
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ALLEVIATING SUBOPTIMALITY OF FLOW MAPS
WITH IMPROVED SELF-DISTILLATION GUIDANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Consistency-based approaches have been proposed for fast generative modeling,
achieving competitive results compared to diffusion and flow matching models.
However, these methods often rely on heuristics to mitigate training instability,
which in turn limits reproducibility and scalability. To address this limitation, we
propose the generalized flow map framework, unifying recent consistency-based
methods under a common perspective. Within this framework, we investigate
the suboptimality of existing approaches and identify two key factors for repro-
ducibility: time-condition relaxation and marginal velocity guidance. To incor-
porate these, we leverage self-distillation to guide consistency models along the
marginal velocity. We further propose improved Self-Distillation (iSD) by explor-
ing the design space of flow maps, thereby reducing reliance on heuristics. Our
formulation naturally extends to classifier-free guidance, achieving four-step gen-
eration with an FID of 11.06 on ImageNet 256×256. iSD shows qualitatively
comparable results to prior few-step generative models, providing a theoretical
and empirical foundation for reproducible consistency training.

1 INTRODUCTION

Diffusion (Ho et al., 2020; Song & Ermon, 2019a; 2020; Song et al., 2021) and flow matching
models (Liu et al., 2023; Lipman et al., 2023) have achieved remarkable performance across a wide
range of applications. This progress stems from flow-based modeling and multi-step inference, but
is limited by multiple network evaluations during generation. To address this limitation, several
works have explored improving sampling efficiency (Xiao et al., 2022; Salimans & Ho, 2022; Yin
et al., 2024b;a; Zhou et al., 2024), but they rely on additional distillation stages or auxiliary networks
to achieve fewer-step generation, thereby introducing additional training cost.

Consistency Models (Song et al., 2023) and its variants (Frans et al., 2025; Song & Dhariwal, 2024;
Geng et al., 2025b; Lu & Song, 2025; Yang et al., 2024; Sun et al., 2025) have been proposed for
training from scratch in few-step generation. Earlier studies on consistency models have often suf-
fered from training instability, which led subsequent works to focus on stabilization by introducing
various heuristics. However, the reliance on these complex techniques has reduced reproducibility.

In this work, we aim to develop a simplified and reproducible few-step generative model based on
consistency methods. We begin by analyzing existing approaches: (i) we propose a generalized
flow map framework that covers various design choices of recent consistency-based methods; (ii)
we unify these approaches under our framework, providing a theoretical basis for analyzing sub-
optimality; and (iii) we show that most of the recent methods do not guarantee convergence to the
generator along the marginal velocity field, due to suboptimality and instability of their objectives.

Motivated by these observations, we hypothesize that suboptimality and instability undermine the
reproducibility of consistency training. From our unified perspective, we identify two key factors
for reproducible training: time-condition relaxation and marginal velocity guidance. To incorporate
these factors, we leverage our generalized flow map formulation with self-distillation. Some prior
work (Issenhuth et al., 2025; Silvestri et al., 2025) have attempted to address these issues by reducing
the loss variance, thereby resolving them indirectly. In contrast, self-distillation (Boffi et al., 2025a)
was proposed to guarantee convergence to the marginal flow directly, but it relies on heuristics to
stabilize training. By exploring the design space of flow map models, we propose improved Self-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Distillation (iSD), which further reduces the reliance on heuristics. Moreover, we extend the iSD
formulation to classifier-free guidance, achieving additional performance gains.

Our iSD demonstrates competitive performance against recent few-step generative models, while
providing improved reproducibility. On ImageNet 256×256 (Deng et al., 2009), our model achieves
an FID (Heusel et al., 2017) of 11.06 for four-step generation. The reproducibility of iSD is vali-
dated across multiple random initializations by measuring the standard deviation of FID, achieving
0.735. It demonstrates improved reproducibility compared to consistency training, as training can
be performed from scratch with reduced heuristics.

Contribution. (i) We extend the flow map framework to cover various design choices, unifying
recent consistency-based approaches within it (Sec. 3.2). (ii) We prove the suboptimal convergence
and instability of gradient dynamics in recent consistency-based methods, showing that they under-
mine reproducibility and training stability (Sec. 3.3). (iii) To address these issues, we leverage the
self-distillation, which guarantees convergence to the marginal velocity field (Sec. 4). (iv) We gen-
eralize the self-distillation to incorporate recent design choices and further extend it to classifier-free
guidance, which we term improved Self-Distillation (iSD, Sec. 4). (v) We explore the design space
and present the best choices for iSD. (Sec. 5).

2 RELATED WORK

Eulerian Distillation

Direct Training

Marginal velocity
Consistency Model Flow Map Model

Conditional velocity

Figure 1: Eulerian distillation and
direct training of consistency mod-
els and flow map models. Consis-
tency models can be generalized into
flow map models, which define a map-
ping between two points on the same
trajectory. Eulerian distillation learns
flow mappings along the marginal ve-
locity, whereas direct training learns
them along conditional velocity.

Diffusion and Flow Matching Models. Diffusion mod-
els (Ho et al., 2020; Song & Ermon, 2019a; Song et al.,
2021) and flow matching models (Albergo & Vanden-
Eijnden, 2023; Albergo et al., 2023; Boffi et al., 2025b;
Liu et al., 2023) are generative models that gradually
transform a tractable noise distribution into the data distri-
bution. These models have achieved remarkable progress
in high-fidelity generation (Rombach et al., 2022; Podell
et al., 2024; Peebles & Xie, 2023; Esser et al., 2024).
However, their reliance on a multi-step sampling proce-
dure requires substantial computational resources.

Few-step Generation. Several work have explored im-
proving sampling efficiency of diffusion models (Sali-
mans & Ho, 2022; Xiao et al., 2022; Rombach et al.,
2022). These approaches aim to distill pretrained diffu-
sion models into fewer-step generators, adopt GANs, or
leverage VAEs to reduce input size. In parallel, distri-
bution matching distillation methods (Yin et al., 2024b;a;
Zhou et al., 2024) have been proposed to construct one-
step generators by tracking the generator’s score. How-
ever, both approaches rely on additional distillation stages
or auxiliary networks, which increase training cost.

Consistency Models. Consistency Models (Song et al.,
2023) are designed to predict a sample directly from
any point along a flow trajectory. Both distillation and
training methods have been proposed, but training from
scratch is known to be unstable. Several studies have
introduced heuristics to stabilize training, including ini-
tialization, improved objectives and progressive training
schemes (Song & Dhariwal, 2024; Geng et al., 2025b; Lu
& Song, 2025). Other studies have identified the gap between distillation and training objectives (Is-
senhuth et al., 2025; Silvestri et al., 2025; Boffi et al., 2025b), which can lead to high loss variance
and suboptimal convergence when training from scratch. To mitigate this, network-induced cou-
plings have been introduced to reduce loss variance, addressing the issue indirectly. In contrast,
self-distillation has been proposed to guarantee convergence directly, while dependent on heuristics.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Unified Framework. Recently, several studies have aimed to unify consistency models and flow
matching. UCGM (Sun et al., 2025) introduced a framework that integrates both paradigms, but it
does not account for the relaxed constraint of mapping points. More broadly, the flow map frame-
work (Boffi et al., 2025b; Kim et al., 2024) presented a mathematical framework for consistency
models, defining a model that learns flow maps as mappings between any two points on the same
trajectory. However, it does not aim to unify recent work or explore their design spaces.

3 SUBOPTIMALITY OF DIRECT FLOW MAP MATCHING

In this section, we revisit the flow map framework (Boffi et al., 2025b; Kim et al., 2024) and extend
it to interpret recent consistency-based approaches. We observe that most methods learn conditional
velocity fields, which do not guarantee convergence to the marginal velocity field. Such suboptimal
flow maps may lead to trajectory crossings, non-injective mappings, or severe reproducibility issues.

3.1 PRELIMINARIES

Given a training dataset X with underlying distribution pX , flow matching models are trained to
match the velocity fields of continuous flows, starting from a tractable distribution pZ . Prior work
constructs such flows via an interpolation, xt = αtx + σtz, where x ∼ pX and z ∼ pZ . A
linear interpolation xt = (1 − t)x + tz for t ∈ [0, 1] (Liu et al., 2023; Lipman et al., 2023) and a
trigonometric interpolation xt = cos(t)x + sin(t)z for t ∈ [0, π/2] (Albergo & Vanden-Eijnden,
2023; Albergo et al., 2023; Lu & Song, 2025) are the widely adopted choices.

We assume that αt and σt are monotone with boundary conditions α0 = σT = 1 and αT = σ0 = 0
for t ∈ [0, T]. Both are continuous and have bounded first- and second-order derivatives. Under this
assumption, the marginal distribution induced by the flow, ρt, satisfies ρ0 = pX and ρT = pZ .

To ensure convergence of the consistency objective in the subsequent discussion, we propose an
additional assumption that αtσ

′
t − σtα

′
t = ν ̸= 0 for all t ∈ [0, T] where ν is constant (see Ap-

pendix A.4). Notably, both linear and trigonometric interpolations satisfy this condition with ν = 1.

With the constructed flow, the flow matching models optimize the squared error between the condi-
tional velocity vt(xt|x) and a parameterized velocity network Fθ:

LCFM = Ex∼pX ,z∼pZ ,t∼U [0,1]

[
∥Fθ(xt; t)− vt(xt|x)∥22

]
, vt(xt|x) = α′

tx+ σ′
tz (1)

Conditional flow matching LCFM converges to the flow induced by the marginal velocity v∗t (xt) =
Ex|xt

[v(xt|x)]. If v∗t (x) is Lipschitz continuous in both t and x, the ODE dxt = v∗t (xt)dt has a
unique solution and satisfies the continuity equation for ρt (Lipman et al., 2023).

However, we observe that diffusion and flow matching models can suffer from mean collapse, in
which one-step samples collapse to the mean of the data distribution (proof in Appendix A.1).

3.2 GENERALIZED FLOW MAP MATCHING

We begin by introducing a flow map with Eulerian distillation following prior work, and then gener-
alize these formulations to unify recent consistency-based methods. Within our extended framework,
we interpret recent methods and provide a theoretical basis for analyzing their suboptimality.

Flow Map. From the flows defined by an interpolation, our goal is to draw samples from the target
distribution in a few sampling steps. To achieve this, we define a flow map as a mapping between
two points xt and xs (s < t) on the same trajectory, using the marginal velocity v∗t (xt) as follows:

ft,s(xt) = xt +

∫ s

t

v∗τ (xτ)dτ. (2)

If the marginal velocity is Lipschitz continuous, the flow map is well-defined, injective, and thus
free from the mean collapse problem (proof in Appendix A.2).

Training Flow Map. Since the flow map is defined as an integral, direct supervision from scratch
is challenging. Assuming a teacher flow matching network FΦ, we can generate training data using
an ODE solver, enabling direct supervision in a distillation manner. This procedure reduces to the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

one-step distillation of rectified flows (Liu et al., 2023) for fixed t = 1 and s = 0. However, it
requires a data generation process with substantial computational resources.

To address this limitation, many recent studies adopt consistency training (Song et al., 2023), which
can be derived from the Eulerian equation (proof in Appendix A.3; see also Boffi et al. (2025b)).
Proposition 3.1. (Eulerian Equation) Given the flow induced by a Lipschitz continuous marginal
velocity v∗t (xt), the flow map ft,s is the unique solution of the Eulerian equation:

∂tft,s(x) + v∗t (xt) · ∇xft,s(x) = 0 (3)
when f is continuous in x, t, s, Lipschitz continuous in x, and satisfies the boundary ft,t(x) = x.

To facilitate training of a flow map network fθ using the Eulerian equation, the training objective
can be formulated as a squared minimization problem, referred to as Eulerian distillation:

LED = Ex,z,t,s

[
∥∂tfθ(xt; t, s) + v∗t (xt) · ∇xfθ(xt; t, s)∥22

]
(4)

When s = 0, Eulerian distillation reduces in value to continuous-time consistency training objec-
tive (Song et al., 2023) (details in Appendix A.5). However, their gradient dynamics differ, which
affects the training stability, as further discussed in a later section (Prop. 3.4).

Since the objective involves a Jacobian-vector product, its optimization requires computing a Hes-
sian, introducing computational overhead. To address this, Lu & Song (2025) reformulated the
consistency training objective with a stop-gradient operation, while keeping the gradients identical:

LCT = Ex,z,t

[∥∥∥∥fθ(xt; t)− fθ−(xt; t) +
dfθ−(xt; t)

dt

∥∥∥∥2
2

]
(5)

where fθ− denotes the gradient-detached network. Using Eq. 5, the JVP operation is detached from
the gradient flow, and the update step requires two backward passes but avoids Hessian computation.

Generalized Flow Map. To interpret recent approaches as flow maps, we propose a generalized
formulation of the network fθ as a one-step Euler solution with a pseudo-velocity network Fθ:

fθ(xt; t, s) = ν−1(A′
t,sxt −At,sFθ(xt; t, s)), At,s = σtαs − σsαt (6)

This formulation satisfies the boundary condition of Prop. 3.1. For a linear trajectory, it reduces to
fθ(xt; t, s) = xt + (s − t)Fθ(xt; t), widely adopted in flow map studies (Geng et al., 2025a; Boffi
et al., 2025b; Sabour et al., 2025). At s = 0, it simplifies to fθ(xt; t) = xt− tFθ(xt; t), the common
setting in consistency models (Yang et al., 2024; Sun et al., 2025). For a trigonometric trajectory
with s = 0, we obtain fθ(xt; t) = cos(t)x− sin(t)Fθ(xt; t), as introduced by Lu & Song (2025).

By generalizing the formulations of flow maps, we propose instantiations of these methods under a
unified perspective (proof in Appendix A.5).
Proposition 3.2. (Interpretation of Recent Methods) Recent consistency-based methods can be in-
terpreted as instances of the flow map framework, trained with the generalized Eulerian equation:

∂tfθ(xt; t, s) + τt(xt, x) · ∇xfθ(xt; t, s) = 0 (7)
where xt is determined by the Interpolant, τt by the Trajectory, and the constraints of t, s by
Timestep, as summarized in Tab. 1.

To be consistent with the generalized Eulerian equation, we extend Eulerian distillation and consis-
tency training objective for fθ(xt; t, s) = fθ

t,s(xt). Since the guiding trajectory τt is not generally
Lipschitz continuous, it no longer guarantees the convergence to the marginal flow map.

LED = Ex,z,t,s

[∥∥∂tfθ
t,s(xt) + τt(xt, x) · ∇xf

θ
t,s(xt)

∥∥2
2

]
(8)

LCT = Ex,z,t,s

[∥∥∥fθ
t,s(xt)− fθ−

t,s (xt) + ∂tf
θ−

t,s (xt) + τt(xt, x) · ∇xf
θ−

t,s (xt)
∥∥∥2
2

]
(9)

We observe several design choices from these instantiations. Prior studies have focused on linear
and trigonometric interpolations. The guiding trajectory typically follows either pretrained velocity
networks or the conditional velocity. Consistency models usually fix s = 0, whereas other flow map
models relax it to s < t. Some models compute the JVP directly using torch.func.jvp, while
others approximate it as dfθ(xt; t)/dt ≈ [fθ(xt+ϵ; t+ ϵ)− fθ(xt−ϵ; t− ϵ)]/(2ϵ).

We explore these design spaces in the experimental section, and select the best settings: (i) trigono-
metric interpolation, (ii) approximated marginal velocity, (iii) s < t, and (iv) approximated JVP.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Instantiation of the flow map framework for each consistency-based generative model.
Model Interpolant xt Trajectory τt Timestep JVP Type Loss Note
Distillation-based Methods
FMM-EMD (Boffi et al., 2025b) Linear FΦ(xt; t) s < t Exact LED Teacher FΦ(xt; t)
AYF-EMD (Sabour et al., 2025) Linear FΦ(xt; t) s < t Exact LCT
sCD (Lu & Song, 2025) Trigonometric FΦ(xt; t) s = 0 Exact LCT

Consistency Training Methods
MeanFlow (Geng et al., 2025a) Linear vt(xt|x) s < t Exact LCT
ConsistencyFM (Yang et al., 2024) Linear vt(xt|x) s = 0 Approx LCT
sCT (Lu & Song, 2025) Trigonometric vt(xt|x) s = 0 Exact LCT
UCGM (Sun et al., 2025) Arbitrary vt(xt|x) s = 0 Approx LCT
Shortcut Model (Frans et al., 2025) Linear Fθ(xt; t, t) s = t+ d Approx LCTM d ∈ [−2−1,−2−7]

Self-Distillation Methods
Self-Distillation (Boffi et al., 2025a) Linear Fθ(xt; t, t) s < t Exact LSD
improved Self-Distillation (Ours) Arbitrary Fθ(xt; t, t) s < t Approx LSD-R

3.3 SUBOPTIMALITY AND INSTABILITY

Most consistency training approaches learn flow maps guided by the conditional velocity. We denote
Eulerian distillation under conditional velocity guidance as direct training.

LDT = Ex,z,t,s

[
∥∂tfθ(xt; t, s) + v(xt|x) · ∇xfθ(xt; t, s)∥22

]
(10)

However, under the assumption in Prop. 3.1, the direct training does not guarantee convergence to
the flow map along the marginal velocity, due to the gap between conditional and marginal velocity
guidance (proof in Appendix A.6; cf. Boffi et al. (2025b)).
Proposition 3.3. (Suboptimality of direct training) The gap between Eulerian distillationLED along
the marginal velocity and direct training LDT is given by

LDT − LED = Ex,z,t,s

[
Varx|xt

[∆v · ∇xfθ(xt; t, s)]
]

(11)

where ∆v = v(xt|x)− v∗t (xt). This discrepancy forces the network in the direction of ∆v ⊥ ∇xfθ,
leading to distortion of the flow map. The flow map induced by direct training is indefinite.

This can affect methods that optimize the direct training objective. In such cases, injectivity and
non-crossing trajectories are no longer guaranteed, which may result in mode collapse or failure of
locality-based editing. Instead of optimizing the direct training objective, the consistency training
objective ensures the marginal flow map at its fixed point, even when guided by conditional velocity.
However, it does not guarantee convergence due to its gradient dynamics (proof in Appendix A.7).
Proposition 3.4. (Instability of consistency training) The consistency training objective with a con-
ditional velocity reduces to the objective with the marginal velocity under expectation.

However, it lacks the curvature required to stabilize the optimum, ensuring only the existence of a
fixed point that satisfies the Eulerian equation rather than guaranteeing the global optimum. Thus,
the gradient dynamics may fail to converge.

Some work (Issenhuth et al., 2025; Silvestri et al., 2025) leverages neural networks to conduct the
flow. In direct training settings, these approaches can provide a tighter bound to Eulerian distillation,
but still do not guarantee the convergence to the marginal velocity field. (proof in Appendix A.8).

Table 2: Consistency training results on ImageNet 256×
256 under different preconditioners. Multi-step FID denotes
the FIDs of pretrained networks for given ODE solver and
sampling-step pairs. Few-step FID denotes the 2-NFE FID
of consistency models initialized from the corresponding
preconditioner (details in Appendix C.1).

Preconditioner Multi-step FID↓ Few-step FID↓
Multi-step Baseline 1.21 (UCGM-S, 30-step) 2.69
LightningDiT 2.17 (Euler, 250-step) 10.01
Reproduced Model 2.41 (UCGM-S, 30-step) 5.96
w/o Preconditioner - Diverged (200↑)
Reported Baseline 1.21 (UCGM-S, 30-step) 1.42

Preconditioners. Despite various
training techniques proposed in prior
work, classical consistency training
still suffers from reproducibility is-
sues. In particular, recent consistency
training methods rely on initializa-
tion with pretrained diffusion mod-
els, such as Karras et al. (2022); Yao
et al. (2025). These pretrained mod-
els are often referred to as multi-step
preconditioners, and we observe that
the performance of consistency mod-
els varies depending on them.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

As shown in Tab. 2, we evaluated an open-source continuous-time consistency model (Sun et al.,
2025) on ImageNet 256×256. With the released multi-step baseline, the model achieved a 2-NFE
FID of 2.69. However, when using the pretrained LightningDiT (Yao et al., 2025) or our reproduced
multi-step model, the FIDs were worse than the baseline and diverged when initialized randomly.

Linearization Cost Hypothesis. Some studies (Geng et al., 2025a; Frans et al., 2025) enable train-
ing from scratch without a preconditioner. The key difference is that they allow s < t, while others
fix s = 0. Intuitively, training long-range mappings is more challenging than short-range ones, since
the linearization cost increases with step size. In both objectives, we observe that s → t amplifies
the flow matching term, while s → 0 amplifies a linearization term involving JVP, which is struc-
turally more complex (Appendix. A.9). We hypothesize that fixing s = 0 makes optimization more
challenging, training less stable, while relaxing to s < t balances the terms and mitigates instability.

4 TOWARDS REPRODUCIBLE AND STABLE FLOW MAP TRAINING

From these observations, we identify two key factors for reproducibility: relaxation of s (lineariza-
tion cost hypothesis), and marginal velocity guidance (Prop. 3.3). To facilitate consistency training
from scratch, we relax the time condition to mitigate instability, and leverage self-distillation to
follow the marginal velocity, addressing suboptimality. Since prior work on self-distillation (Boffi
et al., 2025a) relies on heuristics to stabilize training, we propose improved Self-Distillation (iSD): (i)
reducing reliance on heuristics and simplifying the training process by exploring the design space of
flow maps, (ii) extending classifier-free guidance to flow maps, achieving additional improvements.

4.1 FACILITATING CONSISTENCY TRAINING FROM SCRATCH

Relaxation of s. Based on the linearization cost hypothesis, we relax s = 0 to s < t, balancing
the contributions of the flow matching and linearization terms. Instead of directly addressing the
unstable gradient dynamics of consistency training, we leverage this relaxation to indirectly mitigate
the instability. This approach still avoids the Hessian, while empirically stabilizing optimization.

Marginal velocity guidance. Following Prop. 3.3, we consider marginal velocity guidance to guar-
antee convergence. From the instantiations in Prop. 3.2, we identify that self-distillation follows the
marginal velocity approximated by the network itself. Based on this, we train Fθ(xt; t, t) via flow
matching, while jointly applying Eulerian distillation to Fθ(xt; t, s) guided by its approximation:

LCFM = E
[
∥Fθ(xt; t, t)− v(xt|x)∥22

]
(12)

LSD = E
[
∥∂tfθ(xt; t, s) + Fθ−(xt; t, t) · ∇xfθ(xt; t, s)∥22

]
(13)

With this setting, the objective ensures convergence to the marginal flow map, handling subopti-
mality of direct training (proof in Appendix B.1; see also Boffi et al. (2025a)). Under consistency
training, this can reduce loss variance and further stabilize training compared to the conditional
velocity guidance (details in Appendix B.2).

4.2 IMPROVED SELF-DISTILLATION

To incorporate various design choices and reduce the reliance on heuristics, we extend the self-
distillation method using our generalized formulations and the explored design space. In the next
section, we conduct ablation studies across these choices and present the best practice.

Reformulation. We leverage our generalized flow map defined in Eq. 6, and the objective can be
expressed using the guidance velocity vθ(xt; t) = Fθ(xt; t, t) as:

LSD = Ex,z,t,s

[
ν−2

∥∥∥∥A′′
t,sxt +A′

t,s(vθ(xt; t)− Fθ(xt; t, s))−At,s
dFθ(xt; t, s)

dt

∥∥∥∥2
2

]
(14)

This extends the original self-distillation to arbitrary interpolations satisfying our assumptions. Next,
we reformulate the objective, where the gradient remains identical while avoiding the Hessian:

LSD-R = Ex,z,t,s

[
wt,s∥Fθ(xt; t, s)− sg [Ftgt(xt; t, s)] ∥22

]
, wt,s = At,sν

−2 (15)

Ftgt = Fθ(xt; t, s) +A′′
t,sxt +A′

t,s(vθ(xt; t)− Fθ(xt; t, s))−At,s
dFθ(xt; t, s)

dt
(16)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

JVP Approximation. Some works approximate the JVP, highlighting a trade-off between accuracy
and computational efficiency. In our work, we approximate the JVP as follows to preserve the
trajectory of marginal guidance. With this approximation, we found that training time can be reduced
and performance further improves.

dFθ(xt; t, s)

dt
=

Fθ(xt + ϵ · vθ(xt; t); t+ ϵ, s)− Fθ(xt − ϵ · vθ(xt; t); t− ϵ, s)

2ϵ
(17)

Adaptive Weighting. Since the JVP exhibits instability and can cause training to diverge, several
ideas have been proposed to stabilize the operation (Lu & Song, 2025; Sun et al., 2025; Boffi et al.,
2025a; Geng et al., 2025a). Among these, we adopt adaptive weighting to preserve the intended
guidance, as normalization and clipping may alter the guiding trajectory. To ensure stable joint
training, we extend weighting to both objectives and formulate it with hyperparameters η and p.

L̃t,s(xt, x) = ∥Fθ(xt; t, t)− vt(xt|x)∥22 + ∥Fθ(xt; t, s)− sg[Ftgt(xt; t, s)]∥22
LiSD = Ex,z,t,s

[
wt,s(xt, x) · L̃t,s(xt, x)

]
, wt,s(xt, x) = (sg[L̃t,s(xt, x)] + η)−p (18)

From these settings, training from scratch becomes stable, allowing us to eliminate additional
heuristics introduced in prior work, such as progressive distillation, annealing (Boffi et al., 2025a),
small Fourier coefficients, double normalization, tangent warmup, and some regularizations (Sabour
et al., 2025; Lu & Song, 2025; Chen et al., 2025). Detailed training and sampling algorithms are
provided in appendix, Alg. 2 and Alg. 3.

Classifier-free Guidance. Classifier-free Guidance (CFG) is an off-the-shelf method for boosting
the performance of diffusion models. However, unlike in diffusion models, directly applying CFG
to flow maps does not guarantee mappings along the CFG velocity field (details in Appendix B.3).

This motivates two extensions of the proposed self-distillation: Post-CFG and Pre-CFG. Post-CFG
operates as classical classifier-free guidance applied after training, defined as follows:

F̃θ(xt; t, s, c) = Fθ(xt; t, s,∅) + ω(Fθ(xt; t, s, c)− Fθ(xt; t, s,∅))

f̃θ(xt; t, s, c) = ν−1(A′
t,sxt −At,sF̃θ(xt; t, s, c)) (19)

where ∅ is the null class label for unconditional generation, c is the conditional class label, and ω
is the guidance scale. Although this formulation is not guaranteed to follow the CFG velocity field,
it can be easily applied after training. To ensure that the flow map follows the CFG field, Pre-CFG
replaces the guidance velocity vθ with the CFG velocity ṽθ during training:

ṽθ(xt; t, c) = Fθ(xt; t, t,∅) + ω(Fθ(xt; t, t, c)− Fθ(xt; t, t,∅)) (20)

The CFG velocity is Lipschitz continuous under our assumption. Thus, our propositions also apply,
guaranteeing convergence to the CFG velocity field.

However, since the ground-truth CFG velocity is intractable during training, applying LCFM with
the CFG velocity is infeasible. If we perform LCFM with the conditional velocity, Pre-CFG causes
a conflict: LSD-R induces Ft,t ≈ ṽt, whereas LCFM induces Ft,t ≈ v∗t . Therefore, we consider two
cases: (i) LiSD-U, applying LCFM with the conditional velocity while compromising the theoretical
guarantees at s = t (Guidance-Unconditional), and (ii) LiSD-C, appending the guidance scale as
an additional condition F θ

t,t(xt; c, w), thereby applying LCFM with w = 1.0 and LSD-R with w = ω
(Guidance-Conditional). In this case,LiSD-C ensures Ft,t(xt; c, 1.0) ≈ v∗t (xt; c) and Ft,t(xt; c, ω) ≈
ṽt(xt; c) (details in Appendix B.3). We discuss their practical benefits and present our final choice
in the next section.

5 EXPERIMENTS

Experimental Settings. To evaluate our method, we conduct experiments on the ImageNet-
1K (Deng et al., 2009) and CIFAR-10 (Krizhevsky, 2009) datasets. Following prior work, we use
downsampled 32×32×4 latent variables from 256×256 images encoded by a VAE (Rombach et al.,
2022), and employ a DiT (Peebles & Xie, 2023) architecture. For CIFAR-10, we train the model
directly in pixel space using UNet+ (Song et al., 2021). We evaluate both one-step and few-step gen-
erations using uniformly sampled timesteps. Sample quality is measured with FID (Heusel et al.,
2017) over 50K samples, and further implementation details are provided in Appendix C.2.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

100K 200K 300K 400K
Training Steps

75

100

125

150

2-
St

ep
 F

ID

CT/Linear
CT/Trig
iSD/Linear
iSD/Trig
iSD-U/Linear
iSD-U/Trig(Ours)

(a) Design choices

0 1 3 7 10
CFG Scales

25

50

75

100

125

2-
St

ep
 F

ID

CT/Linear
CT/Trig
iSD/Linear
iSD/Trig
iSD-U/Linear
iSD-U/Trig(Ours)

(b) Post-CFG scales

100K 200K 300K 400K
Training Steps

75

100

125

150

2-
St

ep
 F

ID

iSD
iSD-C(1.5)
iSD-C(3.0)
iSD-C(7.0)
iSD-U(Ours)

(c) Pre-CFG methods

Figure 2: Design choices of the generalized flow map. (a) FIDs of design choices over training
steps. Solid lines indicate the JVP approximation, and dash-dot lines indicate direct JVP. (b) FIDs
of Post-CFG over guidance scales. Dotted lines indicate 4-Step FIDs. (c) FIDs of Pre-CFG over
training steps. Solid lines indicate trigonometric interpolation and dash-dot lines indicate linear one.

75

85

95

105

2-
St

ep
 F

ID

2.299

3.279

1.302

1.028

CT/Linear
CT/Trig
iSD-U/Linear
iSD-U/Trig(Ours)

(a) Standard deviations of FIDs

100K 200K 300K 400K
Training Steps

50

75

100

2-
St

ep
 F

ID

DiT-B/4
DiT-B/2
DiT-XL/2

(b) Model scales (c) Qualitative results

Figure 3: Few-step generation results. (a) Standard deviations of FIDs at 300K training steps. (b)
FIDs of model scales over training steps. (c) 4-Step samples generated by iSD-U.

Table 3: Step-by-step experiments
validating the hypothesis (2-Step).

Case FID↓
Baseline 121.3
+ Joint training LCFM 116.3
+ Relaxing condition LCT 76.39
+ Self-Distillation (ω = 1.5) 75.57
+ Trigonometric interpolation 66.63

Standard deviation 0.735

Table 4: Quantitative results across design choices (2-Step).
The numeric entries in the header denote Post-CFG scales.

Loss Interp. JVP FID↓ 1.5 3.0 7.0 10.0
LCT Linear Exact 76.39 50.45 39.33 68.82 85.87
LCT Trig. Exact 103.35 72.42 39.52 41.27 59.16
LiSD Linear Exact 118.17 98.77 77.75 89.02 100.61
LiSD Trig. Exact 115.93 86.46 51.85 51.34 66.79

LCT Linear Approx 65.98 40.97 33.33 67.99 85.69
LiSD Linear Approx 112.39 90.26 69.81 87.50 101.42

LiSD-U Linear Approx 75.57 55.58 53.88 86.95 99.97
LiSD-U Trig. Approx 66.63 41.84 27.99 47.04 66.25

5.1 ABLATION STUDY

We conduct our ablation study on DiT-B/4, a base model of diffusion transformer with 4×4 patches.
The model is trained for 400K steps with a batch size of 256. By default, we set ω = 1.5 for LiSD-U
and use conditional velocity guidance for LCT.

Key factors. To validate our hypothesis, we conduct step-by-step experiments to make consis-
tency training reproducible with our contributions, as summarized in Tab. 3. Starting from the
consistency-training baseline with a linear trajectory, joint training with flow matching improves the
FID. Relaxing the time condition further reduces it, supporting the linearization cost hypothesis. We
observe that self-distillation converges more slowly than consistency training, as shown in Tab. 4
and Fig. 2a. Pre-CFG LiSD-U accelerates training compared to vanilla LiSD, and achieves further
improvement when the linear interpolation is replaced with a trigonometric one.

Interpolation, Post-CFG. As shown in Fig. 2a and Tab. 4, under conditional velocity guidance,
linear interpolation yields better results compared to the trigonometric case. However, with self-
distillation, the trigonometric interpolation achieves a lower FID than linear. It exhibits a larger
performance gap under the Post-CFG (Fig. 2b), even surpassing the linear case at 4-step sampling.
Pre-CFG LiSD-U also achieves better results with the trigonometric case.

JVP operation. When comparing the JVP approximation with direct computation, the approxima-
tion achieves better results. All subsequent experiments adopt the JVP approximation by default.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Comparison with prior work on ImageNet 256×256 and CIFAR-10.

Class-Conditional ImageNet 256×256
METHOD NFE (↓) FID (↓)
Consistency Training Methods
iCT (Song & Dhariwal, 2024) 2 20.3
Shortcut Model (Frans et al., 2025) 1 10.6

4 7.8
UCGM (SD-VAE, Sun et al. (2025)) 1 2.10
MeanFlow (Geng et al., 2025a) 1 3.43

Ours
iSD-U 2 23.51

4 20.43

+ Post-CFG (ω = 3.0) 2×2 13.49
4×2 11.06

Unconditional CIFAR-10
METHOD NFE (↓) FID (↓)
Distillation-based Methods
2-RF Liu et al. (2023) 1 4.85
DMD (Yin et al., 2024b) 1 3.77

Consistency Training Methods
iCT (Song & Dhariwal, 2024) 1 2.83
sCT (Lu & Song, 2025) 1 2.97
UCGM (Sun et al., 2025) 1 2.82
MeanFlow (Geng et al., 2025a) 1 2.92
Self-distillation (Boffi et al., 2025a) 1 14.13

Ours
iSD 1 3.64

Pre-CFG. As shown in Fig. 2c and Tab. 4, applying Pre-CFG LiSD-U with ω = 1.5 yields improved
FIDs compared to vanilla LiSD, but training diverged when ω > 3.0. When a guidance scale is
appended as a condition, LiSD-C enables training at higher guidance scales, outperforming LiSD.
However, LiSD-C consistently performs worse results than LiSD-U. Intuitively, the additional condi-
tion enforces the network to learn both CFG and non-CFG mappings, imposing an extra burden on
the network. Even though LiSD-U compromises the theoretical guarantees at s = t, few-step gen-
eration commonly assumes s ≪ t, making this negligible in practice. Thus, we finalize the design
choices: (i) JVP approximation, (ii) trigonometric interpolation, and (iii) Pre-CFG LiSD-U.

Reproducibility To validate the reproducibility of our method, we measure the variance of FIDs
across three runs with different random initializations. We compare our final version of iSD with
consistency training baseline, involving direct JVP and s < t. As shown in Fig. 3a, where the num-
bers in the box plot denote standard deviations, our method demonstrates improved reproducibility
compared to the consistency training baseline, while remaining competitive FIDs.

Scalability. Fig. 3b presents the results across model scales. As the patch size decreases from DiT-
B/4 to DiT-B/2 and computation increases, the FID improves from 66.63 to 50.58. Further scaling
from DiT-B/2 to DiT-XL/2 improves the FID to 38.50, demonstrating consistent scaling behavior.

5.2 COMPARISON WITH PRIOR WORK

In Tab. 5, we compare our work with previous methods on ImageNet 256×256. We train DiT-XL/2
with iSD-U for 800K steps following prior work. Our model demonstrates comparable result to
our reproduced consistency model (Tab. 2, FID 10.01), iCT, and Shortcut Model, but higher FIDs
than others. On CIFAR-10, we obtain improved results compared to the original self-distillation,
reducing the FID from 14.13 to 3.64, while achieving performance comparable to other prior work.

Since our method requires neither additional networks nor pretrained models, the training process is
simplified, and its reproducibility has been validated in the previous section. However, we found that
training is slower than consistency training methods, since it first learns the marginal instantaneous
velocity and then the flow map guided by itself. The training was not saturated even after 800K
steps, and we leave further training for future work. Accelerating training also remains a promising
direction.

6 CONCLUSION

We introduced a generalized flow map framework that unifies recent consistency-based generative
models under the Eulerian equation. This highlights the suboptimality of existing approaches and
explains their limited reproducibility. To address these issues, we propose improved Self-Distillation,
which reduces reliance on heuristics and simplifies the training process. We further extend it to
classifier-free guidance for flow maps, achieving additional performance gains. Empirically, our
method achieves reproducible training and competitive few-step generation on ImageNet-1K. These
results establish a theoretical and empirical foundation for reproducible consistency training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unify-
ing framework for flows and diffusions, 2023.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2023.

Nicholas M. Boffi, Michael S. Albergo, and Eric Vanden-Eijnden. How to build a consistency
model: Learning flow maps via self-distillation, 2025a.

Nicholas Matthew Boffi, Michael Samuel Albergo, and Eric Vanden-Eijnden. Flow map matching
with stochastic interpolants: A mathematical framework for consistency models. Transactions on
Machine Learning Research, 2025b. ISSN 2835-8856.

Junsong Chen, Shuchen Xue, Yuyang Zhao, Jincheng Yu, Sayak Paul, Junyu Chen, Han Cai, Enze
Xie, and Song Han. Sana-sprint: One-step diffusion with continuous-time consistency distillation.
CoRR, abs/2503.09641, March 2025.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion English,
and Robin Rombach. Scaling rectified flow transformers for high-resolution image synthesis. In
ICML, 2024.

Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
models. In The Thirteenth International Conference on Learning Representations, 2025.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025a.

Zhengyang Geng, Ashwini Pokle, Weijian Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. In The Thirteenth International Conference on Learning Representations, 2025b.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

Thibaut Issenhuth, Sangchul Lee, Ludovic Dos Santos, Jean-Yves Franceschi, Chansoo Kim, and
Alain Rakotomamonjy. Improving consistency models with generator-augmented flows, 2025.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning prob-
ability flow ODE trajectory of diffusion. In The Twelfth International Conference on Learning
Representations, 2024.

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations, 2025.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4195–4205, October
2023.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
synthesis. In The Twelfth International Conference on Learning Representations, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your flow: Scaling continuous-time
flow map distillation, 2025.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
International Conference on Learning Representations, 2022.

Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, and Yuki Mitsufuji. VCT:
Training consistency models with variational noise coupling. In Forty-second International Con-
ference on Machine Learning, 2025.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In The
Twelfth International Conference on Learning Representations, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pp. 11895–11907, 2019b.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 12438–12448. Curran Associates, Inc., 2020.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 32211–32252. PMLR, 23–29 Jul 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023.

11

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Peng Sun, Yi Jiang, and Tao Lin. Unified continuous generative models. arXiv preprint
arXiv:2505.07447, 2025.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion GANs. In International Conference on Learning Representations, 2022.

Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin
Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with
velocity consistency, 2024.

Jingfeng Yao, Bin Yang, and Xinggang Wang. Reconstruction vs. generation: Taming optimization
dilemma in latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2025.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T. Freeman. Improved distribution matching distillation for fast image synthesis. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In CVPR, 2024b.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc., 2019.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A THEORETICAL ANALYSIS OF FLOW MAP MODELS

A.1 MEAN COLLAPSE OF DIFFUSION AND FLOW MATCHING MODELS

Posterior Distribution. First, consider the data distribution pX(x) = N (µX , σ2
X) and the interpo-

lation xt = αtx+ σtz. The conditional distribution is given by p(xt = y|x) = N (y;αtx, σ
2
t).

By Bayes’ rule,

p(x|xt = y) ∝ p(xt = y|x)p(x)
= N (y;αtx, σ

2
t)N (x;µX , σ2

X)

∝ exp

(
− (y − αtx)

2

2σ2
t

− (x− µX)2

2σ2
X

)
= exp

((
1

2σ2
X

+
α2
t

2σ2
t

)
x2 −

(
µX

σ2
X

+
αty

σ2
t

)
x+

(
µ2

2σ2
X

+
y2

2σ2
t

))
This can be organized as a Gaussian with a closed form p(x|xt = y) = N (µx|y,t, σ

2
x|y,t) where

µx|y,t =
αtσ

2
Xy + µXσ2

t

σ2
t + σ2

Xα2
t

, σ2
x|s,t =

σ2
Xσ2

t

σ2
t + σ2

Xα2
t

Extending the data distribution to a mixture of Gaussians pX(x) =
∑

i πiN (x;µi, σ
2
i), we introduce

the latent variable π for handling πi:

p(π = i) = πi, p(x|π = i) = N (x;µi, σ
2
i)

Then, the marginal distribution p(xt = y|π = i) can be expressed as

p(xt = y|π = i) =

∫
p(xt = y|x)p(x|π = i)dx

=

∫
N (y;αtx, σ

2
t)N (x;µi, σ

2
i)dx

= N (y;αtµi, α
2
tσ

2
i + σ2

t)

And we define responsibilities ri(y) as posterior distribution

ri,t(y) = p(π = i|xt = y) =
p(xt = y|π = i)p(π = i)∑
j p(xt = y|π = j)p(π = j)

=
πiN (y;αtµi, α

2
tσ

2
i + σ2

t)∑
j πjN (y;αtµj , α2

tσ
2
j + σ2

t)

Therefore, the posterior distribution p(x|xt = y) is

p(x|xt = y) =
∑
i

p(π = i|xt = y)p(x|xt = y, π = i)

=
∑
i

ri,t(y)N (y;αtx, σ
2
t)N (x;µi, σ

2
i)

=
∑
i

ri,t(y)N (x;µx|i,y,t, σ
2
x|i,y,t)

where µx|i,y,t =
αtσ

2
i y + µiσ

2
t

σ2
t + σ2

i α
2
t

, σ2
x|i,y,t =

σ2
i σ

2
t

σ2
t + σ2

i α
2
t

Particularly, we observe that µx|i,y,1 = µi, σ
2
x|i,y,1 = σ2

i and ri,1(y) = πi.

One-step Generation. Under the linear trajectory xt = (1 − t)x + tz, the conditional velocity is
vt(xt|x) = z − x. Thus, one-step generation is defined by

fF (xt; t) = xt − tF ∗(xt; t) = xt − tEx|xt
[vt(xt|x)]

= Ex,z|xt
[xt − t(z − x)]

= Ex|xt
[x]

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

In the unimodal Gaussian case, Ex|z[x] = µx|z,1 = µX and the one-step generated samples collapse
to the mean of the data distribution. Similarly, in the mixture of Gaussians case, one-step generated
samples collapse to the mixture mean.

fF (z) = Ex|z[x] =
∑
i

ri(z)µi|z,1 =
∑
i

πi µi = µX

Thus, one-step generation collapses to the data mean µX regardless of the input.

A.2 INJECTIVITY OF FLOW MAP

Since the marginal velocity is assumed to be Lipschitz continuous, the Picard-Lindelöf theorem
guarantees a unique solution to the ODE dxt = v∗t (xt)dt for any initial value. Non-crossing trajec-
tory follows directly, since any crossing would contradict the uniqueness. Thus, since the flow map
is formulated as the solution of the ODE with the initial value xt, it is well-defined and the solution
xs is uniquely determined by non-crossing, ensuring the injectivity of the flow map.

A.3 EULERIAN EQUATION AND UNIQUENESS OF FLOW MAP

Suppose the ground-truth flow map is defined as

f∗
t,s(xt) = xt +

∫ s

t

v∗τ (xτ)dτ = xs

By construction, the identity mapping f∗
t,s(f

∗
s,t(xs)) = xs satisfies. Differentiating both sides w.r.t.

t yields

d

dt
f∗
t,s(f

∗
s,t(xs)) = ∂tf

∗
t,s(f

∗
s,t(xs)) + ∂tf

∗
s,t(xs) · ∇xf

∗
t,s(f

∗
s,t(xs)) =

d

dt
xs = 0

Using f∗
s,t(xs) = xt and ∂tf

∗
s,t(xs) = ∂txt = v∗t (xt), we obtain the Eulerian equation:

d

dt
f∗
t,s(xt) = ∂tf

∗
t,s(xt) + v∗t (xt) · ∇xf

∗
t,s(xt) = 0

Suppose a trainable network fθ(x; t, s) = fθ
t,s(x) is continuous in x, t, s, Lipschitz continous in x,

and satisfies the boundary condition fθ
s,s(x) = x for all s. If fθ satisfies the Eulerian equation, fθ

t,s

remains constant along the characteristic curve induced by v∗t (xt).

Let χτ denotes the characteristic curve defined on [s, t] by χt = x and χ′
τ = v∗τ (χτ). Along this

curve, fθ
τ,s is constant and evaluating at τ = t and τ = s yields

fθ
t,s(x) = fθ

t,s(χt) = fθ
s,s(χs) = χs = f∗

t,s(x)

since f∗
t,s generates the characteristic curve χτ by its definition.

Thus, the learned mapping coincides with the exact flow map.

A.4 INTERPOLATION CONDITION FOR GUARANTEEING THE CONVERGENCE

We begin by explicitly deriving the solution of the Eulerian equation. For fθ
t,s(xt) = ν−1

t (A′
t,sxt −

At,sF
θ
t,s(xt)) in Eq. 6, let n = A′

t,sxt − At,sF
θ
t,s(xt), which simplifies to n = A′xt − AF and

f = ν−1
t n. Then, differentiation with respect to timestep t yields

n′ = A′′xt +A′(vt − F)−AF ′

f ′ = [A′′xt +A′(vt − F)−AF ′]
νt
ν2t

+ [A′xt −AF]
ν′t
ν2t

Assuming f ′ = 0 and νt ̸= 0, we obtain

AνtF
′ = −(A′νt +Aν′t)F + [A′′νtxt +A′νtvt +A′ν′txt]

which further simplifies to

AνtF
′ = −[Aνt]

′F + [Aνtxt]
′ = BF ′ = −B′F +D′

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where B = Aνt, D = A′νtxt. Since BF ′ + B′F = [BF]′, we obtain [BF]′ = D′, which yields
AνtF = A′νtxt +C for some integration constant C. Assuming A = At,s = αsσt − σsαt ̸= 0 for
t ̸= s, this gives F = A′A−1xt + C(Aνt)

−1, and hence

f∗
t,s(xt) = ν−1

t [A′xt −A′xt − Cν−1
t] = −Cν−2

t

If νt is a time-dependent scalar, the global optimum f∗ = −C ′ν−2
t is itself time-dependent, so the

Eulerian equation can’t vanish. If C = 0, the solution collapses to the trivial case f∗
t,s(xt) = 0.

Therefore, νt must be a time-independent constant.

Additional Observation. Suppose that the monotonically increasing γt over t ∈ [0, 1] satisfying
the boundary conditions γ1 = 1 and γ0 = 0. Consider the interpolation defined by αt = (1 − γt)

c

and σt = γc
t for some constant c ∈ [0.5, 1]. Then, νt can be written as νt = c(1 − γt)

c−1γc−1
t γ′

t.
Imposing νt = ν gives γ′

t = ν[c(1 − γt)
c−1γc−1

t]−1 and c(1 − γ)c−1γc−1dγ = νdt. Integrating
both sides yields

c

∫
(1− γ)c−1γc−1dγ = ν

∫
dt = ν(t+ C)

where the constant C vanishes due to γ0 = 0. For the incomplete beta function B, this becomes

cB(γt; c, c) = c

∫ γt

0

(1− η)c−1ηc−1dη = ν

∫ t

0

dτ = νt

By the boundary condition, cB(c, c) = cB(1; c, c) = ν, and thus γt is characterized by

cB(γt; c, c) = ν
cB(γt; c, c)

cB(c, c)
= νIγt(c, c) = νt =⇒ γt = I−1

t (c, c)

where I denotes the regularized incomplete beta function.

In this case, γt is characterized regardless of ν. Particularly, when c = 0.5, we obtain γt = sin2(π2 t),
which yields trigonometric interpolation αt = cos(π2 t) and σt = sin(π2 t). On the other hand, when
c = 1, we have γt = t, αt = 1− t, σt = t, and which reduces to linear interpolation. Interpolating
c between 0.5 and 1.0 provides a promising design choice for formulating the consistency model.

A.5 RECENT CONSISTENCY-BASED GENERATIVE MODELS ARE FLOW MAP MODELS

sCT. Under trigonometric interpolation xt = cos(t)x+ sin(t)z,

fθ(xt; t, s) = cos(s− t)xt + sin(s− t)Fθ(xt; t, s)

When s = 0

fθ(xt; t) = cos(t)xt − sin(t)Fθ(xt; t)

which exactly recovers the sCT formulation. If consistency training is formulated without the stop-
gradient operation, then the objective reduces to the direct training objective as ∆t→ 0.

E
[
∥fθ(xt; t, s)− fθ(xt−∆t; t−∆t, s)∥22

]
= E

[∥∥fθ(xt; t, s)−
[
fθ(xt; t, s)− ∂tfθ(xt; t, s) ·∆t−∇xfθ(xt; t, s) · v(xt|x) ·∆t+O(∆t2)

]∥∥2
2

]
= ∆t2 · E

[
∥∂tfθ(xt; t, s) + v(xt|x) · ∇xfθ(xt; t, s)∥22

]
+O(∆t3)

However, if we utilize the stop-gradient, the continuous-time consistency training objective is de-
fined as

∇θE
[
∥fθ(xt; t, s)− fθ−(xt−∆t; t−∆t, s)∥22

]
= E [2∇θfθ(xt; t, s) · (fθ−(xt; t, s)− fθ−(xt−∆t; t−∆t, s))]

= 2∆t · ∇θE
[
fθ(xt; t, s) ·

fθ−(xt; t, s)− fθ−(xt−∆t; t−∆t, s)

∆t

]
=⇒ LCT = E

[
fθ(xt; t, s)

dfθ−(xt; t, s)

dt

]

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

By the mean value theorem,

fθ−(xt; t, s) = fθ(xt; t, s) +∇θfζ(xt; t, s) · (θ− − θ)

for the parameter ζ lying between θ and θ−. Using this, we can show that

E
[∥∥fθ(xt; t, s)− fθ−(xt̂; t̂, s)

∥∥2
2

]
= E

[∥∥fθ(xt; t, s)− fθ(xt̂; t̂, s)−∇θfζ(xt̂; t̂, s) · (θ
− − θ)

∥∥2
2

]
= E

[∥∥∂tfθ(xt; t, s) ·∆t+∇xfθ(xt; t, s) · v(xt|x) ·∆t−∇θfζ(xt̂; t̂, s) · (θ
− − θ) +O(∆t2)

∥∥2
2

]
= LDT ·∆t2 − 2E

[
Lfθ(xt; t, s) · Jζ

t̂,s
·∆θ

]
·∆t+ E

[∥∥∥Jζ

t̂,s
·∆θ

∥∥∥2
2

]
+O(∆t3) +O(∆t2∥∆θ∥)

where t̂ = t − ∆t, ∆θ = θ− − θ, Jζ

t̂,s
= ∇θfζ(xt̂; t̂, s), and the operator is defined as Lf =

∂tf + v · ∇xf . In this case, since f is Lipschitz and has a bounded first derivative, Lf and J are
bounded. Hence, 2(Lf ·∆t− J ·∆θ) ·O(∆t2) = O(∆t3) +O(∆t2∥∆θ∥)
If we set θ− = sg[θ], this reduces to

E
[
∥fθ(xt; t, s)− fθ−(xt−∆t; t−∆t, s)∥22

]
= LDT ·∆t2 +O(∆t3)

Thus, the formulation can be interpreted as the direct training objective.

From another perspective, since the time derivative of fθ
t,s(xt) = fθ(xt; t, s) is given by

dfθ
t,s(xt)

dt
= ∂tf

θ
t,s(xt) + v(xt|x) · ∇xf

θ
t,s(xt) = (L∗f

θ
t,s)(xt) + ∆v · ∇xf

θ
t,s(xt)

where ∆v = vt(xt|x)− v∗t (xt) and L∗ft.s = ∂tft,s + v∗t · ∇xft,s, the objective can be written as

LCT = E
[
fθ
t,s

(
L∗f

θ−

t,s

)
+ fθ

t,s

(
∆v · ∇xf

θ−

t,s

)]
The first term on the right-hand side corresponds to Eulerian distillation. By the tower property, the
second term vanishes under conditional expectation:

Ex,z,t,s

[
fθ
t,s(∆v · ∇xf

θ−

t,s)
]
= Ex,z,t,s

[
Ex̃|xt

[
fθ
t,s(∆v · ∇xf

θ−

t,s)
]]

= Ex,z,t,s

[
fθ
t,s

(
Ex̃|xt

[∆v] · ∇xf
θ−

t,s

)]
= Ex,z,t,s

[
fθ
t,s · 0 · ∇xf

θ−

t,s

]
= 0

Thus, LCT reduces in value to Eulerian distillation even along the conditional trajectory. However,
the gradients of Eulerian distillation and consistency training differ, and their training dynamics
may therefore exhibit distinct behaviors. The instability of these gradient dynamics is discussed in
Appendix A.7.

MeanFlow. Suppose a flow map model under linear interpolation.

fθ(xt; t, s) = xt + (s− t)Fθ(xt; t, s), xt = (1− t)x+ tz

The corresponding direct training objective is

L(θ) = E
[∥∥∂tfθ

t,s(xt) + v(xt|x) · ∇xf
θ
t,s(xt)

∥∥2
2

]
= E

∥∥∥∥∥dfθ
t,s(xt)

dt

∥∥∥∥∥
2

2


where

d

dt
fθ(xt; t, s) = vt − Fθ(xt; t, s) + (s− t)

d

dt
Fθ(xt; t, s)

Recall the MeanFlow objective from Geng et al. (2025a)

L(θ) = E[∥uθ(zt; r, t)− sg[vt − (t− r)(vt · ∂zuθ + ∂tuθ)]∥22]

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Rewrite the MeanFlow objective by using flow map notation and transform

∇θE
[
∥Fθ(xt; t, s)− sg[vt(xt|x)− (t− s)(vt(xt|x) · ∂zFθ + ∂tFθ)]∥22

]
= ∇θE

[∥∥∥∥vt(xt|x)− Fθ(xt; t, s) + (s− t) · d
dt

Fθ−(xt; t, s)

∥∥∥∥2
2

]

= ∇θE

[∥∥∥∥Fθ(xt; t, s)− Fθ−(xt; t, s)−
[
vt(xt|x)− Fθ−(xt; t, s) + (s− t)

d

dt
Fθ−(xt; t, s)

]∥∥∥∥2
2

]

= ∇θE
[

1

t− s
fθ(xt; t, s)

dfθ−(xt; t, s)

dt

]
Thus, the MeanFlow objective is a special case of the continuous-time consistency training with
conditional velocity under linear interpolation.

Shortcut Model. From Frans et al. (2025), the Shortcut Model objective consists of the flow
matching objective and the consistency objective.

L(θ) = E[∥sθ(xt; t, 0)− vt∥22 + ∥sθ(xt; t, 2d)− [sθ(xt; t, d) + sθ(x
′
t+d; t+ d, d)]/2∥22]

with x′
t+d = xt + sθ(xt, t, d). By setting d = s − t and Fθ(xt; t, s) = sθ(xt; t, s − t), sampling

t ∼ U [0, 1], and choosing s = t − 2−d′
for d′ ∼ Cat[1, 7], we obtain the flow map under linear

interpolation

fθ(xt; t, s) = xt + (s− t)Fθ(xt; t, s) = x′
t+d

We can rewrite the flow matching objective of the Shortcut model as

∥sθ(xt; t, 0)− vt∥22 = ∥Fθ(xt; t, t)− vt(xt|x)∥22
For r = s + d, the consistency objective of the Shortcut Model can be written in the form of the
CTM(Consistency Trajectory Model)

∥sθ(xt; t, 2d)− [sθ(xt; t, d) + sθ(x
′
t+d; t+ d, d)]/2∥22

= ∥Fθ(xt; t, r)− [Fθ(xt; t, s) + Fθ(fθ(xt; t, s); s, r)]/2∥22

=
1

4d2
∥xt + 2d · Fθ(xt; t, r)− xt − 2d[Fθ(xt; t, s) + Fθ(fθ(xt; t, s); s, r)]/2∥22

=
1

4d2
∥xt + 2d · Fθ(xt; t, r)− [xt + d · Fθ(xt; t, s) + d · Fθ(fθ(xt; t, s); s, r)]∥22

=
1

4d2
∥fθ(xt; t, r)− [fθ(xt; t, s) + d · Fθ(fθ(xt; t, s); s, r)]∥22

=
1

4d2
∥fθ(xt; t, r)− fθ(fθ(xt; t, s); s, r)∥22

Hence, the objective of the Shortcut Model is

L(θ) = E
[
∥Fθ(xt; t, t)− vt∥22 +

1

4d2
∥fθ(xt; t, r)− fθ(fθ(xt; t, s); s, r)∥22

]
With the Taylor approximation of Ft,s = Ft,s(xt) = Fθ(xt; t, s)

Ft,r = Ft,s + d · ∂sFt,s +O(d2), Fs,r = Ft,s + d · ∂tFt,s + d · ∂sFt,s + d · FT
t,s∇xFt,s +O(d2)

we obtain

d[2Ft,r − Ft,s − Fs,r]

= d[2[Ft,s + d · ∂sFt,s]− Ft,s − [Ft,s + d · ∂tFt,s + d · ∂sFt,s + d · FT
t,s∇xFt,s]] +O(d3)

= d2[∂sFt,s − ∂tFt,s − FT
t,s∇xFt,s] +O(d3)

Thus,

1

4d2
∥ft,r(xt)− fs,r(ft,s(xt))∥22 =

d2

4
∥∂sFt,s − ∂tFt,s − FT

t,s∇xFt,s∥22 +O(d3)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The differentiation of the linear flow map with respect to timestep t is given by

f ′
t,s(xt) = v∗t − Ft,s(xt) + (s− t) · (∂tFt,s + v∗t · ∇xFt,s)

With the Taylor approximation and the relation Ft,t ≈ v∗t obtained from LCFM, we have

Ft,s = Ft,t + d · ∂sFt,t +O(d2) ≈ v∗t + d · ∂sFt,t +O(d2)

The identity ∂sFt,s = ∂sFt,t +O(d) implies

v∗t − Ft,s(xt) = −d · ∂sFt,s +O(d2)

Hence,

f ′(xt) = d[∂tFt,s + v∗t · ∇xFt,s − ∂sFt,s] +O(d2)

Since v∗t ≈ Ft,t = Ft,s +O(d), we further obtain

f ′(xt) = d[∂tFt,s + Ft,s · ∇xFt,s − ∂sFt,s] +O(d2)

=⇒ L = Ex,z,t,s

[
∥Fθ(xt; t, t)− vt∥22 +

1

4

∥∥∥∥ d

dt
fθ(xt; t, s)

∥∥∥∥2
2

+O(d3)

]
We observe that there is a discrepancy between Eulerian distillation, expressed as ∥vt − Ft,s +
d(∂tFt,s + v∗t · ∇xFt,s)∥22. The first v∗t term corresponds to Ft,t, while the second vt corresponds
to Ft,s. Alternatively, since Ft,t = Ft,s +O(d), both terms can be represented in terms of Ft,t.

In the case of Ft,t, the model learns F θ
t,t(xt) ≈ v∗t (xt) due to the loss term of ∥F θ

t,t(xt)−vt(xt|x)∥22.
This can be interpreted as the model learning a flow map corresponding to the trajectory induced by
an approximated marginal velocity.

Therefore, the Shortcut Model can be seen as Eulerian distillation under O((s− t)3)-bound. Since
Flow Map Models typically operate under the assumption s ∈ [0, t), the Shortcut model’s sampling
scheme with d ∈ [2−7, 1] makes this error non-negligible.

Consistency Flow Matching. For linear interpolation xt = (1− t)x+ tz, define

fθ(xt; t, s = 0) = xt − tFθ(xt; t, s = 0) =⇒ fθ(xt; t) = xt − tFθ(xt; t)

Then, the Consistency Flow Matching objective from Yang et al. (2024) becomes

L(θ) = E
[
∥fθ(xt; t)− fθ−(xt−∆t; t−∆t)∥22 + α∥Fθ(xt; t)− Fθ−(xt−∆t;x−∆t)∥22

]
The first term on the right side is the Taylor approximation of the consistency training objective, and
the second term is the regularizer. Hence, we can interpret Consistency Flow Matching as a training
flow map model via the approximation with regularization.

UCGM. For arbitrary interpolation of αt, σt, setting s = 0 yields

fθ(xt; t) = ν−1
t (σ′

txt − σtFθ)

We can reformulate the objective while keeping the gradient unchanged:

∇θ∥fθ(xt; t)− fθ−(xλt;λt)∥22

= 2[∇θfθ(xt; t)]
T (t− λt)

fθ−(xt; t)− fθ−(xλt;λt)

t− λt

∝ [∇θfθ(xt; t)]
T fθ−(xt; t)− fθ−(xλt;λt)

t− λt

=
σt

νt
[∇θFθ(xt; t)]

T fθ−(xt; t)− fθ−(xλt;λt)

t− λt

= ∇θ

∥∥∥∥Fθ(xt; t)− Fθ−(xt; t) +
σt[fθ−(xt; t)− fθ−(xλt;λt)]

νt(t− λt)

∥∥∥∥2
2

which is identical to the objective of UCGM. When λ = 0, this reduces to the flow matching
objective since λt = 0 collapses fθ−(x0; 0) = x0. In this case, the objective becomes origin

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

prediction, which in turn leads to Fθ with the velocity matching objective. Otherwise, setting λ→ 1

reduces the objective to consistency training by ∆ = Fθ(xt; t)− Fθ−(xt; t) +
σt

νt

dfθ− (xt;t)

dt .

For λ ∈ (0, 1), the objective ||fθ(xt; t) − fθ−(xλt;λt)||22 yields consistency along the geometric
sequence Tλ(t) = {λkt}Nk=0.

Define
gt(xt) = (xt − αtft(xt))σ

−1
t

Then, when ft(xt) = x, it follows that gt(xt) = z for xt = αtx + σtz. Using this, the flow map
can be formulated in a DDIM-like manner as

ft,s(xt) = αsft(xt) + σsgt(xt) =
σs

σt
xt + (αs −

σs

σt
αt)ft(xt)

Assuming the composition chain

fs,r(ft,s(xt)) = fs,r(x̃s) =
σr

σs
x̃s + (αr −

σr

σs
αs)fs(x̃s)

for x̃s = ft,s(xt), we obtain

ft,r(xt)− fs,r(ft,s(xt)) = (αr −
σr

σs
αs)(ft(xt)− fs(x̃s))

For s = λkt for some k ∈ N, if it follows that x̃s = ft,s(xt) ≈ xs, then fs(xs) = ft(xt) and
ft,r = fs,r ◦ ft,s. In this case, the flow map can be constructed along the geometric sequence Tλ(t).

In general, the velocity of the DDIM map is given by d
dsft,s = α′

sft+σ′
sgt. Since the unconditional

velocity is
v∗t (xt) = α′

tEx|xt
[x] + σ′

tEx|xt
[(xt − αtx)σ

−1
t],

the DDIM map coincides with the flow map only when v∗s (ft,s(xt)) = d
dsft,s(xt), which implies

Ex|x̃s
[x] = ft(xt). Setting s → t reduces this condition to Ex|xt

[x] = ft(xt) by the identity
assumption. However, this condition fails to preserve the injectivity of the flow map at t = 1 due
to the mean collapse problem, which leads to a contradiction. Therefore, the DDIM-style map does
not coincide with the flow map in general.

Reflow. Rectified flows introduce Reflow to straighten trajectories after training. In Reflow, sam-
pling from the trained model is performed via

x0 = x1 +

∫ 0

1

vθ(xt; t)dt ≈ ODESolver(vθ, x1, 1, 0)

followed by the finetune w.r.t. the coupling ΠZ,θ = pZ(z)pvθ (x|z). The velocity v̂t of the trajectory
induced by the coupling ΠZ,θ is given by

v̂t = x1 −
(
x1 +

∫ 0

1

vθ(xt; t)dt

)
=

∫ 1

0

vθ(xt; t)dt

which corresponds to the displacement of the flow map. Therefore, Reflow can be interpreted as
direct supervision of the flow map under linear interpolation.

A.6 SUBOPTIMALITY OF DIRECT TRAINING

Unlike Eulerian distillation, direct training does not guarantee convergence to the optimal flow map.
Consider the direct training objective using the conditional velocity:

LDT = Ex,z,t,s

[
∥∂tfθ(xt; t, s) + v(xt|x) · ∇xfθ(xt; t, s)∥22

]
By defining the velocity error as ∆v = vt(xt|x)− v∗t (xt), we can rewrite the objective in the form
of Eulerian Distillation:

LDT = Ex,z,t,s

[
∥∂tfθ(xt; t, s) + (∆v + v∗t (xt)) · ∇xfθ(xt; t, s)∥22

]
= Ex,z,t,s

[
∥∂tfθ(xt; t, s) + ∆v · ∇xfθ(xt; t, s) + v∗t (xt) · ∇xfθ(xt; t, s)∥22

]
= Ex,z,t,s

[
∥∂tfθ(xt; t, s) + v∗t (xt) · ∇xfθ(xt; t, s)∥22

]
+ Ex,z,t,s

[
∥∆v · ∇xfθ(xt; t, s)∥22

]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

by the law of total variance since other terms are independent of x, and Ex|xt
[∆v] = 0. In this case,

the second term can be represented as

Ex,z,t,s

[
Varx|xt

[∆v · ∇xfθ(xt; t, s)]
]

Under an independent coupling, the velocity error ∆v = vt(xt|x) − v∗t (xt) is typically nonzero.
Consequently, unless ∥∇xfθ(xt; t, s)∥ collapses to zero, the objective function inherently contains
a larger variance term compared to that of Eulerian distillation.

To minimize the overall loss, the optimizer faces a trade-off involving this variance. This introduces
a bias that distorts the learned flow map towards becoming flatter by an external force ∆vt =
vt − v∗t ⊥ ∇xfθ(xt; t, s). Therefore, direct training is not guaranteed to converge to the ground-
truth flow map due to this distorting variance term.

In flow matching, even when the loss term Ex,z,t[∥v(xt|x)−Fθ(xt; t)∥22] is decomposed as follows

E
[
∥∆v + v∗(xt)− Fθ(xt; t)∥22

]
= E

[
∥v∗(xt)− Fθ(xt; t)∥22

]
+Var[∆v]

The variance term, Var[∆v], is independent of the network. Therefore, it does not affect convergence
to the global optimum.

Euler-Lagrange Equation. To find the optimum of the direct training objective, we apply the
Euler-Lagrange equation. The objective can be represented in the vector form as

LDT = Ex,z,t,s

[
∥∂tft,s(xt) + v(xt|x)T∇xft,s(xt)∥22

]
=

∫∫
Ω

ρt(xt)Ex,z,s|xt
[∥ · ∥22]dxtdt

We set the conditional expectation as the Lagrangian,

L(f, ∂tf,∇xf) = Ex,z,s|xt
[∥∂tft,s(xt) + v(xt|x)T∇xft,s(xt)∥22]

The corresponding Euler-Lagrange equation is

∂L

∂f
− ∂t

(
∂L

∂(∂tf)

)
−∇x

(
∂L

∂(∇xf)

)
= 0 ⇐⇒ Ex,z,s|xt

[∂tR+∇x · (vR)] = 0

where the residue is defined as

R = ∂tft,s(xt) + v(xt|x)T∇xft,s(xt)

Letting ∆v = v(xt|x)− v∗t (xt) and introducing the operator L∗f = ∂tf + (v∗t)
T∇xf , the residue

can be rewritten as R = L∗ft,s +∆vT∇xft,s, so that

Ex|xt
[∂tR] = ∂tEx|xt

[R] = ∂t(L∗ft,s)

Ex|xt
[∇x · (vR)] = ∇x · Ex|xt

[(v∗ +∆v)(L∗ft,s +∆vT∇xft,s)]

= ∇x ·
(
v∗L∗ft,s + Ex|xt

[∆v(∆vT∇xft,s)]
)

= ∇x ·
(
v∗L∗ft,s +Σ∆v|xt

∇xft,s
)

Therefore, the optimality condition becomes

EL = Ex,z,s|xt
[∂tR+∇x · (vR)]

= ∂t(L∗ft,s) +∇x · (v∗tL∗ft,s) +∇x · (Σ∆v|xt
∇xft,s) = 0

If we assume the L2-adjoint of L∗ to be L∗f = −∂tf −∇ ·
(
(v∗t)

T f
)
, the condition simplifies to

L∗L∗ft,s −∇x · (Σ∆v|xt
∇xft,s) = 0 ⇐⇒ ∥L∗f∥22 +∇x · (Σ∆v|xt

∇xft,s) = 0

Thus, the optimum of the direct training arises precisely when the above condition is satisfied.
When Σ∆v|xt

= Covx|xt
[v(xt|x)] → 0, the condition reduces to L∗ft,s = 0, which is equivalent

to Eulerian distillation. In this case, the quadratic structure guarantees convergence through PSD
curvature at the global optimum. Otherwise, due to the covariance term, the condition cannot be
written in the form ∂tf+wt ·∇xf , and hence no single drift can consistently drive the flow map.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.7 INSTABILITY OF CONSISTENCY TRAINING

The continuous-time consistency training objective employs a stop-gradient operation, ensuring that
the main objective remains unchanged while making computation more efficient. In this case, the
objective is defined as

LCT = Ex,z,t,s

[
ft,s(xt)

T
df−

t,s(xt)

dt

]
where ft,s(xt) = fθ(xt; t, s) and detaching gradient is denoted by f−

t,s(xt) = fθ−(xt; t, s).

LCT reduces in value to Eulerian distillation even along the conditional trajectory, as demonstrated
in Appendix A.5, paragraph on sCT. However, since the objective is expressed as a linear term, the
Euler-Lagrange equation cannot determine a stationary point, as it contains no explicit terms of ft,s
unless the gradient is detached:

EL = Ex,z,s|xt

[
Lf−

t,s + vTt ∇xf
−
t,s

]
= 0

Moreover, while the quadratic term in Eulerian distillation ensures PSD curvature and provides sta-
ble convergence at the optimum, the consistency training objective does not guarantee convergence,
as the Hessian vanishes and the curvature required to stabilize the optimum is absent. It only speci-
fies the fixed point on Lft,s = 0, and the gradient dynamics alone may fail to converge.

A.8 SUBOPTIMALITY OF NETWORK-INDUCED COUPLING

For an arbitrary coupling (x̂, ẑ) ∼ ΠX,Z with x̂t = αtx̂+ σtẑ, the gap between the conditional and
marginal velocities is given by

∆v = x̂′
t − v∗t (x̂t) = α′

t(x̂− µx|x̂t
) + σ′

t(ẑ − µz|x̂t
)

where µx|xt
= Ex|xt

[x] and µz|xt
= Ez|xt

[z] are conditional means. This follows since v∗t (xt) =
Ex|xt

[v(xt|x)] can be expressed as Ex,z|xt
[α′

tx+σ′
tz]. The general form of the loss can be expressed

by

E
[
∥A+ gT∆v∥22

]
= E

[
∥A∥22

]
+ 2E[AT gT∆v] + E[∥gT∆v∥22]

where A = ∂tf
θ
t,s + gT v∗t (xt) and g = ∇xf

θ
t,s.

Case 1: Independent Coupling. In this setup, we use an independent coupling (x, z) ∼ pdata×pZ
and the conditional velocity vt(xt|x), which corresponds to setting x̂ = x and ẑ = z. The velocity
gap is ∆v = vt(xt|x)− v∗t (xt). The cross-term vanishes because the expectation of the gap is zero
conditioned on xt:

Ex,z|xt
[∆v] = Ex,z|xt

[vt(xt|x)− v∗t (xt)] = v∗t (xt)− v∗t (xt) = 0

Thus, 2E[A∆v · g] = 0 and the loss simplifies to

LIC = LED + E[∥gT∆v∥22] = LED + E
[
Varx|xt

[gT∆v]
]

The variance term, which represents the error from Eulerian distillation, can be expanded as:

EIC = Varx,z|xt

[
gT

(
α′
t(x− µx|xt

) + σ′
t(z − µz|xt

)
)]

= (α′
t)

2gTΣx|xt
g + (σ′

t)
2gTΣz|xt

g + 2α′
tσ

′
tg

TΣxz|xt
g

where Σx|xt
= Covx|xt

(x, x), Σz|xt
= Covz|xt

(z, z), and Σxz|xt
= Covx,z|xt

(x, z).

Case 2: Generator-Induced Coupling. Generator-induced coupling methods replace one of the
variables with a network prediction, x̂ = fθ

t,0(xt) with stop-gradient: x̂t = αtft,0(xt) + σtz. For
the first case, the velocity gap is:

∆v = α′
t(ft,0(xt)− µx|x̂t

) + σ′
t(z − µz|x̂t

)

The conditional expectation of the gap is no longer zero in general:

Ez|xt
[∆v] = α′

t

(
fθ
t,0(xt)− µx|x̂t

)
21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

This introduces a non-zero cross-term in the loss, then the total error term for GC is:

EGC = 2α′
tA

T gT (fθ
t,0(xt)− µx|x̂t

) + (α′
t)

2[gT (ft,0(xt)− µx|x̂t
)]2 + (σ′

t)
2gTΣz|xt

g

Comparing the error terms, we find that EIC > EGC if:

(α′
t)

2gTΣx|xt
g + 2α′

tσ
′
tg

TΣxz|xt
g > 2α′

tA
T gT (fθ

t,0(xt)− µx|x̂t
) + (α′

t)
2[gT (fθ

t,0(xt)− µx|x̂t
)]2

When the generator is a good estimator of the posterior mean, i.e., fθ
t,0(xt) ≈ µx|x̂t

, the right
side becomes small. However, at t = 1, this condition reduced to fθ

1,0(z) = µx|z = µX , as
shown in A.1, which results in posterior mean collapse. In this case, fθ

1,0 becomes constant as
EGC approaches zero, violating the injectivity required for a well-defined flow map, leading to a
contradiction. Thus, generator-induced coupling reduces but cannot eliminate the error, preventing
guaranteed convergence. It is also a suboptimal choice when continuous-time consistency training
is employed.

Silvestri et al. (2025) introduces an additional network g : x 7→ z for x̂ = x and ẑ = g(x).
In this case, enforcing g(x) ≈ µz|x can reduce the gap, but does not eliminate the whole, since
the term (α′

t)
2gTΣx|xt

g remains. From a consistency training perspective, since the independent
coupling already exhibits a marginal velocity field, this becomes a negligible choice with respect
to guaranteeing marginal velocity; however, it can reduce the variance of the loss when g is a good
posterior approximator.

A.9 LINEARIZATION COST

Recall that fθ
t,s(xt) = ν−1(A′

t,sxt − At,sF
θ
t,s(xt)) for At,s = αsσt − σsαt. Differentiating with

respect to timestep t gives

dfθ(xt; t, s)

dt
= ν−1

(
A′′

t,sxt +A′
t,s(v

∗
t (xt)− Fθ(xt; t, s))−At,s

dFθ(xt; t, s)

dt

)
Following Lu & Song (2025), the gradient of the Eulerian distillation can be written as

∇θE
[
2fT

θ (xt; t, s)
dfθ−(xt; t, s)

dt

]
∝ ∇θE

[
−At,sν

−2Fθ(xt; t, s) ·
(
A′′

t,sxt +A′
t,s(v

∗
t (xt)− Fθ−(xt; t, s))−At,s

dFθ−(xt; t, s)

dt

)]
= At,sν

−2 · ∇θE
[
∥Fθ(xt; t, s)− sg[Ftgt(xt; t, s)]∥22

]
where Ftgt(xt; t, s) = Fθ(xt; t, s) +

(
A′′

t,sxt +A′
t,s(v

∗
t (xt; t)− Fθ(xt; t, s))−At,s

dFθ(xt; t, s)

dt

)
In this case, v∗t − Fθ can be interpreted as the flow matching term, and dFθ/dt as a linearization
term involving the JVP, which penalizes the t-dependent outputs of fθ. For a linear interpolation,
At,s takes the form At,s = t− s, while for a trigonometric interpolation At,s = sin(t− s), both are
proportional to t− s. Their derivatives are A′

t,s = 1 and A′
t,s = cos(t− s), respectively.

As s → t and (t − s) → 0, the contribution of the linearization term vanishes , while the flow
matching term is amplified. Conversely, as s → 0, the linearization term is amplified and the flow
matching term diminishes.

We note that the linearization cost increases with step size, making optimization more challenging.
This is because the linearization term involves more the complex structure given by the JVP, while
the flow matching term requires only simple forward pass.

B IMPROVED SELF-DISTILLATION

B.1 GUARANTEE THE CONVERGENCE

Revisit our objective

L = Ex,z,t,s

[∥∥F θ
t,t(xt; t, t)− vt(xt|x)

∥∥2
2
+
∥∥∥∂tfθ

t,s(xt) + F θ−

t,t (xt) · ∇xf
θ
t,s(xt)

∥∥∥2
2

]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The first term of the right side trains F θ
t,t(xt) to approximate the marginal velocity via the flow

matching objective, while the second term learns the flow map ft,s along the trajectory of F θ−

t,t in a
self-distillation manner.

Individually, each term is guaranteed to converge to its desired optimum, the marginal velocity and
the flow map of the velocity F θ−

t,t by Prop. 3.1 (Appendix A.3). From a joint perspective, we need to
consider t = s, since the network is forced to optimize both terms simultaneously at this point. As
Eulerian distillation collapses to the flow matching objective when t→ s, the second term trains the
model to learn the instantaneous velocity of the trajectory (Appendix A.9). In this case, F θ

t,t learns
from F θ−

t,t , and inductively approximates v∗t (xt) through the first term. This naturally reduces to a
non-conflict joint training. For t ̸= s, the network is conditioned differently in the two terms, and it
can learn the proper mapping provided that the network capacity is sufficient.

Consequently, the overall objective trains the network to follow the marginal velocity as the trajec-
tory of the flow map naturally.

B.2 DERIVING FINAL OBJECTIVE

Recall the consistency training objective under the generalized flow map (Appendix. A.9):

At,sν
−2 · E

[
∥Fθ(xt; t, s)− sg[Ftgt(xt; t, s)]∥22

]
where Ftgt(xt; t, s) = Fθ(xt; t, s) +

(
A′′

t,sxt +A′
t,s(v

∗
t (xt; t)− Fθ(xt; t, s))−At,s

dFθ(xt;t,s)
dt

)
.

To follow the marginal velocity, we replace v∗t (xt) with instantaneous velocity F θ
t,t(xt) while jointly

training with LCFM.

Particularly, for linear interpolation, we have At,s = t− s, A′
t,s = 1 and A′′

t,s = 0. This simplifies
the target to F lin

tgt(xt; t, s) = v∗t (xt)−(t−s)F ′
θ(xt; t, s) which coincides with the regression target of

MeanFlow. For trigonometric interpolation, we have At,s = sin(t−s), A′
t,s = cos(t−s) and A′′

t,s =

− sin(t− s). Thus, the target becomes F tri
tgt = Fθ(xt; t, s) + cos(t− s) · (v∗t (xt)− Fθ(xt; t, s))−

sin(t− s) · (xt + F ′
θ(xt; t, s)).

Although consistency training already guarantees the marginal flow map at its fixed point, the gra-
dient in practice can exhibit a gap expressed as:

Ex,z,t,s[f
θ
t,s(∆v · ∇xf

θ−

t,s)]

When self-distillation is combined with flow matching, E
[
∥Fθ(xt; t, t)− v(xt|x)∥22

]
, the velocity

error ∆v = Fθ(xt; t, t) − v∗t (xt) can be further reduced compared to ∆v = vt(xt|x) − v∗t (xt),
thereby stabilizing the training.

To incorporate classifier-free guidance in the subsequent discussion, we set vθ(xt; t) to the approxi-
mated marginal velocity, as an alternative to F θ

t,t(xt).

For JVP approximation, to ensure that dxt/dt follows the velocity vθ(xt; t), we approximate

dxt

dt
≈ [xt + ϵ · vθ(xt; t)]− [xt − ϵ · vθ(xt; t)]

2ϵ
= vθ(xt; t)

Thus, the full JVP approximation becomes

F ′
θ(xt; t, s) =

dFθ(xt; t, s)

dt
=

Fθ(xt + ϵ · vθ(xt; t), t+ ϵ, s)− Fθ(xt − ϵ · vθ(xt; t), t− ϵ, s)

2ϵ

Applying adaptive weighting, our final objective is

L̃t,s(xt, x) = ∥Fθ(xt; t, t)− vt(xt|x)∥22 + ∥Fθ(xt; t, s)− sg[Ftgt(xt; t, s)]∥22
LiSD = Ex,z,t,s

[
wt,s(xt, x) · L̃t,s(xt, x)

]
; where wt,s(xt, x) = (sg[L̃t,s(xt, x)] + η)−p

Detailed training and sampling algorithms are provided in Alg. 2 and Alg. 3.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Algorithm 1 (Time Sampler) Timestep sampling function using beta distribution

1: function time sampler(θ1, θ2)
2: t, s ∼ Beta(θ1, θ2) ▷ Timestep Sampling
3: return π

2 max(t, s), π
2 min(t, s)

Algorithm 2 (iSD Training) Training algorithm of vanilla iSD

Require: Noise distribution pZ , data distribution pX , model Fθ, learning rate µ, time distribution
(θ1, θ2), adaptive weighting (η, p), JVP approximation step size ϵ, class labels c

Ensure:
1: repeat
2: z ∼ pZ , x ∼ pX
3: t, s← time sampler(θ1, θ2)
4: xt ← cos(t)x+ sin(t)z, vt ← cos(t)z − sin(t)x
5: Ft,s ← Fθ(xt; t, s, c), Ft,t ← Fθ(xt; t, t, c)
6: F ′

t,s ← [Fθ(xt + ϵFt,t; t+ ϵ, s, c)− Fθ(xt − ϵFt,t; t− ϵ, s, c)] /(2ϵ) ▷ JVP-Approx.
7: Ftgt ← Ft,s + cos(t− s) · (Ft,t − Ft,s)− sin(t− s) · (xt + F ′

t,s)

8: L̃t,s ← ∥Ft,t − vt∥22 + ∥Ft,s − sg[Ftgt]∥22 ▷ Optimization Target
9: L ← L̃t,s × (sg[L̃t,s] + η)−p ▷ Adaptive Weighting

10: θ ← θ − µ∇θL ▷ Model Update
11: until Convergence

Algorithm 3 (iSD Sampling) Sampling algorithm of vanilla iSD

Require: Initial noise z ∼ pZ , trained model Fθ, class labels c, sampling time steps {ti}Ni=1
Ensure:

1: x← z
2: for i← 1 to N do
3: x← cos(ti+1 − ti) · x+ sin(ti+1 − ti) · Fθ(x; ti, ti+1, c)
4: end for
5: return x

B.3 CLASSIFIER-FREE GUIDANCE OF FLOW MAP MODELS

By abstracting the guiding trajectory to vθ, the flow map model can naturally be trained to follow
the specific trajectory as long as it is Lipschitz continuous. Given a label c and an null class label
∅, let the corresponding velocity fields be Ft,t(xt; c) and Ft,t(xt;∅). If both are globally Lipschitz
continuous, then the CFG trajectory ṽθ(xt; t, c) = ṽt(xt; c) is also globally Lipschitz continuous,
since any linear combination of Lipschitz continuous functions remains Lipschitz continuous.

ṽθ(xt; t, c) = Fθ(xt; t, t,∅) + ω(Fθ(xt; t, t, c)− Fθ(xt; t, t,∅))

Thus, the flow map can be trained to follow the CFG velocity field, referred to as Pre-CFG. In this
case, we need to address a conflict: LCFM enforces Ft,t ≈ v∗t while LSD-R enforces Ft,t ≈ ṽt. To
resolve this, we append the guidance scale ω as an additional condition, F θ

t,t(xt; c, ω). Then, the
modified objectives are given by:

LCFM = E
[
∥Fθ(xt; t, t, c, 1.0)− vt(xt|x)∥22

]
LSD-C = E

[
∥Fθ(xt; t, s, c, ω)− sg[Ftgt(xt; t, s, c, ω)]∥22

]
where Ftgt = Ft,s(xt; c, ω) +

(
A′′

t,sxt +A′
t,s (ṽt(xt; c)− Ft,s(xt; c, ω))−At,sF

′
t,s(xt; c, ω)

)
and

ṽt(xt; c) = Ft,t(xt;∅, 1.0) + ω(Ft,t(xt; c, 1.0) − Ft,t(xt;∅, 1.0)) with θ omitted for brevity. De-
tailed procedures follow Alg. 4 for LiSD-U and Alg. 5 for LiSD-C.

Hence, LCFM ensures Ft,t(xt; c, 1.0) ≈ v∗t (xt; c), while LSD-R ensures Ft,t(xt; c, ω) ≈ ṽt(xt; c).
This choice is natural, as ṽt = v∗t when ω = 1.

However, Post-CFG defined as
F̃θ(xt; t, s, c) = Fθ(xt; t, s,∅) + ω(Fθ(xt; t, s, c)− Fθ(xt; t, s,∅))

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

does not follow the CFG trajectory. This discrepancy arises from the definition of the flow map,

fθ(xt; t, s) = xt +

∫ s

t

v∗τ (xτ)dτ

which performs the path integral along a specific trajectory induced by v∗τ . For a CFG trajectory,
the path integral should be taken along ṽτ . In contrast, Post-CFG computes two separate forward
passes, integrating along v∗τ (xτ ; c) and v∗τ (xτ ;∅), rather than along ṽτ . As a result, the integration
differ from the expected CFG trajectory. The detailed procedure of Post-CFG follows Alg. 6.

Algorithm 4 (iSD-U Training) Training algorithm of iSD-U

Require: Noise distribution pZ , data distribution pX , model Fθ, learning rate µ, time distribution
(θ1, θ2), adaptive weighting (η, p), JVP approximation ϵ, Pre-CFG scale ω, class labels c.

Ensure:
1: repeat
2: z ∼ pZ , x ∼ pX
3: t, s← time sampler(θ1, θ2)
4: xt ← cos(t)x+ sin(t)z, vt ← cos(t)z − sin(t)x
5: Ft,s ← Fθ(xt; t, s, c), Ft,t ← Fθ(xt; t, t, c)
6: ṽt = (1− ω)Fθ(xt; t, t,∅) + ωFt,t

7: F ′
t,s ← [Fθ(xt + ϵṽt; t+ ϵ, s, c)− Fθ(xt − ϵṽt; t− ϵ, s, c)] /(2ϵ) ▷ JVP-Approx.

8: Ftgt ← Ft,s + cos(t− s) · (ṽt − Ft,s)− sin(t− s) · (xt + F ′
t,s)

9: L̃t,s ← ∥Ft,t − vt∥22 + ∥Ft,s − sg[Ftgt]∥22 ▷ Optimization Target
10: L ← L̃t,s × (sg[L̃t,s] + η)−p ▷ Adaptive Weighting
11: θ ← θ − µ∇θL ▷ Model Update
12: until Convergence

Algorithm 5 (iSD-C Training) Training algorithm of iSD-C

Require: Noise distribution pZ , data distribution pX , model Fθ, learning rate µ, time distribution
(θ1, θ2), adaptive weighting (η, p), JVP approximation ϵ, Pre-CFG scale ω, class labels c

Ensure:
1: repeat
2: z ∼ pZ , x ∼ pX
3: t, s← time sampler(θ1, θ2)
4: xt ← cos(t)x+ sin(t)z, vt ← cos(t)z − sin(t)x
5: Ft,s,ω ← Fθ(xt; t, s, c, ω), Ft,t,ω ← Fθ(xt; t, t, c, ω)
6: Ft,t,1.0 ← Fθ(xt; t, t, c, 1.0)
7: ṽt = (1− ω)Fθ(xt; t, t,∅, 1.0) + ωFt,t,1.0

8: F ′
t,s,ω ← [Fθ(xt + ϵṽt; t+ ϵ, s, c, ω)− Fθ(xt − ϵṽt; t− ϵ, s, c, ω)] /(2ϵ)

9: Ftgt ← Ft,s,ω + cos(t− s) · (ṽt − Ft,s,ω)− sin(t− s) · (xt + F ′
t,s,ω)

10: L̃t,s ← ∥Ft,t,1.0 − vt∥22 + ∥Ft,s,ω − sg[Ftgt]∥22 ▷ Optimization Target
11: L ← L̃t,s × (sg[L̃t,s] + η)−p ▷ Adaptive Weighting
12: θ ← θ − µ∇θL ▷ Model Update
13: until Convergence

Algorithm 6 (Post-CFG Sampling) Sampling algorithm of iSD with Post-CFG

Require: Initial noise z ∼ pZ , model Fθ, Post-CFG scale ω, class labels c, sampling steps {ti}Ni=1
Ensure:

1: x← z
2: for i← 1 to N do
3: F̃t,s ← (1− ω)Fθ(x; ti, ti+1,∅) + ωFθ(x; ti, ti+1, c) ▷ Post-CFG
4: x← cos(ti+1 − ti) · x+ sin(ti+1 − ti) · F̃t,s

5: end for
6: return x

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 REPRODUCIBILITY OF CONSISTENCY TRAINING

To evaluate the reproducibility of consistency training, we conducted experiments within the
UCGM (Sun et al., 2025) framework. We compared the FID scores of several models trained un-
der different initialization conditions. Following UCGM, we first extract latent representations of
ImageNet-1K 256 × 256 using VAVAE (Yao et al., 2025). All models were trained with the same
hyperparameters and settings: RAdam optimizer with a learning rate of 0.0001, weight decay of
0.0, β1 = 0.9, β2 = 0.999, batch size of 1024, gradient clipping at 0.1, and timestep t sampled
from Beta(0.8, 1.0). For enhancement, we applied a label drop ratio of 0.1, an enhancement range
of (0, 0.75), and an enhancement ratio of 2.0. We also used the cosine function as the loss weighting
function and trained all models with linear interpolation for 40K iterations. Different experimental
details are provided below.

Multistep Baseline We trained the DiT-XL/1 architecture initialized from the publicly released
multistep checkpoint of UCGM. This configuration achieved a 2-step FID of 2.69, which is reason-
able but still falls short of the reported FID of 1.42.

LightningDiT We trained the LightningDiT-XL/1 architecture from its released pretrained model.
In this setting, the model achieved a 2-step FID of 10.01, which is worse than the reported FID.

Reproduced Multistep Model In this experiment, we trained the DiT-XL/2 architecture from
scratch to reproduce the multistep baseline. For training, we used AdamW (Loshchilov & Hutter,
2019) with a learning rate of 0.0002, β1 = 0.9, β2 = 0.95, EMA decay weight of 0.999, and
timestep t sampled from Beta(1, 1). We used an enhancement ratio of 0.47 and a cosine weighting
function. After training the multistep baseline model for 800k iterations, we trained a few-step
model initialized from the reproduced multistep baseline using consistency training with the same
few-step settings. This resulted in a 2-step FID of 5.96.

Without Preconditioner We train a DiT-XL/1 architecture from randomly initialized weights
without any preconditioner. In this case, training consistently failed, with the loss diverging and
no meaningful samples being generated. While 40K steps may appear insufficient for scratch train-
ing, other scratch training methods already show a rapid decrease by 40K steps. We consider that
this is enough to check the unstable dynamics compared to other models.

These experiments suggest that consistency training is highly sensitive to initialization and the
choice of preconditioner. It proves unstable under random initialization and requires a well-trained
multistep baseline for stable optimization. Furthermore, even when initialized from a pretrained
model, consistency training demonstrates limited robustness and reproducibility across different ar-
chitectures and setups.

C.2 IMPLEMENTATION

ImageNet 256×256 SD-VAE (Rombach et al., 2022) was used to encode images from the Ima-
geNet 256 dataset into a 32× 32× 4 latent representation. For DiT (Peebles & Xie, 2023) models,
we employed RMSNorm (Zhang & Sennrich, 2019), SiLU activation, QK normalization (Henry
et al., 2020), and RoPE (Su et al., 2023) for minor improvements. Each model was scaled by depth
and hidden dimension, while the patch size was kept fixed. We sampled t and s independently from
Beta(0.8, 1.0), and set t, s := max(t, s),min(t, s). For generations, we have simply sampled the
time intervals uniformly without additional engineering. Detailed training parameters are provided
in Tab. 6.

CIFAR-10 For CIFAR-10, we trained a model in pixel space without any VAE latent encoders.
The model was trained without class conditioning, based on the UNet+(Song et al., 2021) backbone.
We trained the model for 950K steps with a global batch size of 256. Non-leaky data augmenta-
tion (Karras et al., 2022) is also applied, excluding vertical flipping and rotation. Further details of
the experimental settings can be found in Table 6.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Experimental Settings

Dataset ImageNet 256×256 CIFAR-10

Preprocessor SD-VAE (Rombach et al., 2022) Identity
Input size 32× 32× 4 32× 32× 3

Backbone DiT-B/4 DiT-B/2 DiT-L/2 DiT-XL/2 UNet+ (Song & Ermon, 2019b)

Params (M) 131 131 459 676 56
Depth 12 12 24 28 -
Hidden dim 768 768 1024 1152 -
Heads 12 12 16 16 -
Patch size 4× 4 2×2 2×2 2×2 1×1
Dropout 0.0 0.2

Self-distillation LiSD-U LiSD
Joint training Enabled Enabled
JVP Approximation: Eq. 17 torch.func.jvp
ϵ 0.005 -
p 1.0 0.75
η 0.01 0.01
Pre-CFG ω 1.5 -

Training steps 800K 950K
Batch size 256 256
Label dropout 0.1 -
Optimizer AdamW (Loshchilov & Hutter, 2019) AdamW
Learning rate 1e-4 1e-3
LR Scheduler Constant Linear Warmup
β1 0.9 0.9
β2 0.999 0.999
Weight decay 0 0
EMA decay 0.99995 0.99995

C.3 ADDITIONAL QUANTITATIVE RESULTS

Table 7: Quantitative results across design choices. The numeric entries in the header denote
Post-CFG scales.

Loss Interp. JVP Steps FID↓ 1.5 3.0 7.0 10.0
LCT Linear Exact 2 76.39 50.45 39.33 68.82 85.87

4 73.57 47.93 25.80 38.19 55.88

LCT Trig Exact 2 103.35 72.42 39.52 41.27 59.16
4 83.51 52.83 21.33 17.48 26.43

LiSD Linear Exact 2 118.17 98.77 77.75 89.02 100.61
4 120.68 101.23 73.45 64.55 71.30

LiSD Trig Exact 2 115.93 86.46 51.85 51.34 66.79
4 100.35 71.40 35.41 26.54 34.58

LCT Linear Approx 2 65.98 40.97 33.33 67.99 85.69
4 62.70 37.44 19.25 36.41 58.07

LiSD Linear Approx 2 112.39 90.26 69.81 87.50 101.42
4 113.42 91.58 62.71 58.54 68.42

LiSD-U Linear Approx 2 75.57 55.58 53.88 86.95 99.97
4 77.55 57.44 43.86 57.20 71.43

LiSD-U Trig Approx 2 66.63 41.84 27.99 47.04 66.25
4 60.76 36.01 19.40 25.67 38.70

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 8: Quantitative results over training steps (2-NFE). The numeric entries in the header
denote training steps.

Loss Interp. JVP Arch. Pre-CFG ω 10K 100K 200K 300K 400K
LCT Linear Exact DiT-B/4 - 329.02 103.73 88.08 79.44 76.39
LCT Trig Exact DiT-B/4 - 433.04 135.31 118.56 109.97 103.35
LiSD Linear Exact DiT-B/4 - 392.22 156.94 136.04 127.76 118.17
LiSD Trig Exact DiT-B/4 - 381.09 151.88 132.77 124.58 115.93

LCT Linear Approx DiT-B/4 - 413.13 97.59 75.87 69.51 65.98
LiSD Linear Approx DiT-B/4 - 425.42 151.88 129.41 119.42 112.39

LiSD-U Linear Approx DiT-B/4 1.5 425.40 124.84 92.80 83.74 75.57
LiSD-U Trig Approx DiT-B/4 1.5 414.77 116.95 87.89 75.59 66.63

LiSD-C Linear Approx DiT-B/4 1.5 380.05 169.04 130.94 113.43 102.21
LiSD-C Linear Approx DiT-B/4 3.0 379.94 202.94 122.01 101.64 91.38

LiSD-C Trig Approx DiT-B/4 1.5 413.45 167.09 136.24 122.36 114.16
LiSD-C Trig Approx DiT-B/4 3.0 412.07 150.26 107.73 90.49 82.59
LiSD-C Trig Approx DiT-B/4 7.0 412.92 195.38 129.86 113.47 112.64

LiSD-U Trig Approx DiT-B/2 1.5 384.36 103.10 69.50 57.36 50.58
LiSD-U Trig Approx DiT-XL/2 1.5 410.63 89.34 57.63 44.54 38.50

D QUALITATIVE RESULTS

Figure 4: One-step samples from the vanilla iSD on CIFAR-10 (FID 3.64)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

C
la

ss
13

9
C

la
ss

19
3

C
la

ss
78

0
C

la
ss

82
0

C
la

ss
95

9
C

la
ss

97
0

C
la

ss
97

3
C

la
ss

98
5

Figure 5: Class-level samples generated by iSD-U with four-step sampling on ImageNet 256×256

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 6: Four-step samples from the iSD-U on ImageNet 256×256

E USE OF LARGE LANGUAGE MODELS

OpenAI’s ChatGPT was used to polish writing during preparation of this work. All text generated
by the tool was reviewed and revised by the authors.

30

	Introduction
	Related Work
	Suboptimality of Direct Flow Map Matching
	Preliminaries
	Generalized Flow Map Matching
	Suboptimality and Instability

	Towards Reproducible and Stable Flow Map Training
	Facilitating Consistency Training from Scratch
	Improved Self-Distillation

	Experiments
	Ablation Study
	Comparison with Prior Work

	Conclusion
	Theoretical Analysis of Flow Map Models
	Mean collapse of Diffusion and Flow Matching Models
	Injectivity of Flow Map
	Eulerian Equation and Uniqueness of Flow Map
	Interpolation condition for guaranteeing the convergence
	Recent Consistency-based Generative Models are Flow Map Models
	Suboptimality of direct training
	Instability of Consistency Training
	Suboptimality of Network-Induced Coupling
	Linearization Cost

	improved Self-Distillation
	Guarantee the Convergence
	Deriving Final Objective
	Classifier-free Guidance of Flow Map Models

	Experimental Details
	Reproducibility of Consistency Training
	Implementation
	Additional Quantitative Results

	Qualitative Results
	Use of Large Language Models

