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Abstract

Policy gradient (PG) methods are widely used in reinforcement learning. However,
for infinite-horizon discounted reward settings, practical implementations of PG
usually must rely on biased gradient estimators, due to the truncated finite-horizon
sampling, which limits actual performance and hinders theoretical analysis. In
this work, we introduce a new family of algorithms, unbiased policy gradient
(UPG), that enables unbiased gradient estimators by considering finite-horizon
undiscounted rewards, where the horizon is randomly sampled from a geometric
distribution Geom(1 − γ) associated to the discount factor γ. Thanks to the
absence of bias, UPG achieves the O(ϵ−4) sample complexity to a stationary
point, which is improved by O(log ϵ−1), compared to the one of the vanilla
PG, and is met with fewer assumptions. Our work also provides a new angle
on well-known algorithms such as Q-PGT and RPG. We recover the unbiased
Q-PGT algorithm as a special case of UPG, allowing for its first sample complexity
analysis. We further show that UPG can be extended to α-UPG, a more generic
class of PG algorithms which performs unbiased gradient estimators and notably
admits RPG as a special case. The general sample complexity analysis of α-UPG
that we present enables to recover the convergence rates of RPG, also with
tighter bounds. Finally, we propose and evaluate two new algorithms within the
UPG family: unbiased GPOMDP (UGPOMDP) and α-UGPOMDP. We show
theoretically and empirically on four different environments that both UGPOMDP
and α-UGPOMDP outperform its known vanilla PG counterpart, GPOMDP.

1 Introduction

Policy gradient (PG) methods are popular in reinforcement learning (RL) for computing policies
that maximize long-term rewards [54, 49, 5]. The success of PG methods can be attributed to their
simplicity and versatility. Indeed, PG methods can be readily implemented to solve a variety of
problems, ranging from trajectory planning in non-Markovian and partially-observable environments
like autonomous driving [7, 22], to more recent problems arising from the human alignment of Large
Language Models [2]. Moreover, PG methods can be effectively combined with other techniques to
create more sophisticated algorithms such as natural PG [19], policy mirror descent [50, 53, 16, 3],
trust-region based variants [41, 43, 44], and variance-reduced methods [32, 56, 17, 18].

However, a salient issue with PG algorithm is the so-called “horizon discrepancy” – i.e., the difference
between the infinite horizon assumed theoretically, and the truncated finite horizon that RL practition-
ers must resort to in practice when implementing PG. Due to this truncation of the horizon in exper-
imental work, most of the aforementioned algorithms suffer from biased gradient estimators (See Ap-
pendix B for the review). This is problematic not only for the performance of the implementation, but
also for the formal understanding of PG methods. For instance, Mu and Klabjan [29] recently devel-
oped a new second-order stationary point convergence analysis for biased PG: the authors report on an-
alytical difficulties that arise from the bias inherent to horizon truncation, given that the previous analy-
sis involving probabilistic bounds via concentration inequalities relies heavily on the absence of bias of
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the gradient estimator. We may ask, then, whether it is possible to obtain an unbiased PG estimator that
would remove the horizon discrepancy, without sacrificing any of the other desirable properties of PG.

1.1 Outline and Contributions

In § 2 we review the fundamentals of Markov decision processes (MDPs), and describe the vanilla PG
method. Our main contributions start from § 3. First, we introduce a new family of algorithms that are
unbiased gradient estimators, referred to as unbiased PG (UPG) in § 3.1, by considering finite-horizon
undiscounted MDP with random horizon H sampled from a geometric distribution Geom(1 − γ)
associated to the discount factor γ. As a special case of UPG, we propose a new algorithm unbiased
GPOMDP (UGPOMDP) in (11) and Algorithm 2. The well-known unbiased Q-PGT in (9) and
Algorithm 4 belongs to the UPG family as well. Then, we extend UPG to α-UPG in § 3.2 and
Algorithm 5, which is also unbiased by design, and we develop two new algorithms – α-UGPOMDP
in (12) and Algorithm 6 and α-QPGT in (13) and Algorithm 7, as special cases of α-UPG. When
α = 0, α-UPG recovers UPG; and when α = 1

2 , α-QPGT recovers RPG [61] as a special case.

In § 4, we present the first-order stationary point (FOSP) convergence results of α-UPG. By
leveraging the modern proof techniques of SGD with general expected smoothness Assumption 4
in optimization [20], in § 4.1 we derive a unified O(ϵ−4) sample complexity of α-UPG, which
includes the one of UPG, i.e., α-UPG with α = 0 as a special case. Furthermore, we consider
the commonly used expected Lipschitz and smooth (E-LS) policies (Assumption 5) in § 4.2 and
verify in Theorem 6 that, for each of the instantiations considered in this work, such as UGPOMDP,
Q-PGT, α-UGPOMDP, and α-QPGT, E-LS satisfies the expected smoothness assumption. This
is the key technical contribution of our work. In particular, these four algorithms all improve the
one of GPOMDP by a factor of O(log ϵ−1), and UGPOMDP achieves the best sample complexity
O
( 1

(1−γ)6ϵ4

)
among the others when γ is close to 1. As a by-product of our approach, we derive

the first sample complexity analysis of the unbiased Q-PGT and recover the one of RPG with tighter
bounds and a wider range of parameter choices.

Lastly, in § 5 we empirically compare the performance of our new algorithms UGPOMDP and
α-UGPOMDP with α = 0.5 against both the unbiased methods (Q-PGT and RPG) and the biased
method (GPOMDP). Our results show that UGPOMDP and 0.5-UGPOMDP consistently outperform
these methods in all four different Gym environments [51], which is consistent with our theoretical
findings and supports the benefits of unbiasedness in the algorithm.

Furthermore, the theoretical assumptions we make throughout this paper are standard in the PG litera-
ture. In fact, for our main result on sample complexity, we use the weakest assumptions in the literature
and match the best known results. Therefore, the limitations of our work are the same as in the PG
literature in general, and mainly relate to the fact that our policy is implemented as a non-linear neural
network, which does not satisfy the theoretical assumptions. We refer to Appendix A for more details.

2 Preliminaries

2.1 Markov decision process (MDP)

We consider an MDP given by {S,A,P, r, γ, ρ}, where S is a state space; A is an action space;
P is a Markovian transition model, where P(s′ | s, a) is the transition density from state s to s′

under action a; r is the reward function, where r(s, a) ∈ [−rmax, rmax] is the bounded reward for
state-action pair (s, a); γ ∈ [0, 1) is the discount factor; and ρ is the initial state distribution. The
agent’s behavior is modeled as a policy π ∈ ∆(A)S , where π(· | s) is the density distribution over
action space A in state s ∈ S.

We consider the infinite-horizon discounted setting. Let p(τ | π) be the probability density of a single
trajectory τ = (s0, a0, r0, s1, · · · ) with rt = r(st, at) being sampled from π. By the Markov property
of the MDP, we have p(τ | π) = ρ(s0)

∏∞
t=0 π(at | st)P(st+1 | st, at). With a slight abuse of

notation, let r(τ) =
∑∞

t=0 γtr(st, at) be the total discounted reward accumulated along trajectory τ .

In the infinite-horizon discounted setting, the value function of π with an initial state s is defined as

V π(s) def= E at∼π(·|st)
st+1∼P(·|st,at)

[∑∞

t=0
γtr(st, at) | s0 = s

]
= Eτ∼p(·|π,s0=s)

[ ∞∑
t=0

γtr(st, at)
]
. (1)
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Given an initial state distribution ρ ∈ ∆(S), the goal of the agent is to find a policy π that maximizes
the expected value function J(π) def= Es∼ρ [V π(s)] . As with the value function, for each pair
(s, a) ∈ S ×A, the state-action value function, or Q-function, associated with a policy π is defined as

Qπ(s, a) def= Eτ

[∑∞

t=0
γtr(st, at) | s0 = s, a0 = a

]
and we have V π(s) = Ea∼π(·|s) [Qπ(s, a)] .

Given a starting state distribution ρ ∈ ∆(S), we define the state visitation distribution dπ
ρ ∈ ∆(S),

induced by a policy π, as dπ
ρ (s) def= (1− γ)Eτ

[∑∞
t=0 γt Prπ(st = s | s0)

]
, where Prπ(st = s | s0)

is the probability that the t-th state is equal to s by following the trajectory generated by π and
the transition model P starting from s0. Intuitively, the state visitation distribution measures the
probability of being at state s across the entire trajectory.

2.2 Policy gradient

We introduce a set of parametrized policies {πθ : θ ∈ Θ}, with the assumption that πθ is differentiable
with respect to θ. To simplify notations, we use the shorthand V θ for V πθ

and similarly Qθ for Qπθ

,
Aθ for Aπθ

, dθ
ρ for dπθ

ρ , p(τ | θ) for p(τ | πθ), and J(θ) for J(πθ). The policy gradient (PG) methods
use gradient ascent in the parametrized space of θ to find the policy that maximizes the expected
value function J(θ). That is, the policy with the optimal parameters θ⋆ ∈ arg maxθ∈Θ J(θ) would
give the optimal expected value function J⋆ def= J(θ⋆). In general, J(θ) is a non-convex function with
respect to θ [see, e.g., 1].

The gradient G(θ) def= ∇θJ(θ) of the expected value function has the following structure

G(θ) = Eτ∼p(·|θ)

[∑∞

t=0
γtr(st, at)

∑∞

t′=0
∇θ log πθ(at′ | st′)

]
(2)

= Eτ

[∑∞

t=0
γtr(st, at)

(∑t

t′=0
∇θ log πθ(at′ | st′)

)]
(3)

= Eτ

[∑∞

t=0

(∑∞

t′=t
γt′

r(st′ , at′)
)
∇θ log πθ(at | st)

]
(4)

= 1
1− γ

Es∼dθ
ρ, a∼πθ(·|s)

[
Qθ(s, a)∇θ log πθ(a | s)

]
. (5)

The derivations of (2)-(5) are provided in Appendix C (Lemma 4). In the rest of the paper, we omit
the θ in ∇θ for simplicity and we note Ĝ(θ) as an arbitrary empirical gradient estimator of G(θ).

In practice, we cannot compute the full gradient, since computing the above expectations requires av-
eraging over all possible trajectories τ ∼ p(· | θ). We resort to an empirical estimate of the gradient by
sampling m truncated trajectories τi =

(
si

0, ai
0, ri

0, si
1, · · · , si

H−1, ai
H−1, ri

H−1
)

with ri
t = r(si

t, ai
t)

obtained by executing πθ for a given fixed horizon H ∈ N. The resulting gradient estimator of (2) is

ĜREINFORCE(θ) = 1
m

∑m

i=1

∑H−1

t=0
γtr(si

t, ai
t) ·
∑H−1

t′=0
∇ log πθ(ai

t′ | si
t′). (6)

The estimator (6) is known as REINFORCE [54].

The REINFORCE estimator (6) can be simplified by leveraging the fact that future actions do not
depend on past rewards. Consequently, half of the terms in (2) are removed, and this leads to the
alternative formulations (3) and (4) of the full gradient. In particular, (3) leads to the following
estimate of the gradient known as GPOMDP [5]

ĜGPOMDP(θ) def= 1
m

∑m

i=1

∑H−1

t=0
γtr(si

t, ai
t)
(∑t

t′=0
∇ log πθ(ai

t′ | si
t′)
)

. (7)

Compared to (6), (7) reduces the variance of the policy gradient estimate.

Alternatively, from (4), one can suggest the gradient estimator as

ĜPGT(θ) def= 1
m

∑m

i=1

∑H−1

t=0

(∑H−1

t′=t
γt′

r(si
t′ , ai

t′)
)
∇ log πθ(ai

t | si
t), (8)

known as the policy gradient theorem (PGT) [49]. It has been shown that PGT (8) is equivalent to
GPOMDP (7) [34]. Due to their equivalence, we refer to them interchangeably.
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Notice that PGT (8) has also action value expressions thanks to (5) , which leads to gradient estimator
as

ĜQ−PGT(θ) def= 1
m(1− γ)

∑m

i=1
Q̂ θ(si, ai)∇ log πθ(ai | si), (9)

where si ∼ dθ
ρ, ai ∼ πθ(· | si), and Q̂ θ(si, ai) is an unbiased estimate of Qθ(si, ai), which can be

obtained through roll-outs with random horizon, provided e.g., by Agarwal et al. [1, Algorithm 1]
and Yuan et al. [59, Algorithm 3]. For the completeness, we provide Algorithm 4 to sample si, ai

and the unbiased estimate Q̂ θ(si, ai), and to compute ĜQ−PGT(θ) in Appendix D.1.

To simplify notations, we use shorthand Ĝ(k) for Ĝ(θ(k)) and similarly G(k) for G(θ(k)), and J (k)

for J(θ(k)). Equipped with gradient estimators Ĝ(θ) among (6)-(9), at the k-th iteration, policy
gradient updates the policy parameters with the stepsize η > 0 as follows

θ(k+1) = θ(k) + ηĜ(k). (10)

We refer to REINFORCE (6) and GPOMDP (7) as vanilla policy gradient [58].

3 Unbiased Policy Gradient Estimators without Truncation

3.1 Unbiased policy gradient – Unbiased GPOMDP and Q-PGT

Notice that REINFORCE (6) and GPOMDP (7) are biased gradient estimator of J(θ), due to the
truncation. Inspired by Zhang et al. [61, Algorithms 3], we propose a general unbiased policy gradient
(UPG) algorithm, as shown in Algorithm 1.

Algorithm 1: UPG: Unbiased Policy Gradient

Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1)
1 Initialize s0 ∼ ρ and a0 ∼ πθ(· | s0), the horizon H − 1 ∼ Geom(1− γ)
2 for t = 0 to H − 1 do
3 Store the vector ∇ log πθ(at | st) and the scalar r(st, at)
4 Sample st+1 ∼ P(· | st, at) and at+1 ∼ πθ(· | st+1)
5 Build the undiscounted gradient estimator ĜUPG(θ) from the stored∇ log πθ(at | st), r(st, at)

Output: ĜUPG(θ)

That is, we consider a finite-horizon undiscounted RL problem where the horizon is random, and
introduce the discount factor γ as part of the parameters for the sampling procedure to obtain UPG
without truncation. First, we determine the length of the horizon H sampled from a geometric
distribution Geom(1 − γ) associated to the discount factor γ, which corresponds to Line 1 of
Algorithm 1. We have Pr(H − 1 = k) = (1− γ)γk for k ∈ {0, 1, 2, . . .}. Second, we sample the
vectors ∇ log πθ(at | st) and the scalars r(st, at) inside the horizon H − 1. Lastly, we construct
an undiscounted gradient estimator ĜUPG(θ) from the stored ∇ log πθ(at | st) and r(st, at), as
described in Line 5. There exits different ways to do so as we present next.

As a special case of UPG, based on GPOMDP (7), we consider the following unbiased GPOMDP
(UGPOMDP) gradient estimator without the discount factor γ

ĜUGPOMDP(θ) def=
∑H−1

t=0
r(st, at)

(∑t

t′=0
∇ log πθ(at′ | st′)

)
. (11)

We verify in the following lemma that, ĜUGPOMDP(θ) in (11) is unbiased for any πθ, and the
expected length of the trajectory is 1

1−γ . Its proof is provided in Appendix E.1.

Lemma 1. Consider ĜUGPOMDP(θ) (11). We have E [H] = 1
1−γ and E

[
ĜUGPOMDP(θ)

]
= G(θ).

An intuition behind how Lemma 1 works is that, a discounted MDP problem can be viewed as a
non-discounted problem with an independent geometric time-horizon. When taking the expectation
for the latter, it becomes analytically equivalent to the discounted one in (1). This viewpoint of the
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MDP is well-known (e.g., see the example at https://www.tau.ac.il/~mansour/rl-course/
scribe4/node17.html). Here, we extend this viewpoint to different UPG algorithms.

From the best of our knowledge, the PG algorithm (10) with UGPOMDP gradient estimator (11)
is new. It is unbiased without truncation thanks to the geometric distribution Geom(1 − γ) for
the horizon sampling, which implicitly injects the discount factor inside the gradient estimator,
even though there is no discount factor appearing in (11). See Algorithm 2 an implementation of
ĜUGPOMDP(θ) (11) in Appendix D.1.

Notice that the known algorithm Q-PGT in (9) belongs to UPG, as it uses Geom(1− γ) sampling for
the horizon and constructs an unbiased estimator of the Q-function with finite-horizon undiscounted
rewards [1, Algorithm 1](see Algorithm 4 in Appendix D.1 as well).
Remark 1. The setting of UPG (e.g., ĜUGPOMDP(θ) in (11) and Q-PGT in (9)) is fundamentally dif-
ferent to the one of vanilla PG (e.g., ĜGPOMDP(θ) in (7)). The vanilla PG considers a fixed horizon
H , including the infinite horizon H =∞. In practice, H is of order O( 1

1−γ ), which is referred to as
effective horizon [32]. In contrast, the UPG considers randomized horizons H − 1 ∼ Geom(1− γ),
sampled i.i.d. from the batch, which can be arbitrary large and are not fixed for each single trajectory
in the batch. Second, the vanilla PG constructs the gradient estimator with discounted rewards, while
UPG uses the undiscounted rewards to build the gradient estimator. Consequently, the vanilla PG
(e.g., ĜREINFORCE(θ) and ĜGPOMDP(θ)) uses a biased gradient estimator due to the truncation,
while the UPG (e.g., ĜQ−PGT(θ) and ĜUGPOMDP(θ)) uses the unbiased one.

It is worth mentioning that RPG [61, Algorithm 3] shares lots of similarity with Q-PGT (9). Both RPG
and Q-PGT have unbiased gradient estimators with random horizon, and both use the action value
expression of PGT (5) to construct the gradient estimators. However, RPG is not recovered by Q-
PGT/UPG. Compared to Q-PGT, RPG considers the discounted rewards instead of the undiscounted
rewards, and uses Geom(1−√γ) instead of Geom(1− γ) to sample the horizon, in which case, the
stochastic gradient update can be guaranteed to be bounded, while the stochastic gradient estimator
Q-PGT in (9) is unbounded. The convergence analysis of RPG in Zhang et al. [61] relies on the
boundedness of the stochastic gradient update. Later in § 4.2, we provide the first convergence
analysis of the unbiased Q-PGT in (9), even though the stochastic gradient update is unbounded.
Remark 2. There are others ways to construct ĜUPG(θ) for UPG in Line 5 of Algorithm 1. For
instance, UPG can replace the unbiased Q-function estimation Q̂ θ(s, a) in (9) by either the difference
between Q̂ θ(s, a) and an unbiased estimate of the value function V̂ θ(s) [1, Algorithm 3], or the
temporal difference error [48], which involves the unbiased estimate of the value function V̂ θ(s).
Similarly, UPG can also replace the unbiased Q-function estimation Q̂ θ(s, a) in (9) by the generalized
advantage estimation [42]. We leave the investigation of these alternatives of UPG for future work.

3.2 α-Unbiased policy gradient

UPG in Algorithm 1 does not recover RPG [61, Algorithm 3], as UPG uses undiscounted rewards
and RPG uses discounted rewards. However, for RPG, the rewards are

√
γ-discounted instead of

γ-discounted, in contrast to the vanilla PG. Inspired by RPG, in this section we extend UPG to a
more general α-unbiased policy gradient (α-UPG) algorithm. See also Algorithm 5 in Appendix D.2.

That is, given α ∈ [0, 1), we consider finite random horizons H with H−1 ∼ Geom(1−γ1−α), and
we construct a discounted gradient estimator Ĝα−UPG(θ) using the discounted rewards γαtr(st, at)
for different time step t, where the discount factor is γα > γ. Notice that α-UPG recovers UPG when
α = 0. In this case, the reward is undiscounted as the discount factor γαt = 1 for all t.

Based on UGPOMDP (11) and Q-PGT (9) from UPG, we propose two novel unbiased gradient esti-
mators α-UGPOMDP and α-QPGT as special cases of α-UPG. First, we sample H−1 ∼ Geom(1−
γ1−α); and we sample∇ log πθ(at | st) and r(st, at) inside the horizon H − 1. Then, we construct
the unbiased gradient estimators from the sampled∇ log πθ(at | st) and r(st, at) as follows,

Ĝα−UGPOMDP(θ) def=
∑H−1

t=0
γαtr(st, at)

(∑t

t′=0
∇ log πθ(at′ | st′)

)
, (12)

Ĝα−QPGT(θ) def= 1
1− γ

(∑H−1

t=0
γαtr(st, at)

)
∇ log πθ(a0 | s0), (13)

5
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where s0 ∼ dθ
ρ and a0 ∼ πθ(· | s0) in (13).

It is straightforward to obtain that, when α = 0, α-UGPOMDP (12) recovers UGPOMDP (11) and
α-QPGT (13) recovers Q-PGT (9), the undiscounted cases. In particular, α-QPGT (13) recovers
RPG with α = 1/2. That is, the discount factor

√
γ is considered for the MDP and the random

horizon is sampled from Geom(1−√γ), as described for RPG previously. See Algorithms 6 and 7
in Appendix D.2 for the implementations of α-UGPOMDP (12) and α-QPGT (13), respectively.

Like Lemma 1, we verify that, Ĝα−UGPOMDP(θ) in (12) and Ĝα−QPGT(θ) in (13) are unbiased for
any πθ, and the expected length of the trajectory is 1

1−γ1−α , with its proof provided in Appendix E.2:

Lemma 2. Consider the gradient estimators Ĝα−UGPOMDP(θ) in (12) and Ĝα−QPGT in (13). It
follows that E [H] = 1

1−γ1−α and E
[
Ĝα−UGPOMDP(θ)

]
= E

[
Ĝα−QPGT(θ)

]
= G(θ).

It turns that Lemma 2 implies Lemma 1 with α = 0. When α increases from 0 to 1, E [H] increases
from 1

1−γ to∞. That is, UPG has the shortest expected horizon, α-UPG gets longer horizon if α

increases, and if α→ 1, α-UPG will recover the vanilla PG for infinite-horizon γ-discounted rewards.

4 Sample Complexity Analysis

4.1 General sample complexity analysis of α-UPG

In this section, we provide a general sample complexity analysis of PG in (10) with the unbiased
gradient estimators α-UPG presented in § 3.2, which includes the one of UPG, i.e., α-UPG with α = 0
as a special case. For the forthcoming analysis, the expected return J(·) is assumed to be smooth.
Assumption 3 (Smoothness). There exists L > 0 such that, for all θ ∈ Θ, we have

∥∥∇2J(θ)
∥∥ ≤ L.

Our analysis builds on an expected smoothness assumption introduced by Khaled and Richtárik [20].
Assumption 4 (Expected smoothness, Assumption 2 in Khaled and Richtárik [20]). There exists
A, B, C ≥ 0 such that for all θ ∈ Rd, the policy gradient estimator satisfies

E
[
∥Ĝ(θ)∥2] ≤ 2A(J⋆ − J(θ)) + B∥G(θ)∥2 + C. (14)

This assumption bounds the second moment of the empirical gradient Ĝ(θ) in terms of the subop-
timality gap J⋆ − J(θ), the expected gradient G(θ) and a constant C. It serves as the most general
assumption to characterize this quantity, as it recovers a number of popular and more restrictive
assumptions commonly used in non-convex optimization: the bounded variance of the stochastic
gradient [13], the convex expected smoothness [15, 14], the gradient confusion assumption [39] and
other assumptions [40, 6, 52, 23], just to name a few. A more detailed discussion of the assumption for
non-convex optimization convergence theory can be found in Khaled and Richtárik [20, Theorem 1].

Notably, Yuan et al. [58] was the first to adapt this assumption to derive the convergence analysis
of vanilla PG. The only adaptation made in (14) is that, instead of using the expected unbiased
gradient G(θ) in the second term of (14), Yuan et al. [58] uses the expected gradient but truncated,
e.g., E

[
ĜREINFORCE(θ)

]
, which is biased due to the truncation in (6), and consequently develops an

analysis from [20, Theorem 2] with a few extra steps. In comparison, we can directly apply (14) and
the modern convergence analysis of the unbiased SGD [20, Theorem 2] from optimization into RL to
derive the iteration and sample complexity analysis of α-UPG, respectively, as α-UPG is unbiased.

Proposition 1 (Iteration complexity). Suppose that Assumptions 3 and 4 hold for α-UPG in § 3.2
and in Algorithm 5. Consider the iterates θ(k) of the PG (10), using the unbiased gradient estimators
α-UPG, with constant stepsize η ∈

(
0, 2

LB

)
where B = 0 means that η ∈ (0,∞). It follows that

min
0≤k≤K−1

E
[∥∥∥G(k)

∥∥∥2
]
≤ 2(J⋆ − J (0))(1 + Lη2A)K

ηK(2− LBη) + LCη

2− LBη
. (15)

In particular if A = 0, we have

E
[
∥G(θU )∥2

]
≤ 2(J⋆ − J (0))

ηK(2− LBη) + LCη

2− LBη
, (16)

where θU is uniformly sampled from the iterates {θ(0), · · · , θ(K−1)}.
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Corollary 1 (Sample complexity, Corollary 1 in Khaled and Richtárik [20]). Consider the setting of
Proposition 1. Given ϵ > 0, let η = min

{ 1√
LAK

, 1
LB , ϵ

2LC

}
. If the number of iterations K satisfies

K ≥ 12L(J⋆ − J (0))
ϵ2 max

{
B,

12A(J⋆ − J (0))
ϵ2 ,

2C

ϵ2

}
, (17)

then min0≤k≤K−1 E
[∥∥G(k)

∥∥2] = O(ϵ2).

Proposition 1 provides a general characterization of the FOSP convergence of α-UPG as a function
of all the constants involved in the assumptions on the problem and the gradient estimator. Refer
to Appendix B for a discussion comparing the technical aspects of this result to [20]. The proof is
provided in Appendix F.1 for the completeness and Corollary 1 can be derived by [20, Corollary 1].

Thus for an FOSP convergence of α-UPG, from (16) we recover the 1/
√

K convergence rate of
vanilla PG for RL problems in the literature [30, 61, 27, 1, 55, 58], which is also the same well-known
rate of SGD in non-convex optimization [45, 13]. Furthermore, by choosing a batch size m = O(1),
the expected horizon E [H] = 1

1−γ1−α from Lemma 2, and K = O(ϵ−4) from (17), we recover the
KmE [H] = O(ϵ−4) sample complexity of RPG [61], which is known as optimal for SGD without
extra assumptions on second-order smoothness or disruptive stochastic gradient noise [9, 20].

Compared to [58, Theorem 3.4], our analysis does not require the introduction of an additional
assumption [58, Assumption 3.2], which assumes that the difference between the expected unbiased
gradient and the expected truncated gradient should be proportional to γH , with H being the fixed
truncated horizon for vanilla PG. As a result, our analysis not only has tighter bounds, as we avoid the
additional error term O(γH) present in [58], but also simplifies the process, as we can directly apply
the results of [20] without needing the extra analysis steps in Yuan et al. [58]. This is mainly because
of the biasedness from truncation. Regarding sample complexity, our tighter iteration complexity
bounds lead to improvements in the vanilla PG sample complexity by a factor of O(log ϵ−1). This
factor originates from the additional error term O(γH) = O(ϵ)⇒ H = O(log ϵ−1) in [58].

Assumption 4 along with Proposition 1 may appear obscure at a first sight, it is indeed a clever way
to unify many of the current policy settings used in the RL literature [30, 61, 1, 55], e.g., the softmax
policies with or without regularizations [1] and the expected Lipschitz and smooth policies presented
in the next section. An extensive study of the assumption used in RL can be found in [58, Section 4].

4.2 Sample complexity analysis of the expected Lipschitz and smooth policy

We consider the commonly used expected Lipschitz and smooth policy (E-LS)1.
Assumption 5 (E-LS policies, Definition 1 in Papini et al. [33]). There exists constants G, F > 0
such that for every state s ∈ S, the expected gradient and Hessian of log πθ(· | s) satisfy

Ea∼πθ(·|s)
[∥∥∇ log πθ(a | s)

∥∥2] ≤ G2, and Ea∼πθ(·|s)
[∥∥∇2 log πθ(a | s)

∥∥] ≤ F. (18)

This assumption (or its stronger version without the expectation [32]) is widely adopted in the analysis
of PG (see for e.g., [46, 56, 17, 60, 58, 28]). It is satisfied for many classes of policies, e.g., the soft-
max, Gaussian and Cauchy policies. We refer to Fatkhullin et al. [11, Appendix B] for more details.

Under this assumption, Assumption 3 holds as shown by Yuan et al. [58] in the following lemma.
Lemma 3 (Smoothness, Lemma 4.4 in [58]). Under Assumption 5, J(θ) is L-smooth, namely∥∥∇2J(θ)

∥∥ ≤ L for all θ with L = rmax
(1−γ)2

(
G2 + F

)
.

In the following theorem, we show that α-UPG with the E-LS policy implies Assumption 4.
Theorem 6. Consider α-UPG among (11), (9), (12), (13) and RPG [61] with Assumption 5. We have

E
[
∥Ĝ(θ)∥2] ≤ (1− 1/m) ∥G(θ)∥2 + ν/m, (19)

where m is the batch size, and ν is the upper bound of E
[
∥Ĝ(θ)∥2] for one single trajectory with

ν = 3G2r2
max

(1−γ)3 for UGPOMDP (11); ν = 2G2r2
max

(1−γ)4 for Q-PGT (9); or ν = 2G2r2
max

(1−γ)3(1−γ
√

γ) for RPG
[61]. As for general α-UGPOMDP (12) and α-QPGT (13), their values of ν are given in (29).

1While Papini et al. [33] refers to this assumption as smoothing policy, Yuan et al. [58] referred to as the
expected Lipschitz and smooth policy.
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Notice that the upper bound ν is crucial for the FOSP sample complexity analysis [61, 55, 58], it
quantifies the variance of the gradient estimator for one single trajectory. Indeed, from (19), we have

Var
[
∥Ĝ(θ)∥2] = E

[
∥Ĝ(θ)∥2]− ∥G(θ)∥2 ≤ (ν − ∥G(θ)∥2)/m ≤ ν/m (= ν, if m = 1).

In previous PG analysis, one of the main challenges is to bound ν. Under Assumption 5, Yuan et al.
[58] establishes the best known bound of ν = O( G2r2

max
(1−γ)3 ) for GPOMDP (7), while [46, 35] achieve

a worse bound O( G2r2
max

(1−γ)4 ) with more restrictive assumptions (Assumption 5 without expectation).
Therefore, our result for UGPOMDP matches the best known bound of ν, even though UGPOMDP
uses undiscounted rewards, resulting in an unbounded stochastic gradient estimator.

To the best of our knowledge, ν = 2G2r2
max

(1−γ)4 for Q-PGT is novel. Previous results either consider
truncated Q-PGT or unbiased gradient estimator RPG [61, 55]. Like UGPOMDP, Q-PGT uses undis-
counted rewards, so its stochastic gradient estimator is unbounded, which makes the analysis challeng-
ing. Our analysis follows the idea of [59, Corollary 1] by showing that E[Q̂ θ(s, a)2] is bounded, even
though Q̂ θ(s, a) is unbounded. However, the ν for Q-PGT is 1

1−γ bigger than the one for UGPOMDP.

When analyzing α-QPGT, as a by-product, we obtain ν for RPG, as RPG is in fact α-QPGT with
α = 1

2 . Our ν is three times tighter than the one of [61, Theorem 3.4] when γ is close to 1, and is
obtained with weaker assumption (Assumption 5). See Remark 9 in Appendix G.1 for more details.

As for general α-UGPOMDP and α-QPGT, ν depends on α as shown in (29). There is no explicit
best α to minimize ν and it also depends on γ. Alternatively, we provide in Fig. 1 α-UGPOMDP’s
heap map of the theoretical value of ν. In this heap map, the x-axis is α between 0 and 1 and the
y-axis is γ between 0.9 and 1, and the variance of α-UGPOMDP ν is computed by f1(γα) with f1
defined in (30). Here we consider G = rmax = 1 for simplification as the term G2r2

max is common
for all the unbiased gradient estimators in (29).
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Figure 1: Variance of α-UGPOMDP.
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Figure 2: Sample complexity of α-UGPOMDP.

From Fig. 1, when γ is fixed, we observe that if α increases, the variance of α-UGPOMDP decreases.
The minimal variance achieves when α→ 1 and the maximum achieves when α = 0. This makes
sense. In fact, when α increases, the discount factor γα decreases, so the norm of the gradient
becomes smaller, which implies smaller variance. However, when γ → 1, the contour line becomes
horizontal. In this case, changing α will not have impact for the variance of α-UGPOMDP. This
is why when γ → 1, the variance of UGPOMDP (i.e., α-UGPOMDP with α = 0) matches the one
of GPOMDP which can be seen as α-UGPOMDP with α = 1. Similarly, see Fig. 6 α-QPGT’s heap
map of ν w.r.t. α and γ in Remark 10 in Appendix G.3.

Now we can establish the sample complexity of α-UPG for the expected Lipschitz and smooth policy
assumptions as a corollary of Proposition 1, Lemma 3 and Theorem 6.
Corollary 2. Suppose that Assumption 5 is satisfied. The α-UPG – UGPOMDP (11), Q-PGT (9),
α-UGPOMDP (12) and α-QPGT (13) gradient estimators applied in PG (10) with a batch sampling
of size m and constant stepsize η ∈ (0, 2/(L(1− 1/m))), satisfy

E
[
∥∇J(θU )∥2

]
≤ 2(J⋆ − J (0))

ηK
(
2− Lη

(
1− 1

m

)) + Lνη

m
(
2− Lη

(
1− 1

m

)) , (20)

where ν and L are provided in Lemma 3 and Theorem 6 respectively.
Similar to Corollary 1, by applying Corollary 2, we obtain sample complexity results for α-UPG.
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Corollary 3. Consider the setting of Corollary 2. For a given ϵ > 0, by choosing the batch
size m such that 1 ≤ m ≤ 2ν

ϵ2 , the stepsize η = ϵ2m
2Lν , the number of iterations K such that

Km ≥ 8Lν(J⋆−J (0))/ϵ4, then E[∥∇J(θU )∥2] = O(ϵ2) with the total expected sample complexity
KmE [H] ≥ O

(LνE[H]
ϵ4

)
, which is O

( 1
(1−γ)6ϵ4

)
for UGPOMDP (11), O

( 1
(1−γ)7ϵ4

)
for Q-PGT (9),

and O
( 1

(1−γ)5(1−√
γ)(1−γ

√
γ)ϵ4

)
for RPG [61].

Thus, all UGPOMDP, Q-PGT and RPG improve the sample complexity of GPOMDP [58, Corollary
4.7] by O(log ϵ−1), as α-UPG already achieves O(log ϵ−1) better sample complexity than vanilla
PG (Corollary 1). When γ is close to 1, UGPOMDP achieves the best sample complexity.

Notably, we have developed the sample complexity for Q-PGT for the first time, which is smaller
than that of RPG, even though Q-PGT has a larger variance ν than RPG. This is because the expected
horizon E [H] for Q-PGT is 1

1−γ (Lemma 1) and is shorter than the one for RPG which is 1
1−√

γ

(Lemma 2 with α = 1
2 ). See in Remark 10 their sample complexity comparison for more details. As

a result, this suggests that looking for the lowest variance ν from α does not necessarily lead to the
best sample complexity of α-UPG. Instead, optimizing the term νE [H] with α yields the best sample
complexity. Thus, we provide α-UGPOMDP’s heap map of the sample complexity w.r.t. α and γ
in Fig. 2, which is computed by νE[H] with E[H] = 1

1−γ1−α given in Lemma 2 and G = rmax = 1
as the term LG2r2

max
ϵ4 is shared in the sample complexity for all the unbiased gradient estimators.

Similarly, see Fig. 7 α-QPGT’s sample complexity heap map in Remark 10 in Appendix G.3.

From Fig. 2, we observe that, to achieve the lowest sample complexity, the optimal α is between
0 and 1 and it varies w.r.t. γ. The α = 0.5 seems to be a good choice to keep the sample complexity
low for different γ. The worst sample complexity is achieved when α → 1 as E[H] → ∞, which
is the case of GPOMDP. This theoretically suggests that one should use α-UGPOMDP instead of
GPOMDP. Similar to Fig. 2, when γ → 1, we observe the same horizontal contour line.

Finally, compared to [61], our RPG sample complexity result is better in terms of the order of 1
1−γ

thanks to the tighter bound of ν . Additionally, we have a range of parameters choices for the batch
size and the stepsize η, while [61] do not.

5 Experiments
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Figure 3: Comparison between biased and unbiased policy gradient methods. We compare the evolution of
discounted rewards in GPOMDP, UGPOMDP and α-UGPOMDP (α = 0.5) on four standard Gym environments.
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We provide an empirical evaluation of (α-)UGPOMDP against biased (GPOMDP) and unbiased
methods (Q-PGT and RPG) to validate our theoretical findings. Specifically, we test four different
Gymnasium environments: Cart Pole, Lunar Lander, Acrobot, and Pendulum [51]. Each algorithm is
evaluated with the discounted reward and its averaged performance over 10 runs is shown with 95%
confidence interval. The policy is parameterized by a 2-layer MLP with 64 hidden units and Tanh ac-
tivation function. We use softmax policies for finite action space and Gaussian policies for continuous
action space. See Appendix H for the experimental details, additional experiments and plots.

Fig. 3 shows the comparison among the biased GPOMDP, the unbiased UGPOMDP and α-
UGPOMDP with α = 0.5. In all four environments, both UGPOMDP and 0.5-UGPOMDP out-
perform GPOMDP, demonstrating the effectiveness of the unbiased gradient methods with random
horizon. Notably, 0.5-UGPOMDP outperforms UGPOMDP on Acrobot and Pendulum, and remains
competitive on CartPole and LunarLander, which validates the sample complexity analysis in § 4.2 and
Fig. 2. As expected from the variance analysis in § 4.2 and Fig. 1, (0.5-)UGPOMDP does not exhibit
higher variance than GPOMDP with γ = 0.99 used in the experiments. This serves as strong empirical
evidence that the unbiased methods are superior to biased ones and should be preferred in practice.

We then empirically tested the performance of α-UGPOMDP with α = 0, 0.25, 0.5, 0.75 in
Fig. 4. For CartPole and LunarLander, they are all competitive; while 0.75-UGPOMDP be-
haves the worst on Acrobot, the result is the opposite on Pendulum. For Acrobot, we use
γ = 0.99. From the sample complexity analysis in Fig. 2, it is coherent that α = 0, 0.25,
or 0.5 leads to better sample complexity than α = 0.75 with γ = 0.99 (red line in Fig. 2).
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Figure 5: Comparison between unbiased gradient
methods: UGPOMDP, RPG and Q-PGT.

For Pendulum, we use γ = 0.95 as shown in
Appendix H.1. From Fig. 2, it also makes sense
that α = 0.75 leads to better sample complexity
than α = 0, 0.25, or 0.5 with γ = 0.95 (white
line in Fig. 2). This suggests that our theoretical
results for the variance and the sample complex-
ity analysis well support our empirical results.

Additionally, we compare the performance of
the unbiased gradient methods against each
other. In Fig. 5, we compare UGPOMDP with
RPG and Q-PGT. In both CartPole and Pendu-
lum environments, UGPOMDP outperforms
both RPG and Q-PGT2.

6 Conclusions

We have introduced α-UPG, a new family of PG algorithms which achieves unbiased gradient
estimators by addressing the horizon discrepancy in standard PG, and for which we have obtained
strong convergence guarantees. We have exhibited several algorithms from the α-UPG family in order
to demonstrate its flexibility, and tested two specialized variants, UGPOMDP and α-UGPOMDP,
on several Gym environments with favorable results. The generality of α-UPG has allowed us to
propose several new algorithms (e.g., (α-)UGPOMDP and α-QPGT) and also to recover some known
ones (e.g., Q-PGT and RPG) along with their consequences, all from the single unified analytic
framework of α-UPG. We believe that α-UPG and its convergence analysis will open the way to
the design and analysis of a host of new unbiased PG methods, in a way similar to the potential
developments mentioned in Remark 2. Further venues of investigation include exploring and testing
the performance of different α-UPG, improving our theoretical analysis to the global optimum with
faster convergence rates by considering additional assumptions (e.g., the Fisher-non-degenerated
policies [11] with the use of the gradient domination property [10]), and building on α-UPG to
reach towards more advanced PG algorithms, such as variance reduced PGs [56, 17, 10] and PGs
integrated with second-order information [46, 28, 38].

2In [61], the authors use a different environment from the one available in Gymnasium and other environment
libraries. Specifically, they constrain the action space to [−20, 20], while in Gym the action space is [−2, 2].
This makes the problem easier in the setup used in [61] compared to the one used in this work. Hence, the
results are not directly comparable.
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A Limitations

The theoretical assumptions we make throughout this paper are standard in the PG literature. In fact,
for our main result on sample complexity, we use the weakest assumptions in the literature and match
the best known results. The main point of our paper is precisely to address an assumption that is
violated in practice (the ”horizon discrepancy”). However, several standard assumptions remain that
are violated in our experiments:

• Our theoretical results are for PG (10), while in our experiments we use Adam [21] which
empirically allows better performance for all the experiments.

• Our assumptions (Assumption 3, Assumption 4 and Assumption 5 are not satisfied by the
neural network parameterized policies that were used in the experiments. More specifically,
the assumptions hold for softmax and Gaussian policies. In our experiments, while we
also use softmax policies for discrete action space and Gaussian policies for continuous
action space, we also add two hidden layers in the policy networks, which breaks the
assumption. We use a very small step-size to mitigate the potential issue of the violation
of the assumption. To make the theoretical analysis also available with the neural network
parameterizations, one needs to consider additional assumptions like approximation error
assumption [3, Assumption A1].

Our claims also have a limited scope: the theoretical results obtained are only for first-order stationary
point (FOSP) convergence. This is different from second-order stationary point (SOSP) convergence
or global optimal convergence. Our FOSP analysis is limited in the sense that it only guarantees that
the gradient will converge to zero. For instance, it does not guarantee that the algorithm will find the
optimal solution. It may converge to a local optimum, or a saddle point which is even worse. SOSP
convergence will guarantee the avoidance of saddle points and global optimal convergence analysis
will guarantee to find the optimum which will avoid local optima.

Our approach was tested on 3 unbiased algorithms, UGPOMDP, Q-PGT and RPG, with only the
former being novel. We test on 5 environments (4 presented in the main text, 1 in the appendix), with
10 runs for each pair of algorithm/environment tested. In general, we expect our unbiased algorithms
to enable learning on the same environments as their biased counterparts. This includes discrete as
well as continuous environments, as presented in the main text. The classic environments we use are
all fully observable, however, the (biased) GPOMDP algorithm has already been successfully applied
to partially observed environments [5], hence we expect our unbiased version to be successful there
as well. The environments all have deterministic state transitions, except for Acrobot whose noise
applied to actions entails a stochastic transition to next state. Thus, our algorithms can operate with
stochastic environments. The algorithms all assume deterministic reward functions, which is the case
for all environments tested, but is a limitation for real world applications.

In terms of computational efficiency, our unbiased algorithms do not incur more computations than
their biased counterparts. We expect the compute required by our algorithms to scale with the state
dimension of the environment and its expected horizon in the same way as their biased counterparts.

B Related Work

Technical contribution and novelty compared to Khaled and Richtárik [20]. Our technical
contribution and novelty compared to Khaled and Richtárik [20] can be summarized as follows:

• First, from an algorithmic point of view, we integrate the geometric distribution sampling
for the horizon, which is unique to PG methods and has not been considered in Khaled and
Richtárik [20].

• Second, compared explicitly to Khaled and Richtárik [20, Theorem 2], our bounds in (15)
and (16) share the same rates but different constants due to the choice of the stepsize η.
Indeed, their condition was η ∈ (0, 1

LB ), while ours is twice larger in terms of the possible
range without loosing the tightness of the bounds, followed by the stepsize choices in [58].

• Furthermore, when considering the results we derived in specific cases in § 4.2, the difference
between our work and Khaled and Richtárik [20] is significant. All cases studied in Khaled
and Richtárik [20] (e.g., finite-sum structure) are not applicable for PG methods and we
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had to derive specific analysis for our specialized settings (expected Lipschitz and smooth
policies, such as Gaussian and softmax policies).

• Lastly, our focus is on deriving explicit sample complexity, whereas the results in Khaled
and Richtárik [20] are concerned with convergence rates in terms of number of iterations.
These dimensions are where most of the technical work was done.

Technical contribution and novelty compared to Yuan et al. [58]. Our technical contribution
and novelty compared to Yuan et al. [58] can be summarized as follows:

• First, as mentioned in Remark 1, from an algorithmic point of view, the setting of α-UPG
is fundamentally different to the one of vanilla PG, i.e., REINFORCE (6) and GPOMDP
(7) studied in [58]. α-UPG considers finite random horizon γα-discounted rewards while
vanilla PG in [58] considers infinite-horizon γ-discounted rewards with a fixed truncated
horizon H .

• From the theoretical point of view,
– We use a weaker assumption, we find no need to introduce any additional assumption

due to the bias from the truncation. As a result, our analysis is easier and we avoid an
additional error term O(γH).

– Consequently, we improve on the sample complexity by a factor of O(log ϵ−1).
– The variance of UGPOMDP is of the same order as for GPOMDP in Yuan et al. [58].

This also explains why we can achieve better convergence results, as our methods are
unbiased.

– When considering the results we derived in specific cases in § 4.2, the difference
between our work and Yuan et al. [58] is significant. All cases studied in Yuan et al.
[58] (e.g., truncated gradient estimators) are not applicable for α-UPG and we had to
derive specific results for our specialized settings (such as α-UGPOMDP and α-QPGT).

• Empirically, UPG outperforms the vanilla PG presented in § 5, which validates our theoreti-
cal findings. Notice that there is no experiment in Yuan et al. [58].

Technical contribution and novelty compared to Zhang et al. [61]. . Our technical contribution
and novelty compared to Zhang et al. [61] can be summarized as follows:

• First, the idea of our work is inspired from RPG [61]. We generalize RPG by introducing
α-UPG which is a much more general algorithm and recovers RPG as a special case.

• From an algorithmic point of view, we provide two general new algorithms – α-UGPOMDP
and α-QPGT as special cases of α-UPG, which demonstate the great flexibility of α-UPG.

• From the theoretical point of view,
– We use the most advanced SGD proof techniques, which does not require the bound-

edness of the stochastic gradient estimators and allows range of parameters choice to
achieve the same best performance, while Zhang et al. [61] relies on the boundedness
of the stochastic gradient update.

– We show that first sample complexity analysis of unbiased Q-PGT, even though its
gradient estimator is unbounded.

Vanilla policy gradient. The vanilla PG is widely applied in different special RL settings [31, 33,
26] or that investigates the stepsize of the algorithm [36, 37, 8, 24]. However, they are all truncated.
Our unbiased approach can be integrated naturally without modifying the rest of the steps, which will
improve their results both in theory and in practice.

Variants of policy gradient and beyond. There are many advanced PG methods developed from
REINFORCE (6) and GPOMDP (7), such as the variance reduced PGs [32, 56, 57, 17, 35, 27, 18, 4],
natural PG variants [27, 12], actor-critic variants and others [8]. As a result, they are all biased due
to the truncation. We believe that these variants of PGs can improve their results by simple using
α-UPG instead of vanilla PG to construct the desired terms.

Furthermore, not only the gradient but also the Hessian is truncated for PGs with additional second-
order information [46, 28, 11, 38, 25, 29]. By using our approach, that is, random horizon H with
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H ∼ Geom(1− γ1−α) and γα-discounted reward, the estimates of the Hessian can be improved to
be unbiased, which will also improve their results both in theory and in practice.

C Gradient Derivation

Lemma 4. The full gradient G(θ) of the expected value function J(θ) can be written as (2), (3), (4)
or (5). That is,

G(θ) = Eτ

[ ∞∑
k=0

γkr(sk, ak)
∞∑

t=0
∇ log πθ(at | st)

]

= Eτ

[ ∞∑
t=0

(
t∑

k=0
∇ log πθ(ak | sk)

)
γtr(st, at)

]

= Eτ

[ ∞∑
t=0
∇ log πθ(at | st)

∞∑
t′=t

γt′
r(st′ , at′)

]

= 1
1− γ

Es∼dθ
ρ, a∼πθ(·|s)

[
Qθ(s, a)∇ log πθ(a | s)

]
.

Proof. First, the gradient G(θ) of the expected return has the following structure

G(θ) =
∫

r(τ)∇p(τ | θ)dτ

=
∫

r(τ) (∇p(τ | θ)/p(τ | θ)) p(τ | θ)dτ

= Eτ∼p(·|θ) [r(τ)∇ log p(τ | θ)]

= Eτ

[ ∞∑
t=0

γtr(st, at)
∞∑

t′=0
∇ log πθ(at′ | st′)

]
, (21)

which proves (2). To simplify (21), we notice that future actions do not depend on past rewards. That
is, for 0 ≤ k < l among terms of the two sums in equation (21), we have

Eτ

[
∇ log πθ(al | sl)γkr(sk, ak)

]
= Es0:l,a0:l

[
∇ log πθ(al | sl)γkr(sk, ak)

]
= Es0:l,a0:(l−1)

[
γkr(sk, ak)Eal

[
∇ log πθ(al | sl)

∣∣∣∣ s0:l, a0:(l−1)

]]
= Es0:l,a0:(l−1)

[
γkr(sk, ak)

∫
πθ(al | sl)∇ log πθ(al | sl) dal

]
= Es0:l,a0:(l−1)

[
γkr(sk, ak)

∫
∇πθ(al | sl) dal

]
= Es0:l,a0:(l−1)

[
γkr(sk, ak)∇

∫
πθ(al | sl) dal︸ ︷︷ ︸

=1

]
= 0.

Plugging the above property into (21) yields (3) and (4) of the lemma, as half of the terms in (21) can
be removed. The equations (3) and (4) are equivalent by changing the order of summation.

17



To prove (5), we can start from (4). That is,

G(θ) = Eτ

[ ∞∑
t=0
∇ log πθ(at | st)

∞∑
t′=t

γt′
r(st′ , at′)

]

= Eτ

[
∇ log πθ(a0 | s0)

∞∑
t′=0

γt′
r(st′ , at′)

]
+ Eτ

[ ∞∑
t=1
∇ log πθ(at | st)

∞∑
t′=t

γt′
r(st′ , at′)

]

= Es0,a0

[
∇ log πθ(a0 | s0)Eτ

[ ∞∑
t′=0

γt′
r(st′ , at′)

∣∣∣∣ s0, a0

]]

+ Es1:∞,a1:∞

[ ∞∑
t=1
∇ log πθ(at | st)

∞∑
t′=t

γt′
r(st′ , at′)

]
= Es0,a0

[
Qθ(s0, a0)∇ log πθ(a0 | s0)

]
+ γEs1:∞,a1:∞

[ ∞∑
t=1
∇ log πθ(at | st)

∞∑
t′=t

γt′−1r(st′ , at′)
]

=
∞∑

t=0
γtE

[
Qθ(st, at)∇ log πθ(at | st)

]
,

where the forth equality is obtained through the definition of Q-function, and the last step follows
from recursion. The above expectation is computed over the trajectories {(st, at)}t≥0. Notice that
we can also rewrite the expectation over the state and action space S ×A. That is,

G(θ) =
∞∑

t=0
γtE

[
Qθ(st, at)∇ log πθ(at | st)

]
=

∞∑
t=0

γt
∑

(s,a)∈S×A

Pr(st = s, at = a)Qθ(s, a)∇ log πθ(a | s)

=
∑

(s,a)∈S×A

∞∑
t=0

γt Pr(st = s, at = a)Qθ(s, a)∇ log πθ(a | s)

=
∑

(s,a)∈S×A

1
1− γ

dθ
ρ(s)πθ(a | s)Qθ(s, a)∇ log πθ(a | s),

where the last line is obtained by the definition of the state visitation distribution dθ
ρ(s). This

completes the proof of the claim.

D Algorithm Implementations

D.1 UGPOMDP and Q-PGT implementations

We first provide two equivalent Algorithms 2 and 3 to obtain the gradient estimators ĜUGPOMDP(θ)
in (11). Recall ĜUGPOMDP(θ) in (11)

ĜUGPOMDP(θ) =
H−1∑
t=0

r(st, at)
(∑t

t′=0
∇ log πθ(at′ | st′)

)
(22)

=
H−1∑
t=0

(
H−1∑
t′=t

r(st′ , at′)
)
∇ log πθ(at | st), (23)

where the second line (23) is obtained by the change in order of summation, and H − 1 is sampled
from Geom(1− γ).

Based on two different but equivalent expressions of ĜUGPOMDP(θ), we propose Algorithms 2 and
3 to implement (22) and (23), respectively.
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Algorithm 2: UGPOMDP: UGPOMDP gradient estimator in (11)

Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1)
1 Initialize s0 ∼ ρ and a0 ∼ πθ(· | s0), the vector v0 = ∇ log πθ(a0 | s0), the horizon

H − 1 ∼ Geom(1− γ)
2 Set the estimate ĜUGPOMDP(θ) = r(s0, a0)v0 \\ Start to estimate ĜUGPOMDP(θ)
3 for t = 0 to H − 2 do
4 Sample st+1 ∼ P (· | st, at)
5 Sample at+1 ∼ πθ(· | st+1) and obtain r(st+1, at+1)
6 vt+1 ← vt +∇ log πθ(at+1 | st+1)
7 ĜUGPOMDP(θ)← ĜUGPOMDP(θ) + r(st+1, at+1)vt+1

Output: ĜUGPOMDP(θ)

Algorithm 3: UGPOMDP: Equivalent UGPOMDP implementation in (23)

Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1)
1 Initialize s0 ∼ ρ and a0 ∼ πθ(· | s0), the horizon H − 1 ∼ Geom(1− γ)
2 for t = 0 to H − 1 do
3 Store the vector ∇ log πθ(at | sa) and the scalar r(st, at)
4 Sample st+1 ∼ P(· | st, at)
5 Sample at+1 ∼ πθ(· | st+1)
6 Set RH−1 = r(sH−1, aH−1)
7 Set the estimate ĜUGPOMDP(θ) = RH−1∇ log πθ(aH−1 | sH−1) \\ Start to estimate

ĜUGPOMDP(θ)
8 for t = H − 2 to 0 do
9 Rt ← Rt+1 + r(st, at)

10 ĜUGPOMDP(θ)← ĜUGPOMDP(θ) + Rt∇ log πθ(at | st)
Output: ĜUGPOMDP(θ)

Then, we provide Algorithm 4 to implement the unbiased gradient estimator ĜQ−PGT(θ) in (9).

Algorithm 4: Q-PGT: Q-PGT gradient estimator in (9)

Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1)
1 Initialize s0 ∼ ρ and a0 ∼ πθ(· | s0), the horizons H1 − 1, H2 − 1 ∼ Geom(1− γ)
2 for t = 0 to H1 − 2 do
3 Sample st+1 ∼ P(· | st, at)
4 Sample at+1 ∼ πθ(· | st+1) \\ Accept (sH1−1, aH1−1)
5 Set the estimate Q̂ θ(sH1−1, aH1−1) = r(sH1−1, aH1−1) \\ Start to estimate Q̂ θ(sH1−1, aH1−1)
6 for t = H1 − 1 to H1 + H2 − 3 do
7 Sample st+1 ∼ P(· | st, at)
8 Sample at+1 ∼ πθ(· | st+1)
9 Q̂ θ(sH1−1, aH1−1)← Q̂ θ(sH1−1, aH1−1) + r(st+1, at+1)

10 Compute Q-PGT in (9): ĜQ−PGT(θ) = 1
1−γ Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1)

Output: ĜQ−PGT(θ)
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The ĜQ−PGT(θ) is an unbiased gradient estimator of J(θ). Indeed, we have

E
[
ĜQ−PGT(θ)

]
(9)= E

[
1

1− γ
Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1)

]
= EsH1−1,aH1−1

[
E
[

1
1− γ

Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1) | sH1−1, aH1−1

]]
= EsH1−1,aH1−1

[
1

1− γ
E
[
Q̂ θ(sH1−1, aH1−1) | sH1−1, aH1−1

]
∇ log πθ(aH1−1 | sH1−1)

]
= EsH1−1,aH1−1

[
1

1− γ
Q θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1)

]
(5)= G(θ),

where the fourth equality uses E
[
Q̂ θ(sH1−1, aH1−1) | sH1−1, aH1−1

]
= Qθ(sH1−1, aH1−1), and

the last line uses (5) with sH1−1 ∼ dθ
ρ, aH1−1 ∼ πθ(· | sH1−1). Here, both the unbiased sampling of

(sH1−1, aH1−1) and the unbiased estimate Q̂ θ(sH1−1, aH1−1) of Qθ(sH1−1, aH1−1) are shown by
Yuan et al. [59, Algorithm 3 and Lemma 4].

D.2 α-UPG implementations

Algorithm 5 provides the general architecture of the implementation of α-UPG.

Algorithm 5: α-UPG: α-Unbiased Policy Gradient

Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1), hyperparameter
α ∈ [0, 1)

1 Initialize s0 ∼ ρ and a0 ∼ πθ(· | s0), the horizon H − 1 ∼ Geom(1− γ1−α)
2 for t = 0 to H − 1 do
3 Store the vector ∇ log πθ(at | st) and the scalar γαtr(st, at)
4 Sample st+1 ∼ P(· | st, at) and at+1 ∼ πθ(· | st+1)
5 Build the undiscounted gradient estimator Ĝα−UPG(θ) from the stored∇ log πθ(at | st),

γαtr(st, at)
Output: Ĝα−UPG(θ)

Then Algorithm 6 implements α-UGPOMDP gradient estimator Ĝα−UGPOMDP(θ) in (12), and
Algorithm 7 implements the unbiased gradient estimator α-QPGT Ĝα−QPGT(θ) in (13), respectively.

Algorithm 6: α-UGPOMDP: α-UGPOMDP gradient estimator in (12)

Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1), hyperparameter
α ∈ [0, 1)

1 Initialize s0 ∼ ρ and a0 ∼ πθ(· | s0), the horizon H − 1 ∼ Geom(1− γ1−α)
2 Set the estimate Ĝα−UGPOMDP(θ) = r(s0, a0)v0 \\ Start to estimate Ĝα−UGPOMDP(θ)
3 for t = 0 to H − 2 do
4 Sample st+1 ∼ P (· | st, at)
5 Sample at+1 ∼ πθ(· | st+1) and obtain r(st+1, at+1)
6 vt+1 ← vt +∇ log πθ(at+1 | st+1)
7 Ĝα−UGPOMDP(θ)← Ĝα−UGPOMDP(θ) + γα(t+1)r(st+1, at+1)vt+1

Output: Ĝα−UGPOMDP(θ)

Remark 7. Notice that in Algorithm 7, H1 and H2 are sampled from different geometric distributions,
which is the same case as in RPG [61]. Indeed, H1 − 1 ∼ Geom(1 − γ), which is the same as in
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Algorithm 7: α-QPGT: α-QPGT gradient estimator in (13)

Input: Initial state distribution ρ, policy πθ, discount factor γ ∈ [0, 1), hyperparameter
α ∈ [0, 1)

1 Initialize s0 ∼ ρ and a0 ∼ πθ(· | s0), the horizons H1 − 1 ∼ Geom(1− γ) and
H2 − 1 ∼ Geom(1− γ1−α)

2 for t = 0 to H1 − 2 do
3 Sample st+1 ∼ P(· | st, at)
4 Sample at+1 ∼ πθ(· | st+1) \\ Accept (sH1−1, aH1−1)
5 Set the estimate Q̂ θ(sH1−1, aH1−1) = r(sH1−1, aH1−1) \\ Start to estimate Q̂ θ(sH1−1, aH1−1)
6 for t = H1 − 1 to H1 + H2 − 3 do
7 Sample st+1 ∼ P(· | st, at)
8 Sample at+1 ∼ πθ(· | st+1)
9 Q̂ θ(sH1−1, aH1−1)← Q̂ θ(sH1−1, aH1−1) + γα((t+1)−(H1−1))r(st+1, at+1)

10 Compute Q-PGT in (9): ĜQ−PGT(θ) = 1
1−γ Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1)

Output: ĜQ−PGT(θ)

Algorithm 4, because Algorithm 7 first simulates the state visitation distribution dθ
ρ of the original

discounted MDP with the discount factor γ. The H2 − 1 ∼ Geom(1− γ1−α), which is different to
the one in Algorithm 4 with Geom(1−γ), because Algorithm 7 will construct the discounted gradient
estimator for α-UPG starting from Line 5, where the discount factor is specifically equal to γα.

E Proofs of Section 3

E.1 Proof of Lemma 1

Proof. The expected length H of sampling the trajectory τ = {s0, a0, s1, a1, · · · , sH−1, aH−1} is

E [H] =
∞∑

k=0
Pr(H = k + 1)(k + 1) = (1− γ)

∞∑
k=0

γk(k + 1) = 1
1− γ

.

Now we verify that ĜUGPOMDP(θ) in (11) is an unbiased estimate of (3). Indeed, from (11) (or from
Algorithm 2),

ĜUGPOMDP(θ) =
H−1∑
t=0

r(st, at)vt,

where H is the length of the trajectory τ , sampled from Geom(1− γ), and

vt =
t∑

t′=0
∇ log πθ(at′ | st′).
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Taking expectation with respect to the randomness of sampling τ from (11), we have

E
[
ĜUGPOMDP(θ)

]
= E

[
H−1∑
t=0

r(st, at)vt

]

=
∞∑

k=0
Pr(H − 1 = k)E

[
H−1∑
t=0

r(st, at)vt | H − 1 = k

]

=
∞∑

k=0
(1− γ)γkE

[
k∑

t=0
r(st, at)vt

]

= (1− γ)E
[ ∞∑

k=0
γk

k∑
t=0

r(st, at)vt

]

= (1− γ)E
[ ∞∑

t=0
r(st, at)vt

∞∑
k=t

γk

]

= E

[ ∞∑
t=0

γtr(st, at)vt

]

= E

[ ∞∑
t=0

γtr(st, at)
(

t∑
t′=0
∇ log πθ(at′ | st′)

)]
,

where the fifth line is obtained by the change in order of summation, and the last line is obtained by
the definition of vt, and it recovers G(θ) in (3).

E.2 Proof of Lemma 2

Proof. By H − 1 ∼ Geom(1− γ1−α), we have that

E [H] =
∞∑

k=0
Pr(H = k + 1)(k + 1) = (1− γ1−α)

∞∑
k=0

γk(1−α)(k + 1) = 1
1− γ1−α

,

where the last equality is obtained by applying (58) in Lemma 7 with γ1−α, where γ1−α is between
0 and 1 as α ∈ [0, 1).

Now we verify that Ĝα−UGPOMDP(θ) in (12) is an unbiased estimate of (3). Indeed, from (12) (or
from Algorithm 6),

Ĝα−UGPOMDP(θ) =
H−1∑
t=0

γαtr(st, at)vt,

where H is the length of the trajectory τ , sampled from Geom(1− γ(1−α)), and

vt =
t∑

t′=0
∇ log πθ(at′ | st′).
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Taking expectation with respect to the randomness of sampling τ from (12), we have

E
[
Ĝα−UGPOMDP(θ)

]
= E

[
H−1∑
t=0

γαtr(st, at)vt

]

=
∞∑

k=0
Pr(H − 1 = k)E

[
H−1∑
t=0

γαtr(st, at)vt | H − 1 = k

]

=
∞∑

k=0
(1− γ(1−α))γk(1−α)E

[
k∑

t=0
γαtr(st, at)vt

]

= (1− γ(1−α))E
[ ∞∑

k=0
γk(1−α)

k∑
t=0

γαtr(st, at)vt

]

= (1− γ(1−α))E
[ ∞∑

t=0
γαtr(st, at)vt

∞∑
k=t

γk(1−α)

]

= E

[ ∞∑
t=0

γαtγt(1−α)r(st, at)vt

]

= E

[ ∞∑
t=0

γtr(st, at)
(

t∑
t′=0
∇ log πθ(at′ | st′)

)]
,

where the fifth line is obtained by the change in order of summation, and the last line is obtained by
the definition of vt, and it recovers G(θ) in (3).

Lastly, we verify that Ĝα−QPGT(θ) in (13) is an unbiased estimate of (4).

Let

Q̂ θ(sH1−1, aH1−1) def=
H1+H2−2∑
t=H1−1

γα(t−(H1−1))r(st, at).

Similar to the derivation of the unbiased gradient estimator ĜQ−PGT(θ) in (9) for Q-PGT right after
Algorithm 4, from (13) and Algorithm 7, we have

E
[
Ĝα−QPGT(θ)

]
(13)= E

[( 1
1− γ

H1+H2−2∑
t=H1−1

γα(t−(H1−1))r(st, at)
)
∇ log πθ(aH1−1 | sH1−1)

]

= E
[

1
1− γ

Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1)
]

= EsH1−1,aH1−1

[
E
[

1
1− γ

Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1) | sH1−1, aH1−1

]]
,

= EsH1−1,aH1−1

[
1

1− γ
E
[
Q̂ θ(sH1−1, aH1−1) | sH1−1, aH1−1

]
∇ log πθ(aH1−1 | sH1−1)

]
.

(24)

Now we are going to show that Q̂ θ(sH1−1, aH1−1) is an unbiased estimate of the Q-function
Q θ(sH1−1, aH1−1), knowing sH1−1 and aH1−1.
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Using the fact that H2 − 1 ∼ Geom(1− γ1−α), we have

E
[
Q̂ θ(sH1−1, aH1−1) | sH1−1, aH1−1

]
= E

[
H2−1∑
t=0

γαtr(st, at) | s0 = sH1−1, a0 = aH1−1

]

=
∞∑

k=0
Pr(H2 − 1 = k)E

[
H2−1∑
t=0

γαtr(st, at) | H2 − 1 = k, s0 = sH1−1, a0 = aH1−1

]

= (1− γ1−α)
∞∑

k=0
γk(1−α)E

[
k∑

t=0
γαtr(st, at) | s0 = sH1−1, a0 = aH1−1

]

= (1− γ1−α)E
[ ∞∑

t=0
γαtr(st, at)

∞∑
k=t

γk(1−α) | s0 = sH1−1, a0 = aH1−1

]

= E

[ ∞∑
t=0

γαtγt(1−α)r(st, at) | s0 = sH1−1, a0 = aH1−1

]

= E

[ ∞∑
t=0

γtr(st, at) | s0 = sH1−1, a0 = aH1−1

]
= Q θ(sH1−1, aH1−1),

where the first equality is obtained by the Markov property of the MDP, and the fourth equality is
obtained by changing the order of the summation.

So, we can rewrite (24) thanks to the result above that

E
[
Ĝα−QPGT(θ)

]
= EsH1−1,aH1−1

[
1

1− γ
Q θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1)

]
(5)= G(θ),

as we have (sH1−1, aH1−1) ∼ dθ
ρ ◦ πθ(· | sH1−1) as in Algorithm 4, since H1 follows the same

geometric distribution in both Algorithms 4 and 7, which is mentioned in Remark 7.

F Proofs of Section 4.1

F.1 Proof of Proposition 1

Here we apply the proof techniques from Khaled and Richtárik [20, Theorem 2] to prove Proposition 1.

Proof. We start with L-smoothness of J from Assumption 3, which implies

J (k+1) ≥ J (k) +
〈

G(k), θ(k+1) − θ(k)
〉
− L

2

∥∥∥θ(k+1) − θ(k)
∥∥∥2

= J (k) + η
〈

G(k), Ĝ(k)
〉
− Lη2

2

∥∥∥Ĝ(k)
∥∥∥2

.

Taking expectations conditioned on θ(k) with the shorthand Ek [·] for E
[
· | θ(k)], and noticing that

Ek

[
Ĝ(k)

]
= G(k), as α-UPG is unbiased gradient estimator of J(·), we get

Ek

[
J (k+1)

]
≥ J (k) + η

∥∥∥G(k)
∥∥∥2
− Lη2

2 Ek

[∥∥∥Ĝ(k)
∥∥∥2
]

(14)
≥ J (k) + η

∥∥∥G(k)
∥∥∥2
− Lη2

2

(
2A(J⋆ − J (k)) + B

∥∥∥G(k)
∥∥∥2

+ C

)
= J (k) + η

(
1− LBη

2

)∥∥∥G(k)
∥∥∥2
− Lη2A(J⋆ − J (k))− LCη2

2 .
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Subtracting J⋆ from both sides gives

−
(

J⋆ − Ek

[
J (k+1)

])
≥ −(1 + Lη2A)(J⋆ − J (k)) + η

(
1− LBη

2

)∥∥∥G(k)
∥∥∥2
− LCη2

2 .

Taking the total expectation and rearranging, we get

E
[
J⋆ − J (k+1)

]
+ η

(
1− LBη

2

)
E
[∥∥∥G(k)

∥∥∥2
]
≤ (1 + Lη2A)E

[
J⋆ − J (k)

]
+ LCη2

2 .

Letting δ(k) def= E
[
J⋆ − J (k)] and g(k) def= E

[∥∥G(k)
∥∥2]

, we can rewrite the last inequality as

η

(
1− LBη

2

)
g(k) ≤ (1 + Lη2A)δ(k) − δ(k+1) + LCη2

2 . (25)

We now introduce a sequence of weights w−1, w0, w1, · · · , wK−1 based on a technique developed
by Stich [47]. Let w−1 > 0. Define wk

def= wk−1
1+Lη2A for all k ≥ 0. Notice that if A = 0, we have

wk = wk−1 = · · · = w−1. Multiplying (25) by wk/η,(
1− LBη

2

)
wkg(k) ≤ wk(1 + Lη2A)

η
δ(k) − wk

η
δ(k+1) + LCη

2 wk

= wt−1

η
δ(k) − wk

η
δ(k+1) + LCη

2 wk.

Summing up both sides as k = 0, 1, · · · , K − 1 and using telescopic sum, we have,(
1− LBη

2

)K−1∑
k=0

wkg(k) ≤ w−1

η
δ(0) − wK−1

η
δ(K) + LCη

2

K−1∑
k=0

wk

≤ w−1

η
δ(0) + LCη

2

K−1∑
k=0

wk. (26)

Let WK
def=
∑K−1

k=0 wk. Dividing both sides by WK , we have,(
1− LBη

2

)
min

0≤k≤K−1
g(k) ≤ 1

Wk
·
(

1− LBη

2

)K−1∑
k=0

wkg(k) ≤ w−1

Wk

δ(0)

η
+ LCη

2 . (27)

Note that,

WK =
K−1∑
k=0

wk ≥
K−1∑
k=0

min
0≤i≤K−1

wi = KwK−1 = Kw−1

(1 + Lη2A)K
.

Using this in (27),(
1− LBη

2

)
min

0≤k≤K−1
g(k) ≤ δ(0)(1 + Lη2A)K

ηK
+ LCη

2 . (28)

Our choice of stepsize guarantees that no matter B > 0 or B = 0, we have 1− LBη
2 > 0. Dividing

both sides by 1− LBη
2 and rearranging yields the proposition’s claim in the case when A > 0.

If A = 0, we know that {wk}k≥−1 is a constant sequence. In this case, WK = Kw−1. Dividing
both sides of (26) by WK , we have,(

1− LBη

2

)
1
K

K−1∑
k=0

g(k) ≤ δ(0)

ηK
+ LCη

2 .

Dividing both sides by 1 − LBη
2 and rearranging yields the proposition’s claim in the case when

A = 0.
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F.2 Proof of Corollary 1

Proof. Given ϵ > 0, from Corollary 1 in Khaled and Richtárik [20], we know that if η =
min

{ 1√
LAK

, 1
LB , ϵ

2LC

}
and the number of iterations K satisfies

K ≥ 12L(J⋆ − J (0))
ϵ2 max

{
B,

12A(J⋆ − J (0))
ϵ2 ,

2C

ϵ2

}
,

we have

min
0≤k≤K−1

E
[∥∥∥G(k)

∥∥∥2
]
≤ 2(J⋆ − J (0))(1 + Lη2A)K

ηK(2− LBη) + LCη

2− LBη
≤ ϵ2.

G Proofs of Section 4.2

G.1 Proof of Theorem 6

First, we provide the complete version of Theorem 6 as follows.

Theorem 8. Under Assumption 5, consider an α-UPG among (11), (9), (12) and (13). We have

E
[
∥Ĝ(θ)∥2] ≤ (1− 1/m) ∥G(θ)∥2 + ν/m,

where m is the batch size, and

ν =



3G2r2
max

(1−γ)3 for UGPOMDP (11)

2G2r2
max

(1−γ)4 for Q-PGT (9)

G2r2
maxf1(γα) for α-UGPOMDP (12)

G2r2
maxf2(γα)
(1−γ)2 for α-QPGT (13)

2G2r2
max

(1−γ)3(1−γ
√

γ) for α-QPGT (i.e., RPG [61]) in (13) with α = 1
2

, (29)

where f1 : (γ, 1)→ R and f2 : (γ, 1)→ R are scalar functions defined as follows,

f1(x) def= (1− x)2 − (1− x)(x− γ)− (x− γ)2

(1− γ)2(1− x)3 + x(x− γ) ((1− x) + (1− γx))
(1− x)3(1− γx)2 , (30)

f2(x) def= (1− γ)− 2(x− γ)
(1− γ)(1− x)2 + x(x− γ)

(1− x)2(1− γx) . (31)

Proof. Let g(τ | θ) be a stochastic gradient estimator of one single sampled trajectory τ . Thus
Ĝ(θ) = 1

m

∑m
i=1 g(τi | θ). By Lemmas 1 and 2, both Ĝ(θ) and g(τ | θ) are unbiased gradient

estimators of J(θ) for all (11), (9), (12) and (13), which is G(θ). By following the derivation of

26



Equation (68) in Yuan et al. [58], we have

E
[∥∥∥Ĝ(θ)

∥∥∥2
]

= E

∥∥∥∥∥ 1
m

m−1∑
i=0

g(τi | θ)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1
m

m−1∑
i=0

g(τi | θ)−G(θ) + G(θ)

∥∥∥∥∥
2

= ∥G(θ)∥2 + E

∥∥∥∥∥ 1
m

m−1∑
i=0

(g(τi | θ)−G(θ))

∥∥∥∥∥
2

= ∥G(θ)∥2 + 1
m2

m−1∑
i=0

E
[
∥g(τi | θ)−G(θ)∥2

]
= ∥G(θ)∥2 + 1

m
E
[
∥g(τ1 | θ)−G(θ)∥2

]
=

(
1− 1

m

)
∥G(θ)∥2 +

E
[
∥g(τ1 | θ)∥2

]
m

, (32)

where the third, the fourth and the fifth lines are all obtained by using G(θ) = E [g(τi | θ)]. It remains
to show Eτ

[
∥g(τ | θ)∥2

]
is bounded under Assumption 5 for UGPOMDP in (11), Q-PGT in (9)

with Algorithm 4, α-UGPOMDP in (12) when α ̸= 0, and α-QPGT in (13) with Algorithm 7 when
α ̸= 0, respectively.

Part I: UGPOMDP in (11).

First, consider ĜUGPOMDP(θ) from (11) and with random horizon H − 1 ∼ Geom(1− γ):

g(τ | θ) = ĜUGPOMDP(θ) (11)=
H−1∑
t=0

r(st, at)
(

t∑
t′=0
∇ log πθ(at′ | st′)

)
.
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Taking expectation with respect to the randomness of sampling τ from (11), we have

Eτ

[
∥g(τ | θ)∥2

]
(11)= Eτ

∥∥∥∥∥
H−1∑
t=0

r(st, at)
(

t∑
t′=0
∇ log πθ(at′ | st′)

)∥∥∥∥∥
2

=
∞∑

k=0
Pr(H − 1 = k)E

∥∥∥∥∥
H−1∑
t=0

r(st, at)
(

t∑
t′=0
∇ log πθ(at′ | st′)

)∥∥∥∥∥
2

| H − 1 = k


=

∞∑
k=0

(1− γ)γkE

∥∥∥∥∥
k∑

t=0
r(st, at)

(
t∑

t′=0
∇ log πθ(at′ | st′)

)∥∥∥∥∥
2

≤ (1− γ)
∞∑

k=0
γkE

( k∑
t=0

r(st, at)2

) k∑
t=0

∥∥∥∥∥
t∑

t′=0
∇ log πθ(at′ | st′)

∥∥∥∥∥
2

≤ r2
max(1− γ)

∞∑
k=0

γk(k + 1)
k∑

t=0
E

∥∥∥∥∥
t∑

t′=0
∇ log πθ(at′ | st′)

∥∥∥∥∥
2

(56)= r2
max(1− γ)

∞∑
k=0

γk(k + 1)
k∑

t=0

t∑
t′=0

E
[∥∥∇ log πθ(at′ | st′)

∥∥2]
(54)
≤ G2r2

max(1− γ)
∞∑

k=0
γk(k + 1)

k∑
t=0

(t + 1)

= 1
2G2r2

max(1− γ)
∞∑

k=0
γk(k + 1)2(k + 2)

(60)
≤ 3G2r2

max
(1− γ)3 , (33)

where the fourth line (the first inequality) is obtained from the Cauchy-Schwarz inequality, the fifth
line (the second inequality) is obtained by using |r(st, at)| ≤ rmax and the last line is obtained by
(60) in Lemma 7.

The above together with (32) imply that the expected smoothness assumption holds for the batch
version of UGPOMDP with

E
[∥∥∥ĜUGPOMDP(θ)

∥∥∥2
]

(32), (33)
≤

(
1− 1

m

)
∥G(θ)∥2 + 3G2r2

max
m(1− γ)3 .

Part II: Q-PGT in (9) with Algorithm 4.

Now, consider ĜQ−PGT(θ) from (9) sampled from Algorithm 4. With random horizon H1 − 1 ∼
Geom(1− γ), we have

g(τ | θ) = ĜQ−PGT(θ) (9)= 1
1− γ

Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1),

where, from Algorithm 4, Q̂ θ(sH1−1, aH1−1) is computed as

Q̂ θ(sH1−1, aH1−1) =
H1+H2−2∑
t=H1−1

r(st, at). (34)
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Taking expectation with respect to the randomness of sampling τ from (9) in Algorithm 4, we have

E
[
∥g(τ | θ)∥2

]
= E

[∥∥∥∥ 1
1− γ

Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1)
∥∥∥∥2
]

= E
[

1
(1− γ)2 Q̂ θ(sH1−1, aH1−1)2∥∥∇ log πθ(aH1−1 | sH1−1)

∥∥2
]

= EsH1−1,aH1−1

[
E

[
Q̂ θ(sH1−1, aH1−1)2

(1− γ)2

∥∥∇ log πθ(aH1−1 | sH1−1)
∥∥2 | sH1−1, aH1−1

]]

= EsH1−1,aH1−1

[∥∥∇ log πθ(aH1−1 | sH1−1)
∥∥2

(1− γ)2 E
[
Q̂ θ(sH1−1, aH1−1)2 | sH1−1, aH1−1

]]
.

(35)

If E
[
Q̂ θ(sH1−1, aH1−1)2 | sH1−1, aH1−1

]
inside (35) is bounded, by using

E
[∥∥∇ log πθ(aH1−1 | sH1−1)

∥∥2
]
≤ G2 in (18), we obtain (35) bounded.

From (34) and by using the Markov property of the MDP, we rewrite Q̂ θ(sH1−1, aH1−1) as

Q̂ θ(s0, a0) =
H2−1∑
t=0

r(st, at), (36)

with (s0, a0) = (sH1−1, aH1−1) and H2 is the length of the trajectory for estimating
Q θ(sH1−1, aH1−1).

Thus, we have

E
[
Q̂ θ(s0, a0)2 | s0 = sH1−1, a0 = aH1−1

]
(36)= E

(H2−1∑
t=0

r(st, at)
)2

| s0 = sH1−1, a0 = aH1−1


=

∞∑
k=0

Pr(H2 − 1 = k)E

(H2−1∑
t=0

r(st, at)
)2

| H2 − 1 = k, s0 = sH1−1, a0 = aH1−1


= (1− γ)

∞∑
k=0

γkE

( k∑
t=0

r(st, at)
)2

| s0 = sH1−1, a0 = aH1−1


≤ r2

max(1− γ)
∞∑

k=0
γk(k + 1)2

(59)
≤ 2r2

max
(1− γ)2 , (37)

where the first inequality in the second last line is obtained as |r(st, at)| ∈ rmax for all (st, at) ∈
S ×A.

Combining (35) and (37) and using (18), we have

E
[
∥g(τ | θ)∥2

] (35), (37), (18)
≤ 2G2r2

max
(1− γ)4 . (38)

The above together with (32) imply that the expected smoothness assumption holds for the batch
version of Q-PGT with

E
[∥∥∥ĜQ−PGT(θ)

∥∥∥2
]

(32), (38)
≤

(
1− 1

m

)
∥G(θ)∥2 + 2G2r2

max
m(1− γ)4 .
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Part III: α-UGPOMDP in (12) when α ̸= 0.

Now, consider Ĝα−UGPOMDP(θ) in (12) when α ̸= 0, and with random horizon H−1 ∼ Geom(1−
γ1−α), we have

g(τ | θ) = Ĝα−UGPOMDP(θ) (12)=
H−1∑
t=0

γαtr(st, at)
(

t∑
t′=0
∇ log πθ(at′ | st′)

)
.

Taking expectation with respect to the randomness of sampling τ from (12), we have

Eτ

[
∥g(τ | θ)∥2

]
(12)= Eτ

∥∥∥∥∥
H−1∑
t=0

γαtr(st, at)
(

t∑
t′=0
∇ log πθ(at′ | st′)

)∥∥∥∥∥
2

=
∞∑

k=0
Pr(H − 1 = k)E

∥∥∥∥∥
H−1∑
t=0

γαtr(st, at)
(

t∑
t′=0
∇ log πθ(at′ | st′)

)∥∥∥∥∥
2

| H − 1 = k


=

∞∑
k=0

(1− γ1−α)γ(1−α)kE

∥∥∥∥∥
k∑

t=0
γαtr(st, at)

(
t∑

t′=0
∇ log πθ(at′ | st′)

)∥∥∥∥∥
2

=
∞∑

k=0
(1− γ1−α)γ(1−α)kE

∥∥∥∥∥
k∑

t=0
γαt/2r(st, at)γαt/2

(
t∑

t′=0
∇ log πθ(at′ | st′)

)∥∥∥∥∥
2

≤ (1− γ1−α)
∞∑

k=0
γ(1−α)kE

( k∑
t=0

γαtr(st, at)2

) k∑
t=0

γαt

∥∥∥∥∥
t∑

t′=0
∇ log πθ(at′ | st′)

∥∥∥∥∥
2

≤ r2
max(1− γ1−α)

∞∑
k=0

γ(1−α)k

(
k∑

t=0
γαt

)
k∑

t=0
γαtE

∥∥∥∥∥
t∑

t′=0
∇ log πθ(at′ | st′)

∥∥∥∥∥
2

(56)= r2
max(1− γ1−α)

∞∑
k=0

γ(1−α)k · 1− γα(k+1)

1− γα

k∑
t=0

γαt
t∑

t′=0
E
[∥∥∇ log πθ(at′ | st′)

∥∥2]
(54)
≤ G2r2

max(1− γ1−α)
∞∑

k=0
γ(1−α)k · 1− γα(k+1)

1− γα

k∑
t=0

γαt(t + 1)

(57)= G2r2
max(1− γ1−α)
(1− γα)2

∞∑
k=0

γ(1−α)k(1− γα(k+1))
(

1− γα(k+1)

1− γα
− (k + 1)γα(k+1)

)
︸ ︷︷ ︸

(∗)

, (39)

where the first inequality is obtained from the Cauchy-Schwarz inequality, the second inequality
is obtained by using |r(st, at)| ≤ rmax, and the last line is obtained by applying (57) with γα in
Lemma 7.

From (39), we have

(∗) =
∞∑

k=0

(
γ(1−α)k − γk+α

)(1− γα(k+1)

1− γα
− (k + 1)γα(k+1)

)

=
∞∑

k=0

γ(1−α)k

1− γα
− γk+α

1− γα
− γk+α

1− γα
+ γk+α(k+2)

1− γα
− (k + 1)γk+α + (k + 1)γk+α(k+2)

= 1
(1− γα)(1− γ1−α) −

2γα

(1− γα)(1− γ) + γ2α

(1− γα)(1− γ1+α) −
γα

(1− γ)2

+ γ2α

(1− γ1+α)2 ,
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where in the last equality, we apply (58) in Lemma 7 twice with γ and γ1+α to obtain the last two
terms, respectively.

So, (39) is upper bounded by

Eτ

[
∥g(τ | θ)∥2

]
≤ G2r2

max

(
1

(1− γα)3 −
2(γα − γ)

(1− γα)3(1− γ) + γ2α − γ1+α

(1− γα)3(1− γ1+α) −
γα − γ

(1− γα)2(1− γ)2

+ γ2α − γ1+α

(1− γα)2(1− γ1+α)2

)

= G2r2
max

(
(1− γα)2 − (1− γα)(γα − γ)− (γα − γ)2

(1− γ)2(1− γα)3 +
γα(γα − γ)

(
(1− γα) + (1− γ1+α)

)
(1− γα)3(1− γ1+α)2︸ ︷︷ ︸

=f1(γα)

)
,

where the last line is obtained from (30) with x = γα, that is, we have, for all x ∈ (γ, 1),

f1(x) = (1− x)2 − (1− x)(x− γ)− (x− γ)2

(1− γ)2(1− x)3 + x(x− γ) ((1− x) + (1− γx))
(1− x)3(1− γx)2 .

So we have
Eτ

[
∥g(τ | θ)∥2

]
≤ G2r2

maxf1(γα).

The above together with (32) imply that the expected smoothness assumption holds for the batch
version of α-UGPOMDP with

E
[∥∥∥Ĝα−UGPOMDP(θ)

∥∥∥2
]

(32)
≤

(
1− 1

m

)
∥G(θ)∥2 + G2r2

maxf1(γα)
m

.

Part IV: α-QPGT in (13) with Algorithm 7 when α ̸= 0.

Lastly, consider Ĝα−QPGT(θ) from (13) sampled from Algorithm 7. With random horizon H1−1 ∼
Geom(1− γ), we have

g(τ | θ) = Ĝα−QPGT(θ) (13)= 1
1− γ

Q̂ θ(sH1−1, aH1−1)∇ log πθ(aH1−1 | sH1−1),

where, from (13) and Algorithm 7, Q̂ θ(sH1−1, aH1−1) is computed as

Q̂ θ(sH1−1, aH1−1) =
H1+H2−2∑
t=H1−1

γα(t−(H1−1))r(st, at), (40)

with H2 − 1 ∼ Geom(1− γ1−α).

Following the same derivation for (35), when taking expectation with respect to the randomness of
sampling τ from (13) in Algorithm 7, we have

E
[
∥g(τ | θ)∥2

]
= EsH1−1,aH1−1

[∥∥∇ log πθ(aH1−1 | sH1−1)
∥∥2

(1− γ)2 E
[
Q̂ θ(sH1−1, aH1−1)2 | sH1−1, aH1−1

]]
.

(41)

Again, following the same derivation for (36), we rewrite Q̂ θ(sH1−1, aH1−1) as

Q̂ θ(s0, a0) =
H2−1∑
t=0

γαtr(st, at), (42)
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with (s0, a0) = (sH1−1, aH1−1) and H2 is the length of the trajectory for estimating
Q θ(sH1−1, aH1−1).

From (41) and (42), we have

E
[
Q̂ θ(s0, a0)2 | s0 = sH1−1, a0 = aH1−1

]
(42)= E

(H2−1∑
t=0

γαtr(st, at)
)2

| s0 = sH1−1, a0 = aH1−1


=

∞∑
k=0

Pr(H2 − 1 = k)E

(H2−1∑
t=0

γαtr(st, at)
)2

| H2 − 1 = k, s0 = sH1−1, a0 = aH1−1


= (1− γ1−α)

∞∑
k=0

γ(1−α)kE

( k∑
t=0

γαtr(st, at)
)2

| s0 = sH1−1, a0 = aH1−1


≤ r2

max(1− γ1−α)
∞∑

k=0
γ(1−α)k

(
k∑

t=0
γαt

)2

= r2
max(1− γ1−α)

(1− γα)2

∞∑
k=0

γ(1−α)k(1− γα(k+1))2

= r2
max(1− γ1−α)

(1− γα)2

∞∑
k=0

γ(1−α)k(1− 2γα(k+1) + γ2α(k+1))

= r2
max(1− γ1−α)

(1− γα)2

∞∑
k=0

γ(1−α)k − 2γk+α + γ(1+α)k+2α

= r2
max(1− γ1−α)

(1− γα)2

(
1

1− γ1−α
− 2γα

1− γ
+ γ2α

1− γ1+α

)
(31)= r2

max

(
(1− γ)− 2(γα − γ)

(1− γ)(1− γα)2 + γα(γα − γ)
(1− γα)2(1− γ1+α)

)
︸ ︷︷ ︸

=f2(γα)

= r2
maxf2(γα), (43)

where the inequality is obtained as |r(st, at)| ∈ rmax for all (st, at) ∈ S ×A, and for the last line,
from (31) we have, for x ∈ (γ, 1),

f2(x) = (1− γ)− 2(x− γ)
(1− γ)(1− x)2 + x(x− γ)

(1− x)2(1− γx) .

Combining (41) and (43) and using (18), we have

E
[
∥g(τ | θ)∥2

] (41), (43), (18)
≤ G2r2

maxf2(γα)
(1− γ)2 . (44)

The above together with (32) imply that the expected smoothness assumption holds for the batch
version of Q-PGT with

E
[∥∥∥Ĝα−QPGT(θ)

∥∥∥2
]

(32), (44)
≤

(
1− 1

m

)
∥G(θ)∥2 + G2r2

maxf2(γα)
m(1− γ)2 .

Part V: RPG, which is α-QPGT in (13) with Algorithm 7 and α = 1
2 .
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In particular, when α = 1
2 , α-QPGT recovers RPG. To compute f2(√γ) in (43), we have

f2(√γ) =
(1− γ)− 2(√γ − γ)

(1− γ)(1−√γ)2 +
√

γ(√γ − γ)
(1−√γ)2(1− γ

√
γ)

=
(1− γ)− (√γ − γ)
(1− γ)(1−√γ)2 −

( (√γ − γ)
(1− γ)(1−√γ)2 −

√
γ(√γ − γ)

(1−√γ)2(1− γ
√

γ)

)
= 1

(1− γ)(1−√γ) −
( √

γ

(1− γ)(1−√γ) −
γ

(1−√γ)(1− γ
√

γ)

)
= 1

(1− γ)(1−√γ) −
√

γ − γ

(1− γ)(1−√γ)(1− γ
√

γ)

= 1
(1− γ)

(
1

1−√γ
−

√
γ

1− γ
√

γ

)
= 1 + γ

(1− γ)(1− γ
√

γ) .

So, in this case we have

ν = 2G2r2
max

(1− γ)3(1− γ
√

γ) ,

and

E
[∥∥∥Ĝ

1
2 −QPGT(θ)

∥∥∥2
]
≤

(
1− 1

m

)
∥G(θ)∥2 + 2G2r2

max
m(1− γ)3(1− γ

√
γ) .

Remark 9. Notice that for α-QPGT with α = 1
2 (i.e., RPG [61] ), from (29), our ν = 2G2r2

max
(1−γ)3(1−γ

√
γ)

improves the result ν of [61, Theorem 3.4], which is G2r2
max

(1−γ)2(1−√
γ)2 , and is obtained with more

restrictive assumptions (Assumption 5 without expectation). Thus, the improvement is by a factor of

G2r2
max

(1− γ)2(1−√γ)2 /
2G2r2

max
(1− γ)3(1− γ

√
γ) =

(1− γ)(1− γ
√

γ)
2(1−√γ)2

=
(1−√γ)(1 +√γ)(1−√γ +√γ − γ

√
γ)

2(1−√γ)2

=
(1 +√γ)((1−√γ) +√γ(1− γ))

2(1−√γ)

=
(1 +√γ)((1−√γ) +√γ(1−√γ)(1 +√γ))

2(1−√γ)

=
(1 +√γ)(1−√γ)(1 +√γ(1 +√γ))

2(1−√γ)

=
(1 +√γ)(1 + γ +√γ)

2

=
1 + 2γ + 2√γ + γ

√
γ

2 ≈ 3, when γ −→ 1.

See also Fig. 6 in Remark 10 for the variance analysis of α-QPGT to have its interpretation.

G.2 Proof of Corollary 2

Proof. From Lemma 3, we know that J is L-smooth. Consider policy gradient with a batch sampling
of size m. From Theorem 6, we have Assumption 4 holds with A = 0, B = 1− 1

m and C = ν/m.
By Proposition 1, plugging A = 0, B = 1− 1

m and C = ν/m in (16) yields the corollary’s claim

with stepsize η ∈
(

0, 2
L(1− 1

m )

)
.

33



G.3 Proof of Corollary 3

Proof. Consider α-UPG with stepsize η ∈
(

0, 1
L(1− 1

m )

)
and a batch sampling of size m. We have

E
[
∥∇J(θU )∥2

] (20)
≤ 2(J⋆ − J (0))

ηK
(
2− Lη

(
1− 1

m

)) + Lνη

m
(
2− Lη

(
1− 1

m

))
≤ 2(J⋆ − J (0))

ηK
+ Lνη

m
,

where the second inequality is obtained by 1
2−Lη(1− 1

m ) ≤ 1 with η ∈
(

0, 1
L(1− 1

m )

)
.

To get E
[
∥∇J(θU )∥2

]
≤ ϵ2, it suffices to have

ϵ2 ≥ 2(J⋆ − J (0))
ηK

+ Lνη

m
. (45)

To make the right hand side of (45) smaller than ϵ2, we require

Lνη

m
≤ ϵ2

2 ⇐⇒ η ≤ ϵ2m

2Lν
. (46)

Similarly, for the first term of the right hand side of (45), we require

2(J⋆ − J (0))
ηK

≤ ϵ2

2 ⇐⇒ 4(J⋆ − J (0))
ϵ2K

≤ η. (47)

Combining the above two inequalities gives

4(J⋆ − J (0))
ϵ2K

≤ η ≤ ϵ2m

2Lν
. (48)

This implies

Km ≥ 8Lν(J⋆ − J (0))
ϵ4 . (49)

The condition on the stepsize η ∈
(

0, 1
L(1− 1

m )

)
requires that the batch size satisfies

ϵ2m

2Lν
≤ 1

L
(
1− 1

m

) =⇒ m ≤ 2ν

ϵ2 .

To conclude, it suffices to choose the stepsize η = 4(J⋆−J(0))
ϵ2K = ϵ2m

2Lν , a batch size m between 1 and
2ν
ϵ2 , and the number of iterations K = 8(J⋆−J(0))Lν

mϵ4 , so that the inequalities (46), (47), (48) and (49)

hold, which guarantee E
[
∥∇J(θU )∥2

]
≤ ϵ2.

Thus, the total expected sample complexity is

Km× E [H] = 8Lν(J⋆ − J (0))E [H]
ϵ4 = O(ϵ−4), (50)

where E [H] = O(1/(1− γ)) is obtained from Lemma 1 for UGPOMDP and Q-PGT, and E [H] =
O(1/(1 − √γ)) is obtained from Lemma 2 for α-QPGT with α = 1

2 . Indeed, for UGPOMDP,
E [H] = 1/(1−γ) is directly obtained from Lemma 1; for Q-PGT in Algorithm 4, E [H] = 2/(1−γ),
as H = H1 +H2 with E [H1] = E [H2] = 1/(1−γ), applied Lemma 1 twice; similarly, for α-QPGT
with α = 1

2 in Algorithm 7, E [H] = 2/(1 − √γ), as H = H1 + H2 with E [H1] = E [H2] =
1/(1−√γ), applied Lemma 2 twice.
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More precisely, from Lemma 3, L = rmax
(1−γ)2 (G2 + F ). When using UGPOMDP gradient estimator

(11), from Theorem 6, ν = 3G2r2
max

(1−γ)3 . Thus, when γ is close to 1, the sample complexity of
UGPOMDP is

24(J⋆ − J (0))G2r3
max(G2 + F )

(1− γ)6ϵ4 = O
(
(1− γ)−6ϵ−4) . (51)

In this case, we can choose the batch size m ∈
[
1; 2ν

ϵ2

]
, i.e., from 1 to O

(
(1− γ)−3ϵ−2) and the

constant stepsize η = ϵ2m
2Lν varies from O

(
(1− γ)5ϵ2) to O

(
(1− γ)2) accordingly.

When using Q-PGT gradient estimator (9), from Theorem 6, ν = 2G2r2
max

(1−γ)4 . Thus, when γ is close to
1, the sample complexity is

16(J⋆ − J (0))G2r3
max(G2 + F )

(1− γ)7ϵ4 = O
(
(1− γ)−7ϵ−4) . (52)

In this case, we can choose the batch size m ∈
[
1; 2ν

ϵ2

]
, i.e., from 1 to O

(
(1− γ)−4ϵ−2) and the

constant stepsize η = ϵ2m
2Lν is proportional to the batch size m from O

(
(1− γ)6ϵ2) to O

(
(1− γ)2)

accordingly.

Lastly, when using α-QPGT with α = 1
2 gradient estimator (13), from Theorem 6, ν =

2G2r2
max

(1−γ)3(1−γ
√

γ) . Thus, when γ is close to 1, the sample complexity is

16(J⋆ − J (0))G2r3
max(G2 + F )

(1− γ)5(1−√γ)(1− γ
√

γ)ϵ4 = O
(
(1− γ)−5(1−√γ)−1(1− γ

√
γ)−1ϵ−4) . (53)

Remark 10. Similar to Figs. 1 and 2, we evaluate the same heap maps in Figs. 6 and 7 for α-QPGT’s
variance and sample complexity. It is coherent that Q-PGT (i.e., α-QPGT with α = 0) has bigger
variance than RPG (i.e., α-QPGT with α = 0.5), as from Fig. 6 we observe that increasing α induces
decreasing variance for ν. However, Q-PGT has lower sample complexity than RPG, independent to
the choice of γ, as from Fig. 7 we observe that increasing α will also increase the sample complexity.
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Figure 6: Variance of α-QPGT.
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Figure 7: Sample complexity of α-QPGT.

Like in Remark 9, from (52) and (53) in Corollary 3, the improvement of the sample complexity is
by a factor of

16(J⋆ − J (0))G2r3
max(G2 + F )

(1− γ)5(1−√γ)(1− γ
√

γ)ϵ4 /
16(J⋆ − J (0))G2r3

max(G2 + F )
(1− γ)7ϵ4

= (1− γ)2

(1−√γ)(1− γ
√

γ) =
((1−√γ)(1 +√γ))2

(1−√γ)(1−√γ)(1 +√γ + γ) =
(1 +√γ)2

1 +√γ + γ

=
1 + 2√γ + γ

1 +√γ + γ
= 1 +

√
γ

1 +√γ + γ
≈ 4

3 , when γ −→ 1.
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H Experimental Details of Section 5 and Additional Experiments

H.1 Experimental details

Table 1 provides the details of the hyperparameters choices of the experiments for each environment
presented in § 5. In particular, each method has the same train batch size of 64 and all the algorithms
are evaluated every 25 episodes with a test batch size of 128. The discount factor γ is set to 0.99 for
Cart Pole, Lunar Lander, and Acrobot, and 0.95 for Pendulum, and the size of the horizon for the
truncation is H = (1− γ)−1.

Furthermore, we share some other experimental details in the following.

Gymnasium Vector. To ensure a robust evaluation of PG and UPG algorithms, it is essential to
conduct hundreds of iterative training experiments. To expedite this process, we opted to utilize
Gymnasium Vector capabilities [51]. According to the documentation, "Vector environments can offer
a linear speed-up in the steps taken per second by sampling multiple sub-environments simultaneously.
To prevent terminated environments from waiting until all sub-environments have terminated or
been truncated, the vector environments automatically reset sub-environments after termination or
truncation."

While the simultaneous simulation of several environments is a clear advantage, the auto-reset of
sub-environments after termination can complicate the derivation of gradient estimates. Essentially,
our objective is to capture only the interaction sequence, depicting a single trajectory from the
initial state to terminal/truncation, to calculate estimates based on equations such as equation (15).
Therefore, collecting multiple trajectories (even the last one, which may be truncated) in a single
sequence would not be a suitable option. Another crucial aspect is to maintain the correct batch size
across iterations. Hence, we devised a specific procedure for simulating and parsing trajectories:

• Set the number of sub-environments equal to the batch size.
• Simulate the vector environment until each sub-environment terminates once.
• For each sub-environment, monitor action probabilities (and gradients) and rewards only

until the first termination.

This approach ensures the proper implementation of batch optimization.

Infinite horizon setting adaptation. When implementing alpha-UGPOMDP or alpha-QPGT, it is
required to sample H1 − 1 and H2 − 1 from a geometric distribution. These values determine the
trajectory slices used to calculate gradient estimation. It is important to note that actual environments
do not perfectly match the infinite horizon trajectory setup. The difference is that infinite horizon
trajectories do not have terminal states; therefore, rewards are defined for every possible state, action
pair, and timestep. In contrast, Gymnasium environments have termination conditions for every
environment, so we need to adapt our algorithms to this limitation. Since it is not possible to sample
actions after the terminal state, we decided to stop the estimation procedure once termination is
reached.

Let’s call the trajectory length obtained during the simulation as Hs. In practice, there could be
several scenarios:

1. Hs < H − 2, relevant to alpha-UGPOMDP, especially, when trajectories tend to be shorter.
For this case, we stop the estimation process once reaching the terminal state, equivalently,
H − 2 = min(Hs, H − 2).

2. Hs <= H1 − 2, relevant for alpha-QPGT. In this case the estimation process stops once
reaching the terminal state and Q̂θ(sHs

, aHs
) = r(sHs

, aHs
).

3. H1 − 2 < HS <= H1 + H2 − 3, relevant for alpha-QPGT. For this case the estimation
process stops once reaching the terminal state and the estimate of Q̂θ is calculated based on
steps H1 − 2, ..., HS .

Those adaptations are not ideal and can lead to gradient estimate corruption due to slice truncation.
Depending on the properties of the environment, there might be better ways to adapt the algorithms.
This issue requires additional research.
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Table 1: Hyperparameters for each environment

Acrobot-v1 CartPole-v1 LunarLander-v2 MountainCarContinuous-v0 Pendulum-v1

eval_batch_size 128 128 128 128 128
gamma 0.99 0.99 0.99 0.99 0.95
horizon 100 100 100 100 20
lr 0.001 0.001 0.001 0.001 0.001
max_eval_steps 500 200 1000 999 200
n_iterations 10001 501 2001 10001 10001
train_batch_size 64 64 64 64 64
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Figure 8: Comparison between biased and unbiased policy gradient methods. We compare the evolution of
discounted rewards in GPOMDP (biased) and UGPOMDP (unbiased) on five standard Gym environments.

Evaluation. Each method uses a training batch size of 64, and all algorithms are evaluated every 25
episodes with a test batch size of 128. The discount factor gamma is set to 0.99 for CartPole, Lunar
Lander and Acrobot. For Pendulum, it is set to 0.95.

The truncation horizon, used for biased algorithms during training, is H = 1
1−γ . Each algorithm is

evaluated using the same 10 randomly sampled seeds, and we report the discounted episodic reward.
Evaluation trajectories are truncated to ensure the same maximum length for each algorithm, and
therefore, the same objective function (discounted episodic reward). The horizons used for evaluation
are as follows:

• CartPole-v1: 200

• LunarLander-v2: 1000

• Acrobot-v1: 500

• Pendulum-v1: 200

• MountainCarContinuous-v0: 999

H.2 Results compared to biased PG with double-horizons

Previously, we compared UGPOMDP and GPOMDP using the concept of the "effective horizon". The
"effective horizon" means that for GPOMDP, training trajectories were truncated at H = 1

1−γ , which
is the expected trajectory length of UGPOMDP. The idea is to use the same amount of information
on average for both algorithms to ensure a fair comparison. The similar amount of information
consumed for training is also confirmed by Fig. 9, which shows performance in terms of environment
interactions. It is important to note that UGPOMDP can still simulate trajectories longer than 1

1−γ ,
thus benefiting from deeper environment exploration.
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Figure 9: Comparison between biased and unbiased policy gradient methods as a function of number
of environment interactions. We compare the evolution of discounted rewards in GPOMDP (biased) and
UGPOMDP (unbiased) on five standard Gym environments.
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Figure 10: Comparison between unbiased gradient methods: UGPOMDP, RPG and Q-PGT. We compare
the evolution of discounted rewards in UGPOMDP, RPG and Q-PGT on five standard Gym environments.

This is why it is interesting to compare UGPOMDP performance with GPOMDP trained with a larger
horizon. Such a comparison is depicted in Fig. 11. With a horizon twice as large, GPOMDP shows
a similar convergence speed in terms of the number of iterations and a similar discounted episodic
reward but achieves a considerably better discounted episodic reward for Acrobot, and a slightly
better discounted episodic reward for CartPole and LunarLander. The Pendulum environment cannot
be strictly compared between figures due to different gamma values, but in Fig. 8, GPOMDP is
generally worse than UGPOMDP, whereas in Fig. 11, it is competitive or even better. In the Acrobot
environment, UGPOMDP still wins by a significant margin, but the maximum reward for GPOMDP
is considerably higher compared to the "effective horizon" maximum reward.

Examining Figs. 8 to 12, it is clear that UGPOMDP shows better sample efficiency compared
to GPOMDP for Acrobot, Pendulum, and MountainCarContinuous, and performs practically the
same for CartPole and Lunar Lander (even when using a twice larger horizon on average). These
experimental results align well with the theoretical expectations.
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Table 2: Hyperparameters for each environment (double horizon).

env_name Acrobot-v1 CartPole-v1 LunarLander-v2 MountainCarContinuous-v0 Pendulum-v1

eval_batch_size 128 128 128 128 128
gamma 0.99 0.99 0.99 0.99 0.99
horizon 200 200 200 200 200
lr 0.001 0.001 0.001 0.001 0.001
max_eval_steps 500 200 1000 999 200
n_iterations 10001 501 2001 10001 10001
train_batch_size 64 64 64 64 64
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Figure 11: Comparison between biased and unbiased policy gradient methods using double size of horizon
for the biased one. We compare the evolution of discounted rewards in GPOMDP (biased) and UGPOMDP
(unbiased) on five standard Gym environments.

H.3 Additional RPG / Q-PGT evaluation

We evaluated RPG and Q-PGT using 3 new environments - LunarLander, Acrobot, MountainCarCon-
tinious, results described in Fig. 10. For all tested environments adaptaion described in H.1.2 was
applied. Addressing Fig. 10 we can conclude that with applied adaption only CartPole suits theoretical
setting well. Another environments does not work well, so experiments with other parameters, like
gamma and thus sampled trajectories lengths should be continued.

I Auxiliary Lemmas

Lemma 5 (Lemma B.4 in Yuan et al. [58]). Under Assumption 5, for all non negative integer t
and any state-action pair (st, at) ∈ S ×A at time t of a trajectory τ ∼ p(· | θ) sampled under the
parametrized policy πθ, we have that

Eτ∼p(·|θ)

[∥∥∇ log πθ(at | st)
∥∥2] ≤ G2, (54)

Eτ∼p(·|θ)
[∥∥∇2 log πθ(at | st)

∥∥] ≤ F. (55)

Lemma 6 (Lemma B.6 in Yuan et al. [58]). For all non negative integers 0 ≤ t, and any state-action
pairs (sh, ah) ∈ S × A at time 0 ≤ h ≤ t of the same trajectory τ ∼ p(· | θ) sampled under the
parametrized policy πθ, we have

Eτ

∥∥∥∥∥
t∑

h=0
∇ log πθ(ah | sh)

∥∥∥∥∥
2 =

t∑
h=0

Eτ

[∥∥log πθ(ah | sh)
∥∥2]

. (56)
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Figure 12: Comparison between biased and unbiased policy gradient methods using double size of horizon
for the biased one as a function of number of environment interactions. We compare the evolution of
discounted rewards in GPOMDP (biased) and UGPOMDP (unbiased) on five standard Gym environments.

Lemma 7. For all γ ∈ [0, 1), we have that

K∑
k=0

(k + 1)γk = 1− γK+1

(1− γ)2 −
(K + 1)γK+1

1− γ
, (57)

∞∑
k=0

(k + 1)γk = 1
(1− γ)2 , (58)

∞∑
k=0

(k + 1)2γk = 2
(1− γ)3 −

1
(1− γ)2 ≤

2
(1− γ)3 , (59)

∞∑
k=0

(k + 1)2(k + 2)γk = 6
(1− γ)4 −

4
(1− γ)3 ≤

6
(1− γ)4 . (60)

Proof. Let

S1
def=

K∑
k=0

(k + 1)γk.

We have

γS1 =
K∑

k=0
(k + 1)γk+1 =

K+1∑
k=1

kγk.

Subtracting of the above two equations gives

(1− γ)S1 =
K∑

k=0
(k + 1)γk −

K+1∑
k=1

kγk = 1 +
K∑

k=1
γk − (K + 1)γK+1

=
K∑

k=0
γk − (K + 1)γK+1 = 1− γK+1

1− γ
− (K + 1)γK+1.

Finally, we obtain S1 for (57) by dividing 1− γ on both hand side.

Then, from (57), letting K →∞ yields (58).
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Now let

S2
def=

∞∑
t=0

(t + 1)2γt.

We have

γS2 =
∞∑

t=0
(t + 1)2γt+1 =

∞∑
t=1

t2γt.

Thus, the subtraction of the above two equations gives

(1− γ)S2 =
∞∑

t=0
(t + 1)2γt −

∞∑
t=1

t2γt = 1 +
∞∑

t=1
((t + 1)2 − t2)γt =

∞∑
t=0

(2t + 1)γt

= 2
∞∑

t=0
(t + 1)γt −

∞∑
t=0

γt (58)= 2
(1− γ)2 −

1
1− γ

≤ 2
(1− γ)2 .

Finally, we obtain S2 for (59) by dividing 1− γ on both hand side.

Lastly, let

S3
def=

∞∑
k=0

γk(k + 1)2(k + 2).

We have

γS3 =
∞∑

k=0
γk+1(k + 1)2(k + 2) =

∞∑
k=1

γkk2(k + 1).

Thus, the subtraction of the above two equations gives

(1− γ)S3 =
∞∑

k=0
γk(k + 1)2(k + 2)−

∞∑
k=1

γkk2(k + 1)

= 2 +
∞∑

k=1

(
(k + 1)2(k + 2)− k2(k + 1)

)
γk

= 2 +
∞∑

k=1
(k + 1)(3k + 2)γk

=
∞∑

k=0
(k + 1) ((3k + 3)− 1) γk

= 3
∞∑

k=0
(k + 1)2γk −

∞∑
k=0

(k + 1)γk

(59), (58)= 6
(1− γ)3 −

4
(1− γ)2

Finally, we obtain S3 for (60) by dividing 1− γ on both hand side.
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