
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALLEVIATING SUBOPTIMALITY OF FLOW MAPS
WITH IMPROVED SELF-DISTILLATION GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Consistency-based approaches have been proposed for fast generative modeling,
achieving competitive results compared to diffusion and flow matching models.
However, these methods often rely on heuristics to mitigate training instability,
which in turn limits reproducibility and scalability. To address this limitation, we
propose the generalized flow map framework, unifying recent consistency-based
methods under a common perspective. Within this framework, we investigate
the suboptimality of existing approaches and identify two key factors for repro-
ducibility: time-condition relaxation and marginal velocity guidance. To incor-
porate these, we leverage self-distillation to guide consistency models along the
marginal velocity. We further propose improved Self-Distillation (iSD) by explor-
ing the design space of flow maps, thereby reducing reliance on heuristics. Our
formulation naturally extends to classifier-free guidance, achieving four-step gen-
eration with an FID of 11.06 on ImageNet 256×256. iSD shows qualitatively
comparable results to prior few-step generative models, providing a theoretical
and empirical foundation for reproducible consistency training.

1 INTRODUCTION

Diffusion (Ho et al., 2020; Song & Ermon, 2019a; 2020; Song et al., 2021) and flow matching
models (Liu et al., 2023; Lipman et al., 2023) have achieved remarkable performance across a wide
range of applications. This progress stems from flow-based modeling and multi-step inference, but
is limited by multiple network evaluations during generation. To address this limitation, several
works have explored improving sampling efficiency (Xiao et al., 2022; Salimans & Ho, 2022; Yin
et al., 2024b;a; Zhou et al., 2024), but they rely on additional distillation stages or auxiliary networks
to achieve fewer-step generation, thereby introducing additional training cost.

Consistency Models (Song et al., 2023) and its variants (Frans et al., 2025; Song & Dhariwal, 2024;
Geng et al., 2025b; Lu & Song, 2025; Yang et al., 2024; Sun et al., 2025) have been proposed for
training from scratch in few-step generation. Earlier studies on consistency models have often suf-
fered from training instability, which led subsequent works to focus on stabilization by introducing
various heuristics. However, the reliance on these complex techniques has reduced reproducibility.

In this work, we aim to develop a simplified and reproducible few-step generative model based on
consistency methods. We begin by analyzing existing approaches: (i) we propose a generalized
flow map framework that covers various design choices of recent consistency-based methods; (ii)
we unify these approaches under our framework, providing a theoretical basis for analyzing sub-
optimality; and (iii) we show that most of the recent methods do not guarantee convergence to the
generator along the marginal velocity field, due to suboptimality and instability of their objectives.

Motivated by these observations, we hypothesize that suboptimality and instability undermine the
reproducibility of consistency training. From our unified perspective, we identify two key factors
for reproducible training: time-condition relaxation and marginal velocity guidance. To incorporate
these factors, we leverage our generalized flow map formulation with self-distillation. Some prior
work (Issenhuth et al., 2025; Silvestri et al., 2025) have attempted to address these issues by reducing
the loss variance, thereby resolving them indirectly. In contrast, self-distillation (Boffi et al., 2025a)
was proposed to guarantee convergence to the marginal flow directly, but it relies on heuristics to
stabilize training. By exploring the design space of flow map models, we propose improved Self-
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Distillation (iSD), which further reduces the reliance on heuristics. Moreover, we extend the iSD
formulation to classifier-free guidance, achieving additional performance gains.

Our iSD demonstrates competitive performance against recent few-step generative models, while
providing improved reproducibility. On ImageNet 256×256 (Deng et al., 2009), our model achieves
an FID (Heusel et al., 2017) of 11.06 for four-step generation. The reproducibility of iSD is vali-
dated across multiple random initializations by measuring the standard deviation of FID, achieving
0.735. It demonstrates improved reproducibility compared to consistency training, as training can
be performed from scratch with reduced heuristics.

Contribution. (i) We extend the flow map framework to cover various design choices, unifying
recent consistency-based approaches within it (Sec. 3.2). (ii) We prove the suboptimal convergence
and instability of gradient dynamics in recent consistency-based methods, showing that they under-
mine reproducibility and training stability (Sec. 3.3). (iii) To address these issues, we leverage the
self-distillation, which guarantees convergence to the marginal velocity field (Sec. 4). (iv) We gen-
eralize the self-distillation to incorporate recent design choices and further extend it to classifier-free
guidance, which we term improved Self-Distillation (iSD, Sec. 4). (v) We explore the design space
and present the best choices for iSD. (Sec. 5).

2 RELATED WORK

Eulerian Distillation

Direct Training

Marginal velocity
Consistency Model Flow Map Model

Conditional velocity

Figure 1: Eulerian distillation and
direct training of consistency mod-
els and flow map models. Consis-
tency models can be generalized into
flow map models, which define a map-
ping between two points on the same
trajectory. Eulerian distillation learns
flow mappings along the marginal ve-
locity, whereas direct training learns
them along conditional velocity.

Diffusion and Flow Matching Models. Diffusion mod-
els (Ho et al., 2020; Song & Ermon, 2019a; Song et al.,
2021) and flow matching models (Albergo & Vanden-
Eijnden, 2023; Albergo et al., 2023; Boffi et al., 2025b;
Liu et al., 2023) are generative models that gradually
transform a tractable noise distribution into the data distri-
bution. These models have achieved remarkable progress
in high-fidelity generation (Rombach et al., 2022; Podell
et al., 2024; Peebles & Xie, 2023; Esser et al., 2024).
However, their reliance on a multi-step sampling proce-
dure requires substantial computational resources.

Few-step Generation. Several work have explored im-
proving sampling efficiency of diffusion models (Sali-
mans & Ho, 2022; Xiao et al., 2022; Rombach et al.,
2022). These approaches aim to distill pretrained diffu-
sion models into fewer-step generators, adopt GANs, or
leverage VAEs to reduce input size. In parallel, distri-
bution matching distillation methods (Yin et al., 2024b;a;
Zhou et al., 2024) have been proposed to construct one-
step generators by tracking the generator’s score. How-
ever, both approaches rely on additional distillation stages
or auxiliary networks, which increase training cost.

Consistency Models. Consistency Models (Song et al.,
2023) are designed to predict a sample directly from
any point along a flow trajectory. Both distillation and
training methods have been proposed, but training from
scratch is known to be unstable. Several studies have
introduced heuristics to stabilize training, including ini-
tialization, improved objectives and progressive training
schemes (Song & Dhariwal, 2024; Geng et al., 2025b; Lu
& Song, 2025). Other studies have identified the gap between distillation and training objectives (Is-
senhuth et al., 2025; Silvestri et al., 2025; Boffi et al., 2025b), which can lead to high loss variance
and suboptimal convergence when training from scratch. To mitigate this, network-induced cou-
plings have been introduced to reduce loss variance, addressing the issue indirectly. In contrast,
self-distillation has been proposed to guarantee convergence directly, while dependent on heuristics.
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Unified Framework. Recently, several studies have aimed to unify consistency models and flow
matching. UCGM (Sun et al., 2025) introduced a framework that integrates both paradigms, but it
does not account for the relaxed constraint of mapping points. More broadly, the flow map frame-
work (Boffi et al., 2025b; Kim et al., 2024) presented a mathematical framework for consistency
models, defining a model that learns flow maps as mappings between any two points on the same
trajectory. However, it does not aim to unify recent work or explore their design spaces.

3 SUBOPTIMALITY OF DIRECT FLOW MAP MATCHING

In this section, we revisit the flow map framework (Boffi et al., 2025b; Kim et al., 2024) and extend
it to interpret recent consistency-based approaches. We observe that most methods learn conditional
velocity fields, which do not guarantee convergence to the marginal velocity field. Such suboptimal
flow maps may lead to trajectory crossings, non-injective mappings, or severe reproducibility issues.

3.1 PRELIMINARIES

Given a training dataset X with underlying distribution pX , flow matching models are trained to
match the velocity fields of continuous flows, starting from a tractable distribution pZ . Prior work
constructs such flows via an interpolation, xt = αtx + σtz, where x ∼ pX and z ∼ pZ . A
linear interpolation xt = (1 − t)x + tz for t ∈ [0, 1] (Liu et al., 2023; Lipman et al., 2023) and a
trigonometric interpolation xt = cos(t)x + sin(t)z for t ∈ [0, π/2] (Albergo & Vanden-Eijnden,
2023; Albergo et al., 2023; Lu & Song, 2025) are the widely adopted choices.

We assume that αt and σt are monotone with boundary conditions α0 = σT = 1 and αT = σ0 = 0
for t ∈ [0, T ]. Both are continuous and have bounded first- and second-order derivatives. Under this
assumption, the marginal distribution induced by the flow, ρt, satisfies ρ0 = pX and ρT = pZ .

To ensure convergence of the consistency objective in the subsequent discussion, we propose an
additional assumption that αtσ

′
t − σtα

′
t = ν ̸= 0 for all t ∈ [0, T ] where ν is constant (see Ap-

pendix A.4). Notably, both linear and trigonometric interpolations satisfy this condition with ν = 1.

With the constructed flow, the flow matching models optimize the squared error between the condi-
tional velocity vt(xt|x) and a parameterized velocity network Fθ:

LCFM = Ex∼pX ,z∼pZ ,t∼U [0,1]

[
∥Fθ(xt; t)− vt(xt|x)∥22

]
, vt(xt|x) = α′

tx+ σ′
tz (1)

Conditional flow matching LCFM converges to the flow induced by the marginal velocity v∗t (xt) =
Ex|xt

[v(xt|x)]. If v∗t (x) is Lipschitz continuous in both t and x, the ODE dxt = v∗t (xt)dt has a
unique solution and satisfies the continuity equation for ρt (Lipman et al., 2023).

However, we observe that diffusion and flow matching models can suffer from mean collapse, in
which one-step samples collapse to the mean of the data distribution (proof in Appendix A.1).

3.2 GENERALIZED FLOW MAP MATCHING

We begin by introducing a flow map with Eulerian distillation following prior work, and then gener-
alize these formulations to unify recent consistency-based methods. Within our extended framework,
we interpret recent methods and provide a theoretical basis for analyzing their suboptimality.

Flow Map. From the flows defined by an interpolation, our goal is to draw samples from the target
distribution in a few sampling steps. To achieve this, we define a flow map as a mapping between
two points xt and xs (s < t) on the same trajectory, using the marginal velocity v∗t (xt) as follows:

ft,s(xt) = xt +

∫ s

t

v∗τ (xτ )dτ. (2)

If the marginal velocity is Lipschitz continuous, the flow map is well-defined, injective, and thus
free from the mean collapse problem (proof in Appendix A.2).

Training Flow Map. Since the flow map is defined as an integral, direct supervision from scratch
is challenging. Assuming a teacher flow matching network FΦ, we can generate training data using
an ODE solver, enabling direct supervision in a distillation manner. This procedure reduces to the

3
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one-step distillation of rectified flows (Liu et al., 2023) for fixed t = 1 and s = 0. However, it
requires a data generation process with substantial computational resources.

To address this limitation, many recent studies adopt consistency training (Song et al., 2023), which
can be derived from the Eulerian equation (proof in Appendix A.3; see also Boffi et al. (2025b)).
Proposition 3.1. (Eulerian Equation) Given the flow induced by a Lipschitz continuous marginal
velocity v∗t (xt), the flow map ft,s is the unique solution of the Eulerian equation:

∂tft,s(x) + v∗t (xt) · ∇xft,s(x) = 0 (3)
when f is continuous in x, t, s, Lipschitz continuous in x, and satisfies the boundary ft,t(x) = x.

To facilitate training of a flow map network fθ using the Eulerian equation, the training objective
can be formulated as a squared minimization problem, referred to as Eulerian distillation:

LED = Ex,z,t,s

[
∥∂tfθ(xt; t, s) + v∗t (xt) · ∇xfθ(xt; t, s)∥22

]
(4)

When s = 0, Eulerian distillation reduces in value to continuous-time consistency training objec-
tive (Song et al., 2023) (details in Appendix A.5). However, their gradient dynamics differ, which
affects the training stability, as further discussed in a later section (Prop. 3.4).

Since the objective involves a Jacobian-vector product, its optimization requires computing a Hes-
sian, introducing computational overhead. To address this, Lu & Song (2025) reformulated the
consistency training objective with a stop-gradient operation, while keeping the gradients identical:

LCT = Ex,z,t

[∥∥∥∥fθ(xt; t)− fθ−(xt; t) +
dfθ−(xt; t)

dt

∥∥∥∥2
2

]
(5)

where fθ− denotes the gradient-detached network. Using Eq. 5, the JVP operation is detached from
the gradient flow, and the update step requires two backward passes but avoids Hessian computation.

Generalized Flow Map. To interpret recent approaches as flow maps, we propose a generalized
formulation of the network fθ as a one-step Euler solution with a pseudo-velocity network Fθ:

fθ(xt; t, s) = ν−1(A′
t,sxt −At,sFθ(xt; t, s)), At,s = σtαs − σsαt (6)

This formulation satisfies the boundary condition of Prop. 3.1. For a linear trajectory, it reduces to
fθ(xt; t, s) = xt + (s − t)Fθ(xt; t), widely adopted in flow map studies (Geng et al., 2025a; Boffi
et al., 2025b; Sabour et al., 2025). At s = 0, it simplifies to fθ(xt; t) = xt− tFθ(xt; t), the common
setting in consistency models (Yang et al., 2024; Sun et al., 2025). For a trigonometric trajectory
with s = 0, we obtain fθ(xt; t) = cos(t)x− sin(t)Fθ(xt; t), as introduced by Lu & Song (2025).

By generalizing the formulations of flow maps, we propose instantiations of these methods under a
unified perspective (proof in Appendix A.5).
Proposition 3.2. (Interpretation of Recent Methods) Recent consistency-based methods can be in-
terpreted as instances of the flow map framework, trained with the generalized Eulerian equation:

∂tfθ(xt; t, s) + τt(xt, x) · ∇xfθ(xt; t, s) = 0 (7)
where xt is determined by the Interpolant, τt by the Trajectory, and the constraints of t, s by
Timestep, as summarized in Tab. 1.

To be consistent with the generalized Eulerian equation, we extend Eulerian distillation and consis-
tency training objective for fθ(xt; t, s) = fθ

t,s(xt). Since the guiding trajectory τt is not generally
Lipschitz continuous, it no longer guarantees the convergence to the marginal flow map.

LED = Ex,z,t,s

[∥∥∂tfθ
t,s(xt) + τt(xt, x) · ∇xf

θ
t,s(xt)

∥∥2
2

]
(8)

LCT = Ex,z,t,s

[∥∥∥fθ
t,s(xt)− fθ−

t,s (xt) + ∂tf
θ−

t,s (xt) + τt(xt, x) · ∇xf
θ−

t,s (xt)
∥∥∥2
2

]
(9)

We observe several design choices from these instantiations. Prior studies have focused on linear
and trigonometric interpolations. The guiding trajectory typically follows either pretrained velocity
networks or the conditional velocity. Consistency models usually fix s = 0, whereas other flow map
models relax it to s < t. Some models compute the JVP directly using torch.func.jvp, while
others approximate it as dfθ(xt; t)/dt ≈ [fθ(xt+ϵ; t+ ϵ)− fθ(xt−ϵ; t− ϵ)]/(2ϵ).

We explore these design spaces in the experimental section, and select the best settings: (i) trigono-
metric interpolation, (ii) approximated marginal velocity, (iii) s < t, and (iv) approximated JVP.
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Table 1: Instantiation of the flow map framework for each consistency-based generative model.
Model Interpolant xt Trajectory τt Timestep JVP Type Loss Note
Distillation-based Methods
FMM-EMD (Boffi et al., 2025b) Linear FΦ(xt; t) s < t Exact LED Teacher FΦ(xt; t)
AYF-EMD (Sabour et al., 2025) Linear FΦ(xt; t) s < t Exact LCT
sCD (Lu & Song, 2025) Trigonometric FΦ(xt; t) s = 0 Exact LCT

Consistency Training Methods
MeanFlow (Geng et al., 2025a) Linear vt(xt|x) s < t Exact LCT
ConsistencyFM (Yang et al., 2024) Linear vt(xt|x) s = 0 Approx LCT
sCT (Lu & Song, 2025) Trigonometric vt(xt|x) s = 0 Exact LCT
UCGM (Sun et al., 2025) Arbitrary vt(xt|x) s = 0 Approx LCT
Shortcut Model (Frans et al., 2025) Linear Fθ(xt; t, t) s = t+ d Approx LCTM d ∈ [−2−1,−2−7]

Self-Distillation Methods
Self-Distillation (Boffi et al., 2025a) Linear Fθ(xt; t, t) s < t Exact LSD
improved Self-Distillation (Ours) Arbitrary Fθ(xt; t, t) s < t Approx LSD-R

3.3 SUBOPTIMALITY AND INSTABILITY

Most consistency training approaches learn flow maps guided by the conditional velocity. We denote
Eulerian distillation under conditional velocity guidance as direct training.

LDT = Ex,z,t,s

[
∥∂tfθ(xt; t, s) + v(xt|x) · ∇xfθ(xt; t, s)∥22

]
(10)

However, under the assumption in Prop. 3.1, the direct training does not guarantee convergence to
the flow map along the marginal velocity, due to the gap between conditional and marginal velocity
guidance (proof in Appendix A.6; cf. Boffi et al. (2025b)).
Proposition 3.3. (Suboptimality of direct training) The gap between Eulerian distillationLED along
the marginal velocity and direct training LDT is given by

LDT − LED = Ex,z,t,s

[
Varx|xt

[∆v · ∇xfθ(xt; t, s)]
]

(11)

where ∆v = v(xt|x)− v∗t (xt). This discrepancy forces the network in the direction of ∆v ⊥ ∇xfθ,
leading to distortion of the flow map. The flow map induced by direct training is indefinite.

This can affect methods that optimize the direct training objective. In such cases, injectivity and
non-crossing trajectories are no longer guaranteed, which may result in mode collapse or failure of
locality-based editing. Instead of optimizing the direct training objective, the consistency training
objective ensures the marginal flow map at its fixed point, even when guided by conditional velocity.
However, it does not guarantee convergence due to its gradient dynamics (proof in Appendix A.7).
Proposition 3.4. (Instability of consistency training) The consistency training objective with a con-
ditional velocity reduces to the objective with the marginal velocity under expectation.

However, it lacks the curvature required to stabilize the optimum, ensuring only the existence of a
fixed point that satisfies the Eulerian equation rather than guaranteeing the global optimum. Thus,
the gradient dynamics may fail to converge.

Some work (Issenhuth et al., 2025; Silvestri et al., 2025) leverages neural networks to conduct the
flow. In direct training settings, these approaches can provide a tighter bound to Eulerian distillation,
but still do not guarantee the convergence to the marginal velocity field. (proof in Appendix A.8).

Table 2: Consistency training results on ImageNet 256×
256 under different preconditioners. Multi-step FID denotes
the FIDs of pretrained networks for given ODE solver and
sampling-step pairs. Few-step FID denotes the 2-NFE FID
of consistency models initialized from the corresponding
preconditioner (details in Appendix C.1).

Preconditioner Multi-step FID↓ Few-step FID↓
Multi-step Baseline 1.21 (UCGM-S, 30-step) 2.69
LightningDiT 2.17 (Euler, 250-step) 10.01
Reproduced Model 2.41 (UCGM-S, 30-step) 5.96
w/o Preconditioner - Diverged (200↑)
Reported Baseline 1.21 (UCGM-S, 30-step) 1.42

Preconditioners. Despite various
training techniques proposed in prior
work, classical consistency training
still suffers from reproducibility is-
sues. In particular, recent consistency
training methods rely on initializa-
tion with pretrained diffusion mod-
els, such as Karras et al. (2022); Yao
et al. (2025). These pretrained mod-
els are often referred to as multi-step
preconditioners, and we observe that
the performance of consistency mod-
els varies depending on them.
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As shown in Tab. 2, we evaluated an open-source continuous-time consistency model (Sun et al.,
2025) on ImageNet 256×256. With the released multi-step baseline, the model achieved a 2-NFE
FID of 2.69. However, when using the pretrained LightningDiT (Yao et al., 2025) or our reproduced
multi-step model, the FIDs were worse than the baseline and diverged when initialized randomly.

Linearization Cost Hypothesis. Some studies (Geng et al., 2025a; Frans et al., 2025) enable train-
ing from scratch without a preconditioner. The key difference is that they allow s < t, while others
fix s = 0. Intuitively, training long-range mappings is more challenging than short-range ones, since
the linearization cost increases with step size. In both objectives, we observe that s → t amplifies
the flow matching term, while s → 0 amplifies a linearization term involving JVP, which is struc-
turally more complex (Appendix. A.9). We hypothesize that fixing s = 0 makes optimization more
challenging, training less stable, while relaxing to s < t balances the terms and mitigates instability.

4 TOWARDS REPRODUCIBLE AND STABLE FLOW MAP TRAINING

From these observations, we identify two key factors for reproducibility: relaxation of s (lineariza-
tion cost hypothesis), and marginal velocity guidance (Prop. 3.3). To facilitate consistency training
from scratch, we relax the time condition to mitigate instability, and leverage self-distillation to
follow the marginal velocity, addressing suboptimality. Since prior work on self-distillation (Boffi
et al., 2025a) relies on heuristics to stabilize training, we propose improved Self-Distillation (iSD): (i)
reducing reliance on heuristics and simplifying the training process by exploring the design space of
flow maps, (ii) extending classifier-free guidance to flow maps, achieving additional improvements.

4.1 FACILITATING CONSISTENCY TRAINING FROM SCRATCH

Relaxation of s. Based on the linearization cost hypothesis, we relax s = 0 to s < t, balancing
the contributions of the flow matching and linearization terms. Instead of directly addressing the
unstable gradient dynamics of consistency training, we leverage this relaxation to indirectly mitigate
the instability. This approach still avoids the Hessian, while empirically stabilizing optimization.

Marginal velocity guidance. Following Prop. 3.3, we consider marginal velocity guidance to guar-
antee convergence. From the instantiations in Prop. 3.2, we identify that self-distillation follows the
marginal velocity approximated by the network itself. Based on this, we train Fθ(xt; t, t) via flow
matching, while jointly applying Eulerian distillation to Fθ(xt; t, s) guided by its approximation:

LCFM = E
[
∥Fθ(xt; t, t)− v(xt|x)∥22

]
(12)

LSD = E
[
∥∂tfθ(xt; t, s) + Fθ−(xt; t, t) · ∇xfθ(xt; t, s)∥22

]
(13)

With this setting, the objective ensures convergence to the marginal flow map, handling subopti-
mality of direct training (proof in Appendix B.1; see also Boffi et al. (2025a)). Under consistency
training, this can reduce loss variance and further stabilize training compared to the conditional
velocity guidance (details in Appendix B.2).

4.2 IMPROVED SELF-DISTILLATION

To incorporate various design choices and reduce the reliance on heuristics, we extend the self-
distillation method using our generalized formulations and the explored design space. In the next
section, we conduct ablation studies across these choices and present the best practice.

Reformulation. We leverage our generalized flow map defined in Eq. 6, and the objective can be
expressed using the guidance velocity vθ(xt; t) = Fθ(xt; t, t) as:

LSD = Ex,z,t,s

[
ν−2

∥∥∥∥A′′
t,sxt +A′

t,s(vθ(xt; t)− Fθ(xt; t, s))−At,s
dFθ(xt; t, s)

dt

∥∥∥∥2
2

]
(14)

This extends the original self-distillation to arbitrary interpolations satisfying our assumptions. Next,
we reformulate the objective, where the gradient remains identical while avoiding the Hessian:

LSD-R = Ex,z,t,s

[
wt,s∥Fθ(xt; t, s)− sg [Ftgt(xt; t, s)] ∥22

]
, wt,s = At,sν

−2 (15)

Ftgt = Fθ(xt; t, s) +A′′
t,sxt +A′

t,s(vθ(xt; t)− Fθ(xt; t, s))−At,s
dFθ(xt; t, s)

dt
(16)
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JVP Approximation. Some works approximate the JVP, highlighting a trade-off between accuracy
and computational efficiency. In our work, we approximate the JVP as follows to preserve the
trajectory of marginal guidance. With this approximation, we found that training time can be reduced
and performance further improves.

dFθ(xt; t, s)

dt
=

Fθ(xt + ϵ · vθ(xt; t); t+ ϵ, s)− Fθ(xt − ϵ · vθ(xt; t); t− ϵ, s)

2ϵ
(17)

Adaptive Weighting. Since the JVP exhibits instability and can cause training to diverge, several
ideas have been proposed to stabilize the operation (Lu & Song, 2025; Sun et al., 2025; Boffi et al.,
2025a; Geng et al., 2025a). Among these, we adopt adaptive weighting to preserve the intended
guidance, as normalization and clipping may alter the guiding trajectory. To ensure stable joint
training, we extend weighting to both objectives and formulate it with hyperparameters η and p.

L̃t,s(xt, x) = ∥Fθ(xt; t, t)− vt(xt|x)∥22 + ∥Fθ(xt; t, s)− sg[Ftgt(xt; t, s)]∥22
LiSD = Ex,z,t,s

[
wt,s(xt, x) · L̃t,s(xt, x)

]
, wt,s(xt, x) = (sg[L̃t,s(xt, x)] + η)−p (18)

From these settings, training from scratch becomes stable, allowing us to eliminate additional
heuristics introduced in prior work, such as progressive distillation, annealing (Boffi et al., 2025a),
small Fourier coefficients, double normalization, tangent warmup, and some regularizations (Sabour
et al., 2025; Lu & Song, 2025; Chen et al., 2025). Detailed training and sampling algorithms are
provided in appendix, Alg. 2 and Alg. 3.

Classifier-free Guidance. Classifier-free Guidance (CFG) is an off-the-shelf method for boosting
the performance of diffusion models. However, unlike in diffusion models, directly applying CFG
to flow maps does not guarantee mappings along the CFG velocity field (details in Appendix B.3).

This motivates two extensions of the proposed self-distillation: Post-CFG and Pre-CFG. Post-CFG
operates as classical classifier-free guidance applied after training, defined as follows:

F̃θ(xt; t, s, c) = Fθ(xt; t, s,∅) + ω(Fθ(xt; t, s, c)− Fθ(xt; t, s,∅))

f̃θ(xt; t, s, c) = ν−1(A′
t,sxt −At,sF̃θ(xt; t, s, c)) (19)

where ∅ is the null class label for unconditional generation, c is the conditional class label, and ω
is the guidance scale. Although this formulation is not guaranteed to follow the CFG velocity field,
it can be easily applied after training. To ensure that the flow map follows the CFG field, Pre-CFG
replaces the guidance velocity vθ with the CFG velocity ṽθ during training:

ṽθ(xt; t, c) = Fθ(xt; t, t,∅) + ω(Fθ(xt; t, t, c)− Fθ(xt; t, t,∅)) (20)

The CFG velocity is Lipschitz continuous under our assumption. Thus, our propositions also apply,
guaranteeing convergence to the CFG velocity field.

However, since the ground-truth CFG velocity is intractable during training, applying LCFM with
the CFG velocity is infeasible. If we perform LCFM with the conditional velocity, Pre-CFG causes
a conflict: LSD-R induces Ft,t ≈ ṽt, whereas LCFM induces Ft,t ≈ v∗t . Therefore, we consider two
cases: (i) LiSD-U, applying LCFM with the conditional velocity while compromising the theoretical
guarantees at s = t (Guidance-Unconditional), and (ii) LiSD-C, appending the guidance scale as
an additional condition F θ

t,t(xt; c, w), thereby applying LCFM with w = 1.0 and LSD-R with w = ω
(Guidance-Conditional). In this case,LiSD-C ensures Ft,t(xt; c, 1.0) ≈ v∗t (xt; c) and Ft,t(xt; c, ω) ≈
ṽt(xt; c) (details in Appendix B.3). We discuss their practical benefits and present our final choice
in the next section.

5 EXPERIMENTS

Experimental Settings. To evaluate our method, we conduct experiments on the ImageNet-
1K (Deng et al., 2009) and CIFAR-10 (Krizhevsky, 2009) datasets. Following prior work, we use
downsampled 32×32×4 latent variables from 256×256 images encoded by a VAE (Rombach et al.,
2022), and employ a DiT (Peebles & Xie, 2023) architecture. For CIFAR-10, we train the model
directly in pixel space using UNet+ (Song et al., 2021). We evaluate both one-step and few-step gen-
erations using uniformly sampled timesteps. Sample quality is measured with FID (Heusel et al.,
2017) over 50K samples, and further implementation details are provided in Appendix C.2.
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Figure 2: Design choices of the generalized flow map. (a) FIDs of design choices over training
steps. Solid lines indicate the JVP approximation, and dash-dot lines indicate direct JVP. (b) FIDs
of Post-CFG over guidance scales. Dotted lines indicate 4-Step FIDs. (c) FIDs of Pre-CFG over
training steps. Solid lines indicate trigonometric interpolation and dash-dot lines indicate linear one.
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Figure 3: Few-step generation results. (a) Standard deviations of FIDs at 300K training steps. (b)
FIDs of model scales over training steps. (c) 4-Step samples generated by iSD-U.

Table 3: Step-by-step experiments
validating the hypothesis (2-Step).

Case FID↓
Baseline 121.3
+ Joint training LCFM 116.3
+ Relaxing condition LCT 76.39
+ Self-Distillation (ω = 1.5) 75.57
+ Trigonometric interpolation 66.63

Standard deviation 0.735

Table 4: Quantitative results across design choices (2-Step).
The numeric entries in the header denote Post-CFG scales.

Loss Interp. JVP FID↓ 1.5 3.0 7.0 10.0
LCT Linear Exact 76.39 50.45 39.33 68.82 85.87
LCT Trig. Exact 103.35 72.42 39.52 41.27 59.16
LiSD Linear Exact 118.17 98.77 77.75 89.02 100.61
LiSD Trig. Exact 115.93 86.46 51.85 51.34 66.79

LCT Linear Approx 65.98 40.97 33.33 67.99 85.69
LiSD Linear Approx 112.39 90.26 69.81 87.50 101.42

LiSD-U Linear Approx 75.57 55.58 53.88 86.95 99.97
LiSD-U Trig. Approx 66.63 41.84 27.99 47.04 66.25

5.1 ABLATION STUDY

We conduct our ablation study on DiT-B/4, a base model of diffusion transformer with 4×4 patches.
The model is trained for 400K steps with a batch size of 256. By default, we set ω = 1.5 for LiSD-U
and use conditional velocity guidance for LCT.

Key factors. To validate our hypothesis, we conduct step-by-step experiments to make consis-
tency training reproducible with our contributions, as summarized in Tab. 3. Starting from the
consistency-training baseline with a linear trajectory, joint training with flow matching improves the
FID. Relaxing the time condition further reduces it, supporting the linearization cost hypothesis. We
observe that self-distillation converges more slowly than consistency training, as shown in Tab. 4
and Fig. 2a. Pre-CFG LiSD-U accelerates training compared to vanilla LiSD, and achieves further
improvement when the linear interpolation is replaced with a trigonometric one.

Interpolation, Post-CFG. As shown in Fig. 2a and Tab. 4, under conditional velocity guidance,
linear interpolation yields better results compared to the trigonometric case. However, with self-
distillation, the trigonometric interpolation achieves a lower FID than linear. It exhibits a larger
performance gap under the Post-CFG (Fig. 2b), even surpassing the linear case at 4-step sampling.
Pre-CFG LiSD-U also achieves better results with the trigonometric case.

JVP operation. When comparing the JVP approximation with direct computation, the approxima-
tion achieves better results. All subsequent experiments adopt the JVP approximation by default.
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Table 5: Comparison with prior work on ImageNet 256×256 and CIFAR-10.

Class-Conditional ImageNet 256×256
METHOD NFE (↓) FID (↓)
Consistency Training Methods
iCT (Song & Dhariwal, 2024) 2 20.3
Shortcut Model (Frans et al., 2025) 1 10.6

4 7.8
UCGM (SD-VAE, Sun et al. (2025)) 1 2.10
MeanFlow (Geng et al., 2025a) 1 3.43

Ours
iSD-U 2 23.51

4 20.43

+ Post-CFG (ω = 3.0) 2×2 13.49
4×2 11.06

Unconditional CIFAR-10
METHOD NFE (↓) FID (↓)
Distillation-based Methods
2-RF Liu et al. (2023) 1 4.85
DMD (Yin et al., 2024b) 1 3.77

Consistency Training Methods
iCT (Song & Dhariwal, 2024) 1 2.83
sCT (Lu & Song, 2025) 1 2.97
UCGM (Sun et al., 2025) 1 2.82
MeanFlow (Geng et al., 2025a) 1 2.92
Self-distillation (Boffi et al., 2025a) 1 14.13

Ours
iSD 1 3.64

Pre-CFG. As shown in Fig. 2c and Tab. 4, applying Pre-CFG LiSD-U with ω = 1.5 yields improved
FIDs compared to vanilla LiSD, but training diverged when ω > 3.0. When a guidance scale is
appended as a condition, LiSD-C enables training at higher guidance scales, outperforming LiSD.
However, LiSD-C consistently performs worse results than LiSD-U. Intuitively, the additional condi-
tion enforces the network to learn both CFG and non-CFG mappings, imposing an extra burden on
the network. Even though LiSD-U compromises the theoretical guarantees at s = t, few-step gen-
eration commonly assumes s ≪ t, making this negligible in practice. Thus, we finalize the design
choices: (i) JVP approximation, (ii) trigonometric interpolation, and (iii) Pre-CFG LiSD-U.

Reproducibility To validate the reproducibility of our method, we measure the variance of FIDs
across three runs with different random initializations. We compare our final version of iSD with
consistency training baseline, involving direct JVP and s < t. As shown in Fig. 3a, where the num-
bers in the box plot denote standard deviations, our method demonstrates improved reproducibility
compared to the consistency training baseline, while remaining competitive FIDs.

Scalability. Fig. 3b presents the results across model scales. As the patch size decreases from DiT-
B/4 to DiT-B/2 and computation increases, the FID improves from 66.63 to 50.58. Further scaling
from DiT-B/2 to DiT-XL/2 improves the FID to 38.50, demonstrating consistent scaling behavior.

5.2 COMPARISON WITH PRIOR WORK

In Tab. 5, we compare our work with previous methods on ImageNet 256×256. We train DiT-XL/2
with iSD-U for 800K steps following prior work. Our model demonstrates comparable result to
our reproduced consistency model (Tab. 2, FID 10.01), iCT, and Shortcut Model, but higher FIDs
than others. On CIFAR-10, we obtain improved results compared to the original self-distillation,
reducing the FID from 14.13 to 3.64, while achieving performance comparable to other prior work.

Since our method requires neither additional networks nor pretrained models, the training process is
simplified, and its reproducibility has been validated in the previous section. However, we found that
training is slower than consistency training methods, since it first learns the marginal instantaneous
velocity and then the flow map guided by itself. The training was not saturated even after 800K
steps, and we leave further training for future work. Accelerating training also remains a promising
direction.

6 CONCLUSION

We introduced a generalized flow map framework that unifies recent consistency-based generative
models under the Eulerian equation. This highlights the suboptimality of existing approaches and
explains their limited reproducibility. To address these issues, we propose improved Self-Distillation,
which reduces reliance on heuristics and simplifies the training process. We further extend it to
classifier-free guidance for flow maps, achieving additional performance gains. Empirically, our
method achieves reproducible training and competitive few-step generation on ImageNet-1K. These
results establish a theoretical and empirical foundation for reproducible consistency training.
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APPENDIX

A THEORETICAL ANALYSIS OF FLOW MAP MODELS

A.1 MEAN COLLAPSE OF DIFFUSION AND FLOW MATCHING MODELS

Posterior Distribution. First, consider the data distribution pX(x) = N (µX , σ2
X) and the interpo-

lation xt = αtx+ σtz. The conditional distribution is given by p(xt = y|x) = N (y;αtx, σ
2
t ).

By Bayes’ rule,

p(x|xt = y) ∝ p(xt = y|x)p(x)
= N (y;αtx, σ

2
t )N (x;µX , σ2

X)

∝ exp

(
− (y − αtx)

2

2σ2
t

− (x− µX)2

2σ2
X

)
= exp

((
1

2σ2
X

+
α2
t

2σ2
t

)
x2 −

(
µX

σ2
X

+
αty

σ2
t

)
x+

(
µ2

2σ2
X

+
y2

2σ2
t

))
This can be organized as a Gaussian with a closed form p(x|xt = y) = N (µx|y,t, σ

2
x|y,t) where

µx|y,t =
αtσ

2
Xy + µXσ2

t

σ2
t + σ2

Xα2
t

, σ2
x|s,t =

σ2
Xσ2

t

σ2
t + σ2

Xα2
t

Extending the data distribution to a mixture of Gaussians pX(x) =
∑

i πiN (x;µi, σ
2
i ), we introduce

the latent variable π for handling πi:

p(π = i) = πi, p(x|π = i) = N (x;µi, σ
2
i )

Then, the marginal distribution p(xt = y|π = i) can be expressed as

p(xt = y|π = i) =

∫
p(xt = y|x)p(x|π = i)dx

=

∫
N (y;αtx, σ

2
t )N (x;µi, σ

2
i )dx

= N (y;αtµi, α
2
tσ

2
i + σ2

t )

And we define responsibilities ri(y) as posterior distribution

ri,t(y) = p(π = i|xt = y) =
p(xt = y|π = i)p(π = i)∑
j p(xt = y|π = j)p(π = j)

=
πiN (y;αtµi, α

2
tσ

2
i + σ2

t )∑
j πjN (y;αtµj , α2

tσ
2
j + σ2

t )

Therefore, the posterior distribution p(x|xt = y) is

p(x|xt = y) =
∑
i

p(π = i|xt = y)p(x|xt = y, π = i)

=
∑
i

ri,t(y)N (y;αtx, σ
2
t )N (x;µi, σ

2
i )

=
∑
i

ri,t(y)N (x;µx|i,y,t, σ
2
x|i,y,t)

where µx|i,y,t =
αtσ

2
i y + µiσ

2
t

σ2
t + σ2

i α
2
t

, σ2
x|i,y,t =

σ2
i σ

2
t

σ2
t + σ2

i α
2
t

Particularly, we observe that µx|i,y,1 = µi, σ
2
x|i,y,1 = σ2

i and ri,1(y) = πi.

One-step Generation. Under the linear trajectory xt = (1 − t)x + tz, the conditional velocity is
vt(xt|x) = z − x. Thus, one-step generation is defined by

fF (xt; t) = xt − tF ∗(xt; t) = xt − tEx|xt
[vt(xt|x)]

= Ex,z|xt
[xt − t(z − x)]

= Ex|xt
[x]

13
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In the unimodal Gaussian case, Ex|z[x] = µx|z,1 = µX and the one-step generated samples collapse
to the mean of the data distribution. Similarly, in the mixture of Gaussians case, one-step generated
samples collapse to the mixture mean.

fF (z) = Ex|z[x] =
∑
i

ri(z)µi|z,1 =
∑
i

πi µi = µX

Thus, one-step generation collapses to the data mean µX regardless of the input.

A.2 INJECTIVITY OF FLOW MAP

Since the marginal velocity is assumed to be Lipschitz continuous, the Picard-Lindelöf theorem
guarantees a unique solution to the ODE dxt = v∗t (xt)dt for any initial value. Non-crossing trajec-
tory follows directly, since any crossing would contradict the uniqueness. Thus, since the flow map
is formulated as the solution of the ODE with the initial value xt, it is well-defined and the solution
xs is uniquely determined by non-crossing, ensuring the injectivity of the flow map.

A.3 EULERIAN EQUATION AND UNIQUENESS OF FLOW MAP

Suppose the ground-truth flow map is defined as

f∗
t,s(xt) = xt +

∫ s

t

v∗τ (xτ )dτ = xs

By construction, the identity mapping f∗
t,s(f

∗
s,t(xs)) = xs satisfies. Differentiating both sides w.r.t.

t yields

d

dt
f∗
t,s(f

∗
s,t(xs)) = ∂tf

∗
t,s(f

∗
s,t(xs)) + ∂tf

∗
s,t(xs) · ∇xf

∗
t,s(f

∗
s,t(xs)) =

d

dt
xs = 0

Using f∗
s,t(xs) = xt and ∂tf

∗
s,t(xs) = ∂txt = v∗t (xt), we obtain the Eulerian equation:

d

dt
f∗
t,s(xt) = ∂tf

∗
t,s(xt) + v∗t (xt) · ∇xf

∗
t,s(xt) = 0

Suppose a trainable network fθ(x; t, s) = fθ
t,s(x) is continuous in x, t, s, Lipschitz continous in x,

and satisfies the boundary condition fθ
s,s(x) = x for all s. If fθ satisfies the Eulerian equation, fθ

t,s

remains constant along the characteristic curve induced by v∗t (xt).

Let χτ denotes the characteristic curve defined on [s, t] by χt = x and χ′
τ = v∗τ (χτ ). Along this

curve, fθ
τ,s is constant and evaluating at τ = t and τ = s yields

fθ
t,s(x) = fθ

t,s(χt) = fθ
s,s(χs) = χs = f∗

t,s(x)

since f∗
t,s generates the characteristic curve χτ by its definition.

Thus, the learned mapping coincides with the exact flow map.

A.4 INTERPOLATION CONDITION FOR GUARANTEEING THE CONVERGENCE

We begin by explicitly deriving the solution of the Eulerian equation. For fθ
t,s(xt) = ν−1

t (A′
t,sxt −

At,sF
θ
t,s(xt)) in Eq. 6, let n = A′

t,sxt − At,sF
θ
t,s(xt), which simplifies to n = A′xt − AF and

f = ν−1
t n. Then, differentiation with respect to timestep t yields

n′ = A′′xt +A′(vt − F )−AF ′

f ′ = [A′′xt +A′(vt − F )−AF ′]
νt
ν2t

+ [A′xt −AF ]
ν′t
ν2t

Assuming f ′ = 0 and νt ̸= 0, we obtain

AνtF
′ = −(A′νt +Aν′t)F + [A′′νtxt +A′νtvt +A′ν′txt]

which further simplifies to

AνtF
′ = −[Aνt]

′F + [Aνtxt]
′ = BF ′ = −B′F +D′

14
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where B = Aνt, D = A′νtxt. Since BF ′ + B′F = [BF ]′, we obtain [BF ]′ = D′, which yields
AνtF = A′νtxt +C for some integration constant C. Assuming A = At,s = αsσt − σsαt ̸= 0 for
t ̸= s, this gives F = A′A−1xt + C(Aνt)

−1, and hence

f∗
t,s(xt) = ν−1

t [A′xt −A′xt − Cν−1
t ] = −Cν−2

t

If νt is a time-dependent scalar, the global optimum f∗ = −C ′ν−2
t is itself time-dependent, so the

Eulerian equation can’t vanish. If C = 0, the solution collapses to the trivial case f∗
t,s(xt) = 0.

Therefore, νt must be a time-independent constant.

Additional Observation. Suppose that the monotonically increasing γt over t ∈ [0, 1] satisfying
the boundary conditions γ1 = 1 and γ0 = 0. Consider the interpolation defined by αt = (1 − γt)

c

and σt = γc
t for some constant c ∈ [0.5, 1]. Then, νt can be written as νt = c(1 − γt)

c−1γc−1
t γ′

t.
Imposing νt = ν gives γ′

t = ν[c(1 − γt)
c−1γc−1

t ]−1 and c(1 − γ)c−1γc−1dγ = νdt. Integrating
both sides yields

c

∫
(1− γ)c−1γc−1dγ = ν

∫
dt = ν(t+ C)

where the constant C vanishes due to γ0 = 0. For the incomplete beta function B, this becomes

cB(γt; c, c) = c

∫ γt

0

(1− η)c−1ηc−1dη = ν

∫ t

0

dτ = νt

By the boundary condition, cB(c, c) = cB(1; c, c) = ν, and thus γt is characterized by

cB(γt; c, c) = ν
cB(γt; c, c)

cB(c, c)
= νIγt(c, c) = νt =⇒ γt = I−1

t (c, c)

where I denotes the regularized incomplete beta function.

In this case, γt is characterized regardless of ν. Particularly, when c = 0.5, we obtain γt = sin2(π2 t),
which yields trigonometric interpolation αt = cos(π2 t) and σt = sin(π2 t). On the other hand, when
c = 1, we have γt = t, αt = 1− t, σt = t, and which reduces to linear interpolation. Interpolating
c between 0.5 and 1.0 provides a promising design choice for formulating the consistency model.

A.5 RECENT CONSISTENCY-BASED GENERATIVE MODELS ARE FLOW MAP MODELS

sCT. Under trigonometric interpolation xt = cos(t)x+ sin(t)z,

fθ(xt; t, s) = cos(s− t)xt + sin(s− t)Fθ(xt; t, s)

When s = 0

fθ(xt; t) = cos(t)xt − sin(t)Fθ(xt; t)

which exactly recovers the sCT formulation. If consistency training is formulated without the stop-
gradient operation, then the objective reduces to the direct training objective as ∆t→ 0.

E
[
∥fθ(xt; t, s)− fθ(xt−∆t; t−∆t, s)∥22

]
= E

[∥∥fθ(xt; t, s)−
[
fθ(xt; t, s)− ∂tfθ(xt; t, s) ·∆t−∇xfθ(xt; t, s) · v(xt|x) ·∆t+O(∆t2)

]∥∥2
2

]
= ∆t2 · E

[
∥∂tfθ(xt; t, s) + v(xt|x) · ∇xfθ(xt; t, s)∥22

]
+O(∆t3)

However, if we utilize the stop-gradient, the continuous-time consistency training objective is de-
fined as

∇θE
[
∥fθ(xt; t, s)− fθ−(xt−∆t; t−∆t, s)∥22

]
= E [2∇θfθ(xt; t, s) · (fθ−(xt; t, s)− fθ−(xt−∆t; t−∆t, s))]

= 2∆t · ∇θE
[
fθ(xt; t, s) ·

fθ−(xt; t, s)− fθ−(xt−∆t; t−∆t, s)

∆t

]
=⇒ LCT = E

[
fθ(xt; t, s)

dfθ−(xt; t, s)

dt

]
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By the mean value theorem,

fθ−(xt; t, s) = fθ(xt; t, s) +∇θfζ(xt; t, s) · (θ− − θ)

for the parameter ζ lying between θ and θ−. Using this, we can show that

E
[∥∥fθ(xt; t, s)− fθ−(xt̂; t̂, s)

∥∥2
2

]
= E

[∥∥fθ(xt; t, s)− fθ(xt̂; t̂, s)−∇θfζ(xt̂; t̂, s) · (θ
− − θ)

∥∥2
2

]
= E

[∥∥∂tfθ(xt; t, s) ·∆t+∇xfθ(xt; t, s) · v(xt|x) ·∆t−∇θfζ(xt̂; t̂, s) · (θ
− − θ) +O(∆t2)

∥∥2
2

]
= LDT ·∆t2 − 2E

[
Lfθ(xt; t, s) · Jζ

t̂,s
·∆θ

]
·∆t+ E

[∥∥∥Jζ

t̂,s
·∆θ

∥∥∥2
2

]
+O(∆t3) +O(∆t2∥∆θ∥)

where t̂ = t − ∆t, ∆θ = θ− − θ, Jζ

t̂,s
= ∇θfζ(xt̂; t̂, s), and the operator is defined as Lf =

∂tf + v · ∇xf . In this case, since f is Lipschitz and has a bounded first derivative, Lf and J are
bounded. Hence, 2(Lf ·∆t− J ·∆θ) ·O(∆t2) = O(∆t3) +O(∆t2∥∆θ∥)
If we set θ− = sg[θ], this reduces to

E
[
∥fθ(xt; t, s)− fθ−(xt−∆t; t−∆t, s)∥22

]
= LDT ·∆t2 +O(∆t3)

Thus, the formulation can be interpreted as the direct training objective.

From another perspective, since the time derivative of fθ
t,s(xt) = fθ(xt; t, s) is given by

dfθ
t,s(xt)

dt
= ∂tf

θ
t,s(xt) + v(xt|x) · ∇xf

θ
t,s(xt) = (L∗f

θ
t,s)(xt) + ∆v · ∇xf

θ
t,s(xt)

where ∆v = vt(xt|x)− v∗t (xt) and L∗ft.s = ∂tft,s + v∗t · ∇xft,s, the objective can be written as

LCT = E
[
fθ
t,s

(
L∗f

θ−

t,s

)
+ fθ

t,s

(
∆v · ∇xf

θ−

t,s

)]
The first term on the right-hand side corresponds to Eulerian distillation. By the tower property, the
second term vanishes under conditional expectation:

Ex,z,t,s

[
fθ
t,s(∆v · ∇xf

θ−

t,s )
]
= Ex,z,t,s

[
Ex̃|xt

[
fθ
t,s(∆v · ∇xf

θ−

t,s )
]]

= Ex,z,t,s

[
fθ
t,s

(
Ex̃|xt

[∆v] · ∇xf
θ−

t,s

)]
= Ex,z,t,s

[
fθ
t,s · 0 · ∇xf

θ−

t,s

]
= 0

Thus, LCT reduces in value to Eulerian distillation even along the conditional trajectory. However,
the gradients of Eulerian distillation and consistency training differ, and their training dynamics
may therefore exhibit distinct behaviors. The instability of these gradient dynamics is discussed in
Appendix A.7.

MeanFlow. Suppose a flow map model under linear interpolation.

fθ(xt; t, s) = xt + (s− t)Fθ(xt; t, s), xt = (1− t)x+ tz

The corresponding direct training objective is

L(θ) = E
[∥∥∂tfθ

t,s(xt) + v(xt|x) · ∇xf
θ
t,s(xt)

∥∥2
2

]
= E

∥∥∥∥∥dfθ
t,s(xt)

dt

∥∥∥∥∥
2

2


where

d

dt
fθ(xt; t, s) = vt − Fθ(xt; t, s) + (s− t)

d

dt
Fθ(xt; t, s)

Recall the MeanFlow objective from Geng et al. (2025a)

L(θ) = E[∥uθ(zt; r, t)− sg[vt − (t− r)(vt · ∂zuθ + ∂tuθ)]∥22]
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Rewrite the MeanFlow objective by using flow map notation and transform

∇θE
[
∥Fθ(xt; t, s)− sg[vt(xt|x)− (t− s)(vt(xt|x) · ∂zFθ + ∂tFθ)]∥22

]
= ∇θE

[∥∥∥∥vt(xt|x)− Fθ(xt; t, s) + (s− t) · d
dt

Fθ−(xt; t, s)

∥∥∥∥2
2

]

= ∇θE

[∥∥∥∥Fθ(xt; t, s)− Fθ−(xt; t, s)−
[
vt(xt|x)− Fθ−(xt; t, s) + (s− t)

d

dt
Fθ−(xt; t, s)

]∥∥∥∥2
2

]

= ∇θE
[

1

t− s
fθ(xt; t, s)

dfθ−(xt; t, s)

dt

]
Thus, the MeanFlow objective is a special case of the continuous-time consistency training with
conditional velocity under linear interpolation.

Shortcut Model. From Frans et al. (2025), the Shortcut Model objective consists of the flow
matching objective and the consistency objective.

L(θ) = E[∥sθ(xt; t, 0)− vt∥22 + ∥sθ(xt; t, 2d)− [sθ(xt; t, d) + sθ(x
′
t+d; t+ d, d)]/2∥22]

with x′
t+d = xt + sθ(xt, t, d). By setting d = s − t and Fθ(xt; t, s) = sθ(xt; t, s − t), sampling

t ∼ U [0, 1], and choosing s = t − 2−d′
for d′ ∼ Cat[1, 7], we obtain the flow map under linear

interpolation

fθ(xt; t, s) = xt + (s− t)Fθ(xt; t, s) = x′
t+d

We can rewrite the flow matching objective of the Shortcut model as

∥sθ(xt; t, 0)− vt∥22 = ∥Fθ(xt; t, t)− vt(xt|x)∥22
For r = s + d, the consistency objective of the Shortcut Model can be written in the form of the
CTM(Consistency Trajectory Model)

∥sθ(xt; t, 2d)− [sθ(xt; t, d) + sθ(x
′
t+d; t+ d, d)]/2∥22

= ∥Fθ(xt; t, r)− [Fθ(xt; t, s) + Fθ(fθ(xt; t, s); s, r)]/2∥22

=
1

4d2
∥xt + 2d · Fθ(xt; t, r)− xt − 2d[Fθ(xt; t, s) + Fθ(fθ(xt; t, s); s, r)]/2∥22

=
1

4d2
∥xt + 2d · Fθ(xt; t, r)− [xt + d · Fθ(xt; t, s) + d · Fθ(fθ(xt; t, s); s, r)]∥22

=
1

4d2
∥fθ(xt; t, r)− [fθ(xt; t, s) + d · Fθ(fθ(xt; t, s); s, r)]∥22

=
1

4d2
∥fθ(xt; t, r)− fθ(fθ(xt; t, s); s, r)∥22

Hence, the objective of the Shortcut Model is

L(θ) = E
[
∥Fθ(xt; t, t)− vt∥22 +

1

4d2
∥fθ(xt; t, r)− fθ(fθ(xt; t, s); s, r)∥22

]
With the Taylor approximation of Ft,s = Ft,s(xt) = Fθ(xt; t, s)

Ft,r = Ft,s + d · ∂sFt,s +O(d2), Fs,r = Ft,s + d · ∂tFt,s + d · ∂sFt,s + d · FT
t,s∇xFt,s +O(d2)

we obtain

d[2Ft,r − Ft,s − Fs,r]

= d[2[Ft,s + d · ∂sFt,s]− Ft,s − [Ft,s + d · ∂tFt,s + d · ∂sFt,s + d · FT
t,s∇xFt,s]] +O(d3)

= d2[∂sFt,s − ∂tFt,s − FT
t,s∇xFt,s] +O(d3)

Thus,

1

4d2
∥ft,r(xt)− fs,r(ft,s(xt))∥22 =

d2

4
∥∂sFt,s − ∂tFt,s − FT

t,s∇xFt,s∥22 +O(d3)
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The differentiation of the linear flow map with respect to timestep t is given by

f ′
t,s(xt) = v∗t − Ft,s(xt) + (s− t) · (∂tFt,s + v∗t · ∇xFt,s)

With the Taylor approximation and the relation Ft,t ≈ v∗t obtained from LCFM, we have

Ft,s = Ft,t + d · ∂sFt,t +O(d2) ≈ v∗t + d · ∂sFt,t +O(d2)

The identity ∂sFt,s = ∂sFt,t +O(d) implies

v∗t − Ft,s(xt) = −d · ∂sFt,s +O(d2)

Hence,

f ′(xt) = d[∂tFt,s + v∗t · ∇xFt,s − ∂sFt,s] +O(d2)

Since v∗t ≈ Ft,t = Ft,s +O(d), we further obtain

f ′(xt) = d[∂tFt,s + Ft,s · ∇xFt,s − ∂sFt,s] +O(d2)

=⇒ L = Ex,z,t,s

[
∥Fθ(xt; t, t)− vt∥22 +

1

4

∥∥∥∥ d

dt
fθ(xt; t, s)

∥∥∥∥2
2

+O(d3)

]
We observe that there is a discrepancy between Eulerian distillation, expressed as ∥vt − Ft,s +
d(∂tFt,s + v∗t · ∇xFt,s)∥22. The first v∗t term corresponds to Ft,t, while the second vt corresponds
to Ft,s. Alternatively, since Ft,t = Ft,s +O(d), both terms can be represented in terms of Ft,t.

In the case of Ft,t, the model learns F θ
t,t(xt) ≈ v∗t (xt) due to the loss term of ∥F θ

t,t(xt)−vt(xt|x)∥22.
This can be interpreted as the model learning a flow map corresponding to the trajectory induced by
an approximated marginal velocity.

Therefore, the Shortcut Model can be seen as Eulerian distillation under O((s− t)3)-bound. Since
Flow Map Models typically operate under the assumption s ∈ [0, t), the Shortcut model’s sampling
scheme with d ∈ [2−7, 1] makes this error non-negligible.

Consistency Flow Matching. For linear interpolation xt = (1− t)x+ tz, define

fθ(xt; t, s = 0) = xt − tFθ(xt; t, s = 0) =⇒ fθ(xt; t) = xt − tFθ(xt; t)

Then, the Consistency Flow Matching objective from Yang et al. (2024) becomes

L(θ) = E
[
∥fθ(xt; t)− fθ−(xt−∆t; t−∆t)∥22 + α∥Fθ(xt; t)− Fθ−(xt−∆t;x−∆t)∥22

]
The first term on the right side is the Taylor approximation of the consistency training objective, and
the second term is the regularizer. Hence, we can interpret Consistency Flow Matching as a training
flow map model via the approximation with regularization.

UCGM. For arbitrary interpolation of αt, σt, setting s = 0 yields

fθ(xt; t) = ν−1
t (σ′

txt − σtFθ)

We can reformulate the objective while keeping the gradient unchanged:

∇θ∥fθ(xt; t)− fθ−(xλt;λt)∥22

= 2[∇θfθ(xt; t)]
T (t− λt)

fθ−(xt; t)− fθ−(xλt;λt)

t− λt

∝ [∇θfθ(xt; t)]
T fθ−(xt; t)− fθ−(xλt;λt)

t− λt

=
σt

νt
[∇θFθ(xt; t)]

T fθ−(xt; t)− fθ−(xλt;λt)

t− λt

= ∇θ

∥∥∥∥Fθ(xt; t)− Fθ−(xt; t) +
σt[fθ−(xt; t)− fθ−(xλt;λt)]

νt(t− λt)

∥∥∥∥2
2

which is identical to the objective of UCGM. When λ = 0, this reduces to the flow matching
objective since λt = 0 collapses fθ−(x0; 0) = x0. In this case, the objective becomes origin
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prediction, which in turn leads to Fθ with the velocity matching objective. Otherwise, setting λ→ 1

reduces the objective to consistency training by ∆ = Fθ(xt; t)− Fθ−(xt; t) +
σt

νt

dfθ− (xt;t)

dt .

For λ ∈ (0, 1), the objective ||fθ(xt; t) − fθ−(xλt;λt)||22 yields consistency along the geometric
sequence Tλ(t) = {λkt}Nk=0.

Define
gt(xt) = (xt − αtft(xt))σ

−1
t

Then, when ft(xt) = x, it follows that gt(xt) = z for xt = αtx + σtz. Using this, the flow map
can be formulated in a DDIM-like manner as

ft,s(xt) = αsft(xt) + σsgt(xt) =
σs

σt
xt + (αs −

σs

σt
αt)ft(xt)

Assuming the composition chain

fs,r(ft,s(xt)) = fs,r(x̃s) =
σr

σs
x̃s + (αr −

σr

σs
αs)fs(x̃s)

for x̃s = ft,s(xt), we obtain

ft,r(xt)− fs,r(ft,s(xt)) = (αr −
σr

σs
αs)(ft(xt)− fs(x̃s))

For s = λkt for some k ∈ N, if it follows that x̃s = ft,s(xt) ≈ xs, then fs(xs) = ft(xt) and
ft,r = fs,r ◦ ft,s. In this case, the flow map can be constructed along the geometric sequence Tλ(t).

In general, the velocity of the DDIM map is given by d
dsft,s = α′

sft+σ′
sgt. Since the unconditional

velocity is
v∗t (xt) = α′

tEx|xt
[x] + σ′

tEx|xt
[(xt − αtx)σ

−1
t ],

the DDIM map coincides with the flow map only when v∗s (ft,s(xt)) = d
dsft,s(xt), which implies

Ex|x̃s
[x] = ft(xt). Setting s → t reduces this condition to Ex|xt

[x] = ft(xt) by the identity
assumption. However, this condition fails to preserve the injectivity of the flow map at t = 1 due
to the mean collapse problem, which leads to a contradiction. Therefore, the DDIM-style map does
not coincide with the flow map in general.

Reflow. Rectified flows introduce Reflow to straighten trajectories after training. In Reflow, sam-
pling from the trained model is performed via

x0 = x1 +

∫ 0

1

vθ(xt; t)dt ≈ ODESolver(vθ, x1, 1, 0)

followed by the finetune w.r.t. the coupling ΠZ,θ = pZ(z)pvθ (x|z). The velocity v̂t of the trajectory
induced by the coupling ΠZ,θ is given by

v̂t = x1 −
(
x1 +

∫ 0

1

vθ(xt; t)dt

)
=

∫ 1

0

vθ(xt; t)dt

which corresponds to the displacement of the flow map. Therefore, Reflow can be interpreted as
direct supervision of the flow map under linear interpolation.

A.6 SUBOPTIMALITY OF DIRECT TRAINING

Unlike Eulerian distillation, direct training does not guarantee convergence to the optimal flow map.
Consider the direct training objective using the conditional velocity:

LDT = Ex,z,t,s

[
∥∂tfθ(xt; t, s) + v(xt|x) · ∇xfθ(xt; t, s)∥22

]
By defining the velocity error as ∆v = vt(xt|x)− v∗t (xt), we can rewrite the objective in the form
of Eulerian Distillation:

LDT = Ex,z,t,s

[
∥∂tfθ(xt; t, s) + (∆v + v∗t (xt)) · ∇xfθ(xt; t, s)∥22

]
= Ex,z,t,s

[
∥∂tfθ(xt; t, s) + ∆v · ∇xfθ(xt; t, s) + v∗t (xt) · ∇xfθ(xt; t, s)∥22

]
= Ex,z,t,s

[
∥∂tfθ(xt; t, s) + v∗t (xt) · ∇xfθ(xt; t, s)∥22

]
+ Ex,z,t,s

[
∥∆v · ∇xfθ(xt; t, s)∥22

]
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by the law of total variance since other terms are independent of x, and Ex|xt
[∆v] = 0. In this case,

the second term can be represented as

Ex,z,t,s

[
Varx|xt

[∆v · ∇xfθ(xt; t, s)]
]

Under an independent coupling, the velocity error ∆v = vt(xt|x) − v∗t (xt) is typically nonzero.
Consequently, unless ∥∇xfθ(xt; t, s)∥ collapses to zero, the objective function inherently contains
a larger variance term compared to that of Eulerian distillation.

To minimize the overall loss, the optimizer faces a trade-off involving this variance. This introduces
a bias that distorts the learned flow map towards becoming flatter by an external force ∆vt =
vt − v∗t ⊥ ∇xfθ(xt; t, s). Therefore, direct training is not guaranteed to converge to the ground-
truth flow map due to this distorting variance term.

In flow matching, even when the loss term Ex,z,t[∥v(xt|x)−Fθ(xt; t)∥22] is decomposed as follows

E
[
∥∆v + v∗(xt)− Fθ(xt; t)∥22

]
= E

[
∥v∗(xt)− Fθ(xt; t)∥22

]
+Var[∆v]

The variance term, Var[∆v], is independent of the network. Therefore, it does not affect convergence
to the global optimum.

Euler-Lagrange Equation. To find the optimum of the direct training objective, we apply the
Euler-Lagrange equation. The objective can be represented in the vector form as

LDT = Ex,z,t,s

[
∥∂tft,s(xt) + v(xt|x)T∇xft,s(xt)∥22

]
=

∫∫
Ω

ρt(xt)Ex,z,s|xt
[∥ · ∥22]dxtdt

We set the conditional expectation as the Lagrangian,

L(f, ∂tf,∇xf) = Ex,z,s|xt
[∥∂tft,s(xt) + v(xt|x)T∇xft,s(xt)∥22]

The corresponding Euler-Lagrange equation is

∂L

∂f
− ∂t

(
∂L

∂(∂tf)

)
−∇x

(
∂L

∂(∇xf)

)
= 0 ⇐⇒ Ex,z,s|xt

[∂tR+∇x · (vR)] = 0

where the residue is defined as

R = ∂tft,s(xt) + v(xt|x)T∇xft,s(xt)

Letting ∆v = v(xt|x)− v∗t (xt) and introducing the operator L∗f = ∂tf + (v∗t )
T∇xf , the residue

can be rewritten as R = L∗ft,s +∆vT∇xft,s, so that

Ex|xt
[∂tR] = ∂tEx|xt

[R] = ∂t(L∗ft,s)

Ex|xt
[∇x · (vR)] = ∇x · Ex|xt

[(v∗ +∆v)(L∗ft,s +∆vT∇xft,s)]

= ∇x ·
(
v∗L∗ft,s + Ex|xt

[∆v(∆vT∇xft,s)]
)

= ∇x ·
(
v∗L∗ft,s +Σ∆v|xt

∇xft,s
)

Therefore, the optimality condition becomes

EL = Ex,z,s|xt
[∂tR+∇x · (vR)]

= ∂t(L∗ft,s) +∇x · (v∗tL∗ft,s) +∇x · (Σ∆v|xt
∇xft,s) = 0

If we assume the L2-adjoint of L∗ to be L∗f = −∂tf −∇ ·
(
(v∗t )

T f
)
, the condition simplifies to

L∗L∗ft,s −∇x · (Σ∆v|xt
∇xft,s) = 0 ⇐⇒ ∥L∗f∥22 +∇x · (Σ∆v|xt

∇xft,s) = 0

Thus, the optimum of the direct training arises precisely when the above condition is satisfied.
When Σ∆v|xt

= Covx|xt
[v(xt|x)] → 0, the condition reduces to L∗ft,s = 0, which is equivalent

to Eulerian distillation. In this case, the quadratic structure guarantees convergence through PSD
curvature at the global optimum. Otherwise, due to the covariance term, the condition cannot be
written in the form ∂tf+wt ·∇xf , and hence no single drift can consistently drive the flow map.
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A.7 INSTABILITY OF CONSISTENCY TRAINING

The continuous-time consistency training objective employs a stop-gradient operation, ensuring that
the main objective remains unchanged while making computation more efficient. In this case, the
objective is defined as

LCT = Ex,z,t,s

[
ft,s(xt)

T
df−

t,s(xt)

dt

]
where ft,s(xt) = fθ(xt; t, s) and detaching gradient is denoted by f−

t,s(xt) = fθ−(xt; t, s).

LCT reduces in value to Eulerian distillation even along the conditional trajectory, as demonstrated
in Appendix A.5, paragraph on sCT. However, since the objective is expressed as a linear term, the
Euler-Lagrange equation cannot determine a stationary point, as it contains no explicit terms of ft,s
unless the gradient is detached:

EL = Ex,z,s|xt

[
Lf−

t,s + vTt ∇xf
−
t,s

]
= 0

Moreover, while the quadratic term in Eulerian distillation ensures PSD curvature and provides sta-
ble convergence at the optimum, the consistency training objective does not guarantee convergence,
as the Hessian vanishes and the curvature required to stabilize the optimum is absent. It only speci-
fies the fixed point on Lft,s = 0, and the gradient dynamics alone may fail to converge.

A.8 SUBOPTIMALITY OF NETWORK-INDUCED COUPLING

For an arbitrary coupling (x̂, ẑ) ∼ ΠX,Z with x̂t = αtx̂+ σtẑ, the gap between the conditional and
marginal velocities is given by

∆v = x̂′
t − v∗t (x̂t) = α′

t(x̂− µx|x̂t
) + σ′

t(ẑ − µz|x̂t
)

where µx|xt
= Ex|xt

[x] and µz|xt
= Ez|xt

[z] are conditional means. This follows since v∗t (xt) =
Ex|xt

[v(xt|x)] can be expressed as Ex,z|xt
[α′

tx+σ′
tz]. The general form of the loss can be expressed

by

E
[
∥A+ gT∆v∥22

]
= E

[
∥A∥22

]
+ 2E[AT gT∆v] + E[∥gT∆v∥22]

where A = ∂tf
θ
t,s + gT v∗t (xt) and g = ∇xf

θ
t,s.

Case 1: Independent Coupling. In this setup, we use an independent coupling (x, z) ∼ pdata×pZ
and the conditional velocity vt(xt|x), which corresponds to setting x̂ = x and ẑ = z. The velocity
gap is ∆v = vt(xt|x)− v∗t (xt). The cross-term vanishes because the expectation of the gap is zero
conditioned on xt:

Ex,z|xt
[∆v] = Ex,z|xt

[vt(xt|x)− v∗t (xt)] = v∗t (xt)− v∗t (xt) = 0

Thus, 2E[A∆v · g] = 0 and the loss simplifies to

LIC = LED + E[∥gT∆v∥22] = LED + E
[
Varx|xt

[gT∆v]
]

The variance term, which represents the error from Eulerian distillation, can be expanded as:

EIC = Varx,z|xt

[
gT

(
α′
t(x− µx|xt

) + σ′
t(z − µz|xt

)
)]

= (α′
t)

2gTΣx|xt
g + (σ′

t)
2gTΣz|xt

g + 2α′
tσ

′
tg

TΣxz|xt
g

where Σx|xt
= Covx|xt

(x, x), Σz|xt
= Covz|xt

(z, z), and Σxz|xt
= Covx,z|xt

(x, z).

Case 2: Generator-Induced Coupling. Generator-induced coupling methods replace one of the
variables with a network prediction, x̂ = fθ

t,0(xt) with stop-gradient: x̂t = αtft,0(xt) + σtz. For
the first case, the velocity gap is:

∆v = α′
t(ft,0(xt)− µx|x̂t

) + σ′
t(z − µz|x̂t

)

The conditional expectation of the gap is no longer zero in general:

Ez|xt
[∆v] = α′

t

(
fθ
t,0(xt)− µx|x̂t

)
21
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This introduces a non-zero cross-term in the loss, then the total error term for GC is:

EGC = 2α′
tA

T gT (fθ
t,0(xt)− µx|x̂t

) + (α′
t)

2[gT (ft,0(xt)− µx|x̂t
)]2 + (σ′

t)
2gTΣz|xt

g

Comparing the error terms, we find that EIC > EGC if:

(α′
t)

2gTΣx|xt
g + 2α′

tσ
′
tg

TΣxz|xt
g > 2α′

tA
T gT (fθ

t,0(xt)− µx|x̂t
) + (α′

t)
2[gT (fθ

t,0(xt)− µx|x̂t
)]2

When the generator is a good estimator of the posterior mean, i.e., fθ
t,0(xt) ≈ µx|x̂t

, the right
side becomes small. However, at t = 1, this condition reduced to fθ

1,0(z) = µx|z = µX , as
shown in A.1, which results in posterior mean collapse. In this case, fθ

1,0 becomes constant as
EGC approaches zero, violating the injectivity required for a well-defined flow map, leading to a
contradiction. Thus, generator-induced coupling reduces but cannot eliminate the error, preventing
guaranteed convergence. It is also a suboptimal choice when continuous-time consistency training
is employed.

Silvestri et al. (2025) introduces an additional network g : x 7→ z for x̂ = x and ẑ = g(x).
In this case, enforcing g(x) ≈ µz|x can reduce the gap, but does not eliminate the whole, since
the term (α′

t)
2gTΣx|xt

g remains. From a consistency training perspective, since the independent
coupling already exhibits a marginal velocity field, this becomes a negligible choice with respect
to guaranteeing marginal velocity; however, it can reduce the variance of the loss when g is a good
posterior approximator.

A.9 LINEARIZATION COST

Recall that fθ
t,s(xt) = ν−1(A′

t,sxt − At,sF
θ
t,s(xt)) for At,s = αsσt − σsαt. Differentiating with

respect to timestep t gives

dfθ(xt; t, s)

dt
= ν−1

(
A′′

t,sxt +A′
t,s(v

∗
t (xt)− Fθ(xt; t, s))−At,s

dFθ(xt; t, s)

dt

)
Following Lu & Song (2025), the gradient of the Eulerian distillation can be written as

∇θE
[
2fT

θ (xt; t, s)
dfθ−(xt; t, s)

dt

]
∝ ∇θE

[
−At,sν

−2Fθ(xt; t, s) ·
(
A′′

t,sxt +A′
t,s(v

∗
t (xt)− Fθ−(xt; t, s))−At,s

dFθ−(xt; t, s)

dt

)]
= At,sν

−2 · ∇θE
[
∥Fθ(xt; t, s)− sg[Ftgt(xt; t, s)]∥22

]
where Ftgt(xt; t, s) = Fθ(xt; t, s) +

(
A′′

t,sxt +A′
t,s(v

∗
t (xt; t)− Fθ(xt; t, s))−At,s

dFθ(xt; t, s)

dt

)
In this case, v∗t − Fθ can be interpreted as the flow matching term, and dFθ/dt as a linearization
term involving the JVP, which penalizes the t-dependent outputs of fθ. For a linear interpolation,
At,s takes the form At,s = t− s, while for a trigonometric interpolation At,s = sin(t− s), both are
proportional to t− s. Their derivatives are A′

t,s = 1 and A′
t,s = cos(t− s), respectively.

As s → t and (t − s) → 0, the contribution of the linearization term vanishes , while the flow
matching term is amplified. Conversely, as s → 0, the linearization term is amplified and the flow
matching term diminishes.

We note that the linearization cost increases with step size, making optimization more challenging.
This is because the linearization term involves more the complex structure given by the JVP, while
the flow matching term requires only simple forward pass.

B IMPROVED SELF-DISTILLATION

B.1 GUARANTEE THE CONVERGENCE

Revisit our objective

L = Ex,z,t,s

[∥∥F θ
t,t(xt; t, t)− vt(xt|x)

∥∥2
2
+
∥∥∥∂tfθ

t,s(xt) + F θ−

t,t (xt) · ∇xf
θ
t,s(xt)

∥∥∥2
2

]
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The first term of the right side trains F θ
t,t(xt) to approximate the marginal velocity via the flow

matching objective, while the second term learns the flow map ft,s along the trajectory of F θ−

t,t in a
self-distillation manner.

Individually, each term is guaranteed to converge to its desired optimum, the marginal velocity and
the flow map of the velocity F θ−

t,t by Prop. 3.1 (Appendix A.3). From a joint perspective, we need to
consider t = s, since the network is forced to optimize both terms simultaneously at this point. As
Eulerian distillation collapses to the flow matching objective when t→ s, the second term trains the
model to learn the instantaneous velocity of the trajectory (Appendix A.9). In this case, F θ

t,t learns
from F θ−

t,t , and inductively approximates v∗t (xt) through the first term. This naturally reduces to a
non-conflict joint training. For t ̸= s, the network is conditioned differently in the two terms, and it
can learn the proper mapping provided that the network capacity is sufficient.

Consequently, the overall objective trains the network to follow the marginal velocity as the trajec-
tory of the flow map naturally.

B.2 DERIVING FINAL OBJECTIVE

Recall the consistency training objective under the generalized flow map (Appendix. A.9):

At,sν
−2 · E

[
∥Fθ(xt; t, s)− sg[Ftgt(xt; t, s)]∥22

]
where Ftgt(xt; t, s) = Fθ(xt; t, s) +

(
A′′

t,sxt +A′
t,s(v

∗
t (xt; t)− Fθ(xt; t, s))−At,s

dFθ(xt;t,s)
dt

)
.

To follow the marginal velocity, we replace v∗t (xt) with instantaneous velocity F θ
t,t(xt) while jointly

training with LCFM.

Particularly, for linear interpolation, we have At,s = t− s, A′
t,s = 1 and A′′

t,s = 0. This simplifies
the target to F lin

tgt(xt; t, s) = v∗t (xt)−(t−s)F ′
θ(xt; t, s) which coincides with the regression target of

MeanFlow. For trigonometric interpolation, we have At,s = sin(t−s), A′
t,s = cos(t−s) and A′′

t,s =

− sin(t− s). Thus, the target becomes F tri
tgt = Fθ(xt; t, s) + cos(t− s) · (v∗t (xt)− Fθ(xt; t, s))−

sin(t− s) · (xt + F ′
θ(xt; t, s)).

Although consistency training already guarantees the marginal flow map at its fixed point, the gra-
dient in practice can exhibit a gap expressed as:

Ex,z,t,s[f
θ
t,s(∆v · ∇xf

θ−

t,s )]

When self-distillation is combined with flow matching, E
[
∥Fθ(xt; t, t)− v(xt|x)∥22

]
, the velocity

error ∆v = Fθ(xt; t, t) − v∗t (xt) can be further reduced compared to ∆v = vt(xt|x) − v∗t (xt),
thereby stabilizing the training.

To incorporate classifier-free guidance in the subsequent discussion, we set vθ(xt; t) to the approxi-
mated marginal velocity, as an alternative to F θ

t,t(xt).

For JVP approximation, to ensure that dxt/dt follows the velocity vθ(xt; t), we approximate

dxt

dt
≈ [xt + ϵ · vθ(xt; t)]− [xt − ϵ · vθ(xt; t)]

2ϵ
= vθ(xt; t)

Thus, the full JVP approximation becomes

F ′
θ(xt; t, s) =

dFθ(xt; t, s)

dt
=

Fθ(xt + ϵ · vθ(xt; t), t+ ϵ, s)− Fθ(xt − ϵ · vθ(xt; t), t− ϵ, s)

2ϵ

Applying adaptive weighting, our final objective is

L̃t,s(xt, x) = ∥Fθ(xt; t, t)− vt(xt|x)∥22 + ∥Fθ(xt; t, s)− sg[Ftgt(xt; t, s)]∥22
LiSD = Ex,z,t,s

[
wt,s(xt, x) · L̃t,s(xt, x)

]
; where wt,s(xt, x) = (sg[L̃t,s(xt, x)] + η)−p

Detailed training and sampling algorithms are provided in Alg. 2 and Alg. 3.
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Algorithm 1 (Time Sampler) Timestep sampling function using beta distribution

1: function time sampler(θ1, θ2)
2: t, s ∼ Beta(θ1, θ2) ▷ Timestep Sampling
3: return π

2 max(t, s), π
2 min(t, s)

Algorithm 2 (iSD Training) Training algorithm of vanilla iSD

Require: Noise distribution pZ , data distribution pX , model Fθ, learning rate µ, time distribution
(θ1, θ2), adaptive weighting (η, p), JVP approximation step size ϵ, class labels c

Ensure:
1: repeat
2: z ∼ pZ , x ∼ pX
3: t, s← time sampler(θ1, θ2)
4: xt ← cos(t)x+ sin(t)z, vt ← cos(t)z − sin(t)x
5: Ft,s ← Fθ(xt; t, s, c), Ft,t ← Fθ(xt; t, t, c)
6: F ′

t,s ← [Fθ(xt + ϵFt,t; t+ ϵ, s, c)− Fθ(xt − ϵFt,t; t− ϵ, s, c)] /(2ϵ) ▷ JVP-Approx.
7: Ftgt ← Ft,s + cos(t− s) · (Ft,t − Ft,s)− sin(t− s) · (xt + F ′

t,s)

8: L̃t,s ← ∥Ft,t − vt∥22 + ∥Ft,s − sg[Ftgt]∥22 ▷ Optimization Target
9: L ← L̃t,s × (sg[L̃t,s] + η)−p ▷ Adaptive Weighting

10: θ ← θ − µ∇θL ▷ Model Update
11: until Convergence

Algorithm 3 (iSD Sampling) Sampling algorithm of vanilla iSD

Require: Initial noise z ∼ pZ , trained model Fθ, class labels c, sampling time steps {ti}Ni=1
Ensure:

1: x← z
2: for i← 1 to N do
3: x← cos(ti+1 − ti) · x+ sin(ti+1 − ti) · Fθ(x; ti, ti+1, c)
4: end for
5: return x

B.3 CLASSIFIER-FREE GUIDANCE OF FLOW MAP MODELS

By abstracting the guiding trajectory to vθ, the flow map model can naturally be trained to follow
the specific trajectory as long as it is Lipschitz continuous. Given a label c and an null class label
∅, let the corresponding velocity fields be Ft,t(xt; c) and Ft,t(xt;∅). If both are globally Lipschitz
continuous, then the CFG trajectory ṽθ(xt; t, c) = ṽt(xt; c) is also globally Lipschitz continuous,
since any linear combination of Lipschitz continuous functions remains Lipschitz continuous.

ṽθ(xt; t, c) = Fθ(xt; t, t,∅) + ω(Fθ(xt; t, t, c)− Fθ(xt; t, t,∅))

Thus, the flow map can be trained to follow the CFG velocity field, referred to as Pre-CFG. In this
case, we need to address a conflict: LCFM enforces Ft,t ≈ v∗t while LSD-R enforces Ft,t ≈ ṽt. To
resolve this, we append the guidance scale ω as an additional condition, F θ

t,t(xt; c, ω). Then, the
modified objectives are given by:

LCFM = E
[
∥Fθ(xt; t, t, c, 1.0)− vt(xt|x)∥22

]
LSD-C = E

[
∥Fθ(xt; t, s, c, ω)− sg[Ftgt(xt; t, s, c, ω)]∥22

]
where Ftgt = Ft,s(xt; c, ω) +

(
A′′

t,sxt +A′
t,s (ṽt(xt; c)− Ft,s(xt; c, ω))−At,sF

′
t,s(xt; c, ω)

)
and

ṽt(xt; c) = Ft,t(xt;∅, 1.0) + ω(Ft,t(xt; c, 1.0) − Ft,t(xt;∅, 1.0)) with θ omitted for brevity. De-
tailed procedures follow Alg. 4 for LiSD-U and Alg. 5 for LiSD-C.

Hence, LCFM ensures Ft,t(xt; c, 1.0) ≈ v∗t (xt; c), while LSD-R ensures Ft,t(xt; c, ω) ≈ ṽt(xt; c).
This choice is natural, as ṽt = v∗t when ω = 1.

However, Post-CFG defined as
F̃θ(xt; t, s, c) = Fθ(xt; t, s,∅) + ω(Fθ(xt; t, s, c)− Fθ(xt; t, s,∅))
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does not follow the CFG trajectory. This discrepancy arises from the definition of the flow map,

fθ(xt; t, s) = xt +

∫ s

t

v∗τ (xτ )dτ

which performs the path integral along a specific trajectory induced by v∗τ . For a CFG trajectory,
the path integral should be taken along ṽτ . In contrast, Post-CFG computes two separate forward
passes, integrating along v∗τ (xτ ; c) and v∗τ (xτ ;∅), rather than along ṽτ . As a result, the integration
differ from the expected CFG trajectory. The detailed procedure of Post-CFG follows Alg. 6.

Algorithm 4 (iSD-U Training) Training algorithm of iSD-U

Require: Noise distribution pZ , data distribution pX , model Fθ, learning rate µ, time distribution
(θ1, θ2), adaptive weighting (η, p), JVP approximation ϵ, Pre-CFG scale ω, class labels c.

Ensure:
1: repeat
2: z ∼ pZ , x ∼ pX
3: t, s← time sampler(θ1, θ2)
4: xt ← cos(t)x+ sin(t)z, vt ← cos(t)z − sin(t)x
5: Ft,s ← Fθ(xt; t, s, c), Ft,t ← Fθ(xt; t, t, c)
6: ṽt = (1− ω)Fθ(xt; t, t,∅) + ωFt,t

7: F ′
t,s ← [Fθ(xt + ϵṽt; t+ ϵ, s, c)− Fθ(xt − ϵṽt; t− ϵ, s, c)] /(2ϵ) ▷ JVP-Approx.

8: Ftgt ← Ft,s + cos(t− s) · (ṽt − Ft,s)− sin(t− s) · (xt + F ′
t,s)

9: L̃t,s ← ∥Ft,t − vt∥22 + ∥Ft,s − sg[Ftgt]∥22 ▷ Optimization Target
10: L ← L̃t,s × (sg[L̃t,s] + η)−p ▷ Adaptive Weighting
11: θ ← θ − µ∇θL ▷ Model Update
12: until Convergence

Algorithm 5 (iSD-C Training) Training algorithm of iSD-C

Require: Noise distribution pZ , data distribution pX , model Fθ, learning rate µ, time distribution
(θ1, θ2), adaptive weighting (η, p), JVP approximation ϵ, Pre-CFG scale ω, class labels c

Ensure:
1: repeat
2: z ∼ pZ , x ∼ pX
3: t, s← time sampler(θ1, θ2)
4: xt ← cos(t)x+ sin(t)z, vt ← cos(t)z − sin(t)x
5: Ft,s,ω ← Fθ(xt; t, s, c, ω), Ft,t,ω ← Fθ(xt; t, t, c, ω)
6: Ft,t,1.0 ← Fθ(xt; t, t, c, 1.0)
7: ṽt = (1− ω)Fθ(xt; t, t,∅, 1.0) + ωFt,t,1.0

8: F ′
t,s,ω ← [Fθ(xt + ϵṽt; t+ ϵ, s, c, ω)− Fθ(xt − ϵṽt; t− ϵ, s, c, ω)] /(2ϵ)

9: Ftgt ← Ft,s,ω + cos(t− s) · (ṽt − Ft,s,ω)− sin(t− s) · (xt + F ′
t,s,ω)

10: L̃t,s ← ∥Ft,t,1.0 − vt∥22 + ∥Ft,s,ω − sg[Ftgt]∥22 ▷ Optimization Target
11: L ← L̃t,s × (sg[L̃t,s] + η)−p ▷ Adaptive Weighting
12: θ ← θ − µ∇θL ▷ Model Update
13: until Convergence

Algorithm 6 (Post-CFG Sampling) Sampling algorithm of iSD with Post-CFG

Require: Initial noise z ∼ pZ , model Fθ, Post-CFG scale ω, class labels c, sampling steps {ti}Ni=1
Ensure:

1: x← z
2: for i← 1 to N do
3: F̃t,s ← (1− ω)Fθ(x; ti, ti+1,∅) + ωFθ(x; ti, ti+1, c) ▷ Post-CFG
4: x← cos(ti+1 − ti) · x+ sin(ti+1 − ti) · F̃t,s

5: end for
6: return x
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C EXPERIMENTAL DETAILS

C.1 REPRODUCIBILITY OF CONSISTENCY TRAINING

To evaluate the reproducibility of consistency training, we conducted experiments within the
UCGM (Sun et al., 2025) framework. We compared the FID scores of several models trained un-
der different initialization conditions. Following UCGM, we first extract latent representations of
ImageNet-1K 256 × 256 using VAVAE (Yao et al., 2025). All models were trained with the same
hyperparameters and settings: RAdam optimizer with a learning rate of 0.0001, weight decay of
0.0, β1 = 0.9, β2 = 0.999, batch size of 1024, gradient clipping at 0.1, and timestep t sampled
from Beta(0.8, 1.0). For enhancement, we applied a label drop ratio of 0.1, an enhancement range
of (0, 0.75), and an enhancement ratio of 2.0. We also used the cosine function as the loss weighting
function and trained all models with linear interpolation for 40K iterations. Different experimental
details are provided below.

Multistep Baseline We trained the DiT-XL/1 architecture initialized from the publicly released
multistep checkpoint of UCGM. This configuration achieved a 2-step FID of 2.69, which is reason-
able but still falls short of the reported FID of 1.42.

LightningDiT We trained the LightningDiT-XL/1 architecture from its released pretrained model.
In this setting, the model achieved a 2-step FID of 10.01, which is worse than the reported FID.

Reproduced Multistep Model In this experiment, we trained the DiT-XL/2 architecture from
scratch to reproduce the multistep baseline. For training, we used AdamW (Loshchilov & Hutter,
2019) with a learning rate of 0.0002, β1 = 0.9, β2 = 0.95, EMA decay weight of 0.999, and
timestep t sampled from Beta(1, 1). We used an enhancement ratio of 0.47 and a cosine weighting
function. After training the multistep baseline model for 800k iterations, we trained a few-step
model initialized from the reproduced multistep baseline using consistency training with the same
few-step settings. This resulted in a 2-step FID of 5.96.

Without Preconditioner We train a DiT-XL/1 architecture from randomly initialized weights
without any preconditioner. In this case, training consistently failed, with the loss diverging and
no meaningful samples being generated. While 40K steps may appear insufficient for scratch train-
ing, other scratch training methods already show a rapid decrease by 40K steps. We consider that
this is enough to check the unstable dynamics compared to other models.

These experiments suggest that consistency training is highly sensitive to initialization and the
choice of preconditioner. It proves unstable under random initialization and requires a well-trained
multistep baseline for stable optimization. Furthermore, even when initialized from a pretrained
model, consistency training demonstrates limited robustness and reproducibility across different ar-
chitectures and setups.

C.2 IMPLEMENTATION

ImageNet 256×256 SD-VAE (Rombach et al., 2022) was used to encode images from the Ima-
geNet 256 dataset into a 32× 32× 4 latent representation. For DiT (Peebles & Xie, 2023) models,
we employed RMSNorm (Zhang & Sennrich, 2019), SiLU activation, QK normalization (Henry
et al., 2020), and RoPE (Su et al., 2023) for minor improvements. Each model was scaled by depth
and hidden dimension, while the patch size was kept fixed. We sampled t and s independently from
Beta(0.8, 1.0), and set t, s := max(t, s),min(t, s). For generations, we have simply sampled the
time intervals uniformly without additional engineering. Detailed training parameters are provided
in Tab. 6.

CIFAR-10 For CIFAR-10, we trained a model in pixel space without any VAE latent encoders.
The model was trained without class conditioning, based on the UNet+(Song et al., 2021) backbone.
We trained the model for 950K steps with a global batch size of 256. Non-leaky data augmenta-
tion (Karras et al., 2022) is also applied, excluding vertical flipping and rotation. Further details of
the experimental settings can be found in Table 6.
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Table 6: Experimental Settings

Dataset ImageNet 256×256 CIFAR-10

Preprocessor SD-VAE (Rombach et al., 2022) Identity
Input size 32× 32× 4 32× 32× 3

Backbone DiT-B/4 DiT-B/2 DiT-L/2 DiT-XL/2 UNet+ (Song & Ermon, 2019b)

Params (M) 131 131 459 676 56
Depth 12 12 24 28 -
Hidden dim 768 768 1024 1152 -
Heads 12 12 16 16 -
Patch size 4× 4 2×2 2×2 2×2 1×1
Dropout 0.0 0.2

Self-distillation LiSD-U LiSD
Joint training Enabled Enabled
JVP Approximation: Eq. 17 torch.func.jvp
ϵ 0.005 -
p 1.0 0.75
η 0.01 0.01
Pre-CFG ω 1.5 -

Training steps 800K 950K
Batch size 256 256
Label dropout 0.1 -
Optimizer AdamW (Loshchilov & Hutter, 2019) AdamW
Learning rate 1e-4 1e-3
LR Scheduler Constant Linear Warmup
β1 0.9 0.9
β2 0.999 0.999
Weight decay 0 0
EMA decay 0.99995 0.99995

C.3 ADDITIONAL QUANTITATIVE RESULTS

Table 7: Quantitative results across design choices. The numeric entries in the header denote
Post-CFG scales.

Loss Interp. JVP Steps FID↓ 1.5 3.0 7.0 10.0
LCT Linear Exact 2 76.39 50.45 39.33 68.82 85.87

4 73.57 47.93 25.80 38.19 55.88

LCT Trig Exact 2 103.35 72.42 39.52 41.27 59.16
4 83.51 52.83 21.33 17.48 26.43

LiSD Linear Exact 2 118.17 98.77 77.75 89.02 100.61
4 120.68 101.23 73.45 64.55 71.30

LiSD Trig Exact 2 115.93 86.46 51.85 51.34 66.79
4 100.35 71.40 35.41 26.54 34.58

LCT Linear Approx 2 65.98 40.97 33.33 67.99 85.69
4 62.70 37.44 19.25 36.41 58.07

LiSD Linear Approx 2 112.39 90.26 69.81 87.50 101.42
4 113.42 91.58 62.71 58.54 68.42

LiSD-U Linear Approx 2 75.57 55.58 53.88 86.95 99.97
4 77.55 57.44 43.86 57.20 71.43

LiSD-U Trig Approx 2 66.63 41.84 27.99 47.04 66.25
4 60.76 36.01 19.40 25.67 38.70
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Table 8: Quantitative results over training steps (2-NFE). The numeric entries in the header
denote training steps.

Loss Interp. JVP Arch. Pre-CFG ω 10K 100K 200K 300K 400K
LCT Linear Exact DiT-B/4 - 329.02 103.73 88.08 79.44 76.39
LCT Trig Exact DiT-B/4 - 433.04 135.31 118.56 109.97 103.35
LiSD Linear Exact DiT-B/4 - 392.22 156.94 136.04 127.76 118.17
LiSD Trig Exact DiT-B/4 - 381.09 151.88 132.77 124.58 115.93

LCT Linear Approx DiT-B/4 - 413.13 97.59 75.87 69.51 65.98
LiSD Linear Approx DiT-B/4 - 425.42 151.88 129.41 119.42 112.39

LiSD-U Linear Approx DiT-B/4 1.5 425.40 124.84 92.80 83.74 75.57
LiSD-U Trig Approx DiT-B/4 1.5 414.77 116.95 87.89 75.59 66.63

LiSD-C Linear Approx DiT-B/4 1.5 380.05 169.04 130.94 113.43 102.21
LiSD-C Linear Approx DiT-B/4 3.0 379.94 202.94 122.01 101.64 91.38

LiSD-C Trig Approx DiT-B/4 1.5 413.45 167.09 136.24 122.36 114.16
LiSD-C Trig Approx DiT-B/4 3.0 412.07 150.26 107.73 90.49 82.59
LiSD-C Trig Approx DiT-B/4 7.0 412.92 195.38 129.86 113.47 112.64

LiSD-U Trig Approx DiT-B/2 1.5 384.36 103.10 69.50 57.36 50.58
LiSD-U Trig Approx DiT-XL/2 1.5 410.63 89.34 57.63 44.54 38.50

D QUALITATIVE RESULTS

Figure 4: One-step samples from the vanilla iSD on CIFAR-10 (FID 3.64)
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Figure 5: Class-level samples generated by iSD-U with four-step sampling on ImageNet 256×256
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Figure 6: Four-step samples from the iSD-U on ImageNet 256×256

E USE OF LARGE LANGUAGE MODELS

OpenAI’s ChatGPT was used to polish writing during preparation of this work. All text generated
by the tool was reviewed and revised by the authors.

30


	Introduction
	Related Work
	Suboptimality of Direct Flow Map Matching
	Preliminaries
	Generalized Flow Map Matching
	Suboptimality and Instability

	Towards Reproducible and Stable Flow Map Training
	Facilitating Consistency Training from Scratch
	Improved Self-Distillation

	Experiments
	Ablation Study
	Comparison with Prior Work

	Conclusion
	Theoretical Analysis of Flow Map Models
	Mean collapse of Diffusion and Flow Matching Models
	Injectivity of Flow Map
	Eulerian Equation and Uniqueness of Flow Map
	Interpolation condition for guaranteeing the convergence
	Recent Consistency-based Generative Models are Flow Map Models
	Suboptimality of direct training
	Instability of Consistency Training
	Suboptimality of Network-Induced Coupling
	Linearization Cost

	improved Self-Distillation
	Guarantee the Convergence
	Deriving Final Objective
	Classifier-free Guidance of Flow Map Models

	Experimental Details
	Reproducibility of Consistency Training
	Implementation
	Additional Quantitative Results

	Qualitative Results
	Use of Large Language Models

