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Abstract

The latest advancements in foundational large
language models (LLMs) have challenged the
widely recognized scaling laws, primarily mani-
festing in the reinterpretation of the relationship
between model scale, data scale, and model
capabilities. This paper proposes a novel re-
search perspective by treating the model’s holis-
tic weights as a system variable. Through pre-
liminary subtle scaling of the model during
supervised fine-tuning (SFT) — a method re-
ferred to as pre-scaling — we systematically in-
vestigate the relationship between performance
evolution and model variations. Building on
this approach, we conduct extensive experi-
ments across various pre-trained language mod-
els (PLMs), revealing the discrete features of
the model: loss particles and output particles.
Through empirical investigation and theoret-
ical analysis, we characterize the fundamen-
tal process and statistical properties of parti-
cle fission during SFT. According to the in-
herent properties of output particles, the cou-
pling relationship between these particles and
sample importance is established. Based on
this insight, we propose a simple and effi-
cient data selection method named Pre-Scaling
Pruning (PSP), which comprises two strategies:
PSPone—shot and PSP,e.0_shot- Notably, at
a pruning ratio of 50%, the data subset se-
lected by PSP,e—shot achieves a higher av-
erage GLUE score than the full dataset, demon-
strating that high-quality data subsets can not
only reduce computational overhead but also
enhance the model’s generalization capability.

1 Introduction

Large language models (LLMs) have emerged as
a breakthrough in the field of natural language
processing (NLP), exemplified by models such as
PalLM (Chowdhery et al., 2023), GPT-4 (OpenAl,
2023), and LLaMa (Touvron et al., 2023). These
models, enriched with extensive world knowledge
(Zhou et al., 2024; Gekhman et al., 2024), have

significantly improved performance across various
downstream tasks, including complex reasoning. A
crucial research focus since the advent of LLMs
has been how to effectively perform supervised
fine-tuning (SFT) to further unlock their latent rea-
soning capabilities (Zhang et al., 2024b).Influenced
by the scaling law (Kaplan et al., 2020), early re-
search was largely driven by continuous expansion
of model sizes. As research progressed, differ-
ent scaling principles and phenomena (Xiao et al.,
2024; Muennighoff et al., 2025) were proposed. It
was observed that even with a substantial reduction
in model size (Zhang et al., 2024a; Zhao et al.)
and a continuous refinement of post-training data
(Wang et al., 2023; Yu et al., 2024), models could
still maintain or even surpass existing baselines.

From a broader perspective, the advancement
of model reasoning capabilities can be viewed as
an iterative process of scaling up and compressing
model size while progressively refining fine-tuning
datasets. Therefore, it is crucial to systematically
investigate the relationships among generalization,
scaling variations, and data selection. Early studies
provided valuable insights, suggesting that general-
ization is often associated with models exhibiting
lower weight norms (Zhang et al., 2018; Ghiasi
et al., 2024; Kobayashi et al., 2024; Bos and Chug,
1996; Krogh and Hertz, 1991). Techniques such
as model pruning (Tang et al., 2024) and L regu-
larization based on weight decay (Xie et al., 2024)
have been effective in improving generalization.
Additionally, data pruning has been introduced to
enable models to learn more essential features with
fewer training samples.

However, studying the relationships between
model size, data pruning, and generalization in
isolation presents significant limitations. In par-
ticular, existing progress in data pruning (Fayyaz
et al., 2022) often relies on multiple proxy mod-
els, leading to high computational costs. Although
later research (Attendu and Corbeil) proposed an
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Figure 1: Loss particles (a) and output particles diagram
(b). Figure (a) shows the loss particles of all batches of
SST-2; Figure (b) shows the output particles of a sin-
gle sample randomly selected in MRPC on 768 dimen-
sions. They are obtained based on the loss difference
and output difference of BERT-base before and after
slight compression.

improved dynamic selection method, it requires
data filtering throughout the entire training process,
increasing the complexity of data selection.

We introduce a research prototype that priori-
tizes scaling adjustments, applying a subtle over-
all reduction in model size before analyzing the
relationship between sample characteristics and
generalization during SFT. This novel perspective
reveals many intriguing properties within models.
We observe the emergence of the discrete features
in models after subtle scaling adjustments, includ-
ing loss particles and output particles, as shown
in Figure 1. Furthermore, we identify variations
and correlations in output particles characteristics
across different samples under subtle scaling. Not
all training samples contribute equally to enhancing
model generalization (Yang et al., 2022). Leverag-
ing this observation, we propose Pre-Scaling Prun-
ing (PSP), a novel method that utilizes output parti-
cles for data selection. PSP helps models identify
high-quality data subsets, significantly reducing
data evaluation costs and training overhead.Our
contributions are:

* We discovered that pre-trained language mod-
els (PLMs) exhibit discrete characteristics
fine-grained scaling — loss particles and out-
put particles. Through empirical research and
theoretical analysis, we provided a general
process and statistical characteristics of parti-
cle splitting in SFT.

* We propose a simple and efficient data se-
lection method named Pre-Scaling Pruning,
which comprises two strategies : PSPope-shot
and PSP,cosnot- Experimental results show

that the data subset selected by PSPpe-shot
achieves a higher average GLUE score than
the full dataset at a pruning rate of up to 50%.
PSP,er0-shot, using 50% of the SST-2 data, also
produces results comparable to the full dataset,
demonstrating the high quality and efficiency
of the data subset selected by output particles.

* Based on the "pre-scaling" method, we estab-
lished a technical route centered on changes in
model weights. Along this route, starting with
fine changes in the model, we can discover
more fundamental microscopic features. For
example, the sample particles manifest in the
model’s macro response to the loss. The "pre-
scaling" method requires minimal resource
overhead and can be easily integrated into the
detailed research of related fields, with broad
applicability and effectiveness.

2 Related Work

Recently, the quality of data has become partic-
ularly important in the context of LLMs (Zhao
et al.; Minaee et al., 2024). During training, LLMs
typically involve two fundamental steps (Ouyang
et al., 2022): pre-training on large-scale corpora
(Radford, 2018; Devlin, 2018; Raffel et al., 2020;
Touvron et al., 2023) and fine-tuning on instruction
datasets (Mishra et al., 2022; Sanh et al.; Long-
pre et al., 2023; Muennighoff et al., 2024) or other
downstream NLP tasks. Training on high-quality
data can lead to stronger performance (Du et al.,
2022).

Importance of Pre-training Data. The objec-
tive of pre-training is to train a "general-purpose"
model, which requires vast amounts of text. How-
ever, it 1s well-known that raw text data from the
internet can contain large amounts of template text,
error messages, and offensive content (Raffel et al.,
2020; Touvron et al., 2023; Elazar et al.). There-
fore, removing redundant and harmful data while
retaining "high-quality" data (Conneau and Lam-
ple, 2019; Raffel et al., 2020; Wenzek et al., 2020;
Gao et al., 2020; Rae et al., 2021; Nystrom et al.,
2022) is crucial for improving the efficiency of
the pre-training phase and reducing training costs.
Among the approaches, heuristic methods for data
quality filtering are widely adopted. For example,
(Raffel et al., 2020) removes lines that do not end
with terminal punctuation and lines with fewer than
four words, while (Penedo et al., 2023) eliminates



lines predominantly composed of uppercase or nu-
merical characters.

Importance of Instruction Tuning Data. Typi-
cally, models acquire basic language abilities dur-
ing pre-training. Instruction tuning, a primary post-
training paradigm, aims to address the mismatch
between the distribution of pre-training data and
downstream use cases. While instruction tuning
primarily relies on large datasets, studies such as
LIMA (Zhou et al., 2024) demonstrate that data
quality is more important than quantity. An in-
creasing number of works have focused on the
quality and efficiency of instruction datasets (Kopf
et al., 2024; Muennighoff et al.; Zhuo et al., 2024;
Lu et al., 2023; Lian et al., 2023). The IFD (Li
et al., 2024) method significantly outperforms the
Alpaca model by using only about 5% of the Al-
paca dataset, also surpassing the WizardLM model
by approximately 10%. (Li et al., 2023) propose the
Nuggets framework, implementing a dual-phase
approach that leverages the disparity between one-
shot and zero-shot scores to compute a definitive
score for each instruction.

NLP Classification Tasks. In addition to in-
struction tuning, post-training of LLMs also in-
cludes other NLP classification tasks, such as senti-
ment analysis and natural language inference. How-
ever, there has been limited research on the quality
of datasets for these NLP tasks. (Fayyaz et al.,
2022) adjusted GraNd and EL2N (Paul et al., 2021)
for PLMs and applied them to NLP tasks. How-
ever, these methods require training multiple proxy
models and conducting numerous experiments to
estimate more accurate scores, which adds consid-
erable cost—sometimes even exceeding the train-
ing time on large-scale datasets. (Attendu and Cor-
beil) leverages an EL2N metric extended to the
joint intent and slot classification task, followed
by an initial fine-tuning phase on the full training
set. However, they need to score data in multiple
fine-tuning stages, selecting different data subsets
for training, further complicating the data selection
process.

3 The Particle Phenomenon in Loss
Variations

Given a downstream task dataset D =
{z1,22,...,2N} containing N samples, where
z; = (x;,y;). Here, x; represents the input data,
y; is the truth label, and ¢ = 1,2,...,N. We
explore the generalization of a pre-trained model

Batch

Figure 2: Distribution of model loss differences on each
batch under different compression scales.

with a feed-forward head attached to downstream
tasks. Different from existing work, our research
motivation is to perform subtle scaling adjustments
on the model # in advance and examine the
corresponding changes in loss based on the
changing 6, attempting to generally characterize
the correlation between the two.

3.1 Discovery of Loss Particles

Since appropriate compression of model param-
eters often leads to an improvement in general-
ization ability (Zhang et al., 2018; Ghiasi et al.,
2024; Kobayashi et al., 2024; Bos and Chug, 1996;
Krogh and Hertz, 1991), we attempt to compress
the model. That is, under the action of the hyper-
parameter <, we examine the loss difference AL
generated on a batch before and after the model
undergoes the change § — o, where « € (0, 1).
For the first time, we discovered that under fine-
scale (1079 ~ 10~®) compression, AL exhibits
particle characteristics, as shown in Figure 2. As
can be seen from Figure 2, for most of the batch
data in SST-2, AL undergoes discrete jumps when
a = 3 x 1078, This means that minor model dif-
ferences do not result in continuous loss values.
The size of the loss particle represents the degree
to which the model can distinguish fine loss differ-
ences. The larger the particle, the lower the model’s
ability to distinguish fine sample differences.
AL can be expressed as:

A Jo so<as
kLs,

Qflip 1
Af > A6 M

Aflip

Ls =
batche D

where oy, is the jump parameter, L is the

loss particle, Aﬁalf”p = aypt, and k is a dis-

crete integer variable. As « continuously in-

min (L(0,batch) — L(0 — Af,,,,,, batch)) (2)



creases from a yy;p, AL successively takes irreg-
ular jump values at jump points such as a (1),
Qflip(2)s - - - > Uflip(n)- In the interval Aoy, =
[ frip(i+1) — Qfiip(iy]» AL remains unchanged.

We define L; as the minimum batch loss particle.
According to our findings, the size of L is related
to the form of the objective function o € O and
the specific task ¢ € 7. For related research, see
Appendix B.1 for details.

It can be seen from Figure 1 that the AL val-
ues generated by different batches at the jump
point « f;;;, are not the same. In the same dataset,
AL on different samples is called the loss par-
ticle length, denoted as ALpgtcn. Assume that
ALbatchx 7£ ALbatchys but ‘ALbatch:ﬁ - ALbatchy‘
has an integer multiple relationship with Ls. In
addition, the loss differences generated by different
batches for model compression have positive and
negative values.

As « increases, Lg remains invariant and indivis-
ible. For AL generated in the weight amplification
direction, the above formula can still be used to
summarize. Different from compression, the jump
points afy;, in the amplification direction are gen-
erally larger, as shown in Appendix B.5.

3.2 Particle Fission during Fine-Tuning

Different from pure weight scaling, the model 6
iteration during the fine-tuning process includes
the compression and expansion of some weights
in different proportions. Experiments have found
that the shape of Ls undergoes a binary fission
change similar to that in the field of biological
cells. The Ls during the fine-tuning process can
be regarded as an individual that has undergone
7 binary fission cycles, denoted as Ls_, = 2%L(;,
where the empirical 7 is on the same scale as the
number of epochs. In Figure 3, we show the fission
process of Ls when 7 = 1. The fission process of
Ls_; is indicated by the red arrow in Figure 3.
Appendix B.2 provides a more detailed description
of the fission of loss particles.

3.3 Dynamic Characteristics of Qutput
Particles

Obviously, due to the continuous mathematical
properties of the linear layer function, the reason
for the emergence of L; lies in the pre-trained
model itself, rather than the feed-forward head
added later. The high-dimensional output of the
model should be discrete, which ultimately leads
to the particle characteristics of the loss. We

2
/L

5 ?’?5

2

Figure 3: Binary fission of loss particles (L) and bi-
nary tree range distribution of output particles(hs). The
red arrows and blue arrows represent the fission and
merging processes respectively.

present Property 1 and prove that the model output
is also discrete. Let the output of the model be
h = fpre(x), h € R, where d is the dimension
of the output of the pre-trained model. Similar to
the case of loss particles, we experimentally verify
the discreteness of i before and after fine-tuning.
More details are shown in Appendix B.4.

Property 1. Consider a downstream task in an
n-class classification problem, where the model
output is h = [hy, ha, ..., hg], and the correspond-
ing classification labels areY = [y1,Yy2, ..., Yn)-
Y = softmax(h) = [i1, 72, ..., 0n], where §; is
the predicted class probability. Suppose the loss
generated by a certain batch during model infer-
ence is L. If there exists a non-zero minimum loss
particle Lg, then the model output vector h gener-
ated for this batch must be a discrete vector.

The proof is in Appendix A.1.

Let the ¢-th dimension of the model output be
h(®). Under the fine penalty hyperparameter c, the
difference of A" will jump, that is:

NG
khs,

where agp is the jump parameter, Aby,,, =
agpt, and k is a discrete integer variable. We
define hs as the minimum sample output particle,
denoted as hs = min{Ar®|i =1,2,..., d}.

The fission of loss particles during fine-tuning
prompts us to further examine the dynamics of
Ah) We found that:

1. The length change of the minimum sample
output particle hs is related to the fine-tuning pro-
cess. As the fine-tuning progresses, hs undergoes
a binary fission change similar to Ls_,. While

Af < A6

Qflip 3
AO > A0 )

Aflip



hs_, continues to fission downward, the overall
change trend of Ah(® in each dimension of the
sample is related to the downstream task. As
can be seen from Figure 4(a), Ah(") of MRPC
mostly shows a divergent trend, while the out-
put particles of SST-2 mostly show a convergent
trend. For batch data, for a typical sample x with
r = min{h((;)(xj)ﬁ =1,2,...,d,zj € Dygen},
Property 2 proves that L is equivalent to hs. Prop-
erty 3 gives that the actually observed binary fission
of hs (including Lg) conforms to the statistical ex-
pectation of a uniform distribution.

Property 2. Let the minimum loss particle of the
pre-trained model before fine-tuning be Ls, and
the minimum output particle of the sample x be hg.
Then |Ls| = |hs|, where | - | represents the particle
length.

The proof is in Appendix A.2.

Property 3. Let the minimum output particle of
the sample before fine-tuning be hs. Suppose that
after T fissions at the end of fine-tuning, the mini-
mum output particle becomes h;_. If the sequence
of fission particle values |hs, |, |hs,|, ..., |hs,| is
uniformly distributed successively in the ranges
[07 ‘ht; L [O, ’h51 ]’ s [07 ‘h5771 ]’ then EHh(SZH =
%‘h(s , Where i € [1,2,...,n]

The proof is in Appendix A.3.

2. The characteristics of samples are signifi-
cantly different. Taking the SST-2 dataset as an
example, we randomly select 20 samples from the
training set and observe their performance on the
output particles of the pre-trained model before
fine-tuning, as shown in Figure 4(b). It can be seen
from the figure that the discrete degree of the out-
put of some samples is relatively large, while that
of other samples is relatively more concentrated.
This reflects the characteristics and differences of
samples, that is, the pre-trained model has differ-
ent sensitivities to different samples on different
features.

3. Different dimensions
responding  jump  sequences
Slip(1)? = flip(2)7 " "7 7 flip(5)”,
maintains an  invariant 1nter\{al

(2 7 (2
M) = [a§zlp<j+1> ~ iip())-
jump sequences agfl)ip(j) #* a%i)p(j), and the value
changes of k are different.

4. During fine-tuning, hs_, and Ls_, maintain
equivalence. In the same round of fine-tuning, the
output changes of all dimensions of each sample

have cor-
such as

each
such as
The

o and

Figure 4: Output particles’ distribution of different sam-
ples before and after fine-tuning BERT-base.

can still be summarized by Equation 3, except that
hs in it becomes hs_,. The degree of fission is
related to the model and the task set. Property 4
gives an approximate calculation of batches that
have not undergone fission during the fine-tuning
process.

Property 4. Assume that the probability of oc-
currence of particle fission whithin a sample is p,
where a batch Dygiep, € D, |Dpaten| = b, N = |D].
After T fissions, the probability of randomly se-
lecting a nbon—ﬁssioned batch from the dataset is

C
Pbatch = Ciﬁ’\:’ where N = N - (1 —p)7.

The proof is in Appendix A.4.

4 Sample Selection with Pre-Scaling on
Model

In the previous section, we first performed a slight
compression on the model weight § and then exam-
ined the change in loss under this slight compres-
sion. As a result, we discovered the loss particle
Ls. Superficially, Ls seems similar to the approx-
imate expression of the gradient AL/A#, but in
fact, there is an essential difference between them.
Lyj is obtained on the premise of compressing the
entire 6, which is a response of the loss to the over-
all change of the model. While the gradient is the
response of the loss to the change of a single weight.
Especially in the field of NLP, there are significant
limitations in directly using methods based on the
first - order response of the loss (such as gradi-
ents) to characterize features. Furthermore, from
Property 1, we obtained the equivalence between
the minimum batch particle and the minimum loss
particle. They are not only numerically equal but
also maintain this equivalence throughout the en-
tire fine - tuning stage. The method of pre-scaling
on # can profoundly describe the relationship be-
tween samples and loss. Thus, we proposed the



Pre-Scaling Pruning (PSP)

- /2%, 8- )
Raw sy E@Z’ = @2‘5 — 8 — |
Data \GuSY oo Jl B 2
U Fine-tuning s s)| ' |
y < PSPonesshot i @2 M @z —> & :i} ]
\
Data Q@ - g
Sclector | e o= N
< [ 0-a0 ]
I ~ — 5 1
J\-L liSPze ot i (1 3 ), i
Data u— ! o I i
Subsets - N 0+ab 7/} }
A
N \

Large Language Model

Figure 5: The overview of proposed PSP. Two data selec-
tion schemes are considered: PSPype-shot and PSP,ero-shot -

PSP method for sample selection. Section 4.1 pro-
vides an overview of PSP, including two schemes:
PSPone-shot and PSP ,er0-shot. Section 4.2 details the
two schemes.

4.1 Overview

The overview of proposed PSP is provided in the
Figure 5. Based on the pre-scaling operations, two
data selectors are designed, including PSPgpe_shot
and PSPer0.shot- Detailed descriptions of the two
solutions will be presented in Section 4.2. In addi-
tion, the pre-scaling operations performed on the
model 6 includes slight compression, i.e. § — af,
and slight expansion, i.e. § + af. The coefficient
« is the scaling factor.

4.2 Pre-Scaling Pruning

For a sample x, we construct the output particle
vector v(z) as follows:

v(z) = (ALY, AR AR@D) 4)
d .
lo(@)[ = 1A (5)
i=1

v(x) reflects the sensitivity of the model to the sam-
ple z in different output dimensions, and the vector
v(x) is sensitive to fine - tuning. Let s represent the
sensitivity score of the model to the sample x, and
s = ||v(x)||1, where || - ||1 represents the L; - norm
value of the vector. According to the changes of s
in different situations, we proposed two schemes
for the PSP method.

PSPone-shot- 1. Use D to fine - tune the model
once, and obtain the output particles vy (z;) and
va(z;) of the sample x; € D before and after fine
- tuning respectively. 2. Calculate the sensitivity

scores of the model to the sample z; before and
after fine - tuning, denoted as s; and so respectively.
3. Construct the scoring function ¢(z;).

The key is how to establish the scoring function
¢(-) based on s; and sy, and then rank the samples
according to the pruning criterion expressed by the
function ¢(-) to obtain the sequence of retained
samples. Empirically, the output particles of some
samples show a "divergent" trend, with s1 < s9,
while those of other samples show a "compressed"
trend, with s; > so. If we measure the importance
of samples only through s; or s, it will reduce
the generalization ability of the model. Therefore,
the information of s; and s; needs to be compre-
hensively considered. We construct the scoring
function ¢(z;) for the sample x; € D by using the
difference and ratio between s; and ss:

o) = 2 - [s2 = 5] (©)
51

¢(+) reflects a relative stability of the model’s sen-
sitivity to certain features of the sample before and
after fine - tuning. This stability reflects the ability
of the pre-trained model in knowledge acquisition
and also provides an explanation for the fine - tun-
ing itself.

Due to the large number of task sets, it is not
advisable to simply apply Equation 6 in practical
applications because different tasks have different
biases towards the ratio or difference. For complex
situations, we propose a gold-panning selection
method. The specific details are analyzed in Sec-
tion 5.5.

PSP,er0-shot- The model also shows output par-
ticles under slight compression, as detailed in Ap-
pendix B.4. Empirically, the model is not sensi-
tive to slight compression. PSP ero-shot COnstructs
S1 = Hvl(mz)Hl and sy = va(xZ)Hl for the sam-
ple z; € D by slightly compressing and expanding
the model, that is, § — af and 6 4 «f. The scoring
function ¢(x;) of PSP,ero-shot is as follows:

P(w;) = 51 — 82 (7
S Experiments

5.1 Experimental Setup

Baselines. We compared five methods to prove the
effectiveness of output particles. A) Full training
set: The baseline method of standard training using
the full training set. B) Random pruning: Ran-
domly delete data points with ratio (1 — p) at once
and use the remaining data for subsequent training.



C) GraNd: Use the expected value of the gradient
norm of the model as a measure of the importance
of samples. Consistent with the settings in (Fayyaz
et al., 2022), we compute the GraNd scores only
for the randomly initialized classifier layer on top
of the PLMs. D) EL2N: An estimated variant of
GraNd. The importance of each sample is the av-
erage EL2N scores of five independently trained
models, and then we retain the data with a higher
score for subsequent training. E) Single EL2N:
First, train with the full dataset for F,,. epochs,
and then use the EL2N scores to measure the im-
portance of samples. Retain the data subset with a
higher score for subsequent training. F) PSPope ghot:
The proposed method which trains on the full train-
set for T epochs, followed by single-data pruning
using PSPgpe_shot scores. The implementation de-
tails of each method are shown in Appendix C.1.

Tasks & Datasets. We used eight datasets from
the GLUE (Beven and Binley, 2014) benchmark.
The GLUE benchmark is a suite designed to eval-
uate the performance of natural language under-
standing (NLU) systems. Table 6 in Appendix D
provides the general characteristics of the datasets
we used.

Models. We used two PLMs: BERT-base-
uncased (110M parameters) (Devlin, 2018) and
RoBERTA-base (125M parameters) (Liu, 2019).
The pre-trained models were all provided by
Hugging Face (Wolf, 2019). For BERT and
RoBERTA, their high-dimensional outputs are both
768-dimensional, which is exactly the feature vec-
tor for calculating output particles.

5.2 Results of the PSPype.shot Method

RoBERTA-base. The experimental results of
PSPone-shot On ROBERTA-base (Liu, 2019) a are
reported in Table 1. The GraNd and EL2N scores
are the average scores of five independently trained
proxy models. Since STS-B is a regression task,
we did not calculate its EL2N and Single EL2N
scores. In most cases, the results of PSPyne-shot
are comparable to those of training with the full
dataset. It is worth noting that for the RTE task
with high learning difficulty, PSPopeshot €Xceeds
the full dataset by 2.89%. The subsets selected by
GraNd and EL2N (Paul et al., 2021) scores show
a phenomenon of difficult fitting, which also in-
dicates the effectiveness of PSPyqe-shot in the NLP
field.

In addition, to further verify the effectiveness
of PSPgpe_shot» We conducted experiments on other
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Figure 6: The results of fine-tuning BERT using the
50% of data with higher (blue solid) and lower (yellow
solid) scores selected by PSPype.snot oOn MNLI (a) and
QQP (b) respectively. The three graphs in each row
from left to right are the evaluation accuracy, evaluation
loss, and training loss.

models such as BERT-base pre-trained model (De-
vlin, 2018). And the same efficient performance is
obtained. The detailed results can be found in the
Appendix C.2.

5.3 Results of the PSP ¢ o-shot Method

We evaluated the effectiveness of PSP,cro-shot ON
the SST-2 and MNLI tasks using the BERT-base
model. As can be seen from Table 2, by selecting
only 50% of the data, PSP,eo-shot can achieve the
same result as using the full dataset on the SST-2
task. Remarkably PSP,¢o.shot Selects data without
any training on the model and is independent of
data labels.

5.4 Generalization Analysis

To further analyze the impact of the data selected
by PSPgpe-shot On the model’s generalization ability,
the dataset was divided into two subsets: Dy, and
Diow. Dhign represents the top 50% of data with
higher scores selected by PSPgneshot, and Djgy,
represents the remaining 50% of data with lower
scores. As can be seen from Figure 6, for MNLI (a)
and QQP (b), the training loss of Dy, is higher
than that of Dj,,,. However, the evaluation loss
shows the opposite trend. And for QQP (b), the
evaluation accuracy of the model trained on Dy,
is always higher than that of the model trained on
D,,. This indicates that the subset selected by
PSPopeshot can not only ensure the final conver-
gence of the model but also avoid the model falling
into a local optimum in the early stage, enabling the
model to significantly improve its generalization
ability even with only 50% of the data.



Dataset MRPC RTE CoLA STS-B SST-2 QNLI MNLI QQP AVG
FULL  88.73 7509 61.81 90.80 9438 9271 87.71 9152 85.34
Random 87.38 7437 5576 89.84 9409 9191 86.70 90.30 83.79
GraNd  85.05 50.54 5592 89.11 93.35 9231 86.64 90.53 80.43
EL2N 85.66 4838 56.82 - 93.58 9256 86.97 90.63 79.23
EL2N* 89.33 7653 61.73 - 9427 9236 86.81 90.63 84.52
PSPopeshot 88.977 77.987  63.847 90.717 94.617 91.82T 87.247 90.587 85.72

Table 1: Comparison results of PSPy shot and other methods on GLUE tasks using ROBERTA-base. The retention
ratio of all datasets is 50%. The superscript "1" indicates selecting data points with larger scores. To exclude the
influence of random factors, all experimental results are the average of five independent runs. "FULL" represents

Full training, "EL2N*" represents Single EL2N.

Dataset SST-2 MNLI
FULL 9278  84.37
Random 92.77 83.14
GraNd 92.83 8224
EL2N 9278 82.16
EL2N* 92.55 8345
PSPoneshor 92.787  83.37

Table 2: Comparison of PSP, shot and other methods.
The superscript "1" indicates selecting the 50% of data
points with larger scores. "FULL" represents Full train-
ing, "EL2N™" represents Single EL2N.

5.5 Gold-panning Selection

To verify whether there are samples in the data sub-
set that are not conducive to improving the model’s
generalization ability, we used a strategy called
"gold-panning selection". After obtaining the s
and h scores described in Method 1 Specifically,
after obtaining the s; and so scores of each sample
described in PSPgpe shot, the data is initially puri-
fied using indicator j—f, retaining data with the ratio
p1. Then we used |sg — 51| to select data with the
target ratio p. We experimented with the results
of two-stage purification under three ratios p, as
shown in Table 3. We found that it is not always
better to retain more data samples. For QNLI and
SST-2, the model trained on 40% of the samples
achieves higher accuracy than the one trained on
50% of the samples. This suggests that some sam-
ples in the 50% dataset may not be conducive to the
model’s learning, and removing them can enhance
the model’s generalization ability.

task  p1(3) p2(ls2—sl]) p  Accuracy
0.6 0.5 0.5 91.19

QNLI 0.5 0.4 0.4 91.52
0.4 0.3 0.3 90.54
0.6 0.5 0.5 92.55

SST-2 0.5 0.4 04 9335
0.4 0.3 0.3 92.89

Table 3: Gold-panning selection. We used the BERT-
base pre-trained model, taking the QNLI and SST-2
tasks as examples. We conducted two-stage screening:
1) Select data with a ratio of p; using the f—‘;’ score, and
set the importance of unselected data points to 0; 2)
Select data with a ratio of py using |s2 — $1], and the
final retention ratio of data is p = po.

6 Conclusion

In this work, we first conduct a fine-grained scaling
on the model and identify common discrete features
of PLMs: loss particles and output particles. We
then propose a novel metric to measure the sensitiv-
ity of PLMs to data and exploit changes in output
particles to select high-quality data. Our method
is applied to NLP classification tasks, achieving
excellent performance with minimal overhead.

The "particle phenomenon" is a microscopic re-
flection of PLMs. Further exploration of loss parti-
cles and output particles may bring new enlighten-
ing perspectives to the fields of data pruning, model
compression, and the interpretability research of
LLMs.

Limitations

In this work, we identified the particle phenomenon
in PLMs and leveraged output particles for data se-
lection in NLP classification tasks. However, why



do particles emerge in PLMs but not in traditional
deep networks? At present, we can only interpret
this from the perspective of model intelligence, sug-
gesting that minor variations in input samples are
insufficient to elicit noticeable differences in model
responses. Moreover, research on particles in sim-
ple SFT tasks may still be limited. Moving for-
ward, we aim to conduct an in-depth investigation
into this phenomenon within complex reasoning
tasks in large models. In the future, we will further
explore its implications in other pretraining and
instruction-tuning tasks.
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A Proofs
A.1 Proof of Property 1

Property 1. Consider a downstream task in an
n-class classification problem, where the model
output is h = [hy, ha, ..., hq, and the correspond-
ing classification labels areY = (Y1, Y2y« -+ YUn)-
Y = softmax(h) = [J1, 92, .., Un), where y; is
the predicted class probability. Suppose the loss
generated by a certain batch during model infer-
ence is L. If there exists a non-zero minimum loss
particle Lg, then the model output vector h gener-
ated for this batch must be a discrete vector.

Proof. Proof by contradiction. Assume that i €
[1,2,...d], and h; is a continuous variable. As-
sume that in this task, the loss function defined
by cross - entropy is L = — Y ., y;Ing;. And a
certain batch contains data of all n classes. Sup-
pose there is a small change ¢ # 0 in h;. Since
h; is continuous, the model output changes to
h' = [hi, ha,...hi+e, ..., hg]. Then the resulting
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ehi+s
ehj +ehi+5

= 1;, which contradicts

Ui 0
J=lyzi .
the proposition assumption Ls # 0. Thus, the

proof is completed.

A.2 Proof of Property 2

Property 2. PLet the minimum loss particle of the
pre-trained model before fine-tuning be Lg, and
the minimum output particle of the sample x be hg.
Then |Ls| = |hg|, where | - | represents the particle
length.

Proof. Continue to use the assumptions in Property
1,the loss function defined by cross-entropy is L =
- Z?:l Yyilng;.

Suppose that under a fine penalty «, the output
change of the model is Ah. From Equation 3,
there exists an integer vector k = [ky, ko, . . ., k4]
such that Ah = |hs| - [k1, ko, . . ., kq]. Since g;

ehi
n h;»
j=1¢"

is g =

the predicted probability after the change
ehitAh;

where Ah; = k;|hs|. Then

AL ==Y yi(lng; —Ing) (8)
i=1

Note that Ah; — 0, where e ~ 1. Then AL =
=Y yine®h = =37 wiki|hyl.

A.3 Proof of Property 3

Property 3. Let the minimum output particle of
the sample before fine-tuning be hs. Suppose that
after T fissions at the end of fine-tuning, the mini-
mum output particle becomes hs_. If the sequence
of fission particle values |hs, |, |hs,|, - .., |hs.| is
uniformly distributed successively in the ranges
[0, [Rs]], [0, [hsy ), - - [0, |hs, . [], then Elhs;|] =
%’hé , where i € [1,2,...,n]

Proof. According to the assumption, the particle
value |hs,| is uniformly distributed in the inter-

val [0, |hs,_,|]. By the law of total probability,
|Ps, 4|
Ellhs,|] = mfo Vadr = 3lhs, | By

continuous upward recursion, the proof is com-
pleted.

The actually observed binary fission phe-
nomenon confirms the uniformity of the output
particle fission values.



A.4 Proof of Property 4

Property 4. Assume that the probability of oc-
currence of particle fission whithin a sample is p,
where a batch Dygier, € D, |Dpgren| = b, N = |D].
After T fissions, the probability of randomly se-
lecting a nbon-ﬁssioned batch from the dataset is

Dbatch = % where N = N - (1 —p)7.
N
Proof. According to the problem, after one fission,
the number of non-fissioned samples in D is N1 =
N-(1—p). Then after 7 fissions, N = N-(1—p)".
Then the probability that any batch does not contain
et

Cy
steps are in line with the requirements, the proof is
completed.

. Since the above

fissioned samples is ppatch, =

B Further Research on Loss Particles and
Output Particles

B.1 Universality of Loss Particles in PLMs

Loss particles are commonly found in PLMs. Fig-
ure 7 shows the characteristics of loss particles in
different PLMs without fine-tuning. The models
used are BRTE, RoBERTA, GPT2, and T5 respec-
tively, the dataset used is SST-2, and the batch size
is 32, and the penalty coefficient o = 5 x 1075.
Unless otherwise specified, in this paper, BERT
refers to BRTE-base-uncased, ROBERTA refers to
RoBERTA-base, T5 refers to T5-base, and all mod-
els are provided by Hugging face (Wolf, 2019). It
can be seen from Figure 7 that for most of the
batches in SST-2, each model has loss particles.
However, for different models, the distribution of
loss particle sizes with batches is different.

The loss particles of different tasks are shown
in Figure 8. Among them, SST-2 (a) is a binary
sentiment analysis task, using the cross-entropy
loss function. STS-B (b) is a regression task for
judging the similarity of semantic texts, using the
mean square error loss function. It can be seen
from Figure 8 that there are significant differences
in the loss particles of different tasks.

In addition, we studied the loss particles of each
sample in the BERT model. Figure 9 shows the
loss particles of each sample in the MRPC dataset
on the BERT model, where the penalty coefficient
a =5 x 1078, We found that most samples have
loss particles, and there are also positive and nega-
tive differences between the loss particles of sam-
ples, and there is a multiple relationship in size.
At the same time, in addition to the smaller BERT
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model, we also found the existence of loss particles
in the larger LLaMa2-7b model, as shown in Figure
10.

B.2 Variations of Loss Particles during
Fine-Tuning

We further studied the change rules of the BERT
model during fine-tuning using MNLI and QQP.
It was found that during the fine-tuning process,
the loss particles gradually underwent discrete fis-
sion, as shown in Figure 11. Since the calcu-
lation amount of calculating the loss particles at
each step is huge because the model needs to be
scaled at each step. Therefore, we used a sim-
ple and effective method to replace it. The spe-
cific steps are as follows: 1) Obtain the mini-
mum loss particle Ls of the model before fine-
tuning; 2) Record the loss of each step of training
to form a set L = {Ltepo, Lstept, - - - » ListepN }
where N represents the total number of train-
ing steps; 3) Calculate the remainder of divid-
ing the loss of each step by Ls to form a new
set R = {R8t6p07 Rstepl» ceey Rstepia ceey RstepN}a
where Rgtepi = Lstepi%oLs. In Figure 11, we
scaled Rsiepi by Rgtepi/Ls. As the fine-tuning
progresses, the number of values in R increases,
indicating that the number of particles fissioned
from Ls is increasing. We represent the set of
particles generated during the entire process as
l5 = {lstep(]a lstepl, cee 7lstepi7 ey lstepN}- Where
Istepi = o= Ls, T €[0,1,2,...,27].

B.3 Research on Output Particles of Different
PLMs

Figure 12 shows the s; scores of the output par-
ticles of different PLMs. The calculation method
of the s; score is consistent with the settings in
PSPopeshot- S1 represents the initial sensitivity of
the PLMs to the sample, which corresponds to the
Score in Figure 12. Taking the datasets QNLI and
MNLI as examples, we compared the output parti-
cles of the BRTE, RoBERTA, GPT2, and T5 mod-
els. Specifically, we first calculated the s; score of
each sample for the model, then sorted them, and
then compared the distribution of different models.
At the same time, since the s; scores of a small
number of samples were too large, we performed
a logarithmic scaling on Score: log(Score) + C.
It can be seen from Figure 12 that for QNLI and
MNLLI, there are significant differences between
the output particles of different models, which also
reflects the differences in the knowledge mastery
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Figure 7: Loss particles of different PLMs. The models used include BERT, RoBERTA, GPT-2, and T5 from

Hugging Face. The dataset used is SST-2.

of these two downstream tasks by different PLMs.
And for the ROBERTA, GPT2, and T5 models, the
overall performance of their output particles is rela-
tively stable, while the changes of the BRTE model
are more drastic.

B.4 Research on Output Particles after Slight
Compression of PLMs

Figure 13 shows that when the penalty hyperpa-
rameter @ < 3 x 1078, Ah = 0, where 0 € R%.
When a = 3x 1078, the output differences of some
dimensions begin to jump and remain unchanged in
the interval [3 x 107®,8 x 1078]. That is, in the in-
terval [3x 108, 8x 10~%], the output particle of the
pre-fine-tuning model 15 /uithous = 5.960464 X
10~8, and the output particle of the post-fine-tuning
model A /yyipp, = 1.117587 X 10~%. Among them,
hs rwith = Z%hé Jwithout» Indicating that some out-
put particles have undergone fission after fine-
tuning.

B.5 Research on Output Particles after Slight
Expansion of PLMs

In addition, we used the BERT model and the
MRPC dataset to study the output particles after a
slight expansion of the model 6. It can be seen from
Figure 14 that when the BERT model is slightly
expanded and the scaling coefficient o« = 6 x 1078,
output particles appear. In Figure 13 (a), when the
model is slightly compressed, the output particles
appear when the scaling coefficient o = 3 x 1078,
This shows that both slight compression and ex-

13

pansion of the PLMs will result in output particles.
However, the model is more sensitive to slight com-
pression.

C Experimental Details

C.1 Experimental Details

We divided the 8 tasks in GLUE into two categories
during training. One category is tasks with larger
datasets, including QNLI, MNLI, and QQP. The
other category is tasks with smaller training sets,
including CoL A, SST-2, MRPC, STS-B, and RTE.
For these two categories, our training settings are
shown in Table 4. At the same time, for all tasks,
we used a unified pruning rate of 50%. We used the
AdamW as our optimizer. For learning rate adjust-
ment, we used a linear scheduler with a warm-up
ratio of 0.1. For PSP shot, the scaling coefficient
o =5x 1078 And in PSP eroshot, @ = 1 x 1077,
All experiments were implemented on NVIDIA
RTX3090 GPUs.

C.2 More Results of the PSPe-shot Method
on BERTA-base

BERT-base. Table 5 reports the experimental re-
sults of using the BERT-base pre-trained model
(Devlin, 2018). It is not difficult to see that
PSPopeshot leads in most cases and even outper-
forms the results of training with the entire dataset.
Especially for tasks such as MRPC, RTE, and
CoLA, PSPgpe-shot €xceeds the results of using the
full dataset for training by more than 1%. At the
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Figure 8: Loss particles across different tasks. The model used is BERT, with SST-2 (a) and STS-B (b) as the

datasets.
Epoch(E,..) Ir  batchsize weightdecay Epoch(E)st) Irscheduler optimizer
MRPC, RTE, CoLA, STS-B, SST-2
10 2e-5 32 0.002 5 linear Adam
QNLI, MNLI, QQP
5 3e-5 64 0.002 1 linear Adam

Table 4: The hyperparameters we used in the GLUE tasks.

same time, based on (Fayyaz et al., 2022), we ex-
tended the application of EL2N and GraNd meth-
ods to other GLUE tasks and found that they are
not suitable for tasks such as MRPC, RTE, and
CoLA. We found that for the BERT-base model,
these three tasks are different from others, and it is
more effective to select the 50% of data with lower
scores for subsequent training. The performance
of CoLA is as high as 60.33%, exceeding that of
the full dataset by 2.72%. For the larger MNLI and
QQP datasets, the result of PSPyqe-shot iS at most
0.54% lower than that of the full dataset, but the
amount of training data is reduced by 50%. More-
over, PSPype_shot Outperforms the results of random
pruning, which proves that the pre-trained model
can improve its generalization ability by selecting
a small amount of data based on its own sensitivity
to the data, even without knowing the data labels.

D General Characteristics of Datasets

In Table 6, we provide an overall description of
the GLUE datasets. In general, the GLUE datasets
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cover a large number of training set sizes and differ-
ent types of language understanding tasks to mea-
sure the performance of the model in a wide range
of tasks. The data we use does not contain any
personally identifying info or offensive content.
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Figure 9: Loss particles for each sample in the MRPC dataset using the BERT model.

Dataset MRPC RTE CoLA STS-B SST-2 QNLI MNLI QQP AVG
FULL 86.24 67.08 5761 88.76 92778 9145 8437 91.10 82.42

Random 8149 63.72 5426 8796 92777 9037 83.14 89.75 80.43
GraNd  65.69 5271 5323 8746 9283 90.03 8224 89.89 76.76
EL2N 61.02 52770 50.37 - 9278 90.68 82.16 8995 74.24
EL2N" 8566 6534 59.99 - 9255 9141 8345 91.02 8135
PSPone-shot 87.25¢  68.23"  60.33'  89.28" 93.017 91.26" 83.83" 90.86" 83.01

Table 5: Comparison results of PSPope.shot and other methods on GLUE tasks using the BERT-base model. The
retention ratio p of all data subsets is 50%. The superscript "|" indicates selecting the 50% of data points with
smaller scores, and the superscript "1" indicates selecting the 50% of data points with larger scores. The GraNd and
EL2N scores are the average scores of five independently trained proxy models. Since STS-B is a regression task,
we did not calculate its EL2N and Single EL2N scores. To exclude the influence of random factors, all experimental
results are the average of five independent runs.
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Figure 10: Loss particles for each sample in the MRPC dataset using the LLaMa2-7b model.
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The change of loss particles with the training process
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Figure 11: The change-diagram of loss particles of MNLI(a) and QQP(b) during the training process. Using the
BERT model, the formula L%L; is used to record the remainder of the loss L at each step divided by the initial
loss particle Ls. If the remainder is O, it means that the loss particle remains unchanged; otherwise, the loss

particle has undergone cleavage. Let [4.,; represent the loss particle at the i-th step, then l4;ep; = %L(;, where
Tel0,1,2,...,27].
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Figure 12: s; scores of output particles across different PLMs. The models used include BERT, RoBERTA, GPT-2,
and T5. Comparisons are conducted across the QNLI, MNLI, MRPC and SST-2 tasks.
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Figure 13: Output particles under different scaling factors a before and after fine-tuning. For the models before
and after fine-tuning: 1) When o = 2e — 8, no output particles appear in either of them; 2) When o« = 3e — 8,
output particles appear in both of them, and the particles remain unchanged in the interval [3e — 8, 8¢ — 8]; 3) When

a = 9e — 8 or a = le — 7, the output particles in each dimension change.
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Figure 14: Output particles of the slight enlargement of the model # using different scaling factors o. 1) When
o = 5e — §, no output particles appear; 2) When o = 6e — 8, output particles appear and remain unchanged in the

interval [6e — 8, 1e — 7]; 3) When o« = 2e — 7, the output particles in each dimension change. The model
BERT and the dataset used is MRPC.
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Name  [Trainl I[Testl Task Eval Metric Domain
Single-Sentence Tasks
CoLA 8.5k 1k acceptability Matthew’s misc.
SST-2 67k 1.8k sentiment Acc movie reviews
Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase Acc news
QQP 364k 391k paraphrase Acc social QA questions
STS-B 7k 1.4k sentence similarity = Pearson Cor. misc.
Inference Tasks
MNLI 393k 20k NLI Acc misc.
QNLI 105k 5.4k QA/NLI Matched Acc. Wikipedia
RTE 2.5k 3k NLI Acc news, Wikipedia

Table 6: Statistics of GLUE datasets.
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