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Abstract

This study explores the feasibility of reconstructing musical stimuli from functional
MRI (fMRI) data using generative models. Specifically, we employ MusicLDM, a
latent diffusion model capable of generating music from text descriptions, in order
to decode musical stimuli from fMRI signals. We first identify music-responsive
regions in the brain by correlating neural activity with representations derived
from the CLAP (Contrastive Language-Audio Pretraining) model. We then map
the fMRI data from these music-responsive regions to the latent embeddings of
MusicLDM using regression models, without relying on empirical descriptions of
the musical stimuli. To enhance between-subject consistency, we apply functional
alignment techniques to align neural data across participants. Our evaluation,
based on Identification Accuracy, achieves a high correspondence between the
reconstructed embeddings and the original musical stimuli in the MusicLDM space,
with an accuracy of 0.914± 0.019, surpassing previous methods. Additionally, a
human evaluation experiment showed that participants were able to identify the
correct decoded stimulus with an average accuracy of 84.1%, further demonstrating
the perceptual similarity between the original and reconstructed music. Future
work will aim to improve temporal resolution and investigate applications in music
cognition.

1 Introduction

Music exerts a profound influence on the human brain, engaging distinct neural networks that
modulate emotions, trigger memory recall, and affect various neurological states [Margulis et al.,
2019]. These interactions underscore the importance of scientific investigation into the neural
processing of music, particularly in relation to medical applications. For instance, Brain-Computer
Music Interfacing (BCMI) [Miranda et al., 2011] offers the potential to tailor therapeutic music
interventions to an individual’s brain state, with possible implications for the treatment of neurological
conditions such as depression and anxiety. Furthermore, BCMI may enable individuals with severe
motor disabilities to compose or control music solely through neural activity, offering novel pathways
for communication and self-expression. Also, music-based cognitive tasks could enhance cognitive
functions such as mental flexibility and creativity [Olszewska et al., 2021].
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Figure 1: The proposed pipeline is composed of three stages. In the top section, participants listened
to musical stimuli during the GTZAN-fMRI experiment, with concurrent fMRI recordings capturing
their brain activity. The middle section involves extracting latent representations of the stimuli using
the CLAP model, followed by voxel-wise encoding to correlate brain responses with music, with a
correlation threshold identifying music-responsive regions. In the bottom section, a regression model
predicts MusicLDM embeddings from these regions, which are subsequently used to reconstruct new
musical outputs via the MusicLDM decoder.

This study investigates the intricate relationship between neural activity and music, focusing on
the feasibility of reconstructing musical stimuli from functional MRI (fMRI) data using generative
models. A key challenge is decoding high-frequency musical information (in our case within the
0-8,000 Hz range) given the lower temporal resolution of fMRI data, which is further complicated
by regional variations in the brain’s Haemodynamic Response Function (HRF). [Denk et al., 2023]
similarly tackles generative music decoding using the same fMRI dataset. However, unlike our
approach, it employs subject-specific pipelines based on anatomical atlases and proprietary models
such as MuLan and MusicLM [Agostinelli et al., 2023, Huang et al., 2022]. Figure 1 provides an
overview of our methodology.

2 Related Work

The neural basis of music processing has been explored extensively in classical neuroscience [Raglio
et al., 2019]. However, recent advancements in artificial intelligence have enabled more detailed and
data-driven analyses of brain responses to musical stimuli [Oota et al., 2023]. Building upon prior
research, significant progress has been made in mapping fMRI activity to latent representations of
diverse stimuli, including images, video, language, and music, through techniques such as linear
mappings and subject-specific models [Ferrante et al., 2023, Scotti et al., 2023, Chen et al., 2023b,
Denk et al., 2023]. Bellier et al. [2023] demonstrate that music reconstruction can be performed
using both linear and nonlinear approaches to decode the auditory experience using EEG data. The
advent of pre-trained models has further facilitated the extraction of latent representations capable of
driving retrieval tasks or conditioning generative models. Notably, the development of text-to-music
models has made it possible to generate high-fidelity music in a conditional framework, linking
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language-based representations with the generation of coherent musical outputs [Agostinelli et al.,
2023, Lam et al., 2023, Copet et al., 2024].

Our work extends the approaches of Ferrante et al. [2024] and Denk et al. [2023], advancing
previous methods by decoding cross-subject brain activity within a generative framework that
operates independently of empirically derived captions.

3 Material and Methods

This section details the dataset and methods employed in this study. The dataset is publicly accessible
at https://openneuro.org/datasets/ds003720/versions/1.0.1. Code is available at this
repository: https://github.com/neoayanami/fmri-music-gen.

We used the GTZAN fMRI dataset [Nakai et al., 2023], which consists of fMRI data from five
subjects (sub-001 to sub-005) exposed to music stimuli drawn from ten distinct genres: blues,
classical, country, disco, hip-hop, jazz, metal, pop, reggae, and rock. Each genre was represented by
54 tracks (i.e. stimuli) sampled at 22.050 kHz. Subjects underwent 18 fMRI runs, of which 12 were
used for training and 6 for testing. Each run consisted of 40 music clips, each 15 seconds in duration.
The stimuli were RMS-normalized and included a 2-second fade-in and fade-out. During testing,
each stimulus was presented four times, and the brain activity (i.e. fMRi signal) was averaged across
identical stimuli to enhance the signal-to-noise ratio.

Scanning was performed using a 3.0T MRI scanner with a repetition time (TR) of 1,500 ms, yielding
400 volumes per run. Preprocessing included motion correction, co-registration to Montreal Neu-
rological Institute (MNI) space using T1-weighted anatomical images, detrending, and run-level
standardization. Brain activity was time-shifted by 3 TRs (4.5 s) to account for the delayed hemody-
namic response, and neural representations were averaged over 10 volumes (15 seconds). The final
dataset comprised 540 fMRI-stimulus pairs per subject (480 for training and 60 for testing).

3.1 Encoding Model

Music processing in the brain involves complex, non-linear mechanisms. To capture this, we used the
CLAP (Contrastive Language-Audio Pretraining) model [Elizalde et al., 2022], a multimodal neural
network employing contrastive learning for audio and text alignment. CLAP extracts audio features
using the SWINTransformer [Liu et al., 2021] and log-Mel spectrograms, as well as text features using
RoBERTa [Liu et al., 2019], projecting both into a shared latent space. Cosine similarity is commonly
used to measure the correspondence between elements of this shared latent space. Further, to identify
brain regions most responsive to musical stimuli, we applied a voxel-wise encoding model, mapping
CLAP’s audio embeddings to fMRI data using Ridge regression with cross-validation (further details
in Appendix A.1). Model training incorporated a hyperparameter search for the regularization
parameter α (ranging on a logarithmic scale from 10−2 to 103) and we empirically determined a
correlation threshold (in a discrete range of values [0.01, 0.02, 0.05, 0.08, 0.10, 0.15, 0.20]) to define
music-responsive brain regions by choosing the value which maximized identification accuracy (see
"Evaluation"). Regression models were trained per voxel, and Pearson correlation coefficients were
used to create a voxel-wise correlation map between real and predicted fMRI activity, identifying
regions most responsive to musical stimuli.

3.2 Functional Alignment

To mitigate individual variability in brain structure and function, we employed cross-subject data
aggregation techniques following Ferrante et al. [2024]. Anatomical alignment is widely used
in neuroimaging as it facilitates the direct comparison of localized brain activity across subjects.
However, relying solely on the brain’s physical structure for alignment and decoding lacks the
precision needed for fine-grained tasks due to inherent subject-specific anatomical variability, which
may not exactly mirror functional differences. We adopted a Ridge regression framework with
cross-validation to regularize and merge voxel-wise fMRI data across subjects, potentially improving
model generalization abilities. In detail, the input was brain activity from the subject to be aligned,
and the output was the activity aligned to a template subject’s space (the target subject was sub-001).
5-fold cross-validation was used, where each fold predicted aligned brain activity using held-out data.
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Figure 2: Overview of the music generation framework from fMRI. (1) GTZAN music stimuli
processed by the CLAP model to extract audio embeddings, used for inference. (2) MusicCaps
stimuli processed by CLAP for audio embeddings and MusicLDM for text representations. (3) A
linear layer maps these embeddings into a 512-dimensional latent space. (4) Music-responsive brain
regions are used to estimate new GTZAN embeddings via regression. (5) The predicted embeddings
are passed to the MusicLDM decoder for music generation.

3.3 Decoding Model

To decode music from brain activity, we used the Music Latent Diffusion Model (MusicLDM)
[Chen et al., 2023a], a generative model conditioned on text. MusicLDM integrates CLAP for
audio-text contrastive learning, a latent diffusion model for audio generation, and HiFi-GAN [Kong
et al., 2020] for audio reconstruction. Since MusicLDM relies on text conditioning, we aligned
CLAP’s audio embeddings with textual embeddings from the MusicCaps dataset [Agostinelli et al.,
2023]. To this end, a linear layer was trained to minimize the mean squared error (MSE) between
the two representations, resulting in 512-dimensional embeddings. During inference, we predicted
embeddings from the GTZAN dataset and mapped brain activity to MusicLDM’s latent space using
Ridge regression with 5-fold cross-validation. This established a direct mapping from neural activity
to musical representations. The full pipeline is illustrated in Figure 2.

3.4 Evaluation

We evaluated model performance using the identification accuracy metric defined in the Brain2Music
framework [Denk et al., 2023], which quantifies the correspondence between predicted and target
music embeddings using Pearson correlation. A correct identification occurs when the correlation
between a predicted and true embedding is higher than with any other target embedding. We computed
a correlation matrix C, where Ci,j represents the Pearson correlation between the i-th predicted
embedding and the j-th target embedding. The identification accuracy was computed as:

id_acci =
1

n− 1

n∑
j=1

1 [Ci,i > Ci,j ]

where 1[·] is the indicator function. The overall accuracy was averaged across all predictions. This
metric ensures the robustness of the model in discriminating between embeddings, which is crucial
for applications requiring high precision.

As a qualitative evaluation, we developed a human metric to assess the perceived similarity between
reconstructed and original music stimuli. 10 participants listened to pairs of stimuli from the test
set and were asked to identify which of the two stimuli was the correct decoded version (additional
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Figure 3: Brain regions corresponding to music-responsive areas, identified using a correlation-based
threshold to differentiate predicted from real fMRI activity.

information is provided in Appendix A.3). Subsequently, we calculated the percentage of correct
identifications and averaged across subjects.

4 Results

A Pearson correlation threshold of 0.05 was selected based on its optimal performance in terms of
Identification Accuracy. This threshold identified 3,433 voxels involved in music processing. The
spatial distribution of these voxels, primarily located in lateral and temporal brain regions, is depicted
in Figure 3. The identified brain regions in the temporal lobes and lateral frontal areas—including
the bilateral superior temporal gyri and inferior frontal gyri—are plausible music-responsive regions
involved in auditory processing and complex aspects of music cognition, aligning with established
research linking music perception to both auditory and higher-order cognitive regions.

Table 1 presents the performance of the proposed method, which utilizes functional alignment. The
model achieved an Identification Accuracy of 0.914±0.019, outperforming several baseline methods.

Table 1: Comparison of Test Identification Accuracy

Embedding Test Identification Accuracy
SoundStream-avg 0.674± 0.016
w2v-BERT-avg 0.837± 0.005
MuLantext 0.817± 0.014
MuLanmusic 0.876± 0.015

Our - Functional Alignment 0.914± 0.019

In the human metric experiment, the participants’ average accuracy was 84.1% with respect to
the chance level (50%), indicating that the human ear is able to detect the correlation between
the original musical stimulus and the brain-generated counterpart. Samples of the generated
tracks compared to the original stimuli are available at: https://musicdecod.my.canva.site/
decoding-musical-perception.

5 Discussion and Conclusion

This study demonstrates the feasibility of decoding music from neural activity across multiple subjects
with high accuracy, utilizing advanced computational methods and neural alignment techniques. These
results contribute to a deeper understanding of cognitive music processing and have implications
for potential applications, such as therapeutic interventions and brain-computer interfaces. Our
findings are consistent with previous research, indicating that genres with distinct structural features,
such as classical and jazz, are more robustly represented in the brain. In contrast, closely related
genres like rock and blues are more challenging to differentiate, suggesting the need for more refined
modelling approaches. The inherent noise in fMRI signals, along with their subsampled nature, limits
the precision and fidelity of the reconstructed music. The coarse temporal resolution of fMRI (1.5
seconds) constrains the ability to decode rhythmic components accurately, and the extended scanning
duration required may reduce the practicality of these methods in real-world applications. In the
future, comparative studies of brain-reconstructed music among participants with different levels of
musical expertise or from diverse cultural backgrounds could yield valuable insights.
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A Supplemental Material

A.1 Encoding Model Details

Formally, for each subject i, we estimate whole-brain encoding weights β to predict brain activity
z using the audio latent representations h as inputs. Specifically, we train a model ẑi = hβi for
each subject. To optimize the weights β, we perform nested cross-validation on the training set,
minimizing the loss function L = |ztri − htrβi|2 + α|βi|2. In each fold, we predict the held-out
data (20% of the training set not used to train that specific model). When predicting on the entire
training set, we compute the voxelwise correlation between the predicted and real brain activity,
corr(ẑtri , ztri ), selecting only voxels that exceed the correlation threshold for further analysis.

A.2 Similarity in Music Latent Diffusion Space

We also computed the cosine similarity matrix between the real and predicted MusicLDM embeddings
using the following formula: cosine_simi,j =

ri·pj

∥ri∥∥pj∥ where ri and pj are the normalized real
and predicted embeddings, respectively. Each score represents the degree of alignment between
these embeddings, which is critical for evaluating the model’s performance in producing embeddings
consistent with the target data. The computed similarity matrix is visualized as a heatmap (Figure 4),
where each cell represents the cosine similarity between a real target embedding (row) and a predicted
embedding (column). The matrix illustrates that the predicted latent representations of the stimuli are
well-aligned with the real ones (along the diagonal) and, in some cases, also between representations
of closely related genres, such as rock, reggae, and blues.

A.3 Human Evaluation

We used Streamlit, a Python framework, to develop a simple web interface for participants. Streamlit
is an open-source library for turning data scripts into web applications without requiring the im-
plementation of a custom front end. The user experience consisted of listening to three distinct
audio stimuli: the original stimulus, the brain-decoded version of the target stimulus, and a randomly
selected brain-decoded track from the test set. In each trial, the randomly selected song was chosen
without regard to genre, which permitted participants to encounter pairs from closely related genres
(e.g. ’hip-hop’ vs. ’pop’ or even ’hip-hop’ vs. ’hip-hop’) as well as contrasting genres (e.g. ’hip-hop’
vs. ’jazz’). Participants were asked to choose the track they perceived as most similar to the original
stimulus before proceeding to the next musical stimulus. The application interface is shown in
Figure 5.
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Figure 4: Heatmap of cosine similarity scores between real (rows) and predicted (columns) GTZAN
embeddings. The colour scale ranges from -0.2 (blue) to 1.0 (red), with red indicating higher
similarity. The concentration of red along the diagonal indicates a strong match between predicted
embeddings and their corresponding real embeddings.

Figure 5: Reprentative image of the Streamlit interface used by participants during the human metric
experiment.
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