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ABSTRACT

Consistency-based approaches have been proposed for fast generative modeling,
achieving competitive results compared to diffusion and flow matching models.
However, these methods often rely on heuristics to mitigate training instability,
which in turn limits reproducibility and scalability. To address this limitation, we
propose the generalized flow map framework, unifying recent consistency-based
methods under a common perspective. Within this framework, we investigate
the suboptimality of existing approaches and identify two key factors for repro-
ducibility: time-condition relaxation and marginal velocity guidance. To incor-
porate these, we leverage self-distillation to guide consistency models along the
marginal velocity. We further propose improved Self-Distillation (iSD) by explor-
ing the design space of flow maps, thereby reducing reliance on heuristics. Our
formulation naturally extends to classifier-free guidance, achieving four-step gen-
eration with an FID of 11.06 on ImageNet 256 x 256. iSD shows qualitatively
comparable results to prior few-step generative models, providing a theoretical
and empirical foundation for reproducible consistency training.

1 INTRODUCTION

Diffusion (Ho et al. 2020} Song & Ermon, 2019aj [2020; [Song et al.l 2021) and flow matching
models (Liu et al.} 2023} [Lipman et al.,|2023)) have achieved remarkable performance across a wide
range of applications. This progress stems from flow-based modeling and multi-step inference, but
is limited by multiple network evaluations during generation. To address this limitation, several
works have explored improving sampling efficiency (Xiao et al., 2022} [Salimans & Hol 2022} [Yin
et al.,[2024bza; |Zhou et al.|[2024)), but they rely on additional distillation stages or auxiliary networks
to achieve fewer-step generation, thereby introducing additional training cost.

Consistency Models (Song et al.,[2023)) and its variants (Frans et al., 2025; Song & Dhariwal} 2024;
Geng et al., [2025b; [Lu & Song| 2025} [Yang et al.| 2024} |Sun et al.| [2025) have been proposed for
training from scratch in few-step generation. Earlier studies on consistency models have often suf-
fered from training instability, which led subsequent works to focus on stabilization by introducing
various heuristics. However, the reliance on these complex techniques has reduced reproducibility.

In this work, we aim to develop a simplified and reproducible few-step generative model based on
consistency methods. We begin by analyzing existing approaches: (i) we propose a generalized
flow map framework that covers various design choices of recent consistency-based methods; (ii)
we unify these approaches under our framework, providing a theoretical basis for analyzing sub-
optimality; and (iii) we show that most of the recent methods do not guarantee convergence to the
generator along the marginal velocity field, due to suboptimality and instability of their objectives.

Motivated by these observations, we hypothesize that suboptimality and instability undermine the
reproducibility of consistency training. From our unified perspective, we identify two key factors
for reproducible training: time-condition relaxation and marginal velocity guidance. To incorporate
these factors, we leverage our generalized flow map formulation with self-distillation. Some prior
work (Issenhuth et al.| 2025} |Silvestri et al.,[2025) have attempted to address these issues by reducing
the loss variance, thereby resolving them indirectly. In contrast, self-distillation (Boffi et al.| [2025a)
was proposed to guarantee convergence to the marginal flow directly, but it relies on heuristics to
stabilize training. By exploring the design space of flow map models, we propose improved Self-
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Distillation (iSD), which further reduces the reliance on heuristics. Moreover, we extend the iSD
formulation to classifier-free guidance, achieving additional performance gains.

Our iSD demonstrates competitive performance against recent few-step generative models, while
providing improved reproducibility. On ImageNet 256256 (Deng et al.,2009)), our model achieves
an FID (Heusel et al., [2017) of 11.06 for four-step generation. The reproducibility of iSD is vali-
dated across multiple random initializations by measuring the standard deviation of FID, achieving
0.735. It demonstrates improved reproducibility compared to consistency training, as training can
be performed from scratch with reduced heuristics.

Contribution. (i) We extend the flow map framework to cover various design choices, unifying
recent consistency-based approaches within it (Sec.[3.2). (ii) We prove the suboptimal convergence
and instability of gradient dynamics in recent consistency-based methods, showing that they under-
mine reproducibility and training stability (Sec.[3.3). (iii) To address these issues, we leverage the
self-distillation, which guarantees convergence to the marginal velocity field (Sec. ). (iv) We gen-
eralize the self-distillation to incorporate recent design choices and further extend it to classifier-free
guidance, which we term improved Self-Distillation (iSD, Sec.[d). (v) We explore the design space
and present the best choices for iSD. (Sec. [3).

2 RELATED WORK

Diffusion and Flow Matching Models. Diffusion mod- Eulerian Distillation |
els (Ho et al 2020} |Song & Ermon, 2019a; |Song et al.| ey —-_-__—;;_—»—*"
2021) and flow matching models (Albergo & Vanden- I - -
Eijnden, 2023} |Albergo et al.| [2023; Boffi et al.l 2025b; e - -
Liu et al. |2023) are generative models that gradually —~
transform a tractable noise distribution into the data distri- e o

bution. These models have achieved remarkable progress S .
in high-fidelity generation (Rombach et al., [2022; [Podell \ o
et al., 2024} |[Peebles & Xiel 2023 [Esser et al.l 2024).

However, their reliance on a multi-step sampling proce- Direct Training
dure requires substantial computational resources. ) >
—r_— 7
Few-step Generation. Several work have explored im- *4\ \/ d
proving sampling efficiency of diffusion models (Sali- ) > > \
mans & Hol 2022; |Xi1ao et al., [2022; [Rombach et al., R \\\L
2022). These approaches aim to distill pretrained diffu- . £ S

sion models into fewer-step generators, adopt GANs, or = ~
leverage VAESs to reduce input size. In parallel, distri- \ .Q‘_)

bution matching distillation methods (Yin et al. 2024bjal  + ___ \isinal velocity +— — Conditional velocity
Zhou et al.| 2024) have been proposed to construct one- <« — consistency Model <—— Flow Map Model
step generators by tracking the generator’s score. How-

ever, both approaches rely on additional distillation stages Figure 1: Eulerian distillation and

or auxiliary networks, which increase training cost. direct training of consistency mod-

. ) els and flow map models. Consis-
Consistency Models. Consistency Models (Song et al, tency models can be generalized into

2023) are designed to predict a sample directly from gqy map models, which define a map-
any point along a flow trajectory. Both distillation and ping between two points on the same
training methods have been proposed, but training from (rajectory. Eulerian distillation learns
scratch is known to be unstable. Several studies have flow mappings along the marginal ve-
introduced heuristics to stabilize training, including ini- locity, whereas direct training learns
tialization, improved objectives and progressive training hem along conditional velocity.
schemes (Song & Dhariwall [2024} \Geng et al., | 2025b; |Lu

& Song, 2025)). Other studies have identified the gap between distillation and training objectives (Is-
senhuth et al., 2025} |Silvestri et al., 2025} [Boffi et al., [2025b), which can lead to high loss variance
and suboptimal convergence when training from scratch. To mitigate this, network-induced cou-
plings have been introduced to reduce loss variance, addressing the issue indirectly. In contrast,
self-distillation has been proposed to guarantee convergence directly, while dependent on heuristics.
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Unified Framework. Recently, several studies have aimed to unify consistency models and flow
matching. UCGM (Sun et al.l |2025) introduced a framework that integrates both paradigms, but it
does not account for the relaxed constraint of mapping points. More broadly, the flow map frame-
work (Boffi et al.l |2025b} [Kim et al.l 2024) presented a mathematical framework for consistency
models, defining a model that learns flow maps as mappings between any two points on the same
trajectory. However, it does not aim to unify recent work or explore their design spaces.

3  SUBOPTIMALITY OF DIRECT FLOW MAP MATCHING

In this section, we revisit the flow map framework (Boffi et al.|[2025b} |[Kim et al.| |2024)) and extend
it to interpret recent consistency-based approaches. We observe that most methods learn conditional
velocity fields, which do not guarantee convergence to the marginal velocity field. Such suboptimal
flow maps may lead to trajectory crossings, non-injective mappings, or severe reproducibility issues.

3.1 PRELIMINARIES

Given a training dataset X with underlying distribution px, flow matching models are trained to
match the velocity fields of continuous flows, starting from a tractable distribution pz. Prior work
constructs such flows via an interpolation, z; = o + o4z, where ¢ ~ px and z ~ pz. A
linear interpolation z; = (1 — t)x + tz for t € [0,1] (Liu et al., 2023 [Lipman et al., 2023) and a
trigonometric interpolation x; = cos(t)z + sin(t)z for ¢ € [0,7/2] (Albergo & Vanden-Eijnden,
2023} |Albergo et al., 2023} [Lu & Song| 2025)) are the widely adopted choices.

We assume that a; and o; are monotone with boundary conditions ag = o = 1l and ap = g9 = 0
for ¢t € [0, T]. Both are continuous and have bounded first- and second-order derivatives. Under this
assumption, the marginal distribution induced by the flow, p;, satisfies pg = px and pr = pz.

To ensure convergence of the consistency objective in the subsequent discussion, we propose an
additional assumption that o} — oray = v # 0 for all ¢ € [0,7] where v is constant (see Ap-
pendix [A.4). Notably, both linear and trigonometric interpolations satisfy this condition with v = 1.

With the constructed flow, the flow matching models optimize the squared error between the condi-
tional velocity v;(z¢|z) and a parameterized velocity network Fy:

Leon = Eorpy zmps trtio,1) [1Fo(zest) — ve(ae|) 3], vi(ai|z) = aja + 01z ey

Conditional flow matching Lcpyv converges to the flow induced by the marginal velocity v} (x;) =
Eg)z, [v(z¢|z)]. If vf () is Lipschitz continuous in both ¢ and x, the ODE dz; = vy (x¢)dt has a
unique solution and satisfies the continuity equation for p; (Lipman et al., 2023]).

However, we observe that diffusion and flow matching models can suffer from mean collapse, in
which one-step samples collapse to the mean of the data distribution (proof in Appendix [A.T).

3.2 GENERALIZED FLOW MAP MATCHING

We begin by introducing a flow map with Eulerian distillation following prior work, and then gener-
alize these formulations to unify recent consistency-based methods. Within our extended framework,
we interpret recent methods and provide a theoretical basis for analyzing their suboptimality.

Flow Map. From the flows defined by an interpolation, our goal is to draw samples from the target
distribution in a few sampling steps. To achieve this, we define a flow map as a mapping between
two points x; and z; (s < t) on the same trajectory, using the marginal velocity v} (x;) as follows:

frs(xe) = 4 +/ vi(x,)dr. 2)
t

If the marginal velocity is Lipschitz continuous, the flow map is well-defined, injective, and thus
free from the mean collapse problem (proof in Appendix [A.2).

Training Flow Map. Since the flow map is defined as an integral, direct supervision from scratch
is challenging. Assuming a teacher flow matching network Fg, we can generate training data using
an ODE solver, enabling direct supervision in a distillation manner. This procedure reduces to the
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one-step distillation of rectified flows (Liu et al., [2023) for fixed ¢ = 1 and s = 0. However, it
requires a data generation process with substantial computational resources.

To address this limitation, many recent studies adopt consistency training (Song et al.|[2023), which
can be derived from the Eulerian equation (proof in Appendix [A.3} see also|Boffi et al.| (2025b)).

Proposition 3.1. (Eulerian Equation) Given the flow induced by a Lipschitz continuous marginal
velocity v; (xy), the flow map f s is the unique solution of the Eulerian equation:

O fr,s(x) +vf (2¢) - Vo frs(x) =0 (3)
when f is continuous in x,t, s, Lipschitz continuous in x, and satisfies the boundary f +(z) = .

To facilitate training of a flow map network fy using the Eulerian equation, the training objective
can be formulated as a squared minimization problem, referred to as Eulerian distillation:

Lep = Eg 2, [”atfe(xﬁ t,s) +vf (1) - Vafo(mest, 5)”%] “)
When s = 0, Eulerian distillation reduces in value to continuous-time consistency training objec-

tive (Song et al., 2023)) (details in Appendix @]) However, their gradient dynamics differ, which
affects the training stability, as further discussed in a later section (Prop. [3.4).

Since the objective involves a Jacobian-vector product, its optimization requires computing a Hes-
sian, introducing computational overhead. To address this, [Lu & Song (2025) reformulated the
consistency training objective with a stop-gradient operation, while keeping the gradients identical:

dfy- (1) ] )
2

dt
where fy- denotes the gradient-detached network. Using Eq.[5] the JVP operation is detached from
the gradient flow, and the update step requires two backward passes but avoids Hessian computation.

ACCT = EZL’,Z,t U f@(mt;t) - f97 (xt;t) +

Generalized Flow Map. To interpret recent approaches as flow maps, we propose a generalized
Sformulation of the network fg as a one-step Euler solution with a pseudo-velocity network Fjy:
fo(zest,s) = v (A} oy — Ap sFy(meit, 8)),  Aps = op0s — 05 (6)
This formulation satisfies the boundary condition of Prop. For a linear trajectory, it reduces to
fo(xe;t,s) = x¢ + (s — ) Fy(x4; t), widely adopted in flow map studies (Geng et al., 2025a; Boffi
et al.,|2025b; |Sabour et al.,[2025). At s = 0, it simplifies to fo(x¢;t) = x¢ — tFy(x; ), the common
setting in consistency models (Yang et al., |2024; |Sun et al., [2025). For a trigonometric trajectory
with s = 0, we obtain fy(x¢;t) = cos(t)x — sin(t) Fy(z4; t), as introduced by [Lu & Song|(2025).

By generalizing the formulations of flow maps, we propose instantiations of these methods under a
unified perspective (proof in Appendix [A.3)).

Proposition 3.2. (Interpretation of Recent Methods) Recent consistency-based methods can be in-
terpreted as instances of the flow map framework, trained with the generalized Eulerian equation:

Osfo(xe;t,s) + 1e(xs, ) - Vo folwe;t,s) =0 @)

where x; is determined by the Interpolant, T, by the Trajectory, and the constraints of t,s by
Timestep, as summarized in Tab.

To be consistent with the generalized Eulerian equation, we extend Eulerian distillation and consis-
tency training objective for fo(x¢;t,s) = fg <(x¢). Since the guiding trajectory 7; is not generally
Lipschitz continuous, it no longer guarantees the convergence to the marginal flow map.

Lin = Ep s [[00f04(00) + i @) Vo ()] ®)

) ) ~ 2
Cor = Bat || 20600 = 120 0+ 0ufls (o) 4 o) Vol )]

We observe several design choices from these instantiations. Prior studies have focused on linear
and trigonometric interpolations. The guiding trajectory typically follows either pretrained velocity
networks or the conditional velocity. Consistency models usually fix s = 0, whereas other flow map
models relax it to s < t. Some models compute the JVP directly using torch. func. jvp, while
others approximate it as dfg(x¢;t)/dt = [fo(zire;t +€) — fo(xi—e;t — €)]/(26).

We explore these design spaces in the experimental section, and select the best settings: (i) trigono-
metric interpolation, (ii) approximated marginal velocity, (iii) s < ¢, and (iv) approximated JVP.
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Table 1: Instantiation of the flow map framework for each consistency-based generative model.

Model Interpolant x; Trajectory 7 Timestep JVP Type Loss Note
Distillation-based Methods

FMM-EMD (Boffi et al.|2025b) Linear Fg(xy;t) s<t Exact LEp Teacher Fg (x4;1)
AYF-EMD (Sabour et al.[|2025) Linear Fg(xy;t) s<t Exact Lot

sCD (Lu & Song!|2025) Trigonometric  Fi(x4;t) s=0 Exact Lt

Consistency Training Methods

MeanFlow (Geng et al.|2025a) Linear v (2 |x) s<t Exact Lcr

ConsistencyFM (Yang et al.[[2024) ~ Linear ve(xi|T) s=0 Approx Lcr

sCT (Lu & Song/2025) Trigonometric vy (@) s=0 Exact Lct

UCGM (Sun et al.[2025) Arbitrary ve (@) s=0 Approx Ler

Shortcut Model (Frans et al.|[2025)  Linear Fy(zy;t,t) s=t+d Approx Lo de[—271-27T]
Self-Distillation Methods

Self-Distillation (Boffi et al.||2025a) Linear Fy(z4;t,t) s<t Exact Lsp

improved Self-Distillation (Ours)  Arbitrary Fy(xyst,t) s<t Approx Lspr

3.3 SUBOPTIMALITY AND INSTABILITY

Most consistency training approaches learn flow maps guided by the conditional velocity. We denote
Eulerian distillation under conditional velocity guidance as direct training.

Lor =Eu 2t [0 fo(est, s) + v(ze|z) - Vi folast, s)|3] (10)

However, under the assumption in Prop. the direct training does not guarantee convergence to
the flow map along the marginal velocity, due to the gap between conditional and marginal velocity
guidance (proof in Appendix [A.6} cf. Boffi et al.| (2025b)).

Proposition 3.3. (Suboptimality of direct training) The gap between Eulerian distillation Lxp along
the marginal velocity and direct training Lo is given by

»CDT - »CED = Ex,z,t,s [Varz\zt [A’U . vzf()(xﬁ tv S)]] (ll)

where Av = v(x¢|x) — vf (x4). This discrepancy forces the network in the direction of Av 1V fo,
leading to distortion of the flow map. The flow map induced by direct training is indefinite.

This can affect methods that optimize the direct training objective. In such cases, injectivity and
non-crossing trajectories are no longer guaranteed, which may result in mode collapse or failure of
locality-based editing. Instead of optimizing the direct training objective, the consistency training
objective ensures the marginal flow map at its fixed point, even when guided by conditional velocity.
However, it does not guarantee convergence due to its gradient dynamics (proof in Appendix [A.7).

Proposition 3.4. (Instability of consistency training) The consistency training objective with a con-
ditional velocity reduces to the objective with the marginal velocity under expectation.

However; it lacks the curvature required to stabilize the optimum, ensuring only the existence of a
fixed point that satisfies the Eulerian equation rather than guaranteeing the global optimum. Thus,
the gradient dynamics may fail to converge.

Some work (Issenhuth et al., |2025; Silvestri et al., [2025) leverages neural networks to conduct the
flow. In direct training settings, these approaches can provide a tighter bound to Eulerian distillation,
but still do not guarantee the convergence to the marginal velocity field. (proof in Appendix [A.§).

Preconditioners. Despite various Table 2: Consistency training results on ImageNet 256 x
training techniques proposed in prior 256 under different preconditioners. Multi-step FID denotes
work, classical consistency training the FIDs of pretrained networks for given ODE solver and
still suffers from reproducibility is- sampling-step pairs. Few-step FID denotes the 2-NFE FID
sues. In particular, recent consistency of consistency models initialized from the corresponding
training methods rely on initializa-  preconditioner (details in Appendix [C.1).

tion with pretrained diffusion mod-

els, such as [Karras et al] (2022): [Yao Precpndltmner . Multi-step FID|, Few-step FID|
- Multi-step Baseline  1.21 (UCGM-S, 30-step)  2.69
et al.|(2025). These pretrained mod- 1 ohiningDiT 2.17 (Euler, 250-step)  10.01

els are often referred to as multi-step  Reproduced Model ~ 2.41 (UCGM-S, 30-step) ~ 5.96
preconditioners, and we observe that ~ w/o Preconditioner - Diverged (2001)
the performance of consistency mod- ~ Reported Baseline 121 (UCGM-S, 30-step)  1.42

els varies depending on them.
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As shown in Tab. Q], we evaluated an open-source continuous-time consistency model (Sun et al.|
20235) on ImageNet 256 x 256. With the released multi-step baseline, the model achieved a 2-NFE
FID of 2.69. However, when using the pretrained LightningDiT (Yao et al.,2025)) or our reproduced
multi-step model, the FIDs were worse than the baseline and diverged when initialized randomly.

Linearization Cost Hypothesis. Some studies (Geng et al., 2025a; [Frans et al., |2025) enable train-
ing from scratch without a preconditioner. The key difference is that they allow s < ¢, while others
fix s = 0. Intuitively, training long-range mappings is more challenging than short-range ones, since
the linearization cost increases with step size. In both objectives, we observe that s — ¢ amplifies
the flow matching term, while s — 0 amplifies a linearization term involving JVP, which is struc-
turally more complex (Appendix.[A.9). We hypothesize that fixing s = 0 makes optimization more
challenging, training less stable, while relaxing to s < ¢ balances the terms and mitigates instability.

4 TOWARDS REPRODUCIBLE AND STABLE FLOW MAP TRAINING

From these observations, we identify two key factors for reproducibility: relaxation of s (lineariza-
tion cost hypothesis), and marginal velocity guidance (Prop. [3.3). To facilitate consistency training
from scratch, we relax the time condition to mitigate instability, and leverage self-distillation to
follow the marginal velocity, addressing suboptimality. Since prior work on self-distillation (Boffi
et al.,[2025a) relies on heuristics to stabilize training, we propose improved Self-Distillation (iSD): (i)
reducing reliance on heuristics and simplifying the training process by exploring the design space of
flow maps, (ii) extending classifier-free guidance to flow maps, achieving additional improvements.

4.1 FACILITATING CONSISTENCY TRAINING FROM SCRATCH

Relaxation of s. Based on the linearization cost hypothesis, we relax s = 0 to s < ¢, balancing
the contributions of the flow matching and linearization terms. Instead of directly addressing the
unstable gradient dynamics of consistency training, we leverage this relaxation to indirectly mitigate
the instability. This approach still avoids the Hessian, while empirically stabilizing optimization.

Marginal velocity guidance. Following Prop. we consider marginal velocity guidance to guar-
antee convergence. From the instantiations in Prop.[3.2} we identify that self-distillation follows the
marginal velocity approximated by the network itself. Based on this, we train Fy(z;;t,t) via flow
matching, while jointly applying Eulerian distillation to Fy(x:; ¢, s) guided by its approximation:

Lcrv = E [||F9(xt; t,t) — v(wt|x)||§] (12)

Lsp =E “|3tfa($t;ta 8) + Fy—(w4;t,1) - Vo fo(a; 1, 3)”3] (13)

With this setting, the objective ensures convergence to the marginal flow map, handling subopti-
mality of direct training (proof in Appendix [B.1} see also [Boffi et al. (2025a)). Under consistency

training, this can reduce loss variance and further stabilize training compared to the conditional
velocity guidance (details in Appendix [B.2).

4.2 IMPROVED SELF-DISTILLATION

To incorporate various design choices and reduce the reliance on heuristics, we extend the self-
distillation method using our generalized formulations and the explored design space. In the next
section, we conduct ablation studies across these choices and present the best practice.

Reformulation. We leverage our generalized flow map defined in Eq. [6] and the objective can be
expressed using the guidance velocity vy (z+;t) = Fp(x;t,t) as:

2

1 (14)

2

dFy(x4;t, s)
dt

A;/’S(Et + AQ’S(ve(xt; t) — Fp(xs;t,8)) — As s

-2
‘CSD = Em,z,t,s [V

This extends the original self-distillation to arbitrary interpolations satisfying our assumptions. Next,
we reformulate the objective, where the gradient remains identical while avoiding the Hessian:

£SD—R - Ew,z,t,s [wt,sHFQ(l‘t; tv 5) — sg [tht(xt; t7 S)] ||%] ) wt,s = At7sl/—2 (15)
dFy(zy;t, s)

dt (16)

Fig = Fo(xy;t,s) + A s + Ap (vo(e;t) — Fy(xist,s)) — Ay s
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JVP Approximation. Some works approximate the JVP, highlighting a trade-off between accuracy
and computational efficiency. In our work, we approximate the JVP as follows to preserve the
trajectory of marginal guidance. With this approximation, we found that training time can be reduced
and performance further improves.

dFp(w;t,s)  Fo(xy +e-vg(wyst);t +€,5) — Fo(wy — € vp(a4;t);t — €, 8)
dt N 2€

Adaptive Weighting. Since the JVP exhibits instability and can cause training to diverge, several
ideas have been proposed to stabilize the operation (Lu & Song| 2025} [Sun et al.||2025; Boffi et al.,
2025a; |Geng et al., 2025a). Among these, we adopt adaptive weighting to preserve the intended
guidance, as normalization and clipping may alter the guiding trajectory. To ensure stable joint
training, we extend weighting to both objectives and formulate it with hyperparameters 7 and p.

Lo (e, ) = [|[Fo(ze t,t) — ve(ae|2)||3 + | Fy(aeit, s) — sg[Fa(zest, 8)]]13
Lisp =Eg 216 [wt,s(ztax) 'Et,s(fcnl”)} o wis(x,2) = (5g[Les (g, )] + 1) 7P (18)

From these settings, training from scratch becomes stable, allowing us to eliminate additional
heuristics introduced in prior work, such as progressive distillation, annealing (Boffi et al., 2025a)),
small Fourier coefficients, double normalization, tangent warmup, and some regularizations (Sabour
et al., 2025 |Lu & Song, 2025} (Chen et al.l [2025). Detailed training and sampling algorithms are
provided in appendix, Alg.[2|and Alg.

Classifier-free Guidance. Classifier-free Guidance (CFG) is an off-the-shelf method for boosting
the performance of diffusion models. However, unlike in diffusion models, directly applying CFG
to flow maps does not guarantee mappings along the CFG velocity field (details in Appendix [B.3).

a7)

This motivates two extensions of the proposed self-distillation: Post-CFG and Pre-CFG. Post-CFG
operates as classical classifier-free guidance applied after training, defined as follows:

Fg(l‘t;t, s,¢) = Fp(ay;t, s, D) + w(Fy(z; t, s,¢) — Fo(x;t, 5, 9))
f@(xt; t7 S, C) = V_l(Aftysxt - At,sﬁ‘e(xt;t7 870)) (19)

where & is the null class label for unconditional generation, c is the conditional class label, and w
is the guidance scale. Although this formulation is not guaranteed to follow the CFG velocity field,
it can be easily applied after training. To ensure that the flow map follows the CFG field, Pre-CFG
replaces the guidance velocity vy with the CFG velocity vy during training:

Vg(xe;t,¢) = Fy(xy;t, 6, 9) + w(Fp(ae;t,t, ) — Fp(ay; t, t, D)) (20)

The CFG velocity is Lipschitz continuous under our assumption. Thus, our propositions also apply,
guaranteeing convergence to the CFG velocity field.

However, since the ground-truth CFG velocity is intractable during training, applying Lcpy With
the CFG velocity is infeasible. If we perform Lcgy with the conditional velocity, Pre-CFG causes
a conflict: Lgp.r induces F; ; =~ ¥y, whereas Lcgy induces Fy ¢ ~ v;. Therefore, we consider two
cases: (i) Lisp.u, applying Lcpy with the conditional velocity while compromising the theoretical
guarantees at s = t (Guidance-Unconditional), and (ii) Lisp.c, appending the guidance scale as
an additional condition F gt (z¢; ¢, w), thereby applying Lcpy with w = 1.0 and Lsp.r with w = w
(Guidance-Conditional). In this case, Lisp.c ensures F} ¢ (x; ¢, 1.0) = vy (z; ¢) and Fy (z; ¢, w) =~
U¢(x; ) (details in Appendix . We discuss their practical benefits and present our final choice
in the next section.

5 EXPERIMENTS

Experimental Settings. To evaluate our method, we conduct experiments on the ImageNet-
1K (Deng et al., 2009) and CIFAR-10 (Krizhevsky, 2009) datasets. Following prior work, we use
downsampled 32x32x4 latent variables from 256 x 256 images encoded by a VAE (Rombach et al.,
2022)), and employ a DiT (Peebles & Xiel 2023) architecture. For CIFAR-10, we train the model
directly in pixel space using UNet+ (Song et al.,[2021)). We evaluate both one-step and few-step gen-
erations using uniformly sampled timesteps. Sample quality is measured with FID (Heusel et al.,
2017) over 50K samples, and further implementation details are provided in Appendix [C.2}
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Figure 2: Design choices of the generalized flow map. (a) FIDs of design choices over training
steps. Solid lines indicate the JVP approximation, and dash-dot lines indicate direct JVP. (b) FIDs
of Post-CFG over guidance scales. Dotted lines indicate 4-Step FIDs. (c) FIDs of Pre-CFG over
training steps. Solid lines indicate trigonometric interpolation and dash-dot lines indicate linear one.
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Figure 3: Few-step generation results. (a) Standard deviations of FIDs at 300K training steps. (b)
FIDs of model scales over training steps. (c) 4-Step samples generated by iSD-U.

Table 3: Step-by-step experiments Table 4: Quantitative results across design choices (2-Step).
validating the hypothesis (2-Step). The numeric entries in the header denote Post-CFG scales.

Case FID| Loss Interp. JVP FID| 15 3.0 7.0 10.0
Baseline 121.3 Ler Linear  Exact 76.39  50.45 39.33 68.82 85.87
+ Joint training Lcpm 116.3 Let Trig. Exact 103.35 72.42 39.52 4127 59.16
+ Relaxing condition Lct 76.39 Lisp Linear  Exact 118.17 98.77 77.75 89.02 100.61

+ Self-Distillation (0 — 1.5)  75.57 Lisp  Trig.  Exact 11593 8646 51.85 5134 66.79
+ Trigonometric interpolation  66.63 Lecr Linear ~ Approx 6598  40.97 3333 67.99 85.69
Standard deviation 0735 Lisp Linear  Approx 11239 90.26 69.81 87.50 101.42

Lisp.y Linear  Approx 75.57  55.58 53.88 86.95 99.97
Lisp.y Trig. Approx  66.63 41.84 2799 47.04 66.25

5.1 ABLATION STUDY

We conduct our ablation study on DiT-B/4, a base model of diffusion transformer with 4 x 4 patches.
The model is trained for 400K steps with a batch size of 256. By default, we set w = 1.5 for Lisp.y
and use conditional velocity guidance for Lcr.

Key factors. To validate our hypothesis, we conduct step-by-step experiments to make consis-
tency training reproducible with our contributions, as summarized in Tab. [3] Starting from the
consistency-training baseline with a linear trajectory, joint training with flow matching improves the
FID. Relaxing the time condition further reduces it, supporting the linearization cost hypothesis. We
observe that self-distillation converges more slowly than consistency training, as shown in Tab. {4
and Fig. @ Pre-CFG Lisp.y accelerates training compared to vanilla Lisp, and achieves further
improvement when the linear interpolation is replaced with a trigonometric one.

Interpolation, Post-CFG. As shown in Fig. 2a] and Tab. [ under conditional velocity guidance,
linear interpolation yields better results compared to the trigonometric case. However, with self-
distillation, the trigonometric interpolation achieves a lower FID than linear. It exhibits a larger
performance gap under the Post-CFG (Fig. [2b), even surpassing the linear case at 4-step sampling.
Pre-CFG Lisp.y also achieves better results with the trigonometric case.

JVP operation. When comparing the JVP approximation with direct computation, the approxima-
tion achieves better results. All subsequent experiments adopt the JVP approximation by default.
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Table 5: Comparison with prior work on ImageNet 256 x 256 and CIFAR-10.

Class-Conditional ImageNet 256 x 256 Unconditional CIFAR-10
METHOD NFE () FID (}) METHOD NFE (]) FID ()
Consistency Training Methods Distillation-based Methods
iCT (Song & Dhariwall 2024) 2 203 2-RFLiu et al. |(2023) 1 4.85
Shortcut Model (Frans et al.|[2025) 1 10.6 DMD (Yin et al.|[2024b) 1 3.77
4 7.8 Consistency Training Methods
UCGM (SD-VAE, [Sun et al.|(2025)) 1 2.10 - : \
MeanFlow (Geng et al.|[2025a) 1 3.43 iCT (Song & Dhariwal[2024) 1 2.83
sCT (Lu & Song|[2025) 1 297
Ours UCGM (Sun et al.|2025) 1 2.82
iSD-U 2 23.51 MeanFlow (Geng et al.[|2025a) 1 2.92
4 20.43 Self-distillation (Botfi et al.|[2025a) 1 14.13
+ Post-CFG (w = 3.0) 2%2 13.49 Ours
4x2 11.06 iSD 1 3.64

Pre-CFG. As shown in Fig. 2c|and Tab. ] applying Pre-CFG Lisp.y with w = 1.5 yields improved
FIDs compared to vanilla L;sp, but training diverged when w > 3.0. When a guidance scale is
appended as a condition, Lisp.c enables training at higher guidance scales, outperforming Lisp.
However, Lisp.c consistently performs worse results than Lisp.y. Intuitively, the additional condi-
tion enforces the network to learn both CFG and non-CFG mappings, imposing an extra burden on
the network. Even though L;isp y compromises the theoretical guarantees at s = ¢, few-step gen-
eration commonly assumes s < t, making this negligible in practice. Thus, we finalize the design
choices: (i) JVP approximation, (ii) trigonometric interpolation, and (iii) Pre-CFG Lisp.y-

Reproducibility To validate the reproducibility of our method, we measure the variance of FIDs
across three runs with different random initializations. We compare our final version of iSD with
consistency training baseline, involving direct JVP and s < t. As shown in Fig.[3a] where the num-
bers in the box plot denote standard deviations, our method demonstrates improved reproducibility
compared to the consistency training baseline, while remaining competitive FIDs.

Scalability. Fig. [3b|presents the results across model scales. As the patch size decreases from DiT-
B/4 to DiT-B/2 and computation increases, the FID improves from 66.63 to 50.58. Further scaling
from DiT-B/2 to DiT-XL/2 improves the FID to 38.50, demonstrating consistent scaling behavior.

5.2 COMPARISON WITH PRIOR WORK

In Tab.[5] we compare our work with previous methods on ImageNet 256 x 256. We train DiT-XL/2
with iSD-U for 800K steps following prior work. Our model demonstrates comparable result to
our reproduced consistency model (Tab. E], FID 10.01), iCT, and Shortcut Model, but higher FIDs
than others. On CIFAR-10, we obtain improved results compared to the original self-distillation,
reducing the FID from 14.13 to 3.64, while achieving performance comparable to other prior work.

Since our method requires neither additional networks nor pretrained models, the training process is
simplified, and its reproducibility has been validated in the previous section. However, we found that
training is slower than consistency training methods, since it first learns the marginal instantaneous
velocity and then the flow map guided by itself. The training was not saturated even after 800K
steps, and we leave further training for future work. Accelerating training also remains a promising
direction.

6 CONCLUSION

We introduced a generalized flow map framework that unifies recent consistency-based generative
models under the Eulerian equation. This highlights the suboptimality of existing approaches and
explains their limited reproducibility. To address these issues, we propose improved Self-Distillation,
which reduces reliance on heuristics and simplifies the training process. We further extend it to
classifier-free guidance for flow maps, achieving additional performance gains. Empirically, our
method achieves reproducible training and competitive few-step generation on ImageNet-1K. These
results establish a theoretical and empirical foundation for reproducible consistency training.
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APPENDIX

A THEORETICAL ANALYSIS OF FLOw MAP MODELS

A.1  MEAN COLLAPSE OF DIFFUSION AND FLOW MATCHING MODELS

Posterior Distribution. First, consider the data distribution px (z) = N (uux, 0% ) and the interpo-
lation ; = a2 + 042. The conditional distribution is given by p(z; = y|z) = N (y; apx, 02).
By Bayes’ rule,
plalz; = y) o pla; = ylz)p(x)
= N(y; vz, 0 )N (w; pix, 0%)

x exp <(ZJ — o)? _ (= MX)2>

2 2
207} 20%

1ol » (px | owy ooy
—exp<(20§(—|—2at2)z B U§(+O't2 T 20§(+2o§

This can be organized as a Gaussian with a closed form p(z|x; = y) = N (tz|y.¢, U§|y ,) Where

2 2 2 9
1 _ uoxY+pxoy o Ox0y
x|y,t — 9 R
ly o7 + o3%a? zls 07 + 0%a?

Extending the data distribution to a mixture of Gaussians px (z) = >_, mN (z; i, 07 ), we introduce
the latent variable 7 for handling 7;:

plr=i) = m,  plalr =) = Nw: s, 02)

Then, the marginal distribution p(x; = y|m = i) can be expressed as
ot =yln = i) = [ plar = yla)plaln = )do

= /N(y;atx,af)/\/(x;ui,af)dx

= N (y; aupui, a?0? + o)

And we define responsibilities r;(y) as posterior distribution

rio(y) = pln = iy = y) = PE =T =pm=1) __ mN{y o, aiof +7)
" Sple =yl =g)p(r =j5) 3, N (yiupy, afos +of)

Therefore, the posterior distribution p(x|z; = y) is

plales =y) =Y p(r = ile, = y)p(ele, = y, 7 = i)
=Y it WN (g v, o )N (5 s, 07)

= Z rit (YN (3 Hzli,y,t Uiﬁ,y,t)
i

2 2 2 9

where /1 oY+ [i0; o __ 0;0}
gt = ———— et e Rt
@liy o} +o2ai aliyt = 52 4 o2a?

Particularly, we observe that ji,; .1 = fi, Ji‘w’l =o?andr;1(y) = m;.
One-step Generation. Under the linear trajectory x; = (1 — ¢)x + tz, the conditional velocity is
ve(2¢|z) = z — . Thus, one-step generation is defined by
fr(zgt) =z —tF* (x45t) = 2y — t By, [vs (2 |2)]
=E; 20, [ve — t(z — 2)]
=K.z, [2]
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In the unimodal Gaussian case, E,|.[z] = f15).,1 = px and the one-step generated samples collapse
to the mean of the data distribution. Similarly, in the mixture of Gaussians case, one-step generated
samples collapse to the mixture mean.

fr(z) = Em\z[ﬂ = Zri(z) Hi|z1 = Zm‘ Mi = px

Thus, one-step generation collapses to the data mean p x regardless of the input. O

A.2 INJECTIVITY OF FLOW MAP

Since the marginal velocity is assumed to be Lipschitz continuous, the Picard-Lindeldf theorem
guarantees a unique solution to the ODE dx; = v} (z;)dt for any initial value. Non-crossing trajec-
tory follows directly, since any crossing would contradict the uniqueness. Thus, since the flow map
is formulated as the solution of the ODE with the initial value x, it is well-defined and the solution
x 1s uniquely determined by non-crossing, ensuring the injectivity of the flow map.

A.3 EULERIAN EQUATION AND UNIQUENESS OF FLOW MAP

Suppose the ground-truth flow map is defined as

frae =i+ [ vien)dr =,
t

By construction, the identity mapping f;,(f,(x,)) = @, satisfies. Differentiating both sides w.r.t.
t yields '

%ft,s( s,t(l'S)) - atft,s( s,t(l'S)) +atfs,t(x3) wat,s( s,t(l'S)) - dtxs =0

Using f7(zs) = ¢ and 0, f3,(v5) = Oyt = v{ (2+), we obtain the Eulerian equation:

I ) = 087 () + 07 ) Vafi () = 0

Suppose a trainable network fy(z;t,s) = ff, <(x) is continuous in z, t, s, Lipschitz continous in z,
and satisfies the boundary condition fo’S(x) = g for all s. If fy satisfies the Eulerian equation, fg s
remains constant along the characteristic curve induced by v} (z;).

Let y, denotes the characteristic curve defined on [s, ] by x; = x and x,. = vX(x-). Along this
curve, ff,s is constant and evaluating at 7 = ¢ and 7 = s yields

0 0 0
ft,s(x) = ft,s(Xt) = s,s(XS) = Xs :ft*,s(x)
since f; ; generates the characteristic curve y, by its definition.

Thus, the learned mapping coincides with the exact flow map. O

A.4 INTERPOLATION CONDITION FOR GUARANTEEING THE CONVERGENCE

We begin by explicitly deriving the solution of the Eulerian equation. For fz Sz =vt (A} st —
Ay oFf (%)) in Eq. @, let n = A} &y — Ay oFf (), which simplifies to n = A’z; — AF and
f=v 1n. Then, differentiation with respect to timestep ¢ yields

n'=A"zy+ A'(vy — F) — AF’

fl=[A"z + Al(v, — F) — AF'| 2L 4 [A'z, — AF) 2L

Vi Vi
Assuming f' = 0 and v; # 0, we obtain
AnF' = —(A'vi + Av))F + [A" vy + Alvgoy + A'v)ay)
which further simplifies to
A F' = —[Av)'F + [Anyxy) = BF' = —B'F + D'
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where B = Avy, D = A'vay. Since BF' + B'F = [BF)’, we obtain [BF]' = D', which yields
Ay F = A'vyzy + C for some integration constant C'. Assuming A = A, ; = a0, — o5y # 0 for
t # s, this gives F = A’A~'2; + C(Av;)™!, and hence

ft*,s(‘rt) = VJI[A/% — Az, — CV[l] = —CV;Q
If v is a time-dependent scalar, the global optimum f* = —C'v, 2 is itself time-dependent, so the

Eulerian equation can’t vanish. If C' = 0, the solution collapses to the trivial case f; (z¢) = 0.
Therefore, v must be a time-independent constant.

Additional Observation. Suppose that the monotonically increasing +; over t € [0, 1] satisfying
the boundary conditions v; = 1 and 79 = 0. Consider the interpolation defined by oy = (1 — ;)°

and o; = ~¢ for some constant ¢ € [0.5,1]. Then, v; can be written as v; = c(1 — ;)¢ 1y¢ 1.

Imposing v; = v gives v, = v[c(1 — v,)* !¢~ and ¢(1 — ~)¢~1y¢~1dy = vdt. Integrating

both sides yields
c/(l — )y ldy = V/dt =v(t+C)

where the constant C' vanishes due to 9 = 0. For the incomplete beta function B, this becomes

Yt t
cB(v¢,¢) = C/ (L—n)tntdy = z// dr = vt
0 0

By the boundary condition, ¢B(c, ¢) = ¢B(1; ¢, ¢) = v, and thus ; is characterized by

cB(yse c)
¢B(c,c)

where I denotes the regularized incomplete beta function.

c¢B(y;¢,¢) = v =vl,(c,c) =vt = v = It_l(c, c)

In this case, - is characterized regardless of v. Particularly, when ¢ = 0.5, we obtain v, = sin2(gt),
which yields trigonometric interpolation a; = cos(5t) and o; = sin(5t). On the other hand, when
c=1,wehavevy, =t, ay =1 —t, oy = t, and which reduces to linear interpolation. Interpolating
c between 0.5 and 1.0 provides a promising design choice for formulating the consistency model.

A.5 RECENT CONSISTENCY-BASED GENERATIVE MODELS ARE FLOW MAP MODELS

sCT. Under trigonometric interpolation z; = cos(t)z + sin(¢)z,
fo(ze;t,s) = cos(s — t)ay + sin(s — t) Fy(xy; t, s)
When s = 0
fo(xe;t) = cos(t)xy — sin(t) Fp(xy; t)

which exactly recovers the sCT formulation. If consistency training is formulated without the stop-
gradient operation, then the objective reduces to the direct training objective as At — 0.

E [l fo(eit,5) = folweact — At s)3]
=E [Hfg(xt; t,s) — [fg(l’t; t,s) — O fo(xe;t, s) - At — Vi fo(xe;t,s) - v(ae|z) - At + O(AtQ)] H;]
— A2.E [||8tf9(xt;t,s) +o(az) - Vi folwet, s)Hg] +O(AP)

However, if we utilize the stop-gradient, the continuous-time consistency training objective is de-
fined as

Vo [ fo(wiit, s) = fo- (w-ait = At,s)3]
=E[2Vofo(xs;t,5) - (fo- (T15t,5) — fo- (vi—n;t — At 5))]

fo-(x1;t,8) — fo- (xe—ns;t — At,s)
At

= 2At-VyE |:f.9($t; t,s)-

— Cor = et ) Pt

dt
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By the mean value theorem,
fo- (it s) = folanit, s) + Vofc(zst,s)- (67 —0)
for the parameter ( lying between 6 and . Using this, we can show that
E {er(fﬂt;tvs) — fo- (w5, 5)“2}
=FE [er(xﬁt’s) — fozt, s) — Vofe(zpt,s)- (07 — 9)”;}
= |0 fo(wit,s) - At + Vo fo(wit,s) - v(mle) - At = Vo fe(aztos) - (07 = 0) + O(A2)]

JS

t,s ’

= Lor - AR = 2K [Lfy(wit,s) - Jf - A0 - At +E “

2
A@M +O(A) + O(A]| AG))

where t = t — At, A0 = 6~ — 0, ths = Vo fc(z4;t, 5), and the operator is defined as Lf =

Of +v -V, f. In this case, since f is Lipschitz and has a bounded first derivative, Lf and .J are
bounded. Hence, 2(Lf - At — J - Af) - O(At?) = O(At3) + O(At2||Ad||)

If we set 6~ = sg[f], this reduces to

E ||| fo(xe;t,s) = fo- (wi—ne;t — At, 3)”3} = Lpt - At? + O(At?)

Thus, the formulation can be interpreted as the direct training objective.

From another perspective, since the time derivative of f{  (x) = fo(z4;t, s) is given by

0
dfutsiil(fxt) = 6tfgs<-'17t) + U<$t|$> : Va:ftg,s(xt) = (L*fgsxxt) + Av- vwffo(xt)

where Av = v (z¢|z) — v} (x;) and L, fr s = O f1.s + vf - Vi fis, the objective can be written as

Lor =B [ ff, (Laffs) + 1 (Av- V.0, )]
The first term on the right-hand side corresponds to Eulerian distillation. By the tower property, the
second term vanishes under conditional expectation:
Br vt [f(B0 Vo fl)] = Bats [Bapn, [fu(00- Vo 10))]]
= Eoes [£0. (Eape, (8] V212,

=Bt [fa-0-Vofly] =0

Thus, Lot reduces in value to Eulerian distillation even along the conditional trajectory. However,
the gradients of Eulerian distillation and consistency training differ, and their training dynamics
may therefore exhibit distinct behaviors. The instability of these gradient dynamics is discussed in

Appendix O
MeanFlow. Suppose a flow map model under linear interpolation.
fo(zet,s) =x + (s — ) Fy(ag;t, s), v = (L —t)x + tz

The corresponding direct training objective is

df? (x|

£0) = E[[|9f2 (@) + v(adla) - Vo sl (@lly] = | |72

2

where

d d
%fg(.%‘t; t,s) = vy — Fp(me;t,s) + (s — t)%Fg(l‘t;t, s)

Recall the MeanFlow objective from |Geng et al.|(2025a)
L(0) = E[[|ug(zt; 7, t) — sgloe — (t — 7)(vr - Dzug + Dyup)] 3]
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Rewrite the MeanFlow objective by using flow map notation and transform
VoI [||Fo (w15t 5) — sglve(we|z) — (t — 5)(ve(we|2) - 9:Fp + 0pFp)]|13]
_ ; )
ve(xe]x) — Fp(xe;t,8) + (s — 1) - £Fg— (x45t,8) ]
2

- . )
= VyE ’ Fo(zy;t,8) — Fp- (w43t 8) — [vt(xt|x) — Fy—(x45t,8) + (s — t@F‘)‘ (xt;t,s)} ]

= VyE

2

_ 1 . dfﬁ’* (th;t, S)
= VyE -715 — ng(xt, t, 8)7dt

Thus, the MeanFlow objective is a special case of the continuous-time consistency training with
conditional velocity under linear interpolation.

Shortcut Model. From [Frans et al| (2025), the Shortcut Model objective consists of the flow
matching objective and the consistency objective.

L(0) = E|lso (24 t,0) = vell5 + l|so (23 t,2d) = [sp(ws3t,d) + so(x)y g5t + d, d)]/2][3]
with 2}, ; = @ + se(w,t,d). By setting d = s —t and Fp(w4;t,5) = sg(ws;t,s — t), sampling

t ~ U[0,1], and choosing s = t — 2= for d’ ~ Cat[1,7], we obtain the flow map under linear
interpolation

fo(zest,s) = x4+ (s — t) Fy(zest,s) = 2y g
We can rewrite the flow matching objective of the Shortcut model as
Iso(ze;t,0) = vell3 = || Fo(we; t.t) — ve(wel) 3

For r = s + d, the consistency objective of the Shortcut Model can be written in the form of the
CTM(Consistency Trajectory Model)

l[sg(xe;t,2d) — [sg(e;t,d) + so(afy gt +d,d)]/2]3
= ||Fo(z;t,7) — [Fo(est, s) + Fo(fo(zest, s);s,7)]/213

1
= @Hzt +2d - Fy(zy;t,7) — 20 — 2d[Fy(x43t, 8) + Fo(fo(zest, 8);5,7)]/2|5

1

= fdQIth +2d - Fy(zy;t,r) — [2 + d - Fy(zy;t, s) + d - Fy(fo(asst, s);5,7)]|3
1

= @er(fﬁtﬂ”) — [fo(zest,s) +d- Fo(folzet, s);s,)][I3

= llfoCees 1) — Jolates 515,713

Hence, the objective of the Shortcut Model is

L(O) =E |[|[Fy(zs;t,t) — vell3 + #Hﬁ(xt%fﬂ") — fo(folzeit, s);5,7)I3
With the Taylor approximation of F s = F} ¢(x;) = Fy(x¢;t, s)
Fop=Fis+d -0Fs+0(d®), Fop=F+d -0F,+d -0F,+d - F V,F,+0(d)
we obtain
d2F;, — Fy s — Fs ]
=d2[F,+d-0sFs] — Fis— [Fis+d-0F, s +d-0F, s +d- F V. F ]+ O(d®)
= d’[0,Fy s — OuFy s — F{ Vo F, ]+ O(d®)
Thus,

1

d2
@Hft,r(xt) - fs,r(ft,S(xt))”g = Z”asFt,s — Oy s — FESVth,sll% + O(ds)
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The differentiation of the linear flow map with respect to timestep ¢ is given by

fls(@e) =v) — Frs(@e) + (s —1) - (OpFes + 07 - Vol )
With the Taylor approximation and the relation F} ; ~ v; obtained from Lcgn, we have

Fis=Fy+d 0sF;+O0(d*) = v +d-0sF; + O(d)
The identity 0, F} s = 05 F; ; + O(d) implies

vf — Fy s(x) = —d - 0sFy 5 + O(d?)
Hence,
f/(xy) = d[0yFy s +vf - Vo Fy s — 0.F; ] + O(d?)

Since v} = Fy; = Fy s + O(d), we further obtain

f/(xt) = d[atFt,s + Ft,s : szt,s - asFt,s] + O(dQ)
2
+0(d?)

1] d
- ‘C:Er,z,t,s HFQ("Et;tvt)_vt”%"i_* 7f0(xt;t78)
1| dt ,

We observe that there is a discrepancy between Eulerian distillation, expressed as ||v, — Fy s +
d(0:Fy s + vf - Vi Fy 5)||3. The first v} term corresponds to F} ¢, while the second v; corresponds
to Fy 5. Alternatively, since F; ; = F} s + O(d), both terms can be represented in terms of Fy ;.

In the case of Fy 4, the model learns F, (x;) ~ v} () due to the loss term of || F, (w¢) — vy (x¢|2)]|3.
This can be interpreted as the model learning a flow map corresponding to the trajectory induced by
an approximated marginal velocity.

Therefore, the Shortcut Model can be seen as Eulerian distillation under O((s — ¢)®)-bound. Since
Flow Map Models typically operate under the assumption s € [0, t), the Shortcut model’s sampling
scheme with d € [277, 1] makes this error non-negligible. O

Consistency Flow Matching. For linear interpolation z; = (1 — t)x + tz, define
fo(ze;t,s =0) =xy — tFp(x;t,s =0) = fo(wy;t) = 2p — tFp(ay;t)
Then, the Consistency Flow Matching objective from Yang et al.| (2024) becomes
L(0) = E [ fo(xe:t) = fo- (wemaest — A3 + ol Fo(we: t) — Fo- (vr-ae;z — At)|[3]

The first term on the right side is the Taylor approximation of the consistency training objective, and
the second term is the regularizer. Hence, we can interpret Consistency Flow Matching as a training
flow map model via the approximation with regularization. O

UCGM. For arbitrary interpolation of a4, oy, setting s = 0 yields
fo(ze;t) = vy Holxy — 0 Fy)
We can reformulate the objective while keeping the gradient unchanged:
Vol folwist) = fo- (a: M]3
— 2V fa (s )] — A fo-(@e;t) — fo- (mae; AL)

t— At
o (Vo s )7 280 o (03 20
N %: [VoFy (s )] fo- (@i t)t—_f;\;; (za¢; L)
N . ,
= Vo ||Fo(xe;t) — Fp— (x45t) + i (xt;t()t —J;(jt)(ﬂf,\t, At)]
t 2

which is identical to the objective of UCGM. When A = 0, this reduces to the flow matching
objective since At = 0 collapses fy-(29;0) = xo. In this case, the objective becomes origin
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prediction, which in turn leads to Fy with the velocity matching objective. Otherwise, setting A — 1
oy Wo—(2eit)

reduces the objective to consistency training by A = Fy(a4;t) — Fy- (a4;t) + AT

For A\ € (0, 1), the objective || fo(z4;t) — fo- (w3 At)||3 yields consistency along the geometric
sequence T, (t) = {\*}0 .

Define

gt(x¢) = (2 — Oétft(ﬂft))U;1

Then, when f;(z:) = , it follows that g;(x;) = z for x; = azx + o12z. Using this, the flow map
can be formulated in a DDIM-like manner as
Os Os
ft,s(xt) = as fi(we) + osgi(wy) = Ofxt + (as — ;at)ft(ft)
t t
Assuming the composition chain
o . o

fs,r(ft,s(xt)) = fs,r(i's) = 0_7335 + (ar - 7as)fs(i's)

S S

for &; = fi (), we obtain

For@) = Four(fro(@e)) = (ar = Za) (filar) = £u(&2))

S

For s = A\¥t for some k € N, if it follows that &5 = f; s(2;) ~ s, then fs(zs) = fi(x;) and
ft.r = fsr o fis. Inthis case, the flow map can be constructed along the geometric sequence 7 (?).

In general, the velocity of the DDIM map is given by % fi,s = o fi +0Lg.. Since the unconditional
velocity is

U: (xt) = O‘;Ezlxt [CC] + UéEmlxt [(xt - atw)051]7

the DDIM map coincides with the flow map only when v} (f; s(z:)) = % ft.s(x¢), which implies
Egiz.[2] = fi(x;). Setting s — t reduces this condition to E,, [x] = fi(2;) by the identity
assumption. However, this condition fails to preserve the injectivity of the flow map at ¢ = 1 due
to the mean collapse problem, which leads to a contradiction. Therefore, the DDIM-style map does
not coincide with the flow map in general. O

Reflow. Rectified flows introduce Reflow to straighten trajectories after training. In Reflow, sam-
pling from the trained model is performed via

0
To = X1 + / vg(xy; t)dt ~ ODESolver(vg, x1, 1, 0)
1

followed by the finetune w.r.t. the coupling IIz o = pz(2)py, (z|2). The velocity 0, of the trajectory
induced by the coupling Il ¢ is given by

0 1
O =z — <x1 +/ vg(xt;t)dt> = / vg(xy; t)dt
1 0

which corresponds to the displacement of the flow map. Therefore, Reflow can be interpreted as
direct supervision of the flow map under linear interpolation.

A.6 SUBOPTIMALITY OF DIRECT TRAINING

Unlike Eulerian distillation, direct training does not guarantee convergence to the optimal flow map.
Consider the direct training objective using the conditional velocity:

Lpr = E;c,z,t,s [”atfé(xt; t, 5) + ’U(l‘t|l‘) : foe(l“t; t, S)H%:|

By defining the velocity error as Av = vy (x¢|x) — v} (x1), we can rewrite the objective in the form
of Eulerian Distillation:

Lor =Ey .5 [Ilc?tfe(aft; t,s) + (Av+ vy (z1)) - Vi folzest, S)Hg}
=Ey.s [||8tf9(xt; t.8) + Av- Vo fo(zest, ) + v (20) - Vo folzist, s)ug]

= Ex,z,t,s [||3tfa(l‘t; t: 5) + 'U: (xt) : wae(xt; ta S)H%} + Eaf,z,t,s |:||A'U . Va‘f@(xﬁ t, S)H%:|
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by the law of total variance since other terms are independent of x, and ]EI‘mt [Av] = 0. In this case,
the second term can be represented as

]E:E,z,t,s Varm\xt [A’U . va(')(mh t, S)]:|

Under an independent coupling, the velocity error Av = vi(z¢|z) — v;(x¢) is typically nonzero.
Consequently, unless ||V fo(x¢; ¢, s)|| collapses to zero, the objective function inherently contains
a larger variance term compared to that of Eulerian distillation.

To minimize the overall loss, the optimizer faces a trade-off involving this variance. This introduces
a bias that distorts the learned flow map towards becoming flatter by an external force Av, =
ve — vf L V. fo(ze;t,s). Therefore, direct training is not guaranteed to converge to the ground-
truth flow map due to this distorting variance term.

In flow matching, even when the loss term E,, . ;[||v(x¢|x) — Fp(z+;t)||3] is decomposed as follows
E[llav +v* () = Fo(ws 18] = E[lv* (20) = Fo(wi )3 + Var{ao]
The variance term, Var[Awv], is independent of the network. Therefore, it does not affect convergence

to the global optimum. O

Euler-Lagrange Equation. To find the optimum of the direct training objective, we apply the
Euler-Lagrange equation. The objective can be represented in the vector form as

‘CDT = ]E:v,zﬂf,s [||8tft7s(xt) + U(l‘tl.’L‘)Tvat“g(.'L‘t)Hg] = // pt($t>Ex,z,s|xtH| . H%]dl’tdt
Q
We set the conditional expectation as the Lagrangian,

L(f,00f,Va ) = Eq s spe, 10 fe,s(@e) + v(we|2) Vo fo,s(20)13]
The corresponding Euler-Lagrange equation is
oL oL oL
— 0|z ) "Vel == =0 < E,, 52,[0R+V, - (vR)] =0
77~ (aa5) - (a5) ol O i)
where the residue is defined as
R =0y frs(ze) + v(xe|2)" Vo fro (1)

Letting Av = v(z¢|z) — v; (2;) and introducing the operator L, f = 0, f + (v})T V. f, the residue
can be rewritten as R = L. f; s + AUTVJCft,S, so that

Ew|wt [8tR] = 3th\xt [R] = 3t(L*ft,s)

By, [Va - (0R)] = Vg - By, [(0° 4+ A0)(Ls frs + ATV, fr )]
= Vo (0 L frs + Bz, [Av(AvT Vo £ )])
=V (vV*Lsfrs + Zavie, Vafts)

Therefore, the optimality condition becomes
EL=TF,. o0 0:R+V, - (VR))
= 0y(Lufts) + V- (v Lifts) + Vi (Bave, Vafis) =0

If we assume the L2-adjoint of L, tobe L*f = —0,f — V - ((v;‘)Tf), the condition simplifies to

L*L*ft,s -V (EAv\ztvxft,s) =0 < ||L*f||§ + V- (EAUL'EthL’ft,S) =0

Thus, the optimum of the direct training arises precisely when the above condition is satisfied.
When Yay1z, = Covyy, [v(2¢|2)] — 0, the condition reduces to L. f; s = 0, which is equivalent
to Eulerian distillation. In this case, the quadratic structure guarantees convergence through PSD
curvature at the global optimum. Otherwise, due to the covariance term, the condition cannot be
written in the form 0, f +w; - V. f, and hence no single drift can consistently drive the flow map. [
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A.7 INSTABILITY OF CONSISTENCY TRAINING

The continuous-time consistency training objective employs a stop-gradient operation, ensuring that
the main objective remains unchanged while making computation more efficient. In this case, the
objective is defined as

T dftjs (xt)
dt

ECT = ]Ez,z,t,s [ft,s(xt) 3,
where f; s(7¢) = fo(x+;1, 5) and detaching gradient is denoted by f, (z¢) = fp- (w45, 5).

Lt reduces in value to Eulerian distillation even along the conditional trajectory, as demonstrated
in Appendix paragraph on sCT. However, since the objective is expressed as a linear term, the
Euler-Lagrange equation cannot determine a stationary point, as it contains no explicit terms of f; s
unless the gradient is detached:

EL = Ew,z,s\wt [Lftjs + U?vmftjs} =0

Moreover, while the quadratic term in Eulerian distillation ensures PSD curvature and provides sta-
ble convergence at the optimum, the consistency training objective does not guarantee convergence,
as the Hessian vanishes and the curvature required to stabilize the optimum is absent. It only speci-
fies the fixed point on L f; ; = 0, and the gradient dynamics alone may fail to converge. O

A.8 SUBOPTIMALITY OF NETWORK-INDUCED COUPLING
For an arbitrary coupling (Z, £) ~ IIx z with £; = o4& + 02, the gap between the conditional and
marginal velocities is given by
Av =3} — v (&) = af(& — paga,) + 012 — B2z, )

where fizp, = Eyp,[2] and pi;),, = E.;,[2] are conditional means. This follows since v} (7;) =
Eg |z, [v(2¢|2)] can be expressed as E,, .|, [z +02]. The general form of the loss can be expressed
by

E[|A+g"Av|3] = E[|JAlI3] + 2E[ATg" Av] + E[|g" Av]3]
where A = 0, ff, + g7 v} (z;) and g = V. f7 .

Case 1: Independent Coupling. In this setup, we use an independent coupling (z, 2) ~ Pdata X Pz
and the conditional velocity v:(x¢|2), which corresponds to setting & = x and 2 = z. The velocity
gap is Av = vg(x¢|x) — vf (z¢). The cross-term vanishes because the expectation of the gap is zero
conditioned on x;:

Eo 2o, [AV] = B zja, [or(2e|2) — vf (20)] = vf (2¢) — 07 (24) = 0
Thus, 2E[AAwv - g] = 0 and the loss simplifies to
Lic = Lep + E[|lg" Av[|5] = Lep + E [Vary,, [g" Av]]

The variance term, which represents the error from Eulerian distillation, can be expanded as:
£IC = Varz,z\mt [gT (OZ;(.’E - Nz\mt) + J;(Z - l’l/zll‘f))]
= (a;)2gTzw|7;t9 + (01{,)29Tzz|wtg + 20‘201{,9T2wz\xtg
where ¥, ,, = Covyy, (z,7), X5, = Cov,g, (2,2), and ¥z, = Covy 45, (7, 2).

Case 2: Generator-Induced Coupling. Generator-induced coupling methods replace one of the
variables with a network prediction, & = fgo(xt) with stop-gradient: &; = oy ft o(z¢) + ov2. For
the first case, the velocity gap is:

Av = a;(fno(ﬂ?t) - /”'w\i"t) + Ué(z - Mzm)
The conditional expectation of the gap is no longer zero in general:

IEZ\wt [Av] = 04; (ftQO(xt) - “w\it)
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This introduces a non-zero cross-term in the loss, then the total error term for GC is:

Eac =20, AT g" (flo(xe) = paja,) + (@)?[9" (Fro(e) = hajz))” + (01)°9" Sepe,g
Comparing the error terms, we find that ¢ > Egc if:
(a;)Qgszlmtg + 20‘2029sz2|th > QQQATQT(fzo(xt) - /"x\it) + (O‘;)2[9T(f130($t) - Mm\it)]z
When the generator is a good estimator of the posterior mean, i.e., fgo(xt) R z|s,» the right

side becomes small. However, at ¢ = 1, this condition reduced to ff)o(z) = Uzl = MX, aS

shown in which results in posterior mean collapse. In this case, f{’yo becomes constant as
Eac approaches zero, violating the injectivity required for a well-defined flow map, leading to a
contradiction. Thus, generator-induced coupling reduces but cannot eliminate the error, preventing
guaranteed convergence. It is also a suboptimal choice when continuous-time consistency training
is employed.

Silvestri et al.| (2025) introduces an additional network g : « +— z for & = z and z = g(z).
In this case, enforcing g(x) ~ f.|, can reduce the gap, but does not eliminate the whole, since

the term (a})? gTmeg remains. From a consistency training perspective, since the independent
coupling already exhibits a marginal velocity field, this becomes a negligible choice with respect
to guaranteeing marginal velocity; however, it can reduce the variance of the loss when g is a good
posterior approximator. O

A.9 LINEARIZATION COST

Recall that fgs (z1) = v (A} jo¢ — At,ngs(xt)) for A; s = as01 — osay. Differentiating with
respect to timestep ¢ gives
dfo(z4;t, s) dFy(xs;t,5)
dt dt )
Following [Lu & Song| (2025), the gradient of the Eulerian distillation can be written as

VoE [QfeT(ft; t, 5)76%7 (3: L S)}

=p! (Ag,sxt + A;:,s(”: (w) = Fo(i;t,8)) — Ars

dFy- (x4,
x VgE l:—At7sl/_2Fg($t; t,s) - (A;:Sxt + A;,S(U: (x4) — Fo— (x4 t,8)) — AmW)}

= Ay v 2 - VoE [ Fo(zis t, ) — sg[Frge (w3 t, 5)][|3]

dFp(xe;t
where Figy (2151, 5) = Fy(xiit, s) + (A;/,smt + Ap (vf (me3t) — Fo(ze;t,5)) — At,se(%,S))

dt

In this case, vy — Fp can be interpreted as the flow matching term, and dFy/dt as a linearization
term involving the JVP, which penalizes the ¢-dependent outputs of fy. For a linear interpolation,
A, s takes the form A; s = ¢ — s, while for a trigonometric interpolation A; s = sin(t — s), both are
proportional to ¢ — s. Their derivatives are A} ; = 1 and A} ; = cos(t — s), respectively.

As s — tand (t —s) — 0, the contribution of the linearization term vanishes , while the flow
matching term is amplified. Conversely, as s — 0, the linearization term is amplified and the flow
matching term diminishes.

We note that the linearization cost increases with step size, making optimization more challenging.
This is because the linearization term involves more the complex structure given by the JVP, while
the flow matching term requires only simple forward pass.

B IMPROVED SELF-DISTILLATION

B.1 GUARANTEE THE CONVERGENCE

Revisit our objective

£ =Bzt |[[F @i, t) = vilwila) [ + |

O Sl () + FYy () - Vaf? o(ar)

)
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The first term of the right side trains th(xt) to approximate the marginal velocity via the flow
matching objective, while the second term learns the flow map f; , along the trajectory of Fg; ina
self-distillation manner.

Individually, each term is guaranteed to converge to its desired optimum, the marginal velocity and

the flow map of the velocity th_ by Prop.(Appendix . From a joint perspective, we need to
consider t = s, since the network is forced to optimize both terms simultaneously at this point. As
Eulerian distillation collapses to the flow matching objective when ¢ — s, the second term trains the
model to learn the instantaneous velocity of the trajectory (Appendix . In this case, th learns

from Fg; , and inductively approximates v; (x;) through the first term. This naturally reduces to a
non-conflict joint training. For ¢ # s, the network is conditioned differently in the two terms, and it
can learn the proper mapping provided that the network capacity is sufficient.

Consequently, the overall objective trains the network to follow the marginal velocity as the trajec-
tory of the flow map naturally.

B.2 DERIVING FINAL OBJECTIVE

Recall the consistency training objective under the generalized flow map (Appendix.[A.9):

Ay v B [|Fo(ze;t, s) — sg[Fige (w15 £, 9)]]13]
where Fig(24;t,8) = Fy(xy;t,8) + (Agfsxt + Ap (vF (z45t) — Fo(z43t,8)) — Ars W)

To follow the marginal velocity, we replace v; (2;) with instantaneous velocity F, (x;) while jointly
training with Lopy.

Particularly, for linear interpolation, we have A; ; =t — s, A} ; = 1 and A} = 0. This simplifies
the target to F{i% (x;t, 5) = vf (2¢) — (t—s) Fj(24; t, s) which coincides with the regression target of
MeanFlow. For trigonometric interpolation, we have A; , = sin(t—s), A ; = cos(t—s) and A} ; =
—sin(t — s). Thus, the target becomes Fi¥} = Fy(z;t,5) + cos(t — s) - (vf (1) — Fo(z;t,5)) —
sin(t — s) - (z¢ + Fy(ae; t, s)).

Although consistency training already guarantees the marginal flow map at its fixed point, the gra-
dient in practice can exhibit a gap expressed as:

Ez,z,t,s [fgs(Av ’ v“"ff»; )]

When self-distillation is combined with flow matching, E [|| Fy(z¢; ¢, ¢) — v(z|)|3], the velocity
error Av = Fy(xy;t,t) — v (z¢) can be further reduced compared to Av = v(z|x) — vf(z4),
thereby stabilizing the training.

To incorporate classifier-free guidance in the subsequent discussion, we set vg(z¢; ) to the approxi-
mated marginal velocity, as an alternative to F| f:t (z4).

For JVP approximation, to ensure that dz; /dt follows the velocity vg(z¢; t), we approximate

dry _ [w+ e vp(we;t)] — [1r — € - vg(x45t)] .
dt 2¢ = vo(51)

Thus, the full JVP approximation becomes

dFp(ze;t,s)  Fy(we +e-vo(xy;t),t +€,5) — Fy(ae — € -vg(xy;t),t — €, 5)
dt N 2e
Applying adaptive weighting, our final objective is

Fé(‘rhta S) =

Lo s(e, @) = ||[Fo(zet,t) — ve(ae|2)|3 + | Fo(xest, s) — sg[Fige(2eit, 5)] I3

Lisp = By s s |wes(x,2) - Lo (21, 7) | 3 where wy o (24, x) = (sg[Ly (2, 2)] + 1) 7P

Detailed training and sampling algorithms are provided in Alg.[2|and Alg.
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Algorithm 1 (Time Sampler) Timestep sampling function using beta distribution

1: function time_sampler(fq, 02)
2: t,s ~ Beta(fy,62) > Timestep Sampling

3: return § max(t,s), 5 min(t, s)

Algorithm 2 (iSD Training) Training algorithm of vanilla iSD

Require: Noise distribution pz, data distribution px, model Fjy, learning rate u, time distribution
(01, 02), adaptive weighting (n, p), JVP approximation step size ¢, class labels ¢
Ensure:
1: repeat

2. z~pz,T~Dpx

3:  t,s< time_sampler(fy,6s)

4:  xp < cos(t)x +sin(t)z, v + cos(t)z — sin(t)x

5: Fis < Fy(zt, s, c), Fyy « Fp(zy;t,t,0)

6:  Ff <« [Fy(xs +eFyt+es,c) = Fo(wy — eFy gt —€,5,¢)] /(2€) > JVP-Approx.
7: tht < Ft,s + COS(t — S) . (Ff,,t — Ft75) — sin(t — S) . (It + Ft,,s)

8 Ly« |Fie— Ut”% + [[Fis — Sg[tht]H% > Optimization Target
9 L+ Ly X (sg[les] +1m)7P > Adaptive Weighting
10 0+ 0—puVoLl > Model Update

11: until Convergence

Algorithm 3 (iSD Sampling) Sampling algorithm of vanilla iSD

Require: Initial noise z ~ py, trained model Fy, class labels ¢, sampling time steps {t;}¥
Ensure:
T2
fori < 1to N do
T < COS(ti+1 — tl) X+ Sin(ti+1 — tl) . F(;(x, ti, ti+17 C)
end for
return r

AN e

B.3 CLASSIFIER-FREE GUIDANCE OF FLOW MAP MODELS

By abstracting the guiding trajectory to vy, the flow map model can naturally be trained to follow
the specific trajectory as long as it is Lipschitz continuous. Given a label ¢ and an null class label
@, let the corresponding velocity fields be Fy ;(x; ¢) and Fy 4(x,; @). If both are globally Lipschitz
continuous, then the CFG trajectory Ug(xy;t,¢) = 0¢(xy; ¢) is also globally Lipschitz continuous,
since any linear combination of Lipschitz continuous functions remains Lipschitz continuous.
ﬁQ(It; tv C) = F@('rt;tat7 @) + W(Fg(l'f, t,t,C) - F@(It;tat7 @))

Thus, the flow map can be trained to follow the CFG velocity field, referred to as Pre-CFG. In this
case, we need to address a conflict: Lcpy enforces Fy ; ~ vy while Lsp.g enforces Fy; ~ ;. To
resolve this, we append the guidance scale w as an additional condition, th(ast; ¢,w). Then, the
modified objectives are given by:

ﬁCFM =E [HFG(xt;t?ta c, 10) - Ut(xt|x)”§}
'CSD-C =E |:||F9(1't, tv S, C, UJ) - Sg[tht(‘rt; ta S, C, W)]”g}
where Fige = Fy o(4;c,w) + (A) joe + A}, (0(215¢) — Fr o5 0,w)) — A o FY (45 ¢,w)) and

e(ay;¢) = Firo(ae; D,1.0) + w(Fre(ae; ¢,1.0) — Fy (245 @, 1.0)) with 6 omitted for brevity. De-
tailed procedures follow Alg.[|for £;sp.uy and Alg.p|for Lisp-c.

Hence, Lcrm ensures Fy (x4 ¢,1.0) = vf (x4;¢), while Lgp.g ensures Fy 4 (xy; ¢, w) = U(z4; ¢).
This choice is natural, as v; = v; when w = 1.

However, Post-CFG defined as
Fe(xﬁt,S»C) = F9($t5t757®) —‘r(&}(Fg(J%;t,S,C) - F9($t5t757®))

24



Under review as a conference paper at ICLR 2026

does not follow the CFG trajectory. This discrepancy arises from the definition of the flow map,

Jo(xt,8) = ay +/ v (z,)dT
t

which performs the path integral along a specific trajectory induced by v}. For a CFG trajectory,
the path integral should be taken along v,. In contrast, Post-CFG computes two separate forward
passes, integrating along v’ (x,; ¢) and v’ (x,; @), rather than along ¢-. As a result, the integration
differ from the expected CFG trajectory. The detailed procedure of Post-CFG follows Alg. [0

Algorithm 4 (iSD-U Training) Training algorithm of iSD-U

Require: Noise distribution pz, data distribution px, model Fy, learning rate i, time distribution
(01, 02), adaptive weighting (7, p), JVP approximation €, Pre-CFG scale w, class labels c.
Ensure:
1: repeat
2 z~pz, X~ px

3:  t,s< time_sampler(fy,6s)

4:  xp + cos(t)x +sin(t)z, v + cos(t)z — sin(t)x

5: Ft,s <—F9(.’L't;t, 870)7 Ft,t <—F9(xt;t,t,c)

6: U= (1—w)Fy(ay;t,t,0) +wky,

7. Fy g [Fo(x + st + €, 8,¢) — Fy(xp — €by;t — €, 8,¢)] /(2e€) > JVP-Approx.
8 Figy ¢ Fy s +cos(t —s) - (0 — Fys) —sin(t —s) - (x¢ + I )

9: Lis < | Fre —vel3+ |1 Fr s — sglFigt]]3 > Optimization Target
100 L+ Lo X (sg[Lles]+n)7P > Adaptive Weighting
11: 0+ 0—puVeLl > Model Update

12: until Convergence

Algorithm 5 (iSD-C Training) Training algorithm of iSD-C

Require: Noise distribution pz, data distribution px, model Fp, learning rate s, time distribution
(01, 02), adaptive weighting (7, p), JVP approximation €, Pre-CFG scale w, class labels ¢
Ensure:
1: repeat
20z~ pz, T ~pPX

3:  t,s< time_sampler(fy,6s)

4:  x; + cos(t)x + sin(t)z, vy < cos(t)z — sin(t)z

5: Ft,s,w — Fe(ﬂﬁt;t,S,C,w), Ft,t,w — Fg(l‘t;t,t,C,W)

6: Ft,t,l.() < Fg(l’ﬁt,t,c, 10)

7: 1~)t = (]. —w)Fe(xt,t,t,Q,IO) +OJFt’t’1.0

8  Ff . [Fo(wi+elt +¢€,5,c,w) — Fp(x — €Uyt — €, 5,¢,w)] /(2€)

9:  Figt + Fy o0 tcos(t —s) - (0p — Fys0) —sin(t —s) - (x¢ + Ff ;)

10: Ly < [|Freao— vell3 + | Frosw — 58[Figt) I3 > Optimization Target
11: L+ Et,s X (sg[its] +n)? > Adaptive Weighting
122 0+ 0—uVol > Model Update

13: until Convergence

Algorithm 6 (Post-CFG Sampling) Sampling algorithm of iSD with Post-CFG

Require: Initial noise z ~ pz, model Fy, Post-CFG scale w, class labels ¢, sampling steps {t;}¥
Ensure:

1: x <2

2: fori < 1to N do

3 Figo (1—w)Fp(z;ti, tig1, D) + wFp(x; ti, tiga, €) > Post-CFG
4z cos(tirr —ti) - +sin(tipr —t;) - Frs

5: end for

6: return
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C EXPERIMENTAL DETAILS

C.1 REPRODUCIBILITY OF CONSISTENCY TRAINING

To evaluate the reproducibility of consistency training, we conducted experiments within the
UCGM (Sun et al.} [2025) framework. We compared the FID scores of several models trained un-
der different initialization conditions. Following UCGM, we first extract latent representations of
ImageNet-1K 256 x 256 using VAVAE (Yao et al., [2025). All models were trained with the same
hyperparameters and settings: RAdam optimizer with a learning rate of 0.0001, weight decay of
0.0, 81 = 0.9, B2 = 0.999, batch size of 1024, gradient clipping at 0.1, and timestep ¢ sampled
from Beta(0.8, 1.0). For enhancement, we applied a label drop ratio of 0.1, an enhancement range
of (0,0.75), and an enhancement ratio of 2.0. We also used the cosine function as the loss weighting
function and trained all models with linear interpolation for 40K iterations. Different experimental
details are provided below.

Multistep Baseline We trained the DiT-XL/1 architecture initialized from the publicly released
multistep checkpoint of UCGM. This configuration achieved a 2-step FID of 2.69, which is reason-
able but still falls short of the reported FID of 1.42.

LightningDiT We trained the LightningDiT-XL/1 architecture from its released pretrained model.
In this setting, the model achieved a 2-step FID of 10.01, which is worse than the reported FID.

Reproduced Multistep Model In this experiment, we trained the DiT-XL/2 architecture from
scratch to reproduce the multistep baseline. For training, we used AdamW (Loshchilov & Hutter,
2019) with a learning rate of 0.0002, 81 = 0.9, B2 = 0.95, EMA decay weight of 0.999, and
timestep ¢ sampled from Beta(1, 1). We used an enhancement ratio of 0.47 and a cosine weighting
function. After training the multistep baseline model for 800k iterations, we trained a few-step
model initialized from the reproduced multistep baseline using consistency training with the same
few-step settings. This resulted in a 2-step FID of 5.96.

Without Preconditioner We train a DiT-XL/1 architecture from randomly initialized weights
without any preconditioner. In this case, training consistently failed, with the loss diverging and
no meaningful samples being generated. While 40K steps may appear insufficient for scratch train-
ing, other scratch training methods already show a rapid decrease by 40K steps. We consider that
this is enough to check the unstable dynamics compared to other models.

These experiments suggest that consistency training is highly sensitive to initialization and the
choice of preconditioner. It proves unstable under random initialization and requires a well-trained
multistep baseline for stable optimization. Furthermore, even when initialized from a pretrained
model, consistency training demonstrates limited robustness and reproducibility across different ar-
chitectures and setups.

C.2 IMPLEMENTATION

ImageNet 256256 SD-VAE (Rombach et all [2022)) was used to encode images from the Ima-
geNet 256 dataset into a 32 x 32 X 4 latent representation. For DiT (Peebles & Xie| [2023) models,
we employed RMSNorm (Zhang & Sennrichl [2019), SiLU activation, QK normalization (Henry
et al.,|2020), and RoPE (Su et al.,2023) for minor improvements. Each model was scaled by depth
and hidden dimension, while the patch size was kept fixed. We sampled ¢ and s independently from
Beta(0.8, 1.0), and set ¢, s := max(¢, s), min(¢, s). For generations, we have simply sampled the
time intervals uniformly without additional engineering. Detailed training parameters are provided
in Tab.

CIFAR-10 For CIFAR-10, we trained a model in pixel space without any VAE latent encoders.
The model was trained without class conditioning, based on the UNet+(Song et al.,[2021) backbone.
We trained the model for 950K steps with a global batch size of 256. Non-leaky data augmenta-
tion (Karras et al., [2022) is also applied, excluding vertical flipping and rotation. Further details of
the experimental settings can be found in Table 6]
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Table 6: Experimental Settings

Dataset ImageNet 256 x 256 CIFAR-10
Preprocessor SD-VAE (Rombach et al., [2022) Identity
Input size 32x32x4 32x32x3
Backbone DiT-B/4 DiT-B/2 DiT-L/2 DiT-XL/2  UNet+ (Song & Ermon, 2019b)
Params (M) 131 131 459 676 56

Depth 12 12 24 28 -
Hidden dim 768 768 1024 1152 -

Heads 12 12 16 16 -

Patch size 4 x4 2x2 2x2 2x2 1x1
Dropout 0.0 0.2
Self-distillation Lisp-u Lisp

Joint training Enabled Enabled
JVP Approximation: Eq. torch. func. jvp
€ 0.005 -

P 1.0 0.75

n 0.01 0.01
Pre-CFG w 1.5 -
Training steps 800K 950K
Batch size 256 256
Label dropout 0.1 -
Optimizer AdamW (Loshchilov & Hutter, [2019) AdamW
Learning rate le-4 le-3

LR Scheduler Constant Linear Warmup
51 0.9 0.9

B2 0.999 0.999
Weight decay 0 0

EMA decay 0.99995 0.99995

C.3 ADDITIONAL QUANTITATIVE RESULTS

Table 7: Quantitative results across design choices. The numeric entries in the header denote
Post-CFG scales.

Loss Interp. JVP Steps FID| 1.5 3.0 7.0 10.0
Ler Linear  Exact 2 7639 5045 3933 68.82 85.87
4 7357 4793 2580 38.19 55.88
Ler Trig Exact 2 103.35 7242 3952 4127 59.16
4 83.51 5283 21.33 1748 2643
Lisp Linear  Exact 2 118.17 9877 77.75 89.02 100.61
4 120.68 101.23 7345 64.55 71.30
Lisp Trig Exact 2 11593 8646 51.85 51.34 66.79
4 100.35 7140 3541 26.54 34.58
Ler Linear ~ Approx 2 6598 4097 3333 6799 85.69
4 6270 3744 1925 3641 58.07
Lisp Linear  Approx 2 11239 90.26  69.81 87.50 101.42
4 11342 9158 62.71 58.54 68.42
Lisp.y Linear  Approx 2 7557 5558 53.88 86.95 99.97
4 7755 5744 4386 5720 7143
Lispy Trig Approx 2 66.63 41.84 2799 47.04 66.25
4 60.76  36.01 19.40 25.67 38.70
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Table 8: Quantitative results over training steps (2-NFE). The numeric
denote training steps.

entries in the header

Loss Interp. JVP Arch. Pre-CFGw 10K 100K 200K 300K 400K
Ler Linear ~ Exact DiT-B/4 - 329.02 103.73 88.08 79.44  76.39
Let Trig Exact DiT-B/4 - 433.04 13531 11856 109.97 103.35
Lisp Linear  Exact DiT-B/4 - 39222 15694 136.04 127.76 118.17
Lisp Trig Exact DiT-B/4 - 381.09 151.88 132.77 124.58 115.93
Ler Linear  Approx DiT-B/4 - 413.13 9759 7587  69.51 65.98
Lisp Linear ~ Approx DiT-B/4 - 42542 151.88 129.41 11942 112.39
Lisp.y Linear  Approx DiT-B/4 1.5 42540 124.84 9280 83.74  75.57
Lisp.u  Trig Approx DiT-B/4 1.5 41477 11695 87.89 7559  66.63
Lisp.c Linear  Approx DiT-B/4 1.5 380.05 169.04 13094 113.43 10221
Lisp.c Linear  Approx DiT-B/4 3.0 379.94 20294 122.01 101.64 91.38
Lispc Trig Approx DiT-B/4 1.5 413.45 167.09 136.24 122.36 114.16
Lisp.c  Trig Approx DiT-B/4 3.0 412.07 150.26 107.73  90.49  82.59
Lisp.c Trig Approx DiT-B/4 7.0 41292 19538 129.86 11347 112.64
Lisp.u  Trig Approx DiT-B/2 1.5 38436 103.10 69.50 57.36  50.58
Lispu  Trig Approx DiT-XL/2 1.5 410.63 8934  57.63 4454  38.50

D QUALITATIVE RESULTS

Figure 4: One-step samples from the vanilla iSD on CIFAR-10 (FID 3.64)
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Class 973 Class 970 Class 959 Class 820 Class 780 Class 193 Class 139

Class 985

Figure 5: Class-level samples generated by iSD-U with four-step sampling on ImageNet 256 x 256
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Figure 6: Four-step samples from the iSD-U on ImageNet 256 x 256

E USE OF LARGE LANGUAGE MODELS

OpenATI’s ChatGPT was used to polish writing during preparation of this work. All text generated
by the tool was reviewed and revised by the authors.
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