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ABSTRACT

Multimodal large language models (MLLMs) have made significant progress in
visual-language reasoning, but their ability to efficiently handle long videos re-
mains limited. Despite recent advances in long-context MLLMs, storing and at-
tending to the key-value (KV) cache for long visual contexts incurs substantial
memory and computational overhead. Existing visual compression methods re-
quire either encoding the entire visual context before compression or having ac-
cess to the questions in advance, which is impractical for long video understanding
and multi-turn conversational settings. In this work, we propose StreamMem, a
query-agnostic KV cache memory mechanism for streaming video understanding.
Specifically, StreamMem encodes new video frames in a streaming manner, com-
pressing the KV cache using attention scores between visual tokens and generic
query tokens, while maintaining a fixed-size KV memory to enable efficient ques-
tion answering (QA) in memory-constrained, long-video scenarios. Evaluation
on three long video understanding and two streaming video question answer-
ing benchmarks shows that StreamMem achieves state-of-the-art performance in
query-agnostic KV cache compression and is competitive with query-aware com-
pression approaches.

1 INTRODUCTION

Recent advances in Multimodal Large Language Models (MLLMs) (Hurst et al., 2024; Zhang et al.,
2024g; Comanici et al., 2025; Bai et al., 2025; Zhang et al., 2025a) enable the capability to rea-
son across textual and visual contents. Despite fast improvements, their capabilities to capture
fine-grained details of actions, motions, object locations, interactions between objects, and spatial-
temporal orders of events in long videos are still limited (Zhang et al., 2025c). There are two main
reasons for this. Firstly, encoding the frames in a long video often generates a large number of visual
tokens, exceeding the context length of the underlying Large Language Model (LLM). Secondly,
storing the KV cache of these large number of visual tokens and attending to them during decoding
poses significant memory and computational overhead. While the first issue has been alleviated by
recent progress in long-context LLMs (Xiong et al., 2023; Su et al., 2024; Zhang et al., 2024b),
the memory and compute efficiency of dealing with long videos remains a challenge, especially for
real-world applications on edge devices.

A number of recent works explored video token compression strategies to tackle long video un-
derstanding, including temporal compression (Tang et al., 2025; Tan et al., 2024), spatial compres-
sion (Chen et al., 2024a; Zhang et al., 2025b), and hybrid methods (Zhang et al., 2024d; He et al.,
2024; Shen et al., 2024; Tao et al., 2025). These approaches can suffer significant information loss.
For example, the action information in the video often cannot be captured with any single frame
in the video. Many such methods also rely on having access to the text query for visual compres-
sion (Li et al., 2024b; Liang et al., 2024; Hu et al., 2025), which is often unknown at the time of
video processing in real-world applications (Kim et al., 2025b).

In parallel to these efforts, recent works start to explore streaming video processing with MLLMs,
a paradigm in which video frames are incrementally encoded as they arrive, without prior knowl-
edge of the video’s full length or the downstream query. Compared to offline video processing, the
streaming video processing setup is much more flexible, as the model does not need to know the
text query or the length of the video when encoding visual information. ReKV Di et al. (2025) is
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Figure 1: Query-agnostic key-value (KV) cache compression in streaming video. StreamMem
addresses the challenge of streaming video processing under a memory budget by introducing a
query-agnostic KV compression strategy.

a leading work in this direction. It encodes new video frames in the stream with sliding window
attention and stores the KV cache. When the model receives a question, it retrieves the most rele-
vant KV cache in each layer with in-context retrieval. While this method is shown to be effective,
it consumes significant memory to store all the KV cache. Offloading the KV cache to memory or
disk and reloading them upon retrieval could also be very inefficient as the video becomes longer.
LiveVLM Ning et al. (2025) proposes a KV compression mechanism to reduce the KV cache size
by 70%. While LiveVLM alleviates the issue of memory consumption, it simply throws out the
KV cache of earlier tokens when the memory upper bound is reached, which can lead to complete
forgetting of earlier parts of the video.

To enable efficient long video processing in memory-constrained environments, we introduce
StreamMem, a training-free and query-agnostic KV cache memory system for streaming video un-
derstanding with MLLMs. StreamMem maintains a bounded memory footprint by continuously
compressing the KV cache after each incoming video clip, thus preventing out-of-memory (OOM)
errors and avoiding costly memory offloading regardless of video length. To achieve effective and
efficient memory retention, StreamMem leverages a novel saliency metric based on cross-attention
scores between visual tokens and chat template tokens, allowing it to select and preserve informative
visual content in a query-agnostic manner. In addition, it incorporates an input frame compression
module to reduce frame-level redundancy prior to MLLM encoding, and a frame-wise KV merg-
ing mechanism that constructs prototype representations for each observed frame. Together, these
components produce a diverse yet compact KV cache that supports accurate and memory-efficient
streaming question answering.

We evaluate StreamMem across three offline and two streaming long video understanding bench-
marks (EgoSchema (Mangalam et al., 2023), MLVU (Zhou et al., 2025), VideoMME (Fu et al.,
2025); RVS-Ego and RVS-Movie (Zhang et al., 2024a)) using three open-source pre-trained MLLMs
(LLaVA-OneVision (Li et al., 2024a), Qwen2-VL (Wang et al., 2024a), and Qwen2.5-VL (Bai et al.,
2025)). Results show that StreamMem consistently retains high utility while keeping the KV cache
compact across videos of varying lengths and question types. It not only surpasses state-of-the-art
streaming video models, but also achieves competitive performance with methods that rely on sig-
nificantly larger memory budgets. Comprehensive ablation studies confirm the contribution of each
component in the StreamMem framework. By enabling continuous, scalable memory compression
without fine-tuning, StreamMem provides a crucial step toward building real-time MLLM agents
capable of continuous video understanding in open-world settings.

2 RELATED WORK

Streaming video understanding with MLLMs. Streaming video understanding refers to the set-
ting where the model continuously processes video frames in real-time. The model does not know
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Figure 2: (a) The overall workflow of StreamMem for streaming video understanding. Incoming
frames are first filtered to reduce redundancy, then passed through the vision encoder and integrated
with the existing KV memory via cross-attention. The resulting KV cache is compressed to maintain
a fixed memory budget, enabling continual processing of future frames or downstream question
answering. (b) Detailed illustration of the KV compression module. Some KV cache in the memory
and the new frames are pruned according to the attention score between the keys and the proxy
queries. In addition, we aggregated the key-value pairs for each new frame into a single frame-
level prototype via weighted merging (shown in darker squares). This combination of pruning and
merging ensures compact yet expressive memory representations for long video sequences.

the length of the video beforehand and therefore cannot sample a fixed number of frames uniformly
from the video. VideoLLM-online (Chen et al., 2024a) presents an MLLM that supports efficient
streaming video processing and real-time dialogues. However, it aggressively down-samples each
video frame to only include 10 visual tokens, limiting its understanding of fine-grained details in the
video. Flash-VStream (Zhang et al., 2024a) and Dispider (Qian et al., 2025) use external memory
modules to compress and organize visual tokens. Upon receiving a question, the model retrieves rel-
evant visual tokens, combines them with the text tokens, and feeds them through the MLLM. Recent
works start to explore KV cache compression and retrieval for video understanding. ReKV (Di et al.,
2025) encodes the video in streaming fashion and stores all the KV cache by offloading to memory
or disk, and performs in-context retrieval of the relevant KV cache for each layer when answering
a question. The offloading of KV cache could incur a lot of memory and is not scalable to ultra-
long videos. LiveVLM (Ning et al., 2025) designs a KV cache compression strategy for MLLMs
to significantly reduce memory usage and improve question answering speed compared to ReKV.
However, it uses a fixed compression ratio throughout the video and relies on first-in-first-out (FIFO)
strategy to maintain a constrained memory, which leads to forgetting of earlier information in long
videos, even though they might be informative. StreamMem resolves this issue by compressing the
KV cache memory and the KVs from the new frames together and ensures a fixed-size KV cache
memory throughout the video stream. Concurrent work InfiniPot-V Kim et al. (2025b) also studies
streaming video processing with constrained memory consumption. Different from StreamMem,
they used a combination of two compression mechanisms, temporal-axis redundancy reduction and
value norm-based selection.

Long video understanding with MLLMs. Long video understanding has been a great challenge
for MLLMs given their constrained context length. Early models such as LLaVA (Liu et al., 2023;

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2024) can only process a very small number of frames, leading to significant information loss.
A number of training-based methods Zhang et al. (2024b); Shen et al. (2024); Shu et al. (2025);
Liu et al. (2025a) have been proposed to reduce the number of visual tokens needed to represent
each video frame. In addition, recent foundation models like Gemini (Comanici et al., 2025) and
Qwen2.5-VL Bai et al. (2025) also have inherent long visual context processing capability. These
training-based methods, however, are often very computationally expensive, especially when fine-
tuning large MLLMs, and needs re-training for new foundation models. Training-free long video
understanding methods (Wang et al., 2024b; 2025; Liu et al., 2025b; Zhang et al., 2024d) compress
the input visual tokens or the KV cache without the need to fine-tune the model, providing more
flexibility for plug-and-play usage in new and more powerful MLLMs. StreamMem draws inspi-
rations from the training-free methods for KV cache compression of video tokens, but focuses on
the streaming setting where neither the length of the video nor the query is known during memory-
constrained video encoding.

KV cache compression in LLMs. KV cache compression methods aim to greatly improve both
memory and time efficiency of LLMs when operated in long input contexts. A number of methods
explored leveraging the cross-attention weights between the query and the context to identify the
most important entries in the KV cache for LLMs (Zhang et al., 2023; Li et al., 2024c; Xu et al.,
2024; Fu et al., 2024). This strategy is also adopted in MLLMs for efficient visual understand-
ing (Chen et al., 2024b; Zhang et al., 2024f). However, the query might not be available when
the model processes the long context in many real-world scenarios, limiting the applicability of
the query-dependent approach. To eliminate this dependency, some recent works explored query-
agnostic KV cache compression mechanisms (Ge et al., 2023; Devoto et al., 2024; Hooper et al.,
2024; Park et al., 2025; Kim et al., 2025a). Similar to this work, Zhang et al. (2024c) and Arif
et al. (2025) explored using the attention weights of the [CLS] token for KV cache compression in
MLLMs. In between query-dependent and query-agnostic methods, there are also methods which
use task instructions or task-specific proxy prompts (Kim et al., 2024; Corallo et al., 2025). Stream-
Mem belongs to the most flexible category of query-agnostic methods and does not need full-context
encoding, making it suitable for streaming encoding of long videos.

3 PRELIMINARIES

Offline video understanding with MLLMs. The standard approach to offline video understanding
with MLLMs proceeds as follows. Given a long video, a fixed number of frames f1, ..., fT are
uniformly sampled from the video, where T is determined based on the model’s context length or
computational and memory constraints. The frames are then passed through the model’s vision
encoder (typically comprising a Vision Transformer (ViT) backbone (Dosovitskiy et al., 2021; Zhai
et al., 2023; Zhang et al., 2024e) and a projection layer) to get N visual tokens. The visual tokens are
concatenated with the text tokens, including system prompts (preceding the visual tokens) and user
queries (following the visual tokens), and the entire sequence is fed into the LLM. The LLM then
generates a response via autoregressive decoding. To accelerate decoding, key-value (KV) caches
are constructed during this process.

KV cache compression for MLLMs in streaming video. In streaming video processing with
MLLMs, the video length is typically unknown in advance, precluding uniform frame sampling
strategies used in the offline settings. At each time step t, the model receives a new video clip vt (a
fixed-length frame segment), encodes it into a sequence of visual tokens, and forwards them through
the LLM. The model then generates the corresponding key and value matrices Ki

t and V i
t at each

transformer layer i, by attending to all accumulated visual tokens from prior clips.

However, naively storing all keys and values over time leads to linear growth in memory, which
is infeasible for long videos. This motivates the need for KV cache compression mechanisms that
maintain a fixed memory footprint. We denote the compressed key and value matrices at time step t

and layer i as Ki′

t and V i′

t , respectively. The objective is to compute compressed representations:

Ki′

t , V
i′

t = Compress(Ki′

t−1,K
i
t , V

i′

t−1, V
i
t ),

subject to the global memory constraint:
L∑

i=1

∥Ki′

t ∥0 ≤ M,
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Chat 
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Figure 3: Visualization of visual tokens attended to by different text queries. Red indicates
higher attention scores. Despite minor variations, different text queries attend to largely overlapping
regions of the input images. The “Generic Question” is “What is happening in the video?”, while
the “Specific Question” is “What occurs just before reading the magazines?” Attention scores are
averaged across all layers and heads, and then interpolated from 14×14 to 384×384 to match the
image resolution. The MLLM used is LLaVA-OneVision, and the video clip is sourced from the
RVS-Ego benchmark (which uses videos from the Ego4D dataset (Grauman et al., 2022)).

where L is the number of transformer layers in the MLLM and M is the total memory budget for all
layers combined.

The design of effective compression strategies that retain essential temporal information while
bounding memory usage is a key challenge in streaming long video processing with MLLMs. Exist-
ing approaches such as ReKV (Di et al., 2025) and LiveVLM (Ning et al., 2025) do not address this
constraint effectively, as their KV cache grows linearly over time, resulting in unbounded memory
consumption for long videos.

4 METHOD

We now describe the key components of StreamMem, our proposed framework for efficient stream-
ing video understanding with MLLMs. At each time step t, a new segment of frames is received
from the video stream. These frames first undergo an input filtering step to remove temporal redun-
dancy. The filtered frames are then encoded by the vision encoder and processed by the MLLM to
produce key-value (KV) representations {Ki

t , V
i
t }Li=1 at each transformer layer i.

To prevent unbounded memory growth over time, the newly computed KVs are merged with the
compressed KV memory from the previous time step, {Ki′

t−1, V
i′
t−1}Li=1, and passed through a com-

pression module. This module applies two complementary strategies: (1) a novel attention-based
pruning method that leverages cross-attention scores between proxy query tokens and visual to-
kens, and (2) a frame-wise KV merging mechanism that condenses spatial information into com-
pact prototype representations. The output of the compression module forms the updated memory
{Ki′

t , V
i′
t }Li=1, which is used by the MLLM at the next time step. An overview of the full pipeline

is illustrated in Figure 2, and the KV compression procedure is detailed in Algorithm 1.

4.1 INPUT FRAME FILTERING

Before processing by the MLLM, each incoming video clip (a chunk of consecutive frames) is
passed through a lightweight filtering step to reduce temporal redundancy. Given a sequence of
frames, we compute their visual embeddings using the vision encoder. For each consecutive pair
of frames, we measure the cosine similarity between their embeddings. If the similarity exceeds a
predefined threshold δ, the two frames are deemed redundant and their representations are merged
by simple averaging.
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This lightweight filtering step is similar to the temporal compression used in LongVU (Shen et al.,
2024). In contrast to previous streaming approaches that rely on sliding window attention (Di et al.,
2025; Ning et al., 2025), our method explicitly reduces redundancy in the input space. This ensures
that highly similar frames (common in static scenes or high-frame-rate videos) do not overwhelm
the KV cache with repetitive information, ultimately preserving the diversity and informativeness of
the stored memory.

4.2 KV CACHE MEMORY

After frame-wise token compression, the retained visual tokens of the current video segment vt
are concatenated with a set of auxiliary query tokens and passed into the MLLM. The model com-
putes key-value pairs {Ki

t , V
i
t }Li=1 in each transformer layer i, attending over both the current to-

kens, the tokens in the previous time step, and the compressed KV cache from previous time step,
{Ki′

t−1, V
i′
t−1}Li=1.

To guide the KV cache compression process, we rely on the cross-attention scores between the
auxiliary query tokens and the visual tokens. This attention-based saliency measure has proven
effective in prior works (Chen et al., 2024b; Wang et al., 2025) for real user queries. However,
unlike those settings, our method operates under a query-agnostic streaming setup, where the user
query is unavailable at the time of visual token selection.

To approximate a generic query, we leverage the system’s chat template tokens as a proxy. Specif-
ically, we use the tokens: <|im end|><|im start|>assistant\n, which we append after
the visual tokens. Due to the prevalence of video captioning data during the MLLM pretraining,
this implicitly prompts the MLLM to generate a generic video description even in the absence of an
explicit question. As a result, we expect the model to implicitly attend to informative visual content
in this setup.

Formally, let Q ∈ Rq×d be the query representation of the chat template tokens at a given layer,
and Kt be the key matrices of the visual tokens from the KV memory and the current clip. The
cross-attention scores are computed as:

Ai
t = Softmax

(
Q(Kt)

⊤
√
d

)
, (1)

where Ai
t denotes the attention weights from chat template tokens to visual tokens. We aggregate

these scores (e.g., by averaging over q) to obtain an importance score for each visual token, which
we use to select the top-k most salient visual tokens to retain in the compressed cache from each
layer. The memory budget is even distributed across all layers.

In addition to pruning, StreamMem further compresses memory via KV merging. Inspired by frame-
level merging in MLLMs (He et al., 2024) and visual token merging (Zhang et al., 2024d), we
compute a prototype key and value representation for each frame. This is done by computing a
weighted average of the keys and values based on the normalized attention scores:

K̄i
t =

n∑
j=1

αi
j ·Ki

t,j , V̄ i
t =

n∑
j=1

αi
j · V i

t,j , (2)

where αi
j denotes the normalized importance score of the j-th visual token at layer i.

These prototype representations K̄i
t , V̄

i
t are inserted at the end of the selected token sequence from

vt, preserving frame-wise temporal alignment via position IDs. Therefore, the final compressed
cache {Ki′

t , V
i′
t } consists of a mix of salient visual tokens and frame prototypes, enabling both

fine-grained and global memory retention.

4.3 POSITIONAL EMBEDDING

MLLMs are typically not extensively trained on long video sequences due to the scarcity of high-
quality, long-form video-text data. As a result, despite the long context lengths supported by the
underlying language models, MLLMs often struggle to generalize effectively in long video under-
standing scenarios. To address this limitation, we adopt the YaRN context window extension tech-
nique (Peng et al., 2023; Wei & Chen, 2024), originally proposed for language models, to extend
the visual context capacity of MLLMs for streaming video processing.
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Algorithm 1 Streaming Video Encoding and KV Cache Compression
Require: Total KV Cache size M , Template tokens Q.

Initialize cache K,V and score matrix s (one row for each transformer layer).
while not end of video do

Fetch a new batch of frames vi from stream.
v′i = Filter(vi) based on frame similarity
Ki, Vi, si = Encode(v′i, Q)
if |K| > M then
I = Topk(s, k = M); K,V = K[I], V [I]

end if
Append Ki, Vi, si to K,V, s. // Equation 1
Insert Merge(Ki),Merge(Vi) to K,V . // Equation 2

end while

.
Method Frames/FPS KV Size MLVU EgoSchema VideoMME

Medium Long All

GPT-4o - - 64.6 72.2 70.3 65.3 71.9

MovieChat+ 2048 - 25.8 53.5 - 33.4 38.2
Dispider 1 fps - 61.7 55.6 53.7 49.7 57.2

LongVU 1 fps/400 - 65.4 67.6 58.2 59.5 60.6

LLaVA-OneVision-7B 32 6K 64.7 60.1 54.7 46.2 56.9
+ ReKV† 0.5 fps 353K/h 68.5 60.7 - - -
+ LiveVLM 0.5/0.2 fps - 66.3 63.0 56.4 48.8 57.3
+ StreamMem (Ours) 0.5/0.2 fps 6K 66.9 63.0 56.6 50.1 59.4

Qwen2-VL-7B 768 50K 65.8 65.2 - - 63.9
+ Uniform Sample - 6K 57.0 64.4 53.3 48.7 58.1
+ InfiniPot-V 768 6K 65.8 65.6 60.8 53.4 62.8
+ StreamMem (Ours) 4.0/0.5 fps 6K 65.9 67.2 62.4 52.3 62.1

Qwen2.5-VL-3B 768 50K 63.3 64.4 - - 60.3
+ Uniform Sample - 6K 60.6 62.0 56.9 47.8 58.3
+ InfiniPot-V 768 6K 62.1 61.8 - - 59.3
+ StreamMem (Ours) 4.0/0.5 fps 6K 62.3 62.2 60.1 49.1 59.5

Table 1: Evaluation results of different MLLMs on offline long video understanding benchmarks. †:
ReKV stores the KV cache of all seen frames so it is considered an “upper bound.”

Prior works on streaming processing of long videos with MLLMs (Di et al., 2025; Ning et al., 2025;
Kim et al., 2025b) reassign positional IDs to the visual tokens that are retained after KV cache
compression. However, this reassignment discards the original spatial and temporal information
associated with these tokens, potentially degrading performance. We demonstrate that applying
YaRN with a properly chosen scaling factor (based on the MLLM’s visual context window length)
allows us to preserve positional consistency across streaming segments and improves performance
compared to naively reassigning position embeddings.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Benchmarks. We evaluate StreamMem on a number of widely used offline long video understand-
ing benchmarks, including MLVU (Zhou et al., 2025), EgoSchema (Mangalam et al., 2023), and
VideoMME (Fu et al., 2025). By default, we process the video stream at 0.5 frames per second
(FPS), in accordance with ReKV Di et al. (2025). For MLVU and EgoSchema, we report the results
on the official “dev” set. For VideoMME, we report results without subtitles. Each video clip is set
to 8 frames. All experiments can be run with one A100 GPU.
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RVS-Ego RVS-Movie
Method Acc Score Acc Score
ReKV 63.7 4.0 54.4 3.6

ReKV w/o offloading. 55.8 3.3 50.8 3.4
Flash-VStream 57.0 4.0 53.1 3.3
InfiniPot-V 57.9 3.5 51.4 3.5
StreamMem (Ours) 57.6 3.8 52.7 3.4

Table 2: Results of different streaming video
question answering methods on RVS-Ego and
RVS-Movie benchmarks.

Method KV Size Holistic S.D. M.D. All
Full KV 50K 76.3 73.9 43.3 65.9

InfiniPot-V 6K 77.2 72.3 44.8 65.8
StreamMem (Ours) 6K 77.5 72.7 44.4 65.9

InfiniPot-V 12K 76.9 73.4 44.0 66.0
StreamMem (Ours) 12K 77.7 73.1 43.9 66.0

InfiniPot-V 24K 76.9 74.0 42.2 65.7
StreamMem (Ours) 24K 77.6 73.4 44.5 66.3

Table 3: Comparison of InfiniPot-V and Stream-
Mem on MLVU with different KV sizes. We use
Qwen2VL-7B as the base MLLM.

Models. We apply our method on three popular open-source MLLMs: LLaVA-OneVision-7B (Li
et al., 2024a), Qwen2-VL-7B (Wang et al., 2024a), and Qwen2.5-VL-3B (Bai et al., 2025).

Baselines. We evaluate StreamMem against strong baselines, including:

• Query-agnostic streaming video-language understanding with MLLMs, namely
LiveVLM (Ning et al., 2025) and InfiniPot-V (Kim et al., 2025b), two recent streaming
methods that perform KV cache compression independently of the query.

• Online video MLLMs such as MovieChat+ (Song et al., 2024) and Dispider Qian et al.
(2025).

• LongVU (Shen et al., 2024), an MLLM that utilizes visual token compression for long
video understanding.

We also report the performance of simple uniform frame sampling for Qwen2-7B and Qwen2.5-
3B models, and ReKV Di et al. (2025) for LLaVA-OneVision, which stores the KV cache of all
previously seen frames without compression. While ReKV is not feasible in memory-constrained
settings for long videos, it serves as an oracle-style upper bound on performance under unbounded
memory.

5.2 MAIN RESULTS

Offline video understanding. We report the main results for offline video understanding bench-
marks in Table 1. For experiments with LLaVA-OneVision, we sample videos shorter than 30
minutes at 0.5 fps and videos longer than 30 minutes at 0.2 fps and constrain the GPU memory
allocation below 24 GB, following the setup of LiveVLM (Ning et al., 2025). For Qwen2-VL and
Qwen2.5-VL experiments, we sample video less than 3 minutes at 4.0 fps (to match the uniform
sampling of 768 frames in InfiniPot-V (Kim et al., 2025b) and other videos at 0.5 fps. We keep the
KV cache size at 6K per transformer layer in the MLLM.

From the results we observe that StreamMem outperforms the baselines on all benchmarks except
the “long” subset of VideoMME for Qwen2-VL-7B. On LLaVA-OneVision-7B, StreamMem sig-
nificantly outperforms the uniform sampling baseline with a comparable KV cache size. This high-
lights the benefits of streaming processing compared to uniform sampling, where significant infor-
mation loss can incur in the sampling process. On Qwen2.5-VL-3B, StreamMem significantly nar-
rows the gap between full KV and compressed KV on the challenging MLVU benchmark, showing
that StreamMem also works well with smaller MLLMs, which are especially suitable for memory-
constrained settings.

Streaming video understanding. We evaluate StreamMem on the RVS-Ego and RVS-Movie
benchmarks for streaming video understanding using LLaVA-OneVision-7B (Li et al., 2024a).
Unlike the offline video understanding benchmarks considered earlier, these two datasets pose
open-ended question answering tasks that require models to reason over long visual contexts.
Following the evaluation protocol used by prior work, we assess the generated answers using
GPT-3.5-turbo-0125, which judges both the accuracy and an alignment score from 1 to 5.
The results are provided in Table 2. Consistent with InfiniPot-V, we constrain GPU memory usage
to stay below 28 GB. For ReKV without CPU offloading, it simply discards older KVs and retains
only recent context as “short-term memory.” The performance drop between ReKV with and with-
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Query Type Holistic S.D. M.D. All
True Query 80.8 71.6 46.4 68.1

Generic Text Query 78.1 71.3 43.0 66.7
Chat Template Query 78.8 71.5 43.0 66.9

Table 4: Ablation study on different proxy
queries for attention-based KV compression.

KV Merging Strategy Holistic S.D. M.D. All
No Merging 77.3 69.7 42.8 65.6
Avg. Merging 80.5 70.4 41.3 66.3
Weighted Merging 78.8 71.5 43.0 66.9

Table 5: Ablation study on the effect of different
KV merging strategies.

out CPU offloading underscores the importance of maintaining long-range memory for high-quality
answers.

StreamMem outperforms ReKV without offloading and is competitive with InfiniPot-V and Flash-
VStream, demonstrating its effectiveness in open-ended question answering under constrained mem-
ory settings. These results highlight the method’s ability to retain and utilize salient long-term in-
formation throughout streaming video.

5.3 ABLATION STUDIES

We conduct ablation studies on different components in our method. For the ablation experiments,
we use LLaVA-OneVision-7B (Li et al., 2024a) on the MLVU benchmark (Zhou et al., 2025). We
report the average performance on the three subsets of the MLVU, namely holistic tasks (including
Topic Reasoning and Anomaly Recognition), single detail (Needle QA, Ego Reasoning, and Plot
QA), and multi-detail (including Action Order, and Action Count).

Type of proxy query. We compare the results for using different queries, including the ground truth
query, the chat template query, and a generic text query (“What is happening in the video?”) for the
attention-based KV compression module in Table 4. We observe that the generic text query obtains
similar performance to the chat template query, suggesting that the chat template query, while not
including any real text, is implicitly acting as a generic query of video content. Using the ground
truth user query for KV compression still significantly outperforms the query-agnostic methods,
especially in “multi-detail” tasks, showing the challenge for query-agnostic methods to retain all the
details required to answer the question without knowing the question during video processing.

Merging strategy. We compare the results for different KV merging strategies in Table 5. We
observe that all frame-wise KV cache merging methods perform better than no KV merging, con-
firming the results from LiveVLM (Ning et al., 2025). StreamMem improved over LiveVLM which
uses simple average merging and inserting to the end of each frame by applying weighted merging
based on the attention scores between the chat template tokens and the visual tokens.

6 CONCLUSION

Enabling continuous video stream processing under a bounded memory constraint is essential for
deploying multimodal large language models (MLLMs) in real-world, embodied scenarios. Yet,
most prior work in long video-language understanding has focused on static or offline settings, as-
suming known queries, finite video lengths, and full access to the visusal context in advance. These
assumptions limit their applicability in streaming or open-world environments. In this work, we
present StreamMem, a training-free and query-agnostic KV cache compression framework tailored
for streaming video understanding. By using attention scores between visual tokens and chat tem-
plate tokens as a proxy for query relevance, StreamMem effectively retains salient visual informa-
tion without requiring access to future queries. When applied to open-source MLLMs, StreamMem
achieves state-of-the-art performance across a diverse set of both offline and streaming long video
benchmarks. Beyond demonstrating competitive empirical results, we conduct an in-depth analysis
of various components in our framework, including input frame filtering, KV merging strategies,
and positional embedding techniques, shedding light on the design considerations for constructing a
memory-bounded visual processing pipeline. These insights lay a foundation for future research in
scaling MLLMs to continuously process real-world visual streams.
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Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Zhengyang Liang, Shitao Xiao, Minghao Qin, Xi Yang,
Yongping Xiong, Bo Zhang, et al. Mlvu: Benchmarking multi-task long video understanding.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 13691–13701,
2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A EXPERIMENT DETAILS

Hyper-parameter details. In terms of the YaRN scaling factor λ, we used λ = 8 for LLaVA-
OneVision, λ = 2 for Qwen2-VL, and λ = 1 (no scaling) for Qwen2.5-VL. The difference is due to
the different default context length in these MLLMs. We keep the other hyperparameters the same
across different models: input frame filtering similarity threshold δ = 0.95; each new frame chunk
has a size of 8 frames.

Video sampling details. Following InfiniPot-V, we use the following hyperparameter values for the
Qwen2-VL vision processor: FPS MAX FRAMES= 768 and VIDEO MAX PIXEL= 768×28×28.
The vision processor resizes each image such that the width and height are both divisible by 28;
each frame is encoded into up to 130 tokens for Qwen2-VL and Qwen2.5-VL, and 196 tokens for
LLaVA-OneVision.

MLVU evaluation details. We would like to note that there are two different ways prior papers
report results on the MLVU benchmark (Zhou et al., 2025): (1) computing the overall accuracy on
the entire benchmark (used by LiveVLM (Ning et al., 2025)), and (2) computing the accuracy on
each task separately and average the accuracy across tasks (used by InfiniPot-V (Kim et al., 2025b)).
The “overall accuracy” computed with (1) is often a bit higher than that of (2). For a fair comparison
against both baselines, we use the first method for experiments using LLaVA-OneVision as the base
MLLM and the second method for experiments using Qwen2VL-7B and Qwen2.5VL-3B as the
base MLLM.

B ADDITIONAL EXPERIMENTS

YaRN Scaling Factor Holistic S.D. M.D. All
λ = 1 (No scaling) 75.5 65.0 38.5 61.5
λ = 2 78.6 69.2 41.9 65.4
λ = 4 80.5 70.9 42.4 66.8
λ = 8 78.8 71.5 43.0 66.9

Table 6: Ablation study on the effect of YaRN visual context window extension with varying scaling
factors.

Method KV Size Holistic S.D. M.D. All
Full KV 50K - - - 63.3

StreamMem (Ours) 6K 78.3 65.6 41.4 62.3
StreamMem (Ours) 12K 77.6 67.1 42.6 63.1
StreamMem (Ours) 24K 78.1 68.2 44.5 64.3

Table 7: Performance of StreamMem on MLVU with different KV sizes. We use Qwen2.5VL-3B
as the base MLLM.

Ablation on YaRN scaling factor. We report results for LLaVA-OneVision with different YaRN
scaling factors in Table 6. We observe that YaRN visual context window extension significantly
improves the video undestanding performance, and the performance can be sensitive to different
values of the YaRN scaling factor. While λ = 4 and λ = 8 give decent overall results, λ = 4
performs better on holistic tasks and λ = 8 performs better on single detail and multi-detail tasks.

C USAGE OF LARGE LANGUAGE MODELS (LLM)

LLMs are only used to polish the writing of this paper.
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