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Abstract
Contrastive Language-Image Pretraining (CLIP)
has emerged as a novel paradigm to learn visual
models from language supervision. While re-
searchers continue to push the frontier of CLIP,
reproducing these works remains challenging.
This is because researchers do not choose consis-
tent training recipes and even use different data,
hampering the fair comparison between differ-
ent methods. In this work, we propose CLIP-
benchmark, a first attempt to evaluate, analyze,
and benchmark CLIP and its variants. We con-
duct a comprehensive analysis of three key fac-
tors: data, supervision, and model architecture.
We find considerable intuitive or counter-intuitive
insights: (1). Data quality has a significant im-
pact on performance. (2). Certain supervision
has different effects for Convolutional Networks
(ConvNets) and Vision Transformers (ViT). (3).
Curtailing the text encoder reduces the training
cost but not much affect the final performance.
Moreover, we further combine DeCLIP (Li et al.,
2021) with FILIP (Yao et al., 2021), bringing
us the strongest variant DeFILIP. The CLIP-
benchmark is released at: https://github.
com/Sense-GVT/DeCLIP for future CLIP re-
search.

1. Introduction
Over the past few years, supervised pre-training on well-
labeled ImageNet (Deng et al., 2009) and then transferred to
downstream tasks (Girshick et al., 2014; Long et al., 2015;
Vinyals et al., 2015) has greatly transformed the computer
vision (CV) community. However, supervised pre-training
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is hard to scale since we need arduous human labeling to
specify new visual concepts. More Recently, Contrastive
Language-Image Pretraining (CLIP) (Radford et al., 2021)
has emerged as a scalable pre-training paradigm via learning
visual models from language supervision, or more specif-
ically, image-text pairs. Basically, CLIP adopts the con-
trastive loss to push the embeddings of matched image-text
pairs together while pushing those of non-matched pairs
apart. Benefiting from abundant image-text pairs on the
Internet, CLIP learns general visual features that could per-
form zero-shot recognition, i.e., predict an image’s category
without seeing a single labeled example. CLIP’s transfer-
able features could also be well transferred to various down-
stream tasks.

Witnessing its great success, researchers continue to push
the frontier of CLIP. For instance, SLIP (Mu et al., 2021),
DeCLIP (Li et al., 2021) and FILIP (Yao et al., 2021)
achieve considerable improvements via embracing different
kinds of supervision within the image-text pairs. However,
it remains challenging to make fair comparison between
these methods. This is because they do not choose consis-
tent training recipes and even use different data. Although
CLIP (Radford et al., 2021), DeCLIP (Li et al., 2021) and
SLIP (Mu et al., 2021) use the same amount of 15 million
data from YFCC (Thomee et al., 2016), they adopt differ-
ent filtering strategies. Moreover, methods (Radford et al.,
2021; Jia et al., 2021; Li et al., 2021; Yao et al., 2021; Pham
et al., 2021) crawl their datasets from the Internet, making
the fair comparison more difficult.

This paper aims to democratize large-scale CLIP, i.e., to
build a fair and reproducible CLIP community. We pro-
pose CLIP-benchmark, a first attempt to evaluate, analyze,
and benchmark CLIP and its variants. We do a comprehen-
sive empirical study on three key factors: data, supervision,
and model architecture. We find considerable intuitive or
counter-intuitive insights:

Data: Mid-scale 15M data is a good balance of the training
cost and performance. Thus, most methods use a 15M subset
from YFCC (Thomee et al., 2016) to verify the effectiveness
of their methods. We carefully compare the current two
YFCC15M versions, V1 from CLIP (Radford et al., 2021)
and V2 from DeCLIP (Li et al., 2021). Interestingly, we find
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that in terms of the zero-shot performance on ImageNet, V2
is much better than V1 (details in Tab. 2). We conjecture that
V2 includes a more meticulous filtering strategy, making its
data quality better than V1. This also helps us conclude that
data quality is crucial in CLIP training.

Supervision: We first reproduce all the methods using a
unified training recipe (details in Tab. 3). We find that
fine-grained alignment supervision (Yao et al., 2021) could
benefit ViT image encoder but hurts ConvNets. Intuitively,
fine-grained alignment needs the image features to be non-
overlapped, which is unachievable for ConvNets. For ViT
image encoder, aggregating self-supervision (Mu et al.,
2021; Li et al., 2021), multi-view supervision (Li et al.,
2021), nearest-neighbor supervision (Li et al., 2021) and
fine-grained alignment supervision (Yao et al., 2021) brings
us the strongest variant DeFILIP.

Model: While most attention is paid to image encoders,
little research is conducted on text encoders. Most litera-
ture follows the exact setting from CLIP, i.e., a 12-layer
transformer (Radford et al., 2019). We find that CLIP’s
text encoder is not necessary to be so much deep; a 3-layer
transformer performs even better than the default 12-layer
setting under the mid-scale data scenarios (details in Tab. 4).
Therefore, pay attention to the text encoder when designing
your CLIP models.

In a nutshell, this paper proposes the first CLIP-benchmark
that includes the state-of-the-art methods. We benchmark
these methods under the same training recipe using the same
data. Our CLIP-benchmark also brings some insights about
data, supervision and model. The CLIP-benchmark would
be released to the public for future research.

2. Related Work
Concurrently to this work, many researchers continue to
push the frontier of CLIP (Radford et al., 2021). SLIP (Mu
et al., 2021) introduces self-supervision to Contrastive
Language-Image Pretraining. DeCLIP (Li et al., 2021) uti-
lizes widespread supervision among the image-text pairs.
FILIP (Yao et al., 2021) leverages the finer-grained align-
ment between image patches and textual words. LiT (Zhai
et al., 2021) adopt contrastive-tuning to tune the text tower
using image-text data while using a pre-trained, strong im-
age model as the image tower. OTTER (Wu et al., 2021)
uses online entropic optimal transport to find a soft image-
text match as labels for contrastive learning.

The representations learned by CLIP have shown excellent
transferability over various tasks. CLIP2Video (Fang et al.,
2021) and CLIP4Clip (Luo et al., 2021) apply CLIP to video
retrieval task. ActionCLIP (Wang et al., 2021) utilizes CLIP
for action recognition task. More works about improving
image captioning with CLIP, e.g.CLIPCap (Mokady et al.,

2021), CLIP4Caption (Tang et al., 2021). Interestingly
CLIP can be even used in text-guided image generation
task ( StyleCLIP (Patashnik et al., 2021)) and Embodied
AI ( EmbCLIP (Khandelwal et al., 2021)). CLIP has also
contributed to the development of general vision (Shao et al.,
2021). Witnessing CLIP’s active community and wide ap-
plications, we propose the first work to benchmark CLIP.

3. Methods
CLIP (Radford et al., 2021) and its variants (e.g., De-
CLIP (Li et al., 2021), SLIP (Mu et al., 2021), and
FILIP (Yao et al., 2021)) follow a common high-level struc-
ture(see Fig. 1). The model consists of an image encoder
(e.g., ResNet (He et al., 2016) or ViT (Dosovitskiy et al.,
2020)) and a text encoder(e.g., transformer (Vaswani et al.,
2017)), with a multimodal interaction at the top. Take the
most straightforward CLIP as an example, the image en-
coder (the text encoder) extracts the image embedding (the
text embedding) based on the input image-text pair. A con-
trastive objective is used to push the embeddings of matched
image-text pairs together while pushing non-matched pairs
apart. At the test phase, the learned text encoder synthesizes
a zero-shot linear classifier by embedding the arbitrary cate-
gories of the test dataset. Because it is rare in the dataset that
image caption is just a single word, CLIPs use prompts to
make up the context of the category {label}, such as "a
photo of a {label}". As shown in the Fig.1, differ-
ent variants further explore the widespread supervised signal
of the image-text pair for better visual representations. This
section will briefly introduce the above CLIP variants and
bring the strongest variant DeFILIP.

3.1. CLIP

CLIP (Radford et al., 2021) only uses the original image-text
supervsion. In a batch of N image-text pairs {(xI

i , x
T
i )},

we denote xI
i and xT

i as image and text of the ith pair. Let
zIi and zTj be the normalized embedding of the ith image
and jth text, respectively. CLIP uses InfoNCE loss (Van den
Oord et al., 2018). The loss for the image encoder can be
denoted as Eq. 1.

LI = − 1

N

N∑
i=1

log
exp(sim(zIi , z

T
i )/τ)∑N

j=1 exp(sim(zIi , z
T
j )/τ)

(1)

Here, the similarity function sim(, ) is measured by dot
product, and τ is a learnable temperature variable to scale
the logits. We have a symmetrical loss for image and text
encoder; thus, the overall loss function LCLIP is the average
of LI and LT .
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Figure 1. A unified framework of CLIP variants. Combining different supervision leads to different variants. CLIP: { 0 }, SLIP: { 0 , 1 },
FILIP: { 5 }, DeCLIP: { 0 , 1 , 2 , 3 , 4 }, DeFILIP: { 0 , 1 , 2 , 3 , 4 , 5 },

LCLIP = (LI + LT )/2 (2)

3.2. SLIP

SLIP (Mu et al., 2021) introduces self-supervision to CLIP
for better visual representations. Built upon CLIP, SLIP gets
two more strong augmented views for image self-supervised
contrastive loss LISS . SLIP further compares different
image self-supervised methods and finally selected Sim-
CLR (Chen et al., 2020) for the final framework. The overall
loss function of SLIP is shown in Eq. 3. α is the scale of
self-supervision and is set to 1.

LSLIP = LCLIP + αLISS (3)

3.3. FILIP

FILIP (Yao et al., 2021) perform finer-grained alignment
supervision on token level rather than image-text level. The
similarity {sim(zIi ,

T
i )} of the ith image and jth text is

improved to token-wise maximum similarity which is calcu-
lated as:

{
simI(zIi , z

T
j ) =

1
n1

∑n1

k=1 z
I
i,kz

T
j,mI

k

simT(zIi , z
T
j ) =

1
n2

∑n2

k=1 z
I
i,mT

k
zTj,k

(4)

Where mI
k = argmax0<r<n2z

I
i,kz

T
j,r and mT

k =

argmax0<r<n1z
I
i,rz

T
j,k. FILIP achieves finer-level align-

ment through a cross-modal late interaction mechanism,
which uses a token-wise maximum similarity between vi-
sual and textual tokens to guide the contrastive objective.
Though the late cross-modal interaction can capture finer-
grained features, it relies on the token-wise representations
of both modalities and can be inefficient in terms of com-
munication, memory, and computation. To alleviate this
problem, the authors carefully reduce the precision and
embedding size of the model and further select the 25% to-
kens with the highest token-wise maximum similarity score
among all texts (resp, images) in the same local worker be-
fore node communication. Denoting the loss of fine-grained
alignment supervision as LFAS , The overall loss function
of FILIP is shown in Eq. 5.

LFILIP = LFAS (5)

3.4. DeCLIP

DeCLIP (Li et al., 2021) utilizes widespread supervision
among the image-text pairs, including Self-Supervision(SS),
Multi-View Supervision(MVS), and Nearest-Neighbor Su-
pervision(NNS). DeCLIP contains image SS and text SS:
Image SS maximizes the similarity between two augmented
views of the same instance while text SS leverages Masked
Language Modeling(MLM) within a text sentence. For
MVS, DeCLIP has two augmented views of both image and
text, then contrasts the 2× 2 image-text pairs. For NNS, De-
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CLIP sample text NN in the embedding space as additional
supervision.

In summary, DeCLIP denote LISS and LTSS as the loss
function of image SS and text SS, respectively. LMV S is
multi-view loss, and LNNS is nearest-neighbor loss. The
overall loss function of DeCLIP is shown in Eq. 6. α, β, γ
are the loss scales and are both set to 0.2.

LDeCLIP =(1− α− β − γ)LCLIP

+ α(LISS + LTSS)

+ βLMV S + γLNNS

(6)

3.5. DeFILIP

By introducing the above methods, we can find a large num-
ber of possible supervision signals in the image-text pairs,
which can improve the efficiency of training and generaliza-
tion ability. In order to learn better visual representations
and improve the data efficiency of the model, we further
combine DeCLIP (Li et al., 2021) with FILIP (Yao et al.,
2021), bringing us the strongest variant DeFILIP. The over-
all loss function of DeFILIP is shown in Eq. 7.

LDeFILIP =(1− α− β − γ)LCLIP

+ α(LISS + LTSS)

+ βLMV S + γLNNS

+ λLFAS

(7)

LFAS is applied to improve fine-grained learning of visual
representations further. The loss weight λ is set to 0.2 in this
work. As shown in fig. 1, our DeFILIP is a summary and
development of the existing SOTA methods, which applies
the existing supervision and achieves a new state-of-the-art
performance.

4. CLIP-Benchmark
4.1. Setup

Evaluation Metric In this paper, we mainly evaluate zero-
shot performance of different models on ImageNet (Deng
et al., 2009), which is regarded as the main feature of
CLIP methods. We perform prompt ensemble by aver-
aging the caption embeddings for each class across the
prompt templates. The prompts are the same as proposed in
CLIP(Radford et al., 2021).

Implementation details The models in this work are
trained and tested in the same codebase. Unless otherwise
specified, all models are realized with Pytorch, and are
trained with 32 NVIDIA A100 GPUs. When pretraining,
we use an AdamW optimizer (Loshchilov & Hutter, 2017)
with a total batch size of 4,096 (single GPU batch size 128

Table 1. The basic statistics of the two versions of YFCC15M. V1
is filtered by CLIP. V2 is filtered by DeCLIP.

Dataset Examples Caption
length

En-word
ratio

Unique
Tokens

V2 15,388,848 16.7±29.2 0.92 770,996
V1 14,747,529 26.1±69.6 0.72 8,262,556

Table 2. Zero-shot top1 accuracy on ImageNet. We train CLIP-
ViT-B32 and our DeFILIP-ViT-B32 using different datasets

Method Accuracy w/ V1 Accuracy w/ V2

CLIP 26.1 32.8
DeFILIP 36.4 45.0

with 32 NVIDIA A100 GPUs). Starting with a learning
rate (LR) of 0.0001, we linearly warm-yp the LR to 0.001
in one epoch, and then we use the cosine anneal LR decay
strategy (Loshchilov & Hutter, 2016) to decrease the LR.
The weight decay rate is set to 0.1. The input resolution of
the image encoder is 224 × 224, and the maximum context
length of the text encoder is 76. The learnable temperature
parameter τ in Eq.1 is initialized to 0.07. All models are
trained from scratch for 32 epochs.

4.2. Data

Data is a crucial part of CLIP. This section does a holis-
tic study of two mid-scale YFCC15M versions. V1 from
CLIP (Radford et al., 2021) and V2 from DeCLIP (Li et al.,
2021).

Data statistics We present statistics of two versions
YFCC15M on examples number, mean/std of caption length,
mean English word ratio, and the vocabulary size (unique
tokens) in Table 1. The V2 consists of 15.4M image-text
pairs, 0.6M(3%) more than V1. V2 is generally shorter
and more evenly distributed than V1 regarding the caption
length. The English word ratio (i.e., # of English words
divided by # of all words) of V2 is about 0.92, which is
significantly better than V1’s 0.72. For the vocabulary size
(unique tokens), V1 is one order larger than V2 mainly be-
cause V1 contains many non-English characters. We can
infer from these statistics that V2 has better quality than
V1 because V2 is more evenly distributed and has fewer
non-English characters. We believe that V2 includes a more
meticulous filtering strategy, making its data quality better
than V1.

Performance over V1-V2. To further evaluate the qual-
ity of the two YFCC15M versions and explore the impact
of data quality on CLIP, we perform a comparison with
V1 (Radford et al., 2021) and V2 (Li et al., 2021), using the
same methodology. As shown in Tab. 2, training with V2
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Table 3. Zero-shot top1 accuracy on ImageNet. All models are
trained with YFCC15M-V2 (Li et al., 2021). ∆ denotes the im-
provement.

Method Image encoder Accuracy ∆

CLIP

ResNet50

37.2 -
SLIP 28.5 -
FILIP 21.3 -

DeCLIP 44.4 +7.2

CLIP

ViT-B/32

32.8 -
SLIP 34.3 +1.5
FILIP 39.5 +6.7

DeCLIP 43.2 +10.4
DeFILIP ViT-B/32 45.0 +12.2

leads to a better zero-shot performance than V1 under the
same experimental setup. On the one hand, it proves that the
data quality of V2 is better regarding final performance. On
the other hand, it also proves that data quality significantly
impacts the performance of CLIP methods.

4.3. Supervision

We perform a comprehensive comparison of our re-
implemented pretraining methods (Radford et al., 2021;
Li et al., 2021; Mu et al., 2021; Yao et al., 2021) to bench-
mark these methods under the same training recipe. We
report the zero-shot top-1 accuracy on ImageNet in Tab. 3
When the image encoder is ViT, all supervision is proved
to be effective. DeCLIP, which utilizes the maximum su-
pervision, obtains the best results. Moreover, we further
integrate the existing supervision to make the strongest vari-
ant, named DeFILIP. Our proposed DeFILIP reaches 45.0%
accuracy, surpassing the CLIP baseline by a considerable
12.2% margin.

When we use ResNet as the image encoder, some methods
seem cannot preserve the improvement. Worth mentioning,
SLIP (Mu et al., 2021) and FILIP (Yao et al., 2021) do not
report the results of ResNet models. We conjecture there
are two reasons: 1) ResNet models might need more dedi-
cated hyper parameter tuning. 2). Fine-grained alignment
requires the image features to be non-overlapped, which
is unachievable for ConvNets. However, DeCLIP can still
brings 7.2% improvement over the CLIP baseline.

4.4. Model

While most attention is paid to image encoders, little re-
search is conducted on text encoders. Most literature fol-
lows the exact setting from CLIP, i.e., a 12-layer transformer.
Therefore, we expect to study the role of the text encoder,
and further explore whether the training efficiency can be
improved by reducing the parameters of the text encoder
without affecting the performance.

Table 4. Zero-shot top1 accuracy on ImageNet. All models are
trained with YFCC15M-V2 (Li et al., 2021). The image encoder
is ViT-B32, we vary the layer number of transformers in the text
encoder.

Method Layer number Accuracy

CLIP

1 29.9
3 34.2
6 34.3

12 32.8

DeFILIP

1 39.7
3 44.1
6 44.3

12 45.0

As shown in Tab. 4, we try 1/3/6/12-layer transformer for
CLIP-ViTB32 and DeFILIP-ViTB32. Surprisingly, we find
that (1) For the primitive CLIP method, text encoders with
6 layers of transformers achieve the best results instead of
the default 12 layers. A 3-layers transformer is enough to
achieve high results. (2) For the DeFILIP, which applies
more supervision, the text encoder is more critical. However,
even if half the number of layers, it does not significantly
affect the final performance. Such an exciting result shows
that curtailing the text-encoder is an efficient approach to
reducing training costs.

5. Conclusions
In this paper, we propose the first CLIP-benchmark that
includes state-of-the-art methods. We benchmark these
methods under the same training recipe using the same data.
Our CLIP-benchmark also brings some insights about data,
supervision, and model. Moreover, we further propose De-
FILIP to make a stronger baseline for this task. The CLIP-
benchmark would be released to the public for future re-
search. We hope this technical report could avoid duplicate
data cleaning efforts and provide a consistent benchmark to
facilitate fair comparisons.
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