fixed
observation y and computing their pixel-wise variance. We conduct that experiment for our FLAIR
approach, for RSD with repulsive term, and for FlowDPS [25]. The example in Figure 3 illustrates
that FLAIR has the highest sample diversity, which is also reflected in the corresponding variance
maps. Notably, the sample variance is concentrated in regions with high-frequency textures. This
indicates that our method reliably reconstructs the posterior, whose low-frequency part is, in the
super-resolution setting, tightly constrained by the likelihood term.

Editing. Beyond image restoration, we observe that our method also performs remarkably well
for text-based image editing, simply presenting suitable target prompts during inpainting. Figure 4
illustrates a variety of edited images generated from the same photograph with the help of the depicted
masks and prompts.

Pixel Space Experiments We also implement FLAIR in pixel-space using the model from [32],
trained on CelebA-HQ resized to 256x256 px. We compare to DDNM [52], DPS [11], Moment
Matching [42] and ΠGDM [49]. We tuned the hyperparameters for all baselines, which we report
in subsection A.9. As shown in Table 5.2, our method also outperforms previous work in the pixel
space, demonstrating its broader applicability.
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Figure 2: Qualitative comparison. FLAIR produces posterior samples of high perceptual quality
while maintaining high data likelihood. Best viewed zoomed in.

Table 2: Quantitative results with 50 NFE and σν = 0.5% – In-painting and Super-resolution (×8).

Inpainting SR ×8

Method LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑
DDNM 0.158 ± 0.042 26.9 0.732 ± 0.037 18.31 ± 2.94 0.199 ± 0.052 31.9 0.635 ± 0.079 23.59 ± 1.64
DPS 0.195 ± 0.064 30.2 0.689 ± 0.077 20.49 ± 2.81 0.172 ± 0.058 27.8 0.658 ± 0.088 24.59 ± 2.04
MM 0.161 ± 0.054 28.8 0.728 ± 0.062 20.59 ± 3.37 0.172 ± 0.051 29.1 0.669 ± 0.083 24.65 ± 1.97
ΠGDM 0.195 ± 0.064 30.2 0.689 ± 0.077 20.49 ± 2.81 0.157 ± 0.052 26.5 0.677 ± 0.084 24.98 ± 2.07
FLAIR 0.097 ± 0.035 14.2 0.831 ± 0.031 21.87 ± 2.66 0.143 ± 0.039 22.9 0.712 ± 0.076 25.93 ± 1.96

5.3 Ablation Studies

We systematically analyze the impact of key design choices in our method. Specifically, we ablate
the deterministic trajectory adjustment, the use of hard data consistency, and the calibration of the
regularizer weight for ×12 super-resolution, using a subset of 100 samples from the FFHQ and
DIV2K datasets. Quantitative and qualitative results are shown in Table 3 and Figure 6, respectively.

Hard Data Consistency (HDC). Dropping the hard data consistency degrades both metrics, with
PSNR being particularly affected due to poorer alignment with the input observation, which is also
evident in the visual example: the reconstruction is plausible but deviates from the observation.

Deterministic Trajectory Adjustment (DTA). The biggest performance drop compared to the full
setup occurs when removing the deterministic trajectory adjustment, as random noise sampling harms
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Figure 3: Zoomed-in reconstructions for x12 Super Resolution. We show posterior samples (col.
1–4) of FLAIR, FlowDPS, and RSD, posterior mean and standard deviation (over 32 samples, col.
5,6). 0 0.16

Original image "man wearing
aviator glasses."

"man wearing a
wizard hat"

"man with a Mike Tyson
facial tattoo"

"clown with a red nose,
red makeup and a ruff"

Figure 4: Edited images shown alongside original, with prompts: "A high resolution portrait of a..."

the gradient updates in low-density regions of the prior. The reconstruction appears overly smooth
and lacks texture details.

Calibrated Regularizer Weight (CRW). Replacing our calibrated regularizer weight with λR(t) = t
also has a strong impact on perceptual quality: the result is visibly blurred if one ignores the changing
accuracy of the regularizer along the flow trajectory.

Table 3: Ablation study for ×12 super-resolution on DIV2K and FFHQ. Model components are
individually switched on or off.

HDC DTA CRW FFHQ DIV2K
LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑

✓ ✓ ✓ 0.259 27.45 0.427 21.05
✗ ✓ ✓ 0.297 27.17 0.467 20.82
✓ ✗ ✓ 0.432 27.20 0.622 21.69
✓ ✓ ✗ 0.363 28.58 0.583 21.98
✗ ✗ ✗ 0.392 28.33 0.605 21.99

Legend. HDC: Hard Data Consistency; DTA: Deterministic Trajectory Adjustment;
CRW: Calibrated Regularizer Weight. ✓ = included, ✗ = ablated.
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Figure 5: Qualitative comparison. FLAIR in pixel space produces posterior samples.

Ground truth HDC✓, DTA✓, CRW✓ HDC✗, DTA✓, CRW✓ HDC✓, DTA✗, CRW✓ HDC✓, DTA✓, CRW✗ HDC✗, DTA✗, CRW✗

Figure 6: Qualitative samples from the ablation study on ×12 Super Resolution.

6 Conclusion and Limitations

We have presented FLAIR, a training-free variational framework for inverse problems that uses a
flow-based generative model as its image prior. By combining the power of (latent) flow-based
models with a principled reconstruction of the posterior distribution, FLAIR addresses key limitations
of existing methods. First, it is able to target the generation towards images, which match the
observation, by aiding the degradation-agnostic flow matching loss with deterministic noise vectors.
Second, it enables hard data consistency without sacrificing sample diversity, by decoupling the data
consistency constraint from the regularization, while adaptively reweighting the latter according to its
expected accuracy, calibrated offline. Experiments with different image datasets and tasks confirm
that FLAIR consistently achieves higher reconstruction quality than existing baselines based on either
flow matching or denoising diffusion. Notably, our proposed method achieves, at the same time,
excellent perceptual quality, close adherence to the input observations, and high sample diversity.

Evidently, FLAIR inherits the limitations of the underlying generative model. These include biases
caused by the selection of training data, constraints w.r.t. the output resolution, and a limited ability to
recover out-of-distribution modes. Furthermore, our approach introduces additional hyper-parameters
needed to control the deterministic trajectory adjustment. We note that high fidelity image restoration
methods can potentially be misused for unethical image manipulations.

Acknowledgments This work was funded, in part, by the Max Plank ETH Center for Learning
Systems and Huawei Technologies Oy (Finland) Co. Ltd.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All contributions are clearly separated in the abstract and introduction. Ablation
studies confirm that each component of our approach contributes meaningfully to the overall
performance.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have a limitation section in section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the full proof of our propositions in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss all necessary details to reimplement our method in section 4 and
give detailed information on the hyperparameters used for each experiment in subsection A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets we used are openly accessible and we open sourced our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed settings for the parameters we used for our method and
the baselines in subsection A.4.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have a statistical relevance section in the Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We give detailed information about runtime on the hardware we used in the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our methods has a similar societal impact compared to other image restoration
methods, which we highlight in the discussion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our approach is training free and the data and model weights, which have been
used are already publicly accessible.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit all authors, owners, and creators of the assets we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new assets, because our method is training free and the
data publicly available.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not use crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not use crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLMs in any important, original or non-standard component of
the core methods.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

In the following, we provide detailed line-by-line derivations of the mathematical formulations used
in the paper, as well as additional implementation details and experimental results.

A Derivations

A.1 Derivation of flow-based variational formulation

The linear conditional flow and it’s corresponding velocity are defined as:

ψt(x0 | ϵ) = (1− t)x0 + t ϵ, ϵ ∼ N (0, I) , (17)

ut(xt|ϵ) =
dψt
dt

(ψ−1
t (xt|ϵ)|ϵ) . (18)

The score of the noisy variational distribution can be analytically computed with:

q(xt|y) = N ((1− t)µx, t
2 I) , (19)

∇xt
log q(xt|y) = −ϵ

t
. (20)

We compute dψt

dt (x0|ϵ) = −x0 + ϵ and ψ−1
t (xt|ϵ) and insert it into Equation 18:

ut(xt|ϵ) =
ϵ− xt
1− t

. (21)

Solving Equation 21 for ϵ and inserting in Equation 20 gives:

∇xt
log q(xt|y) = − (1− t)ut(xt|ϵ) + xt

t
. (22)

For the learned velocity vθ(xt, t) a similar approximation holds:

vθ(xt, t) ≈
−t∇x log p(xt)− xt

1− t
. (23)

Hence, we can approximate the score of the noisy prior with our learned velocity field vθ

∇xt
log p(xt) ≈ − (1− t)vθ(xt, t) + xt

t
, (24)

and we see that for ω(t) = t
1−t we obtain the conditional flow matching objective for R(x). We

therefore set ω(t) = t
1−t and end up at our final objective:

arg min
q(x0|y)

Eq(x0|y)

[∥y − f(µx)∥2
2ν2

]

︸ ︷︷ ︸

D(x, y)

+

∫ T

0

Eq(xt|y)

[

∥vθ(xt, t)− ut(xt|ϵ)∥2
]

dt

︸ ︷︷ ︸

R(x)

. (25)

Again, the gradient step for the regularizer becomes:

∇µx
R(x) = Et,q(xt|y) [vθ(xt, t)− ut(xt|ϵ)] . (26)

A.2 Derivation of trajectory adjusted flow-based variational formulation

To achieve the proposed trajectory adjustment, we modify the forward process to:

x̂1 = xt+dt + (1− t− dt)vθ(xt+dt, t+ dt) , (27)

xt = (1− t)µx + t (αx̂1 +
√

1− α2ϵ)
︸ ︷︷ ︸

ϵ̂

, (28)

where x̂1 is the noise vector prediction from the last optimization iteration. This induces a variational
distribution:

q(xt | y) = N
(
(1− t)µx + tαx̂1, t

2(1− α2)I
)
, (29)
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leading to a score of

∇xt
log q(xt | y) = − 1

t2(1− α2)
· t
√

1− α2ϵ = − ϵ

t
√
1− α2

. (30)

The velocity field is again computed by Equation 18. We start by defining the flow:

ψt(x0 | ϵ) = (1− t)x0 + t
(

αx̂1 +
√

1− α2ϵ
)

. (31)

The resulting derivative reads

d

dt
ψt(x0 | ϵ) = αx̂1 − x0 +

√

1− α2ϵ , (32)

and the inverse becomes

x0 = ψ−1
t (xt | ϵ) =

xt − tαx̂1 − t
√
1− α2ϵ

1− t
. (33)

Plugging these results into Equation 18:

ut(xt | ϵ) =
αx̂1 +

√
1− α2ϵ− xt
1− t

. (34)

A.3 Derivation of Score from Flow

The score matching objective reads as:

∇xt
ln pt(xt) = argmin

θ

Et∼U [0,1],x0∼p0,ϵ∼N (0,I)

[

w(t) ·
∥
∥
∥
∥
sθ(xt, t) +

1

σ(t)2
(xt − µ(x0, t))

∥
∥
∥
∥

2
]

,

(35)
where,

− 1

σ(t)2
(xt − µ(x0, t)) = ∇xt

log pt(xt | x0), (36)

with pt(xt | x0) = N (µt(x0), σ
2
t I). Note that as usual we assume µt(x0) being linear in x0.

Equation 35 is solved by:

∇xt
log pt(xt) = Ept(x0|xt) [∇xt

log pt(xt|x0)] , (37)

and can be written as:

∇xt
log pt(xt) =

−(xt − µ(E[x0 | xt], t))
σ(t)2

. (38)

In the case of OT flow-matching, we obtain

xt = (1− t)x0 + tx1, (39)

x1 ∼ N (0, Id) and p(xt|x0) = N ((1− t)x0, t
2). The optimal velocity under the flow matching loss

is given by:

v∗(xt, t) = E[x1 − x0 | xt]. (40)

Expressing x1 = xt−(1−t)x0

t
, we can insert into Equation 40 and obtain:

E[x0 | xt] = xt − tE[x1 − x0 | xt]. (41)

Inserting in Equation 38 leads to:

∇xt
log pt(xt) = −xt − (1− t)(xt − tE[x1 − x0 | xt])

t2
, (42)

which for v∗(xt, t) = E[x1 − x0 | xt] reads as:

∇xt
log p(xt) ≈ − (1− t)vθ(xt, t) + xt

t
. (43)
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A.4 Implementation details

Flow Model and Regularizer Settings. As flow matching model, we us Stable Diffusion 3.5-
Medium, which has been released under the Stability Community License. The classifier-free
guidance scale is set to 2 for all experiments. To minimize the regularization term, we use stochastic
gradient descent with a learning rate of 1.

Data Likelihood Term. We use stochastic gradient descent for the minimization of the data term
towards hard data consistency. For numerical stability, the squared error is summed over all measure-
ments instead of computing the mean. The learning rate has to be adjusted accordingly, to compensate
for the varying number of measurements y. Moreover, the minimization is terminated with early
stopping once the likelihood term reaches 1 × 10−4 · len(y), to not overfit the noise in the image
observation.

Super-resolution. We employ bicubic downsampling as the forward operator, as implemented in
[52]. The learning rate is set to 12 for ×12 super-resolution and to 6 for ×8 super-resolution.

Motion Deblurring. A different motion blur kernel is created for each sample using the MotionBlur
package [8], available via github, with kernel size 61 and intensity 0.5. The learning rate for our data
term optimizer is set to 10−1.

Inpainting. For inpainting on FFHQ we always use the same rectangular mask at a fixed position,
chosen such that it roughly masks out the right side of the face (Figure 3). For DIV2k we also use a
fixed mask for all samples, consisting of six randomly generated rectangles (Figure 6).

Data. We use the publicly available Flickr Faces High Quality dataset [23], which is realeased under
the Creative Commons BY 2.0 License and the DIV2K dataset [3], which is released under a research
only license. For FFHQ we use the first 1000 samples of the evaluation dataset and for DIV2K we use
the 800 training samples. We downscale both datasets to 768× 768 px by applying bicubic sampling
so that the shorter edge of the frame has 768 px and apply central cropping afterwards.

A.5 Baselines

For comparability, all baselines use Stable Diffusion 3.5-Medium and the same task definitions as in
A.4.

FlowDPS [25] The standard FlowDPS implementation [26] is applied with 50 NFE, a classifier-free
guidance scale of 2, and step sizes of 15 for inpainting and 10 for all other tasks.

FlowChef [38] Additionally, [26] is employed for FlowChef as well, using 200 NFE for inpainting
and 50 NFE for all other tasks, a classifier-free guidance scale of 2, and a step size of 1 for all tasks.

Repulsive Score Distillation (RSD) [61]. We implement RSD for flow-matching models by applying
Proposition 1 with ω(t) = t, resulting in a weighting term consistent with the original RSD approach.
However, we omit the pixel-space augmentation as it negatively affected performance when combined
with the SD3 VAE. Consistent with the original findings from RSD, we observed that incorporating
the repulsive term improves sample diversity but reduces fidelity. Therefore, we set the repulsive term
to 0 for all results presented in the table, employing it exclusively for comparing posterior variances.

ReSample [47] We re implement ReSample for flow-matching by setting ᾱt =
(1−t)2

t2+(1−t)2
. Further-

more, we compute the hard-data consistency at every iteration as larger skip steps seem to harm
performance. We set the learning rate of the data term optimizer to 15 for all inverse problems.

PSLD [41] Our attempt to adapt PSLD following [26]—using 500 NFE, a classifier-free guidance
scale of 2, and step sizes of 1 (×12 super-resolution), 0.5 (×8 super-resolution and motion deblurring)
and 0.1 (inpainting)—did not yield meaningful results.

A.6 Regularizer weighting

Figure 1 displays the mean and standard deviation of the conditional flow matching loss LCFM as a
function of t, estimated over 100 samples. The loss function starts with high values at t = 1, decreases
over time, but then starts to rise again, and when reaching t ≈ 0.2 even exceeds its initial value .
The rising loss when approaching t = 0 is due, in part, to the increasing difficulty of distinguishing
high-frequency image content from residual noise. Another factor is that near t = 0 the model
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operates in a highly sensitive regime where small prediction errors can cause disproportionately
large deviations from the target, making accurate flow estimation particularly challenging in the final
stages of the trajectory. We therefore modulate the regularization term according to the model error.
Different weighting functions for f(LCFM ) could be chosen that fulfill the condition λR(t=0) = 0.

We simply take the reciprocal of the model error λR(t) = L−1
CFM,t as the regularization weight while

t ≥ 0.2, then set it to 0 for t < 0.2. An alternative would be to shift the reciprocal of L−1
CFM,t by

L−1
CFM,t=0, such that λR(t) = L−1

CFM,t − L−1
CFM,t=0. In Table 1 we compare our default weighting

with this variant, denoted as λshift.

Figure 1: The Flow-Matching loss over time t.

Table 1: Quantitative results with 50 NFE and σν = 0.01. We compare different weighting functions
λR(t) based on the model error

SR ×8 SR ×12 Motion Deblurring Inpainting

Method LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑
FFHQ 768×768

λshift 0.246 27.4 0.793 29.91 0.286 24.4 0.766 28.19 0.237 14.5 0.790 29.84 0.180 8.2 0.828 23.58
Ours 0.213 13.3 0.777 29.54 0.271 16.2 0.740 27.71 0.236 10.7 0.772 29.61 0.184 8.7 0.828 23.69

DIV2K 768×768

λshift 0.379 30.4 0.625 23.58 0.434 37.5 0.522 21.40 0.337 25.8 0.664 24.54 0.151 9.0 0.819 23.79
Ours 0.353 26.5 0.607 23.30 0.421 32.1 0.525 21.39 0.315 21.1 0.653 24.44 0.163 11.0 0.815 23.75

A.7 Effect of captioning

Given the diversity of DIV2k, we use DAPE [56] to generate captions for it and include them in the
prompt A high quality photo of [DAPE caption]. For FFHQ we always prompt with A high quality
photo of a face.. The effect of the text prompt is to increase the likelihood of our sample under the
prior of the (pre-trained, frozen) image generator. For comparison, we also ran experiments without
data specific captions, where we always used the generic prompt A high quality photo. Results are
shown in Table 2

Table 2: Quantitative results with 50 NFE and σν = 0.01. We compare our version with data-specific
captions and a version without captions.

FFHQ DIV2K
Method LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑
wo captions 0.278 17.0 0.734 27.66 0.488 51.5 0.546 21.82
Ours 0.271 16.2 0.740 27.71 0.421 32.1 0.525 21.39

A.8 Additional Experimental Results

We present the experimental results from the main paper in Table 3, now augmented with sample-wise
standard deviations for all metrics except FID.
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Table 3: Quantitative results with 50 NFE and σν = 0.01 – Super-resolution (×8 and ×12).

SR ×8 SR ×12

Method LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑
FFHQ 768×768

ReSample 0.400 ± 0.069 55.6 0.815 ± 0.051 26.37 ± 1.00 0.474 ± 0.078 80.3 0.786 ± 0.056 25.47 ± 1.16
FlowDPS 0.374 ± 0.107 38.5 0.756 ± 0.075 29.24 ± 2.04 0.413 ± 0.107 44.0 0.741 ± 0.074 28.05 ± 2.06
RSD 0.391 ± 0.079 51.7 0.776 ± 0.052 29.69 ± 2.04 0.462 ± 0.093 71.7 0.743 ± 0.059 28.11 ± 2.00
FlowChef 0.341 ± 0.083 30.5 0.760 ± 0.064 28.42 ± 2.22 0.373 ± 0.084 46.5 0.730 ± 0.068 27.00 ± 2.07
Ours 0.213 ± 0.056 13.3 0.777 ± 0.051 29.54 ± 2.02 0.271 ± 0.071 16.2 0.740 ± 0.058 27.71 ± 2.00

DIV2K 768×768

ReSample 0.533 ± 0.130 55.0 0.625 ± 0.132 22.34 ± 2.27 0.643 ± 0.152 88.1 0.562 ± 0.151 20.85 ± 3.02
FlowDPS 0.476 ± 0.129 44.4 0.567 ± 0.139 23.01 ± 3.01 0.547 ± 0.139 54.0 0.528 ± 0.146 21.79 ± 2.94
RSD 0.539 ± 0.121 60.9 0.591 ± 0.124 23.45 ± 2.96 0.684 ± 0.137 95.7 0.523 ± 0.132 21.96 ± 2.86
FlowChef 0.490 ± 0.116 36.5 0.539 ± 0.137 21.84 ± 2.96 0.525 ± 0.118 43.8 0.492 ± 0.145 20.52 ± 2.85
Ours 0.353 ± 0.112 26.5 0.607 ± 0.127 23.30 ± 2.90 0.421 ± 0.131 32.1 0.525 ± 0.136 21.39 ± 2.67

Table 4: Quantitative results with 50 NFE and σν = 0.01 – Motion deblurring and in-painting.

Motion Deblurring In-painting

Method LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑
FFHQ 768×768

ReSample 0.457 ± 0.087 82.9 0.788 ± 0.058 25.45 ± 1.46 0.366 ± 0.053 70.8 0.827 ± 0.033 21.83 ± 1.68
FlowDPS 0.431 ± 0.117 54.3 0.732 ± 0.078 27.64 ± 2.20 0.344 ± 0.060 42.5 0.771 ± 0.048 19.19 ± 3.19
RSD 0.458 ± 0.098 77.3 0.743 ± 0.059 27.67 ± 2.47 0.478 ± 0.082 73.3 0.736 ± 0.048 21.97 ± 2.58
FlowChef 0.406 ± 0.093 40.2 0.716 ± 0.072 25.81 ± 2.61 0.394 ± 0.069 69.8 0.780 ± 0.051 18.18 ± 2.84
Ours 0.236 ± 0.070 10.7 0.772 ± 0.055 29.61 ± 2.24 0.184 ± 0.038 8.7 0.828 ± 0.029 23.69 ± 2.77

DIV2K 768×768

ReSample 0.556 ± 0.146 79.7 0.617 ± 0.134 21.79 ± 2.52 0.285 ± 0.073 51.9 0.796 ± 0.067 22.68 ± 1.84
FlowDPS 0.558 ± 0.153 65.5 0.536 ± 0.148 21.88 ± 3.02 0.328 ± 0.103 29.2 0.692 ± 0.112 21.71 ± 2.67
RSD 0.638 ± 0.156 97.6 0.551 ± 0.136 22.10 ± 3.07 0.464 ± 0.112 63.9 0.678 ± 0.077 23.23 ± 2.21
FlowChef 0.561 ± 0.123 49.6 0.486 ± 0.148 19.90 ± 3.06 0.489 ± 0.148 58.3 0.659 ± 0.131 20.87 ± 2.65
Ours 0.315 ± 0.107 21.1 0.653 ± 0.121 24.44 ± 3.05 0.163 ± 0.053 11.0 0.815 ± 0.054 23.75 ± 2.74

A.9 FLAIR in Pixel Space

Table 5: Quantitative results with 50 NFE and σν = 0.5% – In-painting and Super-resolution (×8).

Inpainting SR ×8

Method LPIPS↓ FID↓ SSIM↑ PSNR↑ LPIPS↓ FID↓ SSIM↑ PSNR↑
DDNM 0.158 ± 0.042 26.9 0.732 ± 0.037 18.31 ± 2.94 0.199 ± 0.052 31.9 0.635 ± 0.079 23.59 ± 1.64
DPS 0.195 ± 0.064 30.2 0.689 ± 0.077 20.49 ± 2.81 0.172 ± 0.058 27.8 0.658 ± 0.088 24.59 ± 2.04
MM 0.161 ± 0.054 28.8 0.728 ± 0.062 20.59 ± 3.37 0.172 ± 0.051 29.1 0.669 ± 0.083 24.65 ± 1.97
ΠGDM 0.195 ± 0.064 30.2 0.689 ± 0.077 20.49 ± 2.81 0.157 ± 0.052 26.5 0.677 ± 0.084 24.98 ± 2.07
FLAIR 0.097 ± 0.035 14.2 0.831 ± 0.031 21.87 ± 2.66 0.143 ± 0.039 22.9 0.712 ± 0.076 25.93 ± 1.96

We additionally implement our method including DTA and λR(t) = L−1
CFM,t (0 for t < 0.2) in pixel

space using the flow model from [32], trained on CelebA-HQ resized (256x256). For comparison,
we rephrase score based baselines to flow following [25] and evaluate all on 1000 samples from the
dataset on super-resolution and inpainting. The methods are hyperparameter-tuned to DDNM [52]
(likelihood weight 4 for inpainting | 1 for SR8), DPS [11] (64 | 512), Moment Matching [42] (4 |
8), ΠGDM [49] (64 | 8) and pixel space FLAIR (0.5 | 32 and regularizer weight 0.4). As shown
in Table 5, our method outperforms previous works also in pixel space, demonstrating its broader
applicability.

A.10 Runtime Analysis

We compare the runtime and memory consumption of our method to the baselines. As our hard data
consistency can strongly influence the runtime, we also provide measurements with the number of
data term steps ≤ 5 and additionally a fast version using a "tinyVAE" of SD3. To validate that the
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Figure 2: Qualitative comparison. FLAIR in pixel space produces posterior samples.

usage of the tinyVAE or less steps does not degrades the performance noticeably we also provide a
metrics for x12 Super Resolution on 100 samples of FFHQ:

Table 6: Comparison of different methods in terms of runtime and memory usage. We validate the
use of less data steps and a "tinyVAE" on ×12 super resolution on 100 samples of the FFHQ dataset.

Method Runtime (s) ↓ Memory (MB) ↓ LPIPS ↓ PSNR ↑
Resample 88.02 19009.2 0.461 25.31
FlowDPS 34.15 12228.6 0.404 27.74
RSD (no repulsion) 21.19 12400.0 0.462 28.11
FlowChef 15.23 12227.72 0.361 26.56
FLAIR (HDC, large VAE) 172.34 12389.4 0.259 27.42
FLAIR (HDC, tiny VAE) 40.77 5960.2 0.256 27.59
FLAIR (5 data term steps, tiny VAE) 22.46 5960.2 0.264 27.61

A.11 Ensembling Experiment

To highlight that our model can also be used to obtain good MMSE estimates, we also conducted
ensemble predictions by running posterior sampling 8 times and averaging the result. The results
show that ensembling increases PSNR values, but reduces LPIPS and confirms that our samples are
indeed distributed around the posterior mean and that results very close to the posterior mean like
the baseline methods are perceptually further away (LPIPS) from the ground truth compared to our
samples.

A.12 Statistical Relevance

Our method is training-free, and the variance in reconstructed images is intentional, reflecting the
stochasticity of our sampling process rather than instability. All methods are evaluated with identical
random seeds to ensure fair comparison. We compute metrics over 1000 samples for FFHQ and 800
samples for DIV2K. Perceptual FID (pFID) is evaluated on 256× 256 patches, resulting in 9000 and
7200 samples, respectively. Table 3 in Appendix A.8 reports means and standard deviations over
multiple samples.
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Table 7: Quantitative results – Super-resolution (×8 and ×12). We report PSNR↑ and LPIPS↓.
For ensembling we averaged 8 independent predictions of the corresponding methods. It can be seen
that PSNR improves for all methods when ensembling. However, FLAIR shows the biggest gain,
which means that our samples are indeed distributed around the mean and feature a higher variance
compared to the baselines.

SR ×8 SR ×12

Method PSNR↑ LPIPS↓ PSNR↑ LPIPS↓
DIV2K

FlowDPS 22.53 0.4837 21.47 0.5524
FlowDPS (8x ensemble) 23.28 0.5157 22.06 0.5995
FlowChef 21.44 0.4898 20.20 0.5228
FlowChef (8x ensemble) 22.60 0.5502 21.60 0.5931
FLAIR 22.83 0.3627 21.05 0.4270
FLAIR (8x ensemble) 23.79 0.4244 22.27 0.4930

FFHQ

FlowDPS 29.02 0.3659 27.74 0.4036
FlowDPS (8x ensemble) 30.12 0.3267 28.65 0.3749
FlowChef 28.05 0.3303 26.56 0.3609
FlowChef (8x ensemble) 29.54 0.3267 28.15 0.3602
FLAIR 29.36 0.2028 27.42 0.2594
FLAIR (8x ensemble) 30.94 0.2457 29.00 0.2999

We also evaluated 100 FFHQ samples and 80 DIV2K samples, sampling three reconstructions per
input for each method. We report the mean of each metric across all samples and the standard
deviation of the means.

Table 8: Statistical evaluation on FFHQ for ×8 Super Resolution. We report mean ± standard
deviation over 3 reconstructions per input.

Method LPIPS ↓ FID ↓ SSIM ↑ PSNR ↑
FlowDPS 0.370 ± 0.0012 70.7 ± 1.45 0.755 ± 0.0010 28.98 ± 0.008
RSD 0.4678 ± 0.0001 102.9 ± 0.05 0.7362 ± 0.0001 28.45 ± 0.001
FlowChef 0.3316 ± 0.0055 63.5 ± 1.45 0.7593 ± 0.0027 28.12 ± 0.072
Ours 0.2039 ± 0.0048 40.5 ± 0.94 0.7970 ± 0.0228 29.74 ± 0.668

Table 9: Statistical evaluation on FFHQ for ×12 Super Resolution. We report mean ± standard
deviation over 3 reconstructions per input.

Method LPIPS ↓ FID ↓ SSIM ↑ PSNR ↑
FlowDPS 0.4073 ± 0.0002 77.6 ± 1.05 0.7391 ± 0.0006 27.71 ± 0.016
RSD 0.5039 ± 0.0002 119.0 ± 0.12 0.7217 ± 0.0001 27.08 ± 0.001
FlowChef 0.3626 ± 0.0050 81.1 ± 1.03 0.7283 ± 0.0027 26.62 ± 0.059
Ours 0.2593 ± 0.0023 45.8 ± 1.51 0.7582 ± 0.0252 27.81 ± 0.660

A.12.1 t-Test Analysis

We further performed paired t-tests on the LPIPS scores between FlowDPS and FLAIR. The null
hypothesis states that the mean LPIPS scores are the same for both methods. In all settings, we
reject the null hypothesis (p < 0.001), confirming the statistical significance of our improvements
see Table 16.
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Table 10: Statistical evaluation on FFHQ for Motion Blur. We report mean ± standard deviation
over 3 reconstructions per input.

Method LPIPS ↓ FID ↓ SSIM ↑ PSNR ↑
FlowDPS 0.4140 ± 0.0030 83.83 ± 1.00 0.7383 ± 0.0006 27.47 ± 0.05
RSD 0.4515 ± 0.0001 108.75 ± 0.08 0.7437 ± 0.0001 27.40 ± 0.00
FlowChef 0.4019 ± 0.0007 74.89 ± 0.69 0.7178 ± 0.0022 25.50 ± 0.04
Ours 0.2196 ± 0.0080 38.8 ± 2.25 0.7964 ± 0.0319 30.10 ± 0.96

Table 11: Statistical evaluation on FFHQ for Inpainting. We report mean ± standard deviation over
3 reconstructions per input.

Method LPIPS ↓ FID ↓ SSIM ↑ PSNR ↑
FlowDPS 0.3315 ± 0.0015 74.00 ± 0.58 0.7755 ± 0.0007 19.06 ± 0.11
RSD 0.4601 ± 0.0003 103.02 ± 0.03 0.7430 ± 0.0000 22.19 ± 0.01
FlowChef 0.3771 ± 0.0013 102.22 ± 0.26 0.7888 ± 0.0016 18.42 ± 0.25
Ours 0.1761 ± 0.0012 33.23 ± 2.02 0.8423 ± 0.0172 24.07 ± 0.80

A.13 Additional Qualitative Examples

To illustrate the visual differences behind the error metrics, we present additional qualitative results
for both FFHQ and DIV2k, comparing FLAIR with existing approaches. These examples complement
the images in the main paper and highlight the visual fidelity, consistency, and robustness of our
method across diverse scenes and different degradations. Figure 9 features a full sized version of the
variance figure in section subsection 5.2.

A.14 Failure cases

We observe two main failure modes for FLAIR, see Figure 10. First, we find that super-resolution
on DIV2k occasionally results in grainy textures, usually in regions with abundant high-frequency
detail and complicated light transport. Potentially, this happens for images which do not have high
probability under the prior. We do not observe those artifacts for the FFHQ dataset. Second, we
observe a few instances where the strong generative prior hallucinates semantically inconsistent or
misaligned structures – especially facial features.
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Table 12: Statistical evaluation on DIV2K for ×8 Super Resolution. We report mean ± standard
deviation over 3 reconstructions per input.

Method LPIPS ↓ FID ↓ SSIM ↑ PSNR ↑
FlowDPS 0.5517 ± 0.0046 138.24 ± 1.67 0.5207 ± 0.0022 22.41 ± 0.02
RSD 0.7163 ± 0.0002 181.83 ± 0.15 0.4892 ± 0.0001 21.99 ± 0.00
FlowChef 0.5726 ± 0.0046 145.77 ± 3.31 0.4998 ± 0.0014 21.21 ± 0.04
Ours 0.3716 ± 0.0161 88.08 ± 1.43 0.5991 ± 0.0192 23.06 ± 0.41

Table 13: Statistical evaluation on DIV2K for ×12 Super Resolution. We report mean ± standard
deviation over 3 reconstructions per input.

Method LPIPS ↓ FID ↓ SSIM ↑ PSNR ↑
FlowDPS 0.6264 ± 0.0045 154.31 ± 0.43 0.4866 ± 0.0024 21.37 ± 0.02
RSD 0.7714 ± 0.0002 198.85 ± 0.12 0.4683 ± 0.0001 21.15 ± 0.00
FlowChef 0.6020 ± 0.0060 151.32 ± 2.45 0.4586 ± 0.0020 20.10 ± 0.03
Ours 0.4316 ± 0.0151 101.12 ± 4.51 0.5236 ± 0.0229 21.35 ± 0.51

Table 14: Statistical evaluation on DIV2K for Motion Deblur. We report mean ± standard deviation
over 3 reconstructions per input.

Method LPIPS ↓ FID ↓ SSIM ↑ PSNR ↑
FlowDPS 0.6242 ± 0.0082 161.57 ± 3.90 0.4978 ± 0.0028 21.41 ± 0.04
RSD 0.8067 ± 0.0002 216.37 ± 0.36 0.4364 ± 0.0001 20.82 ± 0.00
FlowChef 0.6292 ± 0.0007 158.08 ± 3.03 0.4557 ± 0.0025 19.62 ± 0.05
Ours 0.3069 ± 0.0036 77.77 ± 1.89 0.6596 ± 0.0316 24.46 ± 0.71

Table 15: Statistical evaluation on DIV2K for Inpainting. We report mean ± standard deviation over
3 reconstructions per input.

Method LPIPS ↓ FID ↓ SSIM ↑ PSNR ↑
FlowDPS 0.3738 ± 0.0032 106.58 ± 0.89 0.6579 ± 0.0009 21.06 ± 0.05
RSD 0.4667 ± 0.0003 136.82 ± 0.21 0.6650 ± 0.0001 23.07 ± 0.00
FlowChef 0.5111 ± 0.0019 128.97 ± 0.60 0.6355 ± 0.0006 20.51 ± 0.02
Ours 0.1729 ± 0.0014 51.41 ± 0.48 0.8122 ± 0.0124 24.06 ± 0.87

Table 16: Paired t-test p-values for LPIPS (FlowDPS vs. Ours). All comparisons are statistically
significant.

Dataset Task p-value

DIV2K

SR×8 2.92× 10−4

SR×12 7.19× 10−4

Motion Deblur 5.30× 10−4

Inpainting 1.21× 10−4

FFHQ

SR×8 7.05× 10−5

SR×12 6.56× 10−5

Motion Deblur 4.29× 10−5

Inpainting 3.00× 10−5
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Figure 3: Inpainting results on FFHQ. Shown are observation, reference methods, FLAIR and ground
truth. FLAIR produces realistic, high-frequency details while previous works either fail to inpaint the
region correctly or collapse to overly smooth solutions.
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Figure 4: ×12 super-resolution results on FFHQ. Shown are observation, reference methods, FLAIR
and ground truth. FLAIR produces sharp and results which still fulfill the data term, whereas the
baselines tend to predict blurry images.
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Figure 5: Motion de-blur results on FFHQ. Shown are observation, reference methods, FLAIR and
ground truth. FLAIR produces sharp and results which still fulfill the data term, whereas the baselines
tend to predict blurry images.
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Figure 6: Inpainting results on DIV2k. Shown are observation, reference methods, FLAIR and
ground truth. FLAIR produces realistic, high-frequency details while previous works either fail to
inpaint the region correctly or collapse to overly smooth solutions. Moreover they do not fit the data
term (not inpainted region) very well.
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Figure 7: ×12 super-resolution results on DIV2k. Shown are observation, reference methods, FLAIR
and ground truth. FLAIR produces sharp and results which still fulfill the data term, whereas the
baselines tend to predict blurry images.
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Figure 8: Motion de-blur results results on DIV2k. Shown are observation, reference methods,
FLAIR and ground truth. FLAIR produces sharp and results which still fulfill the data term, whereas
the baselines tend to predict blurry images.
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Figure 9: Individual samples for x12 Super Resolution with zoom and std. FLAIR produces varied
samples from the posterior. For superresoltion The variance is expected to be mostly in the high
frequencies, because the data term limits low frequency variations. The baselines tend to predict very
similar looking images with less detail.
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Figure 10: Qualitative failure cases of FLAIR on DIV2k and FFHQ. Top row: grainy results from
systematic error. Those errors potentially stem from a weak prior for those images. For example we
do not observe them for the FFHQ dataset Bottom row: Semantically inconsistent failures. Sometimes
the model lacks the ability to incorporate globally consistent semantics into its restorations.
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