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Abstract001

The latest advancements in foundational large002
language models (LLMs) have challenged the003
widely recognized scaling laws, primarily mani-004
festing in the reinterpretation of the relationship005
between model scale, data scale, and model006
capabilities. This paper proposes a novel re-007
search perspective by treating the model’s holis-008
tic weights as a system variable. Through pre-009
liminary subtle scaling of the model during010
supervised fine-tuning (SFT) — a method re-011
ferred to as pre-scaling — we systematically in-012
vestigate the relationship between performance013
evolution and model variations. Building on014
this approach, we conduct extensive experi-015
ments across various pre-trained language mod-016
els (PLMs), revealing the discrete features of017
the model: loss particles and output particles.018
Through empirical investigation and theoret-019
ical analysis, we characterize the fundamen-020
tal process and statistical properties of parti-021
cle fission during SFT. According to the in-022
herent properties of output particles, the cou-023
pling relationship between these particles and024
sample importance is established. Based on025
this insight, we propose a simple and effi-026
cient data selection method named Pre-Scaling027
Pruning (PSP), which comprises two strategies:028
PSPone−shot and PSPzero−shot. Notably, at029
a pruning ratio of 50%, the data subset se-030
lected by PSPone−shot achieves a higher av-031
erage GLUE score than the full dataset, demon-032
strating that high-quality data subsets can not033
only reduce computational overhead but also034
enhance the model’s generalization capability.035

1 Introduction036

Large language models (LLMs) have emerged as037

a breakthrough in the field of natural language038

processing (NLP), exemplified by models such as039

PaLM (Chowdhery et al., 2023), GPT-4 (OpenAI,040

2023), and LLaMa (Touvron et al., 2023). These041

models, enriched with extensive world knowledge042

(Zhou et al., 2024; Gekhman et al., 2024), have043

significantly improved performance across various 044

downstream tasks, including complex reasoning. A 045

crucial research focus since the advent of LLMs 046

has been how to effectively perform supervised 047

fine-tuning (SFT) to further unlock their latent rea- 048

soning capabilities (Zhang et al., 2024b).Influenced 049

by the scaling law (Kaplan et al., 2020), early re- 050

search was largely driven by continuous expansion 051

of model sizes. As research progressed, differ- 052

ent scaling principles and phenomena (Xiao et al., 053

2024; Muennighoff et al., 2025) were proposed. It 054

was observed that even with a substantial reduction 055

in model size (Zhang et al., 2024a; Zhao et al.) 056

and a continuous refinement of post-training data 057

(Wang et al., 2023; Yu et al., 2024), models could 058

still maintain or even surpass existing baselines. 059

From a broader perspective, the advancement 060

of model reasoning capabilities can be viewed as 061

an iterative process of scaling up and compressing 062

model size while progressively refining fine-tuning 063

datasets. Therefore, it is crucial to systematically 064

investigate the relationships among generalization, 065

scaling variations, and data selection. Early studies 066

provided valuable insights, suggesting that general- 067

ization is often associated with models exhibiting 068

lower weight norms (Zhang et al., 2018; Ghiasi 069

et al., 2024; Kobayashi et al., 2024; Bos and Chug, 070

1996; Krogh and Hertz, 1991). Techniques such 071

as model pruning (Tang et al., 2024) and L2 regu- 072

larization based on weight decay (Xie et al., 2024) 073

have been effective in improving generalization. 074

Additionally, data pruning has been introduced to 075

enable models to learn more essential features with 076

fewer training samples. 077

However, studying the relationships between 078

model size, data pruning, and generalization in 079

isolation presents significant limitations. In par- 080

ticular, existing progress in data pruning (Fayyaz 081

et al., 2022) often relies on multiple proxy mod- 082

els, leading to high computational costs. Although 083

later research (Attendu and Corbeil) proposed an 084
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Figure 1: Loss particles (a) and output particles diagram
(b). Figure (a) shows the loss particles of all batches of
SST-2; Figure (b) shows the output particles of a sin-
gle sample randomly selected in MRPC on 768 dimen-
sions. They are obtained based on the loss difference
and output difference of BERT-base before and after
slight compression.

improved dynamic selection method, it requires085

data filtering throughout the entire training process,086

increasing the complexity of data selection.087

We introduce a research prototype that priori-088

tizes scaling adjustments, applying a subtle over-089

all reduction in model size before analyzing the090

relationship between sample characteristics and091

generalization during SFT. This novel perspective092

reveals many intriguing properties within models.093

We observe the emergence of the discrete features094

in models after subtle scaling adjustments, includ-095

ing loss particles and output particles, as shown096

in Figure 1. Furthermore, we identify variations097

and correlations in output particles characteristics098

across different samples under subtle scaling. Not099

all training samples contribute equally to enhancing100

model generalization (Yang et al., 2022). Leverag-101

ing this observation, we propose Pre-Scaling Prun-102

ing (PSP), a novel method that utilizes output parti-103

cles for data selection. PSP helps models identify104

high-quality data subsets, significantly reducing105

data evaluation costs and training overhead.Our106

contributions are:107

• We discovered that pre-trained language mod-108

els (PLMs) exhibit discrete characteristics109

fine-grained scaling — loss particles and out-110

put particles. Through empirical research and111

theoretical analysis, we provided a general112

process and statistical characteristics of parti-113

cle splitting in SFT.114

• We propose a simple and efficient data se-115

lection method named Pre-Scaling Pruning,116

which comprises two strategies : PSPone-shot117

and PSPzero-shot. Experimental results show118

that the data subset selected by PSPone-shot 119

achieves a higher average GLUE score than 120

the full dataset at a pruning rate of up to 50%. 121

PSPzero-shot, using 50% of the SST-2 data, also 122

produces results comparable to the full dataset, 123

demonstrating the high quality and efficiency 124

of the data subset selected by output particles. 125

• Based on the "pre-scaling" method, we estab- 126

lished a technical route centered on changes in 127

model weights. Along this route, starting with 128

fine changes in the model, we can discover 129

more fundamental microscopic features. For 130

example, the sample particles manifest in the 131

model’s macro response to the loss. The "pre- 132

scaling" method requires minimal resource 133

overhead and can be easily integrated into the 134

detailed research of related fields, with broad 135

applicability and effectiveness. 136

2 Related Work 137

Recently, the quality of data has become partic- 138

ularly important in the context of LLMs (Zhao 139

et al.; Minaee et al., 2024). During training, LLMs 140

typically involve two fundamental steps (Ouyang 141

et al., 2022): pre-training on large-scale corpora 142

(Radford, 2018; Devlin, 2018; Raffel et al., 2020; 143

Touvron et al., 2023) and fine-tuning on instruction 144

datasets (Mishra et al., 2022; Sanh et al.; Long- 145

pre et al., 2023; Muennighoff et al., 2024) or other 146

downstream NLP tasks. Training on high-quality 147

data can lead to stronger performance (Du et al., 148

2022). 149

Importance of Pre-training Data. The objec- 150

tive of pre-training is to train a "general-purpose" 151

model, which requires vast amounts of text. How- 152

ever, it is well-known that raw text data from the 153

internet can contain large amounts of template text, 154

error messages, and offensive content (Raffel et al., 155

2020; Touvron et al., 2023; Elazar et al.). There- 156

fore, removing redundant and harmful data while 157

retaining "high-quality" data (Conneau and Lam- 158

ple, 2019; Raffel et al., 2020; Wenzek et al., 2020; 159

Gao et al., 2020; Rae et al., 2021; Nystrom et al., 160

2022) is crucial for improving the efficiency of 161

the pre-training phase and reducing training costs. 162

Among the approaches, heuristic methods for data 163

quality filtering are widely adopted. For example, 164

(Raffel et al., 2020) removes lines that do not end 165

with terminal punctuation and lines with fewer than 166

four words, while (Penedo et al., 2023) eliminates 167
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lines predominantly composed of uppercase or nu-168

merical characters.169

Importance of Instruction Tuning Data. Typi-170

cally, models acquire basic language abilities dur-171

ing pre-training. Instruction tuning, a primary post-172

training paradigm, aims to address the mismatch173

between the distribution of pre-training data and174

downstream use cases. While instruction tuning175

primarily relies on large datasets, studies such as176

LIMA (Zhou et al., 2024) demonstrate that data177

quality is more important than quantity. An in-178

creasing number of works have focused on the179

quality and efficiency of instruction datasets (Köpf180

et al., 2024; Muennighoff et al.; Zhuo et al., 2024;181

Lu et al., 2023; Lian et al., 2023). The IFD (Li182

et al., 2024) method significantly outperforms the183

Alpaca model by using only about 5% of the Al-184

paca dataset, also surpassing the WizardLM model185

by approximately 10%. (Li et al., 2023) propose the186

Nuggets framework, implementing a dual-phase187

approach that leverages the disparity between one-188

shot and zero-shot scores to compute a definitive189

score for each instruction.190

NLP Classification Tasks. In addition to in-191

struction tuning, post-training of LLMs also in-192

cludes other NLP classification tasks, such as senti-193

ment analysis and natural language inference. How-194

ever, there has been limited research on the quality195

of datasets for these NLP tasks. (Fayyaz et al.,196

2022) adjusted GraNd and EL2N (Paul et al., 2021)197

for PLMs and applied them to NLP tasks. How-198

ever, these methods require training multiple proxy199

models and conducting numerous experiments to200

estimate more accurate scores, which adds consid-201

erable cost—sometimes even exceeding the train-202

ing time on large-scale datasets. (Attendu and Cor-203

beil) leverages an EL2N metric extended to the204

joint intent and slot classification task, followed205

by an initial fine-tuning phase on the full training206

set. However, they need to score data in multiple207

fine-tuning stages, selecting different data subsets208

for training, further complicating the data selection209

process.210

3 The Particle Phenomenon in Loss211

Variations212

Given a downstream task dataset D =213

{z1, z2, . . . , zN} containing N samples, where214

zi = (xi, yi). Here, xi represents the input data,215

yi is the truth label, and i = 1, 2, . . . , N . We216

explore the generalization of a pre-trained model217

Figure 2: Distribution of model loss differences on each
batch under different compression scales.

with a feed-forward head attached to downstream 218

tasks. Different from existing work, our research 219

motivation is to perform subtle scaling adjustments 220

on the model θ in advance and examine the 221

corresponding changes in loss based on the 222

changing θ, attempting to generally characterize 223

the correlation between the two. 224

3.1 Discovery of Loss Particles 225

Since appropriate compression of model param- 226

eters often leads to an improvement in general- 227

ization ability (Zhang et al., 2018; Ghiasi et al., 228

2024; Kobayashi et al., 2024; Bos and Chug, 1996; 229

Krogh and Hertz, 1991), we attempt to compress 230

the model. That is, under the action of the hyper- 231

parameter α, we examine the loss difference ∆L 232

generated on a batch before and after the model 233

undergoes the change θ − αθ, where α ∈ (0, 1). 234

For the first time, we discovered that under fine- 235

scale (10−6 ∼ 10−8) compression, ∆L exhibits 236

particle characteristics, as shown in Figure 2. As 237

can be seen from Figure 2, for most of the batch 238

data in SST-2, ∆L undergoes discrete jumps when 239

α = 3 × 10−8. This means that minor model dif- 240

ferences do not result in continuous loss values. 241

The size of the loss particle represents the degree 242

to which the model can distinguish fine loss differ- 243

ences. The larger the particle, the lower the model’s 244

ability to distinguish fine sample differences. 245

∆L can be expressed as: 246

∆L =

{
0, ∆θ < ∆θαflip

kLδ, ∆θ ≥ ∆θαflip

(1) 247

248

Lδ = min
batch∈D

(L(θ, batch)− L(θ −∆θαflip
, batch)) (2) 249

where αflip is the jump parameter, Lδ is the 250

loss particle, ∆θαflip
= αflipθ, and k is a dis- 251

crete integer variable. As α continuously in- 252
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creases from αflip, ∆L successively takes irreg-253

ular jump values at jump points such as αflip(1),254

αflip(2), . . . , αflip(n). In the interval ∆αflip =255

[αflip(i+1) − αflip(i)], ∆L remains unchanged.256

We define Lδ as the minimum batch loss particle.257

According to our findings, the size of Lδ is related258

to the form of the objective function o ∈ O and259

the specific task t ∈ T . For related research, see260

Appendix B.1 for details.261

It can be seen from Figure 1 that the ∆L val-262

ues generated by different batches at the jump263

point αflip are not the same. In the same dataset,264

∆L on different samples is called the loss par-265

ticle length, denoted as ∆Lbatch. Assume that266

∆Lbatchx ̸= ∆Lbatchy, but |∆Lbatchx−∆Lbatchy|267

has an integer multiple relationship with Lδ. In268

addition, the loss differences generated by different269

batches for model compression have positive and270

negative values.271

As α increases, Lδ remains invariant and indivis-272

ible. For ∆L generated in the weight amplification273

direction, the above formula can still be used to274

summarize. Different from compression, the jump275

points αflip in the amplification direction are gen-276

erally larger, as shown in Appendix B.5.277

3.2 Particle Fission during Fine-Tuning278

Different from pure weight scaling, the model θ279

iteration during the fine-tuning process includes280

the compression and expansion of some weights281

in different proportions. Experiments have found282

that the shape of Lδ undergoes a binary fission283

change similar to that in the field of biological284

cells. The Lδ during the fine-tuning process can285

be regarded as an individual that has undergone286

τ binary fission cycles, denoted as Lδ−τ = 1
2τ Lδ,287

where the empirical τ is on the same scale as the288

number of epochs. In Figure 3, we show the fission289

process of Lδ when τ = 1. The fission process of290

Lδ−τ is indicated by the red arrow in Figure 3.291

Appendix B.2 provides a more detailed description292

of the fission of loss particles.293

3.3 Dynamic Characteristics of Output294

Particles295

Obviously, due to the continuous mathematical296

properties of the linear layer function, the reason297

for the emergence of Lδ lies in the pre-trained298

model itself, rather than the feed-forward head299

added later. The high-dimensional output of the300

model should be discrete, which ultimately leads301

to the particle characteristics of the loss. We302

Figure 3: Binary fission of loss particles (Lδ) and bi-
nary tree range distribution of output particles(hδ). The
red arrows and blue arrows represent the fission and
merging processes respectively.

present Property 1 and prove that the model output 303

is also discrete. Let the output of the model be 304

h = fpre(x), h ∈ Rd, where d is the dimension 305

of the output of the pre-trained model. Similar to 306

the case of loss particles, we experimentally verify 307

the discreteness of h before and after fine-tuning. 308

More details are shown in Appendix B.4. 309

Property 1. Consider a downstream task in an 310

n-class classification problem, where the model 311

output is h = [h1, h2, . . . , hd], and the correspond- 312

ing classification labels areY = [y1, y2, . . . , yn]. 313

Ŷ = softmax(h) = [ŷ1, ŷ2, . . . , ŷn], where ŷi is 314

the predicted class probability. Suppose the loss 315

generated by a certain batch during model infer- 316

ence is L. If there exists a non-zero minimum loss 317

particle Lδ, then the model output vector h gener- 318

ated for this batch must be a discrete vector. 319

The proof is in Appendix A.1. 320

Let the i-th dimension of the model output be 321

h(i). Under the fine penalty hyperparameter α, the 322

difference of h(i) will jump, that is: 323

∆h(i) =

{
0, ∆θ < ∆θαflip

khδ, ∆θ ≥ ∆θαflip

(3) 324

where αflip is the jump parameter, ∆θαflip
= 325

αflipθ, and k is a discrete integer variable. We 326

define hδ as the minimum sample output particle, 327

denoted as hδ = min{∆h(i)|i = 1, 2, . . . , d}. 328

The fission of loss particles during fine-tuning 329

prompts us to further examine the dynamics of 330

∆h(i).We found that: 331

1. The length change of the minimum sample 332

output particle hδ is related to the fine-tuning pro- 333

cess. As the fine-tuning progresses, hδ undergoes 334

a binary fission change similar to Lδ−τ . While 335
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hδ−τ continues to fission downward, the overall336

change trend of ∆h(i) in each dimension of the337

sample is related to the downstream task. As338

can be seen from Figure 4(a), ∆h(i) of MRPC339

mostly shows a divergent trend, while the out-340

put particles of SST-2 mostly show a convergent341

trend. For batch data, for a typical sample x with342

x = min{h(i)δ (xj)|i = 1, 2, . . . , d, xj ∈ Dbatch},343

Property 2 proves that Lδ is equivalent to hδ. Prop-344

erty 3 gives that the actually observed binary fission345

of hδ (including Lδ) conforms to the statistical ex-346

pectation of a uniform distribution.347

Property 2. Let the minimum loss particle of the348

pre-trained model before fine-tuning be Lδ, and349

the minimum output particle of the sample x be hδ.350

Then |Lδ| = |hδ|, where | · | represents the particle351

length.352

The proof is in Appendix A.2.353

Property 3. Let the minimum output particle of354

the sample before fine-tuning be hδ. Suppose that355

after τ fissions at the end of fine-tuning, the mini-356

mum output particle becomes hδτ . If the sequence357

of fission particle values |hδ1 |, |hδ2 |, . . . , |hδτ | is358

uniformly distributed successively in the ranges359

[0, |hδ|], [0, |hδ1 |], . . ., [0, |hδτ−1 |], then E[|hδi |] =360
1
2i
|hδ|, where i ∈ [1, 2, . . . , n].361

The proof is in Appendix A.3.362

2. The characteristics of samples are signifi-363

cantly different. Taking the SST-2 dataset as an364

example, we randomly select 20 samples from the365

training set and observe their performance on the366

output particles of the pre-trained model before367

fine-tuning, as shown in Figure 4(b). It can be seen368

from the figure that the discrete degree of the out-369

put of some samples is relatively large, while that370

of other samples is relatively more concentrated.371

This reflects the characteristics and differences of372

samples, that is, the pre-trained model has differ-373

ent sensitivities to different samples on different374

features.375

3. Different dimensions have cor-376

responding jump sequences such as377

α
(i)
flip(1), α

(i)
flip(2), . . . , α

(i)
flip(j), and each378

maintains an invariant interval such as379

∆α
(i)
flip(j) = [α

(i)
flip(j+1) − α

(i)
flip(j)]. The380

jump sequences α(i)
flip(j) ̸= α

(i′)
flip(j), and the value381

changes of k are different.382

4. During fine-tuning, hδ−τ and Lδ−τ maintain383

equivalence. In the same round of fine-tuning, the384

output changes of all dimensions of each sample385

Figure 4: Output particles’ distribution of different sam-
ples before and after fine-tuning BERT-base.

can still be summarized by Equation 3, except that 386

hδ in it becomes hδ−τ . The degree of fission is 387

related to the model and the task set. Property 4 388

gives an approximate calculation of batches that 389

have not undergone fission during the fine-tuning 390

process. 391

Property 4. Assume that the probability of oc- 392

currence of particle fission whithin a sample is p, 393

where a batch Dbatch ∈ D, |Dbatch| = b, N = |D|. 394

After τ fissions, the probability of randomly se- 395

lecting a non-fissioned batch from the dataset is 396

pbatch =
Cb

Nτ

Cb
N

, where Nτ = N · (1− p)τ . 397

The proof is in Appendix A.4. 398

4 Sample Selection with Pre-Scaling on 399

Model 400

In the previous section, we first performed a slight 401

compression on the model weight θ and then exam- 402

ined the change in loss under this slight compres- 403

sion. As a result, we discovered the loss particle 404

Lδ. Superficially, Lδ seems similar to the approx- 405

imate expression of the gradient ∆L/∆θ, but in 406

fact, there is an essential difference between them. 407

Lδ is obtained on the premise of compressing the 408

entire θ, which is a response of the loss to the over- 409

all change of the model. While the gradient is the 410

response of the loss to the change of a single weight. 411

Especially in the field of NLP, there are significant 412

limitations in directly using methods based on the 413

first - order response of the loss (such as gradi- 414

ents) to characterize features. Furthermore, from 415

Property 1, we obtained the equivalence between 416

the minimum batch particle and the minimum loss 417

particle. They are not only numerically equal but 418

also maintain this equivalence throughout the en- 419

tire fine - tuning stage. The method of pre-scaling 420

on θ can profoundly describe the relationship be- 421

tween samples and loss. Thus, we proposed the 422
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Figure 5: The overview of proposed PSP. Two data selec-
tion schemes are considered: PSPone-shot and PSPzero-shot.

PSP method for sample selection. Section 4.1 pro-423

vides an overview of PSP, including two schemes:424

PSPone-shot and PSPzero-shot. Section 4.2 details the425

two schemes.426

4.1 Overview427

The overview of proposed PSP is provided in the428

Figure 5. Based on the pre-scaling operations, two429

data selectors are designed, including PSPone-shot430

and PSPzero-shot. Detailed descriptions of the two431

solutions will be presented in Section 4.2. In addi-432

tion, the pre-scaling operations performed on the433

model θ includes slight compression, i.e. θ − αθ,434

and slight expansion, i.e. θ + αθ. The coefficient435

α is the scaling factor.436

4.2 Pre-Scaling Pruning437

For a sample x, we construct the output particle438

vector v(x) as follows:439

v(x) = (∆h(1),∆h(2), . . . ,∆h(d)) (4)440

441

∥v(x)∥1 =
d∑

i=1

|∆h(i)| (5)442

v(x) reflects the sensitivity of the model to the sam-443

ple x in different output dimensions, and the vector444

v(x) is sensitive to fine - tuning. Let s represent the445

sensitivity score of the model to the sample x, and446

s = ∥v(x)∥1, where ∥ · ∥1 represents the L1 - norm447

value of the vector. According to the changes of s448

in different situations, we proposed two schemes449

for the PSP method.450

PSPone-shot. 1. Use D to fine - tune the model451

once, and obtain the output particles v1(xi) and452

v2(xi) of the sample xi ∈ D before and after fine453

- tuning respectively. 2. Calculate the sensitivity454

scores of the model to the sample xi before and 455

after fine - tuning, denoted as s1 and s2 respectively. 456

3. Construct the scoring function ϕ(xi). 457

The key is how to establish the scoring function 458

ϕ(·) based on s1 and s2, and then rank the samples 459

according to the pruning criterion expressed by the 460

function ϕ(·) to obtain the sequence of retained 461

samples. Empirically, the output particles of some 462

samples show a "divergent" trend, with s1 < s2, 463

while those of other samples show a "compressed" 464

trend, with s1 > s2. If we measure the importance 465

of samples only through s1 or s2, it will reduce 466

the generalization ability of the model. Therefore, 467

the information of s1 and s2 needs to be compre- 468

hensively considered. We construct the scoring 469

function ϕ(xi) for the sample xi ∈ D by using the 470

difference and ratio between s1 and s2: 471

ϕ(xi) =
s2
s1

· |s2 − s1| (6) 472

ϕ(·) reflects a relative stability of the model’s sen- 473

sitivity to certain features of the sample before and 474

after fine - tuning. This stability reflects the ability 475

of the pre-trained model in knowledge acquisition 476

and also provides an explanation for the fine - tun- 477

ing itself. 478

Due to the large number of task sets, it is not 479

advisable to simply apply Equation 6 in practical 480

applications because different tasks have different 481

biases towards the ratio or difference. For complex 482

situations, we propose a gold-panning selection 483

method. The specific details are analyzed in Sec- 484

tion 5.5. 485

PSPzero-shot. The model also shows output par- 486

ticles under slight compression, as detailed in Ap- 487

pendix B.4. Empirically, the model is not sensi- 488

tive to slight compression. PSPzero-shot constructs 489

s1 = ∥v1(xi)∥1 and s2 = ∥v2(xi)∥1 for the sam- 490

ple xi ∈ D by slightly compressing and expanding 491

the model, that is, θ− αθ and θ+ αθ. The scoring 492

function ϕ(xi) of PSPzero-shot is as follows: 493

ϕ(xi) = s1 − s2 (7) 494

5 Experiments 495

5.1 Experimental Setup 496

Baselines. We compared five methods to prove the 497

effectiveness of output particles. A) Full training 498

set: The baseline method of standard training using 499

the full training set. B) Random pruning: Ran- 500

domly delete data points with ratio (1− ρ) at once 501

and use the remaining data for subsequent training. 502
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C) GraNd: Use the expected value of the gradient503

norm of the model as a measure of the importance504

of samples. Consistent with the settings in (Fayyaz505

et al., 2022), we compute the GraNd scores only506

for the randomly initialized classifier layer on top507

of the PLMs. D) EL2N: An estimated variant of508

GraNd. The importance of each sample is the av-509

erage EL2N scores of five independently trained510

models, and then we retain the data with a higher511

score for subsequent training. E) Single EL2N:512

First, train with the full dataset for Epre epochs,513

and then use the EL2N scores to measure the im-514

portance of samples. Retain the data subset with a515

higher score for subsequent training. F) PSPone-shot:516

The proposed method which trains on the full train-517

set for τ epochs, followed by single-data pruning518

using PSPone-shot scores. The implementation de-519

tails of each method are shown in Appendix C.1.520

Tasks & Datasets. We used eight datasets from521

the GLUE (Beven and Binley, 2014) benchmark.522

The GLUE benchmark is a suite designed to eval-523

uate the performance of natural language under-524

standing (NLU) systems. Table 6 in Appendix D525

provides the general characteristics of the datasets526

we used.527

Models. We used two PLMs: BERT-base-528

uncased (110M parameters) (Devlin, 2018) and529

RoBERTA-base (125M parameters) (Liu, 2019).530

The pre-trained models were all provided by531

Hugging Face (Wolf, 2019). For BERT and532

RoBERTA, their high-dimensional outputs are both533

768-dimensional, which is exactly the feature vec-534

tor for calculating output particles.535

5.2 Results of the PSPone-shot Method536

RoBERTA-base. The experimental results of537

PSPone-shot on RoBERTA-base (Liu, 2019) a are538

reported in Table 1. The GraNd and EL2N scores539

are the average scores of five independently trained540

proxy models. Since STS-B is a regression task,541

we did not calculate its EL2N and Single EL2N542

scores. In most cases, the results of PSPone-shot543

are comparable to those of training with the full544

dataset. It is worth noting that for the RTE task545

with high learning difficulty, PSPone-shot exceeds546

the full dataset by 2.89%. The subsets selected by547

GraNd and EL2N (Paul et al., 2021) scores show548

a phenomenon of difficult fitting, which also in-549

dicates the effectiveness of PSPone-shot in the NLP550

field.551

In addition, to further verify the effectiveness552

of PSPone-shot, we conducted experiments on other553

Figure 6: The results of fine-tuning BERT using the
50% of data with higher (blue solid) and lower (yellow
solid) scores selected by PSPone-shot on MNLI (a) and
QQP (b) respectively. The three graphs in each row
from left to right are the evaluation accuracy, evaluation
loss, and training loss.

models such as BERT-base pre-trained model (De- 554

vlin, 2018). And the same efficient performance is 555

obtained. The detailed results can be found in the 556

Appendix C.2. 557

5.3 Results of the PSPzero-shot Method 558

We evaluated the effectiveness of PSPzero-shot on 559

the SST-2 and MNLI tasks using the BERT-base 560

model. As can be seen from Table 2, by selecting 561

only 50% of the data, PSPzero-shot can achieve the 562

same result as using the full dataset on the SST-2 563

task. Remarkably PSPzero-shot selects data without 564

any training on the model and is independent of 565

data labels. 566

5.4 Generalization Analysis 567

To further analyze the impact of the data selected 568

by PSPone-shot on the model’s generalization ability, 569

the dataset was divided into two subsets: Dhigh and 570

Dlow. Dhigh represents the top 50% of data with 571

higher scores selected by PSPone-shot, and Dlow 572

represents the remaining 50% of data with lower 573

scores. As can be seen from Figure 6, for MNLI (a) 574

and QQP (b), the training loss of Dhigh is higher 575

than that of Dlow. However, the evaluation loss 576

shows the opposite trend. And for QQP (b), the 577

evaluation accuracy of the model trained on Dhigh 578

is always higher than that of the model trained on 579

Dlow. This indicates that the subset selected by 580

PSPone-shot can not only ensure the final conver- 581

gence of the model but also avoid the model falling 582

into a local optimum in the early stage, enabling the 583

model to significantly improve its generalization 584

ability even with only 50% of the data. 585
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Dataset MRPC RTE CoLA STS-B SST-2 QNLI MNLI QQP AVG

FULL 88.73 75.09 61.81 90.80 94.38 92.71 87.71 91.52 85.34

Random 87.38 74.37 55.76 89.84 94.09 91.91 86.70 90.30 83.79
GraNd 85.05 50.54 55.92 89.11 93.35 92.31 86.64 90.53 80.43
EL2N 85.66 48.38 56.82 – 93.58 92.56 86.97 90.63 79.23
EL2N∗ 89.33 76.53 61.73 – 94.27 92.36 86.81 90.63 84.52
PSPone-shot 88.97↑ 77.98↑ 63.84↑ 90.71↑ 94.61↑ 91.82↑ 87.24↑ 90.58↑ 85.72

Table 1: Comparison results of PSPone-shot and other methods on GLUE tasks using RoBERTA-base. The retention
ratio of all datasets is 50%. The superscript "↑" indicates selecting data points with larger scores. To exclude the
influence of random factors, all experimental results are the average of five independent runs. "FULL" represents
Full training, "EL2N∗" represents Single EL2N.

Dataset SST-2 MNLI

FULL 92.78 84.37

Random 92.77 83.14
GraNd 92.83 82.24
EL2N 92.78 82.16
EL2N∗ 92.55 83.45
PSPone-shot 92.78↑ 83.3↑

Table 2: Comparison of PSPzero-shot and other methods.
The superscript "↑" indicates selecting the 50% of data
points with larger scores. "FULL" represents Full train-
ing, "EL2N∗" represents Single EL2N.

5.5 Gold-panning Selection586

To verify whether there are samples in the data sub-587

set that are not conducive to improving the model’s588

generalization ability, we used a strategy called589

"gold-panning selection". After obtaining the s590

and h scores described in Method 1 Specifically,591

after obtaining the s1 and s2 scores of each sample592

described in PSPone-shot, the data is initially puri-593

fied using indicator s2
s1

, retaining data with the ratio594

ρ1. Then we used |s2 − s1| to select data with the595

target ratio ρ. We experimented with the results596

of two-stage purification under three ratios ρ, as597

shown in Table 3. We found that it is not always598

better to retain more data samples. For QNLI and599

SST-2, the model trained on 40% of the samples600

achieves higher accuracy than the one trained on601

50% of the samples. This suggests that some sam-602

ples in the 50% dataset may not be conducive to the603

model’s learning, and removing them can enhance604

the model’s generalization ability.605

task ρ1(
s2
s1
) ρ2(|s2− s1|) ρ Accuracy

0.6 0.5 0.5 91.19
QNLI 0.5 0.4 0.4 91.52

0.4 0.3 0.3 90.54

0.6 0.5 0.5 92.55
SST-2 0.5 0.4 0.4 93.35

0.4 0.3 0.3 92.89

Table 3: Gold-panning selection. We used the BERT-
base pre-trained model, taking the QNLI and SST-2
tasks as examples. We conducted two-stage screening:
1) Select data with a ratio of ρ1 using the s2

s1
score, and

set the importance of unselected data points to 0; 2)
Select data with a ratio of ρ2 using |s2 − s1|, and the
final retention ratio of data is ρ = ρ2.

6 Conclusion 606

In this work, we first conduct a fine-grained scaling 607

on the model and identify common discrete features 608

of PLMs: loss particles and output particles. We 609

then propose a novel metric to measure the sensitiv- 610

ity of PLMs to data and exploit changes in output 611

particles to select high-quality data. Our method 612

is applied to NLP classification tasks, achieving 613

excellent performance with minimal overhead. 614

The "particle phenomenon" is a microscopic re- 615

flection of PLMs. Further exploration of loss parti- 616

cles and output particles may bring new enlighten- 617

ing perspectives to the fields of data pruning, model 618

compression, and the interpretability research of 619

LLMs. 620

Limitations 621

In this work, we identified the particle phenomenon 622

in PLMs and leveraged output particles for data se- 623

lection in NLP classification tasks. However, why 624
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do particles emerge in PLMs but not in traditional625

deep networks? At present, we can only interpret626

this from the perspective of model intelligence, sug-627

gesting that minor variations in input samples are628

insufficient to elicit noticeable differences in model629

responses. Moreover, research on particles in sim-630

ple SFT tasks may still be limited. Moving for-631

ward, we aim to conduct an in-depth investigation632

into this phenomenon within complex reasoning633

tasks in large models. In the future, we will further634

explore its implications in other pretraining and635

instruction-tuning tasks.636
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A Proofs872

A.1 Proof of Property 1873

Property 1. Consider a downstream task in an874

n-class classification problem, where the model875

output is h = [h1, h2, . . . , hd], and the correspond-876

ing classification labels areY = [y1, y2, . . . , yn].877

Ŷ = softmax(h) = [ŷ1, ŷ2, . . . , ŷn], where ŷi is878

the predicted class probability. Suppose the loss879

generated by a certain batch during model infer-880

ence is L. If there exists a non-zero minimum loss881

particle Lδ, then the model output vector h gener-882

ated for this batch must be a discrete vector.883

Proof. Proof by contradiction. Assume that ∃i ∈884

[1, 2, . . . d], and hi is a continuous variable. As-885

sume that in this task, the loss function defined886

by cross - entropy is L = −
∑n

i=1 yi ln ŷi. And a887

certain batch contains data of all n classes. Sup-888

pose there is a small change ε ̸= 0 in hi. Since889

hi is continuous, the model output changes to890

h′ = [h1, h2, . . . hi+ε, . . . , hd]. Then the resulting891

ŷ′i = ehi+ε∑n
j=1,j ̸=i e

hj+ehi+ε
̸= ŷi, which contradicts 892

the proposition assumption Lδ ̸= 0. Thus, the 893

proof is completed. 894

A.2 Proof of Property 2 895

Property 2. PLet the minimum loss particle of the 896

pre-trained model before fine-tuning be Lδ, and 897

the minimum output particle of the sample x be hδ. 898

Then |Lδ| = |hδ|, where | · | represents the particle 899

length. 900

Proof. Continue to use the assumptions in Property 901

1,the loss function defined by cross-entropy is L = 902

−
∑n

i=1 yi ln ŷi. 903

Suppose that under a fine penalty α, the output 904

change of the model is ∆h. From Equation 3, 905

there exists an integer vector k = [k1, k2, . . . , kd] 906

such that ∆h = |hδ| · [k1, k2, . . . , kd]. Since ŷi = 907
ehi∑n

j=1 e
hj

, the predicted probability after the change 908

is ŷ′i =
ehi+∆hi∑n

j=1 e
hj+∆hj

, where ∆hi = ki|hδ|. Then 909

∆L = −
n∑

i=1

yi(ln ŷ
′
i − ln ŷi) (8) 910

911

= −
n∑

i=1

yi ln

(
ehi+∆hi

ehi
·

∑n
j=1 e

hj∑n
j=1 e

hj+∆hj

)
(9) 912

Note that ∆hi → 0, where e∆hj ≈ 1. Then ∆L = 913

−
∑n

i=1 yi ln e
∆hi = −

∑n
i=1 yiki|hδ|. 914

A.3 Proof of Property 3 915

Property 3. Let the minimum output particle of 916

the sample before fine-tuning be hδ. Suppose that 917

after τ fissions at the end of fine-tuning, the mini- 918

mum output particle becomes hδτ . If the sequence 919

of fission particle values |hδ1 |, |hδ2 |, . . . , |hδτ | is 920

uniformly distributed successively in the ranges 921

[0, |hδ|], [0, |hδ1 |], . . ., [0, |hδτ−1 |], then E[|hδi |] = 922
1
2i
|hδ|, where i ∈ [1, 2, . . . , n]. 923

Proof. According to the assumption, the particle 924

value |hδi | is uniformly distributed in the inter- 925

val [0, |hδi−1
|]. By the law of total probability, 926

E[|hδi |] = 1
|hδi−1

|
∫ |hδi−1

|
0 xdx = 1

2 |hδi−1
|. By 927

continuous upward recursion, the proof is com- 928

pleted. 929

The actually observed binary fission phe- 930

nomenon confirms the uniformity of the output 931

particle fission values. 932
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A.4 Proof of Property 4933

Property 4. Assume that the probability of oc-934

currence of particle fission whithin a sample is p,935

where a batch Dbatch ∈ D, |Dbatch| = b, N = |D|.936

After τ fissions, the probability of randomly se-937

lecting a non-fissioned batch from the dataset is938

pbatch =
Cb

Nτ

Cb
N

, where Nτ = N · (1− p)τ .939

Proof. According to the problem, after one fission,940

the number of non-fissioned samples in D is N1 =941

N ·(1−p). Then after τ fissions, Nτ = N ·(1−p)τ .942

Then the probability that any batch does not contain943

fissioned samples is pbatch =
Cb

Nτ

Cb
N

. Since the above944

steps are in line with the requirements, the proof is945

completed.946

B Further Research on Loss Particles and947

Output Particles948

B.1 Universality of Loss Particles in PLMs949

Loss particles are commonly found in PLMs. Fig-950

ure 7 shows the characteristics of loss particles in951

different PLMs without fine-tuning. The models952

used are BRTE, RoBERTA, GPT2, and T5 respec-953

tively, the dataset used is SST-2, and the batch size954

is 32, and the penalty coefficient α = 5 × 10−8.955

Unless otherwise specified, in this paper, BERT956

refers to BRTE-base-uncased, RoBERTA refers to957

RoBERTA-base, T5 refers to T5-base, and all mod-958

els are provided by Hugging face (Wolf, 2019). It959

can be seen from Figure 7 that for most of the960

batches in SST-2, each model has loss particles.961

However, for different models, the distribution of962

loss particle sizes with batches is different.963

The loss particles of different tasks are shown964

in Figure 8. Among them, SST-2 (a) is a binary965

sentiment analysis task, using the cross-entropy966

loss function. STS-B (b) is a regression task for967

judging the similarity of semantic texts, using the968

mean square error loss function. It can be seen969

from Figure 8 that there are significant differences970

in the loss particles of different tasks.971

In addition, we studied the loss particles of each972

sample in the BERT model. Figure 9 shows the973

loss particles of each sample in the MRPC dataset974

on the BERT model, where the penalty coefficient975

α = 5× 10−8. We found that most samples have976

loss particles, and there are also positive and nega-977

tive differences between the loss particles of sam-978

ples, and there is a multiple relationship in size.979

At the same time, in addition to the smaller BERT980

model, we also found the existence of loss particles 981

in the larger LLaMa2-7b model, as shown in Figure 982

10. 983

B.2 Variations of Loss Particles during 984

Fine-Tuning 985

We further studied the change rules of the BERT 986

model during fine-tuning using MNLI and QQP. 987

It was found that during the fine-tuning process, 988

the loss particles gradually underwent discrete fis- 989

sion, as shown in Figure 11. Since the calcu- 990

lation amount of calculating the loss particles at 991

each step is huge because the model needs to be 992

scaled at each step. Therefore, we used a sim- 993

ple and effective method to replace it. The spe- 994

cific steps are as follows: 1) Obtain the mini- 995

mum loss particle Lδ of the model before fine- 996

tuning; 2) Record the loss of each step of training 997

to form a set L = {Lstep0, Lstep1, . . . , LstepN}, 998

where N represents the total number of train- 999

ing steps; 3) Calculate the remainder of divid- 1000

ing the loss of each step by Lδ to form a new 1001

set R = {Rstep0, Rstep1, . . . , Rstepi, . . . , RstepN}, 1002

where Rstepi = Lstepi%Lδ. In Figure 11, we 1003

scaled Rstepi by Rstepi/Lδ. As the fine-tuning 1004

progresses, the number of values in R increases, 1005

indicating that the number of particles fissioned 1006

from Lδ is increasing. We represent the set of 1007

particles generated during the entire process as 1008

lδ = {lstep0, lstep1, . . . , lstepi, . . . , lstepN}. Where 1009

lstepi =
T
2τ Lδ, T ∈ [0, 1, 2, . . . , 2τ ]. 1010

B.3 Research on Output Particles of Different 1011

PLMs 1012

Figure 12 shows the s1 scores of the output par- 1013

ticles of different PLMs. The calculation method 1014

of the s1 score is consistent with the settings in 1015

PSPoneshot. s1 represents the initial sensitivity of 1016

the PLMs to the sample, which corresponds to the 1017

Score in Figure 12. Taking the datasets QNLI and 1018

MNLI as examples, we compared the output parti- 1019

cles of the BRTE, RoBERTA, GPT2, and T5 mod- 1020

els. Specifically, we first calculated the s1 score of 1021

each sample for the model, then sorted them, and 1022

then compared the distribution of different models. 1023

At the same time, since the s1 scores of a small 1024

number of samples were too large, we performed 1025

a logarithmic scaling on Score: log(Score) + C. 1026

It can be seen from Figure 12 that for QNLI and 1027

MNLI, there are significant differences between 1028

the output particles of different models, which also 1029

reflects the differences in the knowledge mastery 1030
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Figure 7: Loss particles of different PLMs. The models used include BERT, RoBERTA, GPT-2, and T5 from
Hugging Face. The dataset used is SST-2.

of these two downstream tasks by different PLMs.1031

And for the RoBERTA, GPT2, and T5 models, the1032

overall performance of their output particles is rela-1033

tively stable, while the changes of the BRTE model1034

are more drastic.1035

B.4 Research on Output Particles after Slight1036

Compression of PLMs1037

Figure 13 shows that when the penalty hyperpa-1038

rameter α < 3 × 10−8, ∆h = 0, where 0 ∈ Rd.1039

When α = 3×10−8, the output differences of some1040

dimensions begin to jump and remain unchanged in1041

the interval [3× 10−8, 8× 10−8]. That is, in the in-1042

terval [3×10−8, 8×10−8], the output particle of the1043

pre-fine-tuning model hδ/without = 5.960464 ×1044

10−8, and the output particle of the post-fine-tuning1045

model hδ/with = 1.117587× 10−8. Among them,1046

hδ/with = 3
24
hδ/without, indicating that some out-1047

put particles have undergone fission after fine-1048

tuning.1049

B.5 Research on Output Particles after Slight1050

Expansion of PLMs1051

In addition, we used the BERT model and the1052

MRPC dataset to study the output particles after a1053

slight expansion of the model θ. It can be seen from1054

Figure 14 that when the BERT model is slightly1055

expanded and the scaling coefficient α = 6×10−8,1056

output particles appear. In Figure 13 (a), when the1057

model is slightly compressed, the output particles1058

appear when the scaling coefficient α = 3× 10−8.1059

This shows that both slight compression and ex-1060

pansion of the PLMs will result in output particles. 1061

However, the model is more sensitive to slight com- 1062

pression. 1063

C Experimental Details 1064

C.1 Experimental Details 1065

We divided the 8 tasks in GLUE into two categories 1066

during training. One category is tasks with larger 1067

datasets, including QNLI, MNLI, and QQP. The 1068

other category is tasks with smaller training sets, 1069

including CoLA, SST-2, MRPC, STS-B, and RTE. 1070

For these two categories, our training settings are 1071

shown in Table 4. At the same time, for all tasks, 1072

we used a unified pruning rate of 50%. We used the 1073

AdamW as our optimizer. For learning rate adjust- 1074

ment, we used a linear scheduler with a warm-up 1075

ratio of 0.1. For PSPone-shot, the scaling coefficient 1076

α = 5× 10−8. And in PSPzero-shot, α = 1× 10−7. 1077

All experiments were implemented on NVIDIA 1078

RTX3090 GPUs. 1079

C.2 More Results of the PSPone-shot Method 1080

on BERTA-base 1081

BERT-base. Table 5 reports the experimental re- 1082

sults of using the BERT-base pre-trained model 1083

(Devlin, 2018). It is not difficult to see that 1084

PSPone-shot leads in most cases and even outper- 1085

forms the results of training with the entire dataset. 1086

Especially for tasks such as MRPC, RTE, and 1087

CoLA, PSPone-shot exceeds the results of using the 1088

full dataset for training by more than 1%. At the 1089

13



Figure 8: Loss particles across different tasks. The model used is BERT, with SST-2 (a) and STS-B (b) as the
datasets.

Epoch(Epre) lr batch size weight decay Epoch(Epost) lr scheduler optimizer

MRPC, RTE, CoLA, STS-B, SST-2

10 2e-5 32 0.002 5 linear Adam

QNLI, MNLI, QQP

5 3e-5 64 0.002 1 linear Adam

Table 4: The hyperparameters we used in the GLUE tasks.

same time, based on (Fayyaz et al., 2022), we ex-1090

tended the application of EL2N and GraNd meth-1091

ods to other GLUE tasks and found that they are1092

not suitable for tasks such as MRPC, RTE, and1093

CoLA. We found that for the BERT-base model,1094

these three tasks are different from others, and it is1095

more effective to select the 50% of data with lower1096

scores for subsequent training. The performance1097

of CoLA is as high as 60.33%, exceeding that of1098

the full dataset by 2.72%. For the larger MNLI and1099

QQP datasets, the result of PSPone-shot is at most1100

0.54% lower than that of the full dataset, but the1101

amount of training data is reduced by 50%. More-1102

over, PSPone-shot outperforms the results of random1103

pruning, which proves that the pre-trained model1104

can improve its generalization ability by selecting1105

a small amount of data based on its own sensitivity1106

to the data, even without knowing the data labels.1107

D General Characteristics of Datasets1108

In Table 6, we provide an overall description of1109

the GLUE datasets. In general, the GLUE datasets1110

cover a large number of training set sizes and differ- 1111

ent types of language understanding tasks to mea- 1112

sure the performance of the model in a wide range 1113

of tasks. The data we use does not contain any 1114

personally identifying info or offensive content. 1115
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Figure 9: Loss particles for each sample in the MRPC dataset using the BERT model.

Dataset MRPC RTE CoLA STS-B SST-2 QNLI MNLI QQP AVG

FULL 86.24 67.08 57.61 88.76 92.78 91.45 84.37 91.10 82.42

Random 81.49 63.72 54.26 87.96 92.77 90.37 83.14 89.75 80.43
GraNd 65.69 52.71 53.23 87.46 92.83 90.03 82.24 89.89 76.76
EL2N 61.02 52.70 50.37 – 92.78 90.68 82.16 89.95 74.24
EL2N* 85.66 65.34 59.99 – 92.55 91.41 83.45 91.02 81.35
PSPone-shot 87.25↓ 68.23↓ 60.33↓ 89.28↑ 93.01↑ 91.26↑ 83.83↑ 90.86↑ 83.01

Table 5: Comparison results of PSPone-shot and other methods on GLUE tasks using the BERT-base model. The
retention ratio ρ of all data subsets is 50%. The superscript "↓" indicates selecting the 50% of data points with
smaller scores, and the superscript "↑" indicates selecting the 50% of data points with larger scores. The GraNd and
EL2N scores are the average scores of five independently trained proxy models. Since STS-B is a regression task,
we did not calculate its EL2N and Single EL2N scores. To exclude the influence of random factors, all experimental
results are the average of five independent runs.

Figure 10: Loss particles for each sample in the MRPC dataset using the LLaMa2-7b model.
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Figure 11: The change-diagram of loss particles of MNLI(a) and QQP(b) during the training process. Using the
BERT model, the formula L%Lδ is used to record the remainder of the loss L at each step divided by the initial
loss particle Lδ. If the remainder is 0, it means that the loss particle remains unchanged; otherwise, the loss
particle has undergone cleavage. Let lstepi represent the loss particle at the i-th step, then lstepi =

T
2τ Lδ, where

T ∈ [0, 1, 2, . . . , 2τ ].

Figure 12: s1 scores of output particles across different PLMs. The models used include BERT, RoBERTA, GPT-2,
and T5. Comparisons are conducted across the QNLI, MNLI, MRPC and SST-2 tasks.
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Figure 13: Output particles under different scaling factors α before and after fine-tuning. For the models before
and after fine-tuning: 1) When α = 2e − 8, no output particles appear in either of them; 2) When α = 3e − 8,
output particles appear in both of them, and the particles remain unchanged in the interval [3e− 8, 8e− 8]; 3) When
α = 9e− 8 or α = 1e− 7, the output particles in each dimension change.

Figure 14: Output particles of the slight enlargement of the model θ using different scaling factors α. 1) When
α = 5e− 8, no output particles appear; 2) When α = 6e− 8, output particles appear and remain unchanged in the
interval [6e− 8, 1e− 7]; 3) When α = 2e− 7, the output particles in each dimension change. The model used is
BERT and the dataset used is MRPC.
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Name |Train| |Test| Task Eval Metric Domain

Single-Sentence Tasks

CoLA 8.5k 1k acceptability Matthew’s misc.
SST-2 67k 1.8k sentiment Acc movie reviews

Similarity and Paraphrase Tasks

MRPC 3.7k 1.7k paraphrase Acc news
QQP 364k 391k paraphrase Acc social QA questions
STS-B 7k 1.4k sentence similarity Pearson Cor. misc.

Inference Tasks

MNLI 393k 20k NLI Acc misc.
QNLI 105k 5.4k QA/NLI Matched Acc. Wikipedia
RTE 2.5k 3k NLI Acc news, Wikipedia

Table 6: Statistics of GLUE datasets.
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