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ABSTRACT

It has long been known in both neuroscience and AI that “binding” between neu-
rons leads to a form of competitive learning where representations are compressed
in order to represent more abstract concepts in deeper layers of the network. More
recently, it was also hypothesized that dynamic (spatiotemporal) representations
play an important role in both neuroscience and AI. Building on these ideas, we
introduce Artificial Kuramoto Oscillatory Neurons (AKOrN) as a dynamical alter-
native to threshold units, which can be combined with arbitrary connectivity de-
signs such as fully connected, convolutional, or attentive mechanisms. Our gener-
alized Kuramoto updates bind neurons together through their synchronization dy-
namics. We show that this idea provides performance improvements across a wide
spectrum of tasks such as unsupervised object discovery, adversarial robustness,
calibrated uncertainty quantification, and reasoning. We believe that these empir-
ical results show the importance of rethinking our assumptions at the most basic
neuronal level of neural representation, and in particular show the importance of
dynamical representations

1 INTRODUCTION

Before the advent of modern deep learning architectures, artificial neural networks were inspired
by biological neurons. In contrast to the McCulloch-Pitts neuron (McCulloch & Pitts, 1943) which
was designed as an abstraction of an integrate-and-fire neuron (Sherrington, 1906), recent building
blocks of neural networks are designed to work well on modern hardware (Hooker, 2021). As our
understanding of the brain is improving over recent years, and neuroscientists are discovering more
about its information processing principles, we can ask ourselves again if there are lessons from
neuroscience that can be used as design principles for artificial neural nets.

In this paper, we follow a more modern dynamical view of neurons as oscillatory units that are cou-
pled to other neurons (Muller et al., 2018). Similar to how the binary state of a McCulloch-Pitts neu-
ron abstracts the firing of a real neuron, we will abstract an oscillating neuron by an N -dimensional
unit vector that rotates on the sphere (Löwe et al., 2023). We build a new neural network architec-
ture that has iterative modules that update N -dimensional oscillatory neurons via a generalization
of the well-known non-linear dynamical model called the Kuramoto model (Kuramoto, 1984).

The Kuramoto model describes the synchronization of oscillators; each Kuramoto update applies
forces to connected oscillators, encouraging them to become aligned or anti-aligned. This process is
similar to binding in neuroscience and can be understood as distributed and continuous clustering.
Thus, networks with this mechanism tend to compress their representations via synchronization.

We incorporate the Kuramoto model into an artificial neural network, by applying the differential
equation that describes the Kuramoto model to each individual neuron. The resulting artificial Ku-
ramoto oscillatory neurons (AKOrN) can be combined with layer architectures such as fully con-
nected layers, convolutions, and attention mechanisms.

We explore the capabilities of AKOrN and find that its neuronal mechanism drastically changes
the behavior of the network. AKOrN strongly binds object features with competitive performance
to slot-based models in object discovery, enhances the reasoning capability of self-attention, and
increases robustness against random, adversarial, and natural perturbations with surprisingly good
calibration.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 MOTIVATION

It was recognized early on that neurons interact via lateral connections (Hubel & Wiesel, 1962;
Somers et al., 1995). In fact, neighboring neurons tend to cluster their activities (Gray et al., 1989;
Mountcastle, 1997), and clusters tend to compete to explain the input. This “competitive learning”
has the advantage that information is compressed as we move through the layers, facilitating the
process of abstraction by creating an information bottleneck (Amari & Arbib, 1977). Additionally,
the competition encourages different higher-level neurons to focus on different aspects of the input
(i.e. they specialize). This process is made possible by synchronization: like fireflies in the night,
neurons tend to synchronize their activities with their neighbors’, which leads to the compression of
their representations. This idea has been used in artificial neural networks before to model “binding”
between neurons, where neurons representing features such as square, blue, and toy are bound by
synchronization to represent a square blue toy (Reichert & Serre, 2013; Löwe et al., 2022). In this
paper, we will use an N -dimensional generalization of the famous Kuramoto model (Kuramoto,
1984) to model this synchronization.

Our model has the advantage that it naturally incorporates spatiotemporal representations in the
form of traveling waves (Keller et al., 2024), for which there is ample evidence in the neuroscien-
tific literature. While their role in the brain remains poorly understood, it has been postulated that
they are involved in short-term memory, long-range coordination between brain regions, and other
cognitive functions (Rubino et al., 2006; Lubenov & Siapas, 2009; Fell & Axmacher, 2011; Zhang
et al., 2018; Roberts et al., 2019; Muller et al., 2016; Davis et al., 2020; Benigno et al., 2023). For
example, Muller et al. (2016) finds that oscillatory patterns in the thalamocortical network during
sleep are organized into circular wave-like patterns, which could give an account of how memories
are consolidated in the brain. Davis et al. (2020) suggest that spontaneous traveling waves in the vi-
sual cortex modulate synaptic activities and thus act as a gating mechanism in the brain. In the gen-
eralized Kuramoto model, traveling waves naturally emerge as neighboring oscillators start to syn-
chronize (see on the left in Fig. 1, and Fig. 10 in the Appendix).

Another advantage of using dynamical neurons is that they can perform a form of reasoning. Ku-
ramoto oscillators have been successfully used to solve combinatorial optimization tasks such as k-
SAT problems (Heisenberg, 1985; Wang & Roychowdhury, 2017). This can be understood by the
fact that Kuramoto models can be viewed as continuous versions of discrete Ising models, where
phase variables replace the discrete spin states. Many authors have argued that the modern architec-
tures based on, e.g., transformers lack this intrinsic capability of “neuro-symbolic reasoning” (Dziri
et al., 2024; Bounsi et al., 2024). We show that AKOrN can successfully solve Sudoku puzzles, il-
lustrating this capability. Additionally, AKOrN relates to models in quantum physics and active mat-
ter (see appendix B).

In summary, AKOrN combines beneficial features such as competitive learning (i.e., feature bind-
ing), reasoning, robustness and uncertainty quantification, as well as the potential advantages of trav-
eling waves observed in the brain, while being firmly grounded in well-understood physics models.

3 THE KURAMOTO MODEL

The Kuramoto model (Kuramoto, 1984) is a non-linear dynamical model of oscillators, that exhibits
synchronization phenomena. Even with its simple formulation, the model can represent numerous
dynamical patterns depending on the connections between oscillators (Breakspear et al., 2010; Heit-
mann et al., 2012).

In the original Kuramoto model, each oscillator i is represented by its phase information θi ∈ [0, 2π).
The differential equation of the Kuramoto model is

θ̇i = ωi +
∑

jJij sin(θj − θi), (1)

where ωi ∈ R is the natural frequency and Jij ∈ R represents the connections between oscillators:
if Jij > 0 the i and j-th oscillator tend to align, and if Jij < 0, they tend to oppose each other.

While the original Kuramoto model describes one-dimensional oscillators, we use a multi-
dimensional vector version of the model (Olfati-Saber, 2006; Zhu, 2013; Chandra et al., 2019; Lip-
ton et al., 2021) with a symmetry-breaking term into neural networks. We denote oscillators by

2
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Figure 1: Our proposed artificial Kuramoto oscillatory neurons (AKOrN). The series of pictures on
the left are 64× 64 Kuramoto oscillators evolving by the Kuramoto updates (Eq. (2)), along with a
plot of the energies computed by Eq. (3). Each single oscillator xi is an N -dimensional vector on
the sphere and is influenced by (1) connected oscillators through the weights Jij , (2) conditional
stimuli ci, and (3) Ωi that determines the natural frequency of each oscillator. See Fig. 10 for details
on C and J.

X = {xi}Ci=1, where each xi is a vector on a hypersphere: xi ∈ RN , ∥xi∥2 = 1. N is each sin-
gle oscillator dimension called rotating dimensions and C is the number of oscillators. While each
xi is time-dependent, we omit t for clarity. The oscillator index i may have multiple dimensions: if
the input is an image, for example, each oscillator is represented by xc,h,w with c, h, w indicating
channel, height and width positions, respectively.

The differential equation of our vector-valued Kuramoto model is written as follows:

ẋi = Ωixi + Projxi
(ci +

∑
j

Jijxj) where Projxi
(yi) = yi − ⟨yi,xi⟩xi (2)

Here, Ωi is an N × N anti-symmetric matrix and Ωixi is called the natural frequency term that
determines each oscillator’s own rotation frequency and angle. The second term governs interactions
between oscillators, where Projxi

is an operator that projects an input vector onto the tangent space
of the sphere at xi. We show a visual description of Projxi

and a relation between the vector valued
Kuramoto model and the original one in the Appendix A.1. C = {ci}Ci=1, ci ∈ RN is a data-
dependent variable, which is computed from the observational input or the activations of the previous
layer. In this paper, every ci is set to be constant across time, but it can be a time-dependent variable.
ci can be seen as another oscillator that has a unidirectional connection to xi. Since ci is not affected
by any oscillators, ci strongly binds xi to the same direction as ci, i.e. it acts as a bias direction (see
Fig. 10 in the Appendix). In physics lingo, C is often referred to as a “symmetry breaking” field.

The Kuramoto model is Lyapunov if we assume certain symmetric properties in Jij and Ωi (Aoyagi,
1995; Wang & Roychowdhury, 2017). For example, if J is symmetric and different oscillators share
the same natural frequencies: Jij = JT

ji, Ωi = Ω, and Ωci = 0, each update is guaranteed to
minimize the following energy:

E = −
∑
i,j

xT
i Jijxj −

∑
i

cTi xi (3)

Fig. 1 on the left shows how the Kuramoto oscillators and the corresponding energy evolve with a
simple Gaussian kernel as the connectivity matrix. Here, we set C as a silhouette of a fish, where
ci = 1 on the outer silhouette and ci = 0 on the inner silhouette. The oscillator state is initially
disordered, but gradually exhibits collective behavior, eventually becoming a spatially propagat-
ing wavy pattern. We include animations of visualized oscillators, including oscillators of trained
AKOrN models used in our experiments, in the Supplementary Material.

We would like to note that we found that even without symmetric constraints, the energy value de-
creases relatively stably, and the models perform better across all tasks we tested compared to mod-
els with symmetric J. A similar observation is made by Effenberger et al. (2022) where heteroge-
neous oscillators such as those with different natural frequencies are helpful for the network to con-
trol the level of synchronization and increase the network capacity. From here, we assume no sym-
metric constraints on J and Ω. Having asymmetric (a.k.a. non-reciprocal) connections is aligned
with the biological neurons in the brain, which also do not have symmetric synapses.

3
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Figure 2: Our proposed Kuramoto-based network (here, for image processing). Each block consists
of a Kuramoto-layer and a readout module described in Sec 4. C(L) is used to make the final
prediction of our model.

4 NETWORKS WITH KURAMOTO OSCILLATORS

We utilize the artificial Kuramoto oscillator neurons (AKOrN) as a basic unit of information process-
ing in neural networks (Fig. 2). First, we transform an observation with a relatively simple function
to create the initial conditional stimuli C(0). Next, X(0) is initialized by either C(0), a fixed learned
embedding, random vectors, or a mixture of these initialization schemes. The block is composed of
two modules: the Kuramoto layer and the readout module, which together process the pair {X,C}.
The Kuramoto layer updates X with the conditional stimuli C, and the readout layer extracts fea-
tures from the final oscillatory states to create new conditional stimuli. We denote the number of
layers by L, and l-th layer’s output by {X(l),C(l)}.

Kuramoto layer Starting with X(l,0) := X(l−1) as initial oscillators, where the second superscript
denotes the time step, we update them by the discrete version of the differential equation (2):

∆x
(l,t)
i = Ω

(l)
i x

(l,t)
i + Proj

x
(l,t)
i

(c
(l−1)
i +

∑
j

J
(l)
ij x

(l,t)
j ) (4)

x
(l,t+1)
i = Π

[
x
(l,t)
i + γ∆x

(l,t)
i

]
, (5)

where Π is the normalizing operator x/∥x∥2 that ensures that the oscillators stay on the sphere.
γ > 0 is a scalar controlling the step size of the update, which is learned in our experiments. We
call this update a Kuramoto update or a Kuramoto step from here. We optimize both Ω(l) and J(l)

given the task objective.

We update the oscillators T times. We denote the oscillators at T by X(l,T ). This oscillator state is
used as the initial state of the next block: X(l) := X(l,T ).

Readout module We read out patterns encoded in the oscillators to create new conditional stimuli
C(l) for the subsequent block. Since the oscillators are constrained onto the (unit) hyper-sphere, all
the information is encoded in their directions. In particular, the relative direction between oscillators
is an important source of information because patterns after certain Kuramoto steps only differ in
global phase shifts (see the last two patterns in Fig. 10 in the Appendix). To capture phase invariant
patterns, we take the norm of the linearly processed oscillators:

C(l) = g(m) ∈ RC′×N ,mk = ∥zk∥2, zk =
∑

i Ukix
(l,T )
i ∈ RN ′

, (6)

where Uki ∈ RN ′×N is a learned weight matrix, g is a learned function, and m = [m1, ...,mK ]T ∈
RK . N ′ is typically set to the same value as N . In this work, g is just the identity function, a
linear layer, or at most a three-layer neural network with residual connections. Because the module
computes the norm of (weighted) X(l,T ), this readout module includes functions that are invariant
to the global phase shift in the solution space. Unless otherwise specified, we set C ′ = C and
K = C ×N in all our experiments.
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4.1 CONNECTIVITIES

We implement artificial Kuramoto oscillator neurons (AKOrN) within convolutional and self-
attention layers. We write down the formal equations of the connectivity for completeness, however,
they simply follow the conventional operation of convolution or self-attention applied to oscillatory
neurons flattened w.r.t the rotating dimension N . In short, convolutional connectivity is local, and
attentive connectivity is dynamic input-dependent connectivity.

Convolutional connectivity To implement AKOrN in a convolutional layer, oscillators and condi-
tional stimuli are represented as {xc,h,w, cc,h,w} where c, h, w are channel, height and width posi-
tions, and the update direction is given by:

yc,h,w := cc,h,w +
∑
d

∑
h′,w′∈R[H′,W ′]

Jc,d,h′,w′xd,(h+h′),(w+w′), (7)

where R[H ′,W ′] = [1, ...,H ′] × [1, ...,W ′] is the H ′ × W ′ rectangle region (i.e. kernel size)
and Jc,d,h′,w′ ∈ RN×N are the learned weights in the convolution kernel where (c, d), (h′, w′) are
output and input channels, and height and width positions.

Attentive connectivity Similar to Bahdanau et al. (2014); Vaswani et al. (2017), we construct the
internal connectivity in the QKV-attention manner. In this case, oscillators and conditional stimuli
are represented by {xl,i, cl,i} where l and i are indices of tokens and channels, respectively. The
update direction becomes:

yl,i := cl,i +
∑
m,j

Jl,m,i,jxm,j = cl,i +
∑
m,j

∑
k,h

WO
h,i,kAh(l,m)WV

h,k,jxm,j (8)

Ah(l,m) =
edh(l,m)∑
m edh(l,m)

, dh(l,m) =
∑
a

〈∑
i

WQ
h,a,ixl,i,

∑
i

WK
h,a,ixm,i

〉
(9)

where WO
h,i,k,W

V
h,k,j ,W

Q
h,a,i,W

K
h,a,i ∈ RN×N are learned weights of head h. Since the connec-

tivity is dependent on the oscillator values and thus not static during the updates, it is unclear whether
the energy defined in Eq, (3) is proper. Nonetheless, in our experiments, the energy and oscillator
states are stable after several updates (see the Supplementary Material, which includes visualiza-
tions of the oscillators of trained AKOrN models and their corresponding energies over timesteps).

5 RELATED WORKS

The Kuramoto model is rarely seen in machine learning, especially in deep learning. However, sev-
eral works motivate us to use the Kuramoto model as a mechanism for learning binding features.
For example, although tested only in fairly synthetic settings, Liboni et al. (2023) show that cluster
features emerge in the oscillators of the Kuramoto model with lateral connections without optimiza-
tion. Ricci et al. (2021) studies how data-dependent connectivity can construct synchrony on syn-
thetic examples. Also, a line of works on neural synchrony (Reichert & Serre, 2013; Löwe et al.,
2022; Stanić et al., 2023; Zheng et al., 2023; Löwe et al., 2023; Gopalakrishnan et al., 2024) shares
the same philosophy with AKOrN. Zheng et al. (2023) model synchrony by using temporal spik-
ing neurons based on biological neuronal mechanisms. Löwe et al. (2023) extend the concept of
complex-valued neurons—used by Reichert & Serre (2013); Löwe et al. (2022) to abstract temporal
neurons—into multidimensional neurons. They show that, together with a specific activation func-
tion called χ-binding that implements the ‘winner-take-all’ mechanism at the single neuron level
(Löwe et al., 2024), the multidimensional neurons learn to encode binding information in their ori-
entations. Those synchrony-based models are shown to work well on relatively synthetic data but
have been struggling to scale to natural images. Löwe et al. (2023) shows that their model can work
with a large pre-trained self-supervised learning (SSL) model as a feature extractor, but its perfor-
mance improvement is limited compared to slot-based models.

Slot-based models (Le Roux et al., 2011; Burgess et al., 2019; Greff et al., 2019; Locatello et al.,
2020) are the most-used model for object-centric (OC) learning. Their discrete nature of represen-
tations is shown to be a good inductive bias to learn such OC representations. However, similarly to
synchrony-based models, these models struggle on natural images and are therefore often combined

5
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Figure 3: Object discovery performance on synthetic datasets.

Input ItrSA AKOrN GTmask Input ItrSA AKOrN GTmask

Figure 4: AKOrN learns more object-bound features than the non-Kuramoto model counterpart.

CLEVRTex OOD CAMO
Model FG-ARI MBO FG-ARI MBO FG-ARI MBO
∗MONet (Burgess et al., 2019) 19.78 - 37.29 - 31.52 -
SLATE (Singh et al., 2021) 44.19 50.88 - - - -
∗Slot-Attention (Locatello et al., 2020) 62.40 - 58.45 - 57.54 -
Slot-diffusion (Wu et al., 2023) 69.66 61.94 - - - -
Slot-diffusion+BO (Wu et al., 2023) 78.50 68.68 - - - -
∗DTI (Monnier et al., 2021) 79.90 - 73.67 - 72.90 -
∗I-SA (Chang et al., 2022) 78.96 - 83.71 - 57.20 -
BO-SA (Jia et al., 2023) 80.47 - 86.50 - 63.71 -
ISA-TS (Biza et al., 2023) 92.9 - 84.4 - 86.2 -

AKOrNattn 89.24 60.02 88.00 60.96 77.18 53.43

Table 1: Object discovery performance on CLEVRTex and its variants (OOD, CAMO). AKOrN is
compared among models trained from scratch. ∗Numbers taken from Jia et al. (2023).

with powerful, pre-trained SSL models such as DINO (Caron et al., 2021). Our proposed contin-
uous Kuramoto neurons can be a building block of the SSL network itself, and we show that they
learn better object-centric features than well-known SSL models. Our work is the first work that
demonstrates that a synchrony-based model is solely scaled up to natural images.

AKOrNs perform particularly well on object discovery tasks when implemented in self-attention
layers. Self-attention updates with normalization have been shown mathematically to cluster token
features (Geshkovski et al., 2024). Our work combines this clustering behavior of transformers with
the clustering induced by the synchronization of the Kuramoto neurons, resulting in AKOrN being
the first competitive method to slot-based approaches.

Finally, there exist several works on interpreting self-attention in the context of the Hopfield net-
works (Ramsauer et al., 2020; Hoover et al., 2023). Energy transformer (Hoover et al., 2023) intro-
duces a symmetrized attention mechanism to guarantee the update minimizing certain energy. How-
ever, we find such symmetric models worsen the performance in our reasoning task. Our Kuramoto-
based models differ from these approaches: the use of unit-norm-constrained neurons with asym-
metric connections in J, and their symmetry-breaking term C. These elements contribute to perfor-
mance improvement over the approach by (Hoover et al., 2023) and conventional self-attention in
the reasoning task of our experiments.
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Input DINO AKOrN GTMask Input DINO AKOrN GTmask

Figure 5: Visualization of clusters on (Left) PascalVOC and (Right) COCO2017.

6 EXPERIMENTS

6.1 UNSUPERVISED OBJECT DISCOVERY

Unsupervised object discovery is the task of finding objects in an image without supervision. Here,
we test AKOrN on four synthetic datasets (Tetrominoes, dSprites, CLEVR (Kabra et al., 2019),
CLEVRTex (Karazija et al., 2021)) and two real image datasets (PascalVOC (Everingham et al.,
2010), COCO2017 (Lin et al., 2014)) (see the Appendix D for details). Among the four synthetic
datasets, CLEVRTex has the most complex objects and backgrounds. We further evaluate the models
trained on the CLEVRTex dataset on two variants (OOD, CAMO). The materials and shapes of
objects in OOD differ from those in CLEVRTex, while CAMO (short for camouflage) features
scenes where objects and backgrounds share similar textures within each scene.

As baselines, we train models that are similar to ResNet (He et al., 2016) and ViT (Dosovitskiy et al.,
2021), but iterate the convolution or self-attention layers multiple times with shared parameters.
This allows us to evaluate the impact of our proposed, Kuramoto-based iterative updates. We denote
these baselines as Iterative Convolution (ItrConv) and Iterative Self-Attention (ItrSA), respectively.
Fig. 11 in the Appendix shows diagrams of each network.

In AKOrN, C is initialized by the patched features of the images, while each xi is initialized by
random oscillators sampled from the uniform distribution on the sphere. We train the AKOrN model
with the self-supervised SimCLR (Chen et al., 2020) objective.

We train each model from scratch on the four synthetic datasets. For the two real image datasets,
we first train AKOrN on ImageNet (Krizhevsky et al., 2012) and directly evaluate that ImageNet-
pretrained model on both datasets without fine-tuning. When evaluating, we apply clustering to the
final block’s output features (In AKOrN, it is C(L)). We use agglomeration clustering with average
linkage, which we found to outperform K-means for both the baseline models and AKOrN. We
evaluate the clustering results by foreground adjusted rand index (FG-ARI) and Mean-Best-Overlap
(MBO). FG-ARI measures the similarity between the ground truth masks and the computed clusters,
only for foreground objects. MBO first assigns each cluster to the highest overlapping ground truth
mask and then computes the average intersection-over-union (IoU) of all pairs. See D.1.1 for details.
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PascalVOC COCO2017
Model MBOi MBOc MBOi MBOc

(slot-based models)
Slot-attention (Locatello et al., 2020) 22.2 23.7 24.6 24.9
SLATE (Singh et al., 2021) 35.9 41.5 29.1 33.6

(DINO + slot-based model)
DINOSAUR (Seitzer et al., 2023) 44.0 51.2 31.6 39.7
Slot-diffusion (Wu et al., 2023) 50.4 55.3 31.0 35.0
SPOT (Kakogeorgiou et al., 2024) 48.3 55.6 35.0 44.7
(transformer + SSL)
MAE (He et al., 2022) 34.0 38.3 23.1 28.5
MoCoV3 (Chen et al., 2021) 47.3 53.0 28.7 36.0
DINO (Caron et al., 2021) 47.2 53.5 29.4 37.0

AKOrN 52.0 60.3 31.3 40.3

Table 2: Object discovery on PascalVOC and COCO2017.

For PascalVOC and COCO2017, we show instance-level MBO (MBOi) and class-level (MBOc)
segmentation results.

AKOrN binds object features Fig. 3 shows that AKOrNs improve the object discovery perfor-
mance over their non-Kuramoto counterparts in almost every dataset (except for Tetrominoes). In-
terestingly, we observe that convolution is less effective than attention in most datasets. In Fig. 4,
we see that the Kuramoto models’ clusters are well-aligned with the individual objects, while clus-
ters of the ItrSA model often span across objects and background, and are sensitive to the texture of
the background (more clustering results are shown in Figs 30-32 in the Appendix).

Tab. 1 shows a comparison to existing works on CLEVRTex and its variants. All other methods are
slot-based. Among the distributed representation models, AKOrN is the first method that is shown
to be competitive with slot-based models on the complex CLEVRTex dataset.

AKOrN scales to natural images Fig. 5 shows AKOrN binds object features on natural images
much better than DINO (Caron et al., 2021). We show a benchmark comparison on Pascal VOC
and COCO2017 in Tab. 2. The proposed AKOrN model outperforms existing SSL models including
DINO, MoCoV3, and MAE on both datasets, showing that it learns more object-bound features than
conventional transformer-based models. On Pascal, AKOrN is considerably better than other models
including models trained from scratch and models trained on features of a pretrained DINO model.
On COCO, AKOrN again outperforms methods that are trained from scratch and is competitive to
DINOSAUR and Slot-diffusion, but is outperformed by the recent SPOT model.

6.2 SOLVING SUDOKU

To test AKOrN’s reasoning capability, we apply it on the Sudoku puzzle datasets (Wang et al., 2019;
Palm et al., 2018). The training set contains boards with 31-42 given digits. We test models in in-
distribution (ID) and out-of-distribution (OOD) scenarios. The ID test set contains 1,000 boards
sampled from the same distribution, while boards in the OOD set contain much fewer given digits
(17-34) than the train set. To initialize C, we use embeddings of the digits 0-9 (0 for blank, 1-9 for
given digits). The initial xi takes the value ci/∥ci∥2 when a digit is given, and is randomly sampled
from the uniform distribution on the sphere for blank squares. The number of Kuramoto steps during
training is set to 16. We also train a transformer model with 8 blocks.

AKOrN solves Sudoku puzzles AKOrN perfectly solves all puzzles in the ID test set, while only
Recurrent Transformer (R-Transformer (Yang et al., 2023)) achieves this (Tab. 3). On the OOD
set, AKOrN achieves 61.1±14.7 accuracy which is on par with IRED (Du et al., 2024), an energy-
based diffusion model, and better than all other existing approaches (including the R-Transformer).
AKOrN again strongly outperforms its non-Kuramoto counterparts, ItrSA and Transformer.

Test-time extension of the Kuramoto steps Just as we humans use more time to solve harder prob-
lems, AKOrN’s performance improves as we increase the number of Kuramoto steps. As shown in
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(b) (c)(a)

Figure 6: (a) Transition of the energy in Eq. (3) over # Kuramoto steps on the Sudoku datasets. The
semi-transparent lines are actual energy values averaged across examples, and the solid ones connect
the troughs. The dotted vertical line indicates # Kuramoto steps set during training. (b) A zoomed-
in version of each plot. (c) The effect of test-time extension on # Kuramoto steps.
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Figure 7: Improvement of board ac-
curacy by the post-selection of predic-
tions based on the E values described
in Sec 6.2. Teval is set to 128. ‘E-vote’
and ‘Avg’ stand for energy-based vot-
ing and majority voting, respectively.

Model ID OOD

SAT-Net (Wang et al., 2019) 98.3 3.2
Diffusion (Du et al., 2024) 66.1 10.3
IREM (Du et al., 2022) 93.5 24.6
RRN (Palm et al., 2018) 99.8 28.6
R-Transformer (Yang et al., 2023) 100.0 30.3
IRED (Du et al., 2024) 99.4 62.1
Transformer 98.6±0.3 5.2±0.2
ItrSA 95.7±8.5 34.4±5.4
AKOrNattn 100.0±0.0 61.1±14.7

Table 3: Board accuracy on Sudoku Puzzles. We show the
mean and std of the accuracy of models with 5 different ran-
dom seeds for the weight initialization. The AKOrN results
are obtained with Teval = 128 and the energy-based voting
with 100 samples of initial oscillators.

Fig. 6 (a,b), on the ID test set, the energy fluctuates but roughly converges to a minimum after around
32 steps. On the OOD test set, however, the energy continues to decrease further. Fig. 6 (c) shows
that increasing the number of Kuramoto steps at test time improves accuracy significantly (17% to
52%), while increasing the step count of standard self-attention provides a limited improvement on
the OOD set (14% to 34%) and leads to lower performance on the ID set (99.3% to 95.7%).

The energy value tells the correctness of the boards The energy value is a good indicator of the
solution’s correctness. In fact, we observe that predictions with low-energy oscillator states tend
to be correct (see Fig. 26). We utilize this property to improve the performance. For each given
board, we sample multiple predictions with different initial oscillators and select the lowest-energy
prediction as the model’s answer, which we call Energy-based voting (E-vote). We see in Fig. 7
that by increasing the number of sampled predictions, the model’s board accuracy improves. Just
averaging the predictions of different states (i.e., majority voting) does not give better answers.

6.3 ROBUSTNESS AND CALIBRATION

We test AKOrN’s robustness to adversarial attacks and its uncertainty quantification performance on
CIFAR10 and CIFAR10 with common corruptions (CC, Hendrycks & Dietterich (2019)). We train
two types of networks: a convolutional AKOrN (AKOrNconv) and AKOrN with both convolution
and self-attention (AKOrNmix). The former has three convolutional Kuramoto layers. The latter
replaces the last block with an attentive Kuramoto block. We use AutoAttack (Caron et al., 2021) to
evaluate the model’s adversarial robustness.

AKOrNs are resilient against gradient-based attacks The model is heavily regularized and
achieves both good adversarial robustness and robustness to natural corruptions (Tab. 4). This is re-
markable, since conventional neural models need additional techniques such as adversarial training
and/or adversarial purification to achieve good adversarial robustness. In contrast, AKOrN is robust
by design, even when trained on only clean examples.
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Figure 8: Robustness performance on random noise examples. Each bar plot shows classification
accuracy on CIFAR10 with strong random noise (∥ϵ∥∞ = 64/255). The left two pictures are
examples of images with that ϵ. Green bars show accuracy when we ablate each element of AKOrN.

↑ Accuracy ↓ ECE
Model Clean Adv CC CC

Bartoldson et al. (2024) 93.68 73.71 75.9 20.5
Diffenderfer et al. (2021) 96.56 0.00 92.8 4.8

ViT 91.44 0.00 81.0 9.6
ResNet-18 94.41 0.00 81.5 8.9
AKOrNconv 88.91 ∗58.91 83.0 1.3
AKOrNmix 91.23 ∗51.56 86.4 1.4

Table 4: Robustness to adversarial examples by Au-
toAttack (Adv) and common corruptions (CC) on CI-
FAR10. ∗The attack is done by AutoAttack with
EoT (Athalye et al., 2018). ∥ϵ∥∞ is set to 8/255. Ex-
pected Calibration Error (ECE) measures the alignment
between confidence of the prediction and accuracy.
The top two methods are selected from the highest-
ranked methods on https://robustbench.github.io/.

Bartoldson’24 Diffenderfer’21

ResNet-18 AKOrNmix

Figure 9: Confidence vs Accuracy plots on
CIFAR10 with common corruptions.

K-Nets are well-calibrated and robust to strong random noise

We found that AKOrNs are robust to strong random noise (Fig. 8) and give good uncertainty estima-
tion (on the bottom right in Fig. 9). Surprisingly, there is an almost perfect correlation between con-
fidence and actual accuracy. This is similar to observations in generative models (Grathwohl et al.,
2020; Jaini et al., 2024), where conditional generative models give well-calibrated outputs. Since
AKOrN’s energy is not learned to model input distribution, we cannot tightly relate ours to such gen-
erative models. However, we speculate that AKOrNs’ energy roughly approximates the likelihood
of the input examples, and thus the oscillator state fluctuates according to the height of the energy,
which would result in good calibration.

7 DISCUSSION & CONCLUSION

We propose AKOrN, which integrates the Kuramoto model into neural networks and scales to com-
plex observations, such as natural images. AKOrNs learn strongly object-binding features, can rea-
son, and are robust to adversarial and natural perturbations with well-calibrated predictions. We be-
lieve our work provides a foundation for exploring a fundamental shift in the current neural network
paradigm.

In the current formulation of AKOrN, each oscillator is constrained onto the sphere and each single
oscillator cannot represent the ‘presence’ of the features like the rotating features in Löwe et al.
(2023). Because of that, AKOrN would not perform well on memory tasks, where the model needs
to remember the presence of events. This norm constraint also does not align with real biological
neurons that have firing and non-firing states. Relaxing the hard norm constraint of the oscillator
would be an interesting future direction in terms of both biological plausibility and applicability to
a much wider range of tasks such as long-term temporal processing.
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C X

Figure 10: The transition of the 64×64 oscillator neurons (N = 4). (Left) Visualiaztion of C. ci on
the white region is set to 1 and the black region is set to 0. (Right) Oscillators’ time evolution. Sim-
ilar colors indicate oscillators directing similar directions. The connectivity J is a 9× 9 convolution
kernel with random filters. The oscillators on the white region of C are aligned with the conditional
stimuli and almost stay constant across time. The oscillators on the black region are largely influ-
enced by the neighboring oscillators and exhibit wavy patterns.

Conv

GELU

MLP

×T

GN

(a) Iterative conv

MLP

SA

×T

LN

(b) Iterative self-attention

RO

K-Layer
Conv/Attn

×T

(c) AKOrN

Figure 11: Block diagrams of (a) ItrConv (b) ItrSA, and (c) AKOrN. GN and LN stand for Group
Normalization (Wu & He, 2018) and Layer normalization (Ba et al., 2016), respectively. The MLP
in (a) or (b) is composed of a stack of GN or LN followed by Linear, GELU, and Linear layers. The
hidden dim of MLP is set to 2× (channel size). The number of heads in SA and the K-Layer with
attentive connectivity is set to 8 throughout our experiments.
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A MODEL ANALYSIS

In this section, we provide an extensive comparison of the architectural designs. Specifically, we
show:

• A visual description of the projection operator and its effect on the performance (Sec. A.1)

• The Kuramoto model vs conventional residual update (Sec. A.2)

• The effect of the number of rotating dimensions N (Sec. A.3)

• The efficacy of C and m in AKOrN (Sec. A.4).

Additionally, we show run-time comparisons between AKOrNs and their non-Kuramoto counter-
parts on different datasets in Sec. A.5.

A.1 PROJECTION OPERATOR
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Figure 12: Visual description of Projxi
(Jijxj). θ’ is the angle difference between xi and Jijxj .

Given the length of Jijxj , the length of the projected update in Eq. (2) and the negative energy in
Eq. (3) are inversely proportional.

Fig. 12 illustrates a visual representation of the projection operator Projxi
defined in Eq. (2). Note

that this operator plays a key role in Riemannian optimization on the sphere, ensuring that the
updated direction lies within the tangent space at the point xi on the sphere.

Relation between the vectorized Kuramoto model and the original one The vectorized Ku-
ramoto model includes the original one in a special case. Suppose the case of N = 2, ci = 0, and
having a scalar connection for Jij : Jij = JijI where Jij ∈ R and I is the 2 × 2 identity matrix.
Then we have θ′ = θj − θi where θi, θj = arg(xi), arg(xj). From the definition of trigonometric
functions, we get

⟨Jijxj ,xi⟩xi = Jijcos(θj − θi)xi (10)

Projxi
(xj) = Jijxj − ⟨Jijxj ,xi⟩xi = Jijsin(θj − θi)x

⊥
i , (11)

where x⊥
i is the unit vector perpendicular to xi and its direction is increasing θi. Thus the Eq. (2)

is an extension of Eq. (1). This proof is just a rephrased version of Chandra et al. (2019) and
Proposition 1 in Olfati-Saber (2006). Please refer to them for details.

Note that with or without Proj only changes the length of the update direction of each neuron.
The updated xi stays on the sphere since we normalize each updated neuron to be the unit vector
in Eq. (5). We test AKOrN without Proj operators and summarize the results in Tab. 5. We see
almost identical and a bit degraded performance on the CLEVR-TEx object discovery and Sudoku
solving, respectively. Interestingly, without projection, the adversarial robustness and uncertainty
quantification get worse than the original AKOrN.
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Projx FG-ARI MBO

80.9 57.4
81.5 54.1

(a) CLEVR-Tex

Projx ID OOD

99.9±0.0 45.0±1.9
100.0±0.0 51.7±3.3

(b) Sudoku

↑ Accuracy ↓ ECE
Projx Clean Adv CC CC

89.9 0.1 82.4 4.5
84.6 64.9 78.3 1.8

(c) CIFAR10

Table 5: Ablation of Projx.

A.2 REPLACING THE KURAMOTO MODEL WITH THE CONVENTIONAL RESIDUAL UPDATE

Here, we conduct an ablation study of the Kuramoto updates. Specifically, we train a pro-
posed AKOrN architecture on CLEVRTex and Sudoku, but without projection and normalization
(Proj and Π in Eqs (4) and (5)). The update results in the conventional residual update. Tab. 6 shows
that the ablated model degrades both the object discovery performance and Sudoku solving signifi-
cantly, which clearly shows the large contribution of the Kuramoto update to the performances.

Kuramoto FG-ARI MBO

65.0 51.3
81.5 54.1

(a) CLEVR-Tex

Kuramoto ID OOD

59.8±54.6 17.1±16.6
100.0±0.0 51.7±3.3

(b) Sudoku

Table 6: With or without the use of Kuramoto updates.

A.3 NUMBER OF ROTATING DIMENSIONS

N FG-ARI MBO

2 47.6 28.8
4 81.5 54.1

(a) CLEVR-Tex

N ID OOD

2 0.3±0.4 0.0±0.0
4 100.0±0.0 51.7±3.3

(b) Sudoku

Table 7: The effect of the number of rotating di-
mensions. The inferior performance with N =
2 comes from the model’s underfitting (See the
next figures)

.
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100Lo
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(c) CLEVR-Tex
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(d) Sudoku

Figure 14: Loss curve comparison between mod-
els with different N .

Input Oscillators

Figure 15: Noisy oscillators when N = 2.
The three panels show the states of the os-
cillators at consecutive time steps. The ani-
mation file cifar10 block1.gif in the Supple-
mentary Material provides more clear visual-
ization of the fluctuations.

↑ Accuracy ↓ ECE
Model Clean Adv CC CC

ResNet (σ = 0.2) 85.2 22.3 75.1 2.3
ResNet (σ = 0.225) 83.9 25.5 73.6 2.6
AKOrN (N = 2) 84.6 64.9 78.3 1.8

Table 8: Robustness comparison with ResNets
trained to resist Gaussian noises. σ indicates the
standard deviation of the noise added during train-
ing.

20

cifar10_block1.gif


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.4 THE BIAS TERM C AND NORM-TAKING TERM m

AKOrN employs a two-stream architecture to process observations, which helps stabilize training.
Additionally, the norm-taking part m in Eq. (6) plays a key role in improving the model’s fitness to
the data. Fig. 16 presents a performance comparison with a model stacking only K-layers (Staking
K-Layers) and AKOrN without m. Here, ‘Stacking K-Layers’ removes the term C in Eq. (4) and
instead processes an observation into X(0) by using a single 3×3 convolution applied to the RGB
input. We see the use of C and m significantly contributes to the loss minimization. The final test
accuracies of Stacking K-Layers, AKOrN wo/ m, and the original AKOrN are 62.9, 77.8, and 84.6,
respectively.

0 100 200 300 400
Epoch

0.8
1.0
1.2
1.4
1.6
1.8
2.0

Lo
ss

Training loss on CIFAR10

Stacking K-Layers
AKOrN wo/ m
AKOrN

Figure 16: Effect of the use of C and m in Eq. (6)

A.5 TRAINING & INFERENCE TIME
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(b) Inference time

Figure 17: Training and inference time in different tasks. Training time is the time taken to complete
a single gradient step (excluding data loading). Inference time is the time taken for a single forward
pass with a mini-batch size of 100.

B RELATION TO PHYSICS MODELS

Similar to how the Ising model is the basis for recurrent neural models, such as the Hopfield
model (Hopfield, 1982), the Kuramoto model with symmetric lateral interactions can also be stud-
ied by viewing it as a model from statistical physics called the Heisenberg model (Mattis, 2012).
In fact, we use more general version of the Kuramoto model which involves a symmetry-breaking
term (akin to a magnetic field interaction) and asymmetric connections between the neurons. This
not only is biologically plausible (synapses are not symmetric), it also leads to much better results
in our experiments.

Non-equilibrium soft matter physics has studied models with nonreciprocal interactions, for instance
in the field of “active matter”. They have developed accurate coarse-grained hydrodynamics models
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to approximate the microscopic dynamics and observed very interesting behavior, such as symmetry-
breaking phase transitions and resultant traveling waves representing so-called Goldstone modes
(Fruchart et al., 2021). We hope that this opens the door to a deeper understanding of these models
when employed as neural networks.

C RELATED WORKS ON THE NN ROBUSTNESS

Experimental proof of the conventional NNs’ limited OOD generalization is represented by the
vulnerability to adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2014). The most
effective way to resist such examples is training the model on adversarial examples generated by
the model itself, which is called adversarial training (Goodfellow et al., 2014; Madry et al., 2017;
Miyato et al., 2018; Zhang et al., 2019). Many other defenses have been proposed, but most of them
were found to be not a fundamental solution (Tramer et al., 2020).

One framework that can produce more human-algined predictions is a generative classifier (Ng
& Jordan, 2001; Bishop & Nasrabadi, 2006), where we train a model with both generative and
discriminative objectives or turn a label conditional generative model into a discriminative model
based on Bayes theorem. Interestingly, different generative classifiers trained with different methods
share similar robust and calibration properties (Lee et al., 2017; Grathwohl et al., 2020; Li et al.,
2023; Jaini et al., 2024). Generative classifiers are robust but involve costly generative training such
as denoising diffusion (Li et al., 2023; Jaini et al., 2024), MCMC (Grathwohl et al., 2020) to generate
negative samples, or unstable min-max optimization as GANs training (Lee et al., 2017). AKOrN
shares similar robustness properties but without any generative objectives.

D EXPERIMENTAL SETTINGS

We observe that both the readout module and conditional stimuli C are essential for stable training,
especially when N = 2. We also see that AKOrN with N = 2 exhibits a strong regularity, which acts
positively on robustness performance while having negative effects on unsupervised object discovery
and the Sudoku-solving experiments. We show results of AKOrN with N = 4 in those experiments.
We do not observe improvement by increasing N above 4. Further experimental and mathematical
analysis is needed to understand why this occurs, which could provide insights into how we can
leverage both advantages.

Tabs 9-12 show experimental settings on each dataset (e.g. hyperparameters on models and opti-
mization, the number of training and test examples, dataset statistics, etc...). For AKOrN, the channel
size is set to (the channel size shown in the table)/N , so that the memory consumption and FLOPs
are effectively the same between AKOrNs and their non-Kuramoto counterpart baselines. All mod-
els are trained with Adam (Kingma & Ba, 2015) without weight decay.

D.1 UNSUPERVISED OBJECT DISCOVERY

We test on 4 synthetic benchmark datasets (Tetrominoes, dSprites, CLEVR, CLEVRTex), one
synthetic dataset created by us (Shapes), and 2 real image benchmark datasets (PascalVOC,
COCO2017). The Shapes dataset consists of images with 2–4 objects that are randomly sampled
from four basic shapes (triangle, square, circle, and diamond). Note that each image can have mul-
tiple objects of the same shape together.

The kernel size of convolution layers in AKOrNconv and ItrConv is set to 5, 7, and 9 on Tetromi-
noes, dSprites, and CLEVR, respectively. In addition to ItrConv and ItrSA, we also train a ViT
model (Dosovitskiy et al., 2021) as another baseline.

All networks process images similarly to ViT (Dosovitskiy et al., 2021). First, we patch each image
into H/P × W/P patches where H,W are the height and width of the image and P is the patch
size. We then apply the stack of blocks. The output of the final layer is further processed by global
max-pooling followed by a single hidden layer MLP, whose output is used to compute the SimCLR
loss. We used a conventional set of augmentations for SSL training: random resizing, cropping,
and color jittering. We also apply horizontal flipping for the ImageNet pretraining. All models
including baseline models have roughly the same number of parameters and are trained with shared
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Tetrominoes dSprites CLEVR Shapes

Training examples 60,000 60,000 50,000 40,000
Test examples 320 320 320 1,000

Image size 32 64 128 40
Max. #objects 3 6 6 4

Patch size 4 4 8 2
Patch resolution 8 16 16 20

Channel size 128 128 256 256
#internal steps (T ) 8 8 8 8/4

#Epochs 50 50 300 100
Batchsize 256

Learning rate 0.001
Augmentations Random resize and crop + color jittering

#clusters set for eval 4 7 11 5

Table 9: Experimental settings on Tetrominoes, dSprites, CLEVR, and Shapes. On Shapes, the
internal steps are set to 8 for a single-block model and 4 for multiple-block models.

CLEVRTex OOD CAMO

Training examples 40,000 - -
Test examples 5,000 10,000 2,000

Image size 128
Maximum number of objects 10

Patch size 8
Patch resolution 16

Channel size 256
# internal steps (T ) 8

# epochs 500 - -
Batchsize 256 - -

Learning rate 0.0005 - -
Augmentations Random resize and crop + color jittering

#clusters set for eval 11

Table 10: Experimental settings on CLEVRTex and its variants (OOD, CAMO). We also train a
large AKOrN model that is trained with the doubled channel size, and epochs. We denote that model
by Large AKOrN.

hyperparameters such as learning rates and training epochs. See Tabs 9-11 for those hyperparameter
details.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

ImageNet PascalVOC COCO2017

Training examples 1,281,167 - -
Test examples - 1,449 5,000

Image size 256 256 256

Patch size 16
Patch resolution 16

Channel size 768
# Blocks 3

# internal steps (T ) 4

# epochs 400 - -
Batchsize 512 - -

Learning rate 0.0005 - -

#clusters set for eval - 4 7

Table 11: Experimental settings on ImageNet pratraining and on the PascalVOC and COCO2017
evaluation. For SimCLR training augmentations, we use random resize and crop, color jittering, and
horizontal flipping.

Sudoku(ID) (Wang et al., 2019) Sudoku(OOD) (Palm et al., 2018)

9 1 5 3 6
3 6 2 1 8
2 7 4 6 9

4 7 2 5
1 9 3 8 4

7 8 9
6 5 4
4 8 9 3 7

5 1 2

5 1
6 9 4 3

7 2
5 8 9

7 6
3

1 9 2
9

7

Training examples 9,000 -
Test examples 1,000 18,000

Channel size 512

# epochs 100 -
Batchsize 100 -

Learning rate 0.0005 -

Table 12: Sudoku puzzle datasets.
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Figure 18: 2× up-tiling. First, we create horizontally or/and vertically shifted images with stride
equal to (patchsize/2) and compute the model’s output on each shifted image. We then interleave
each token feature to make a 2× upsampled feature map.

In AKOrN, C(0) is computed by the patched features of images, while each xi is initialized by
random oscillators sampled from the uniform distribution on the sphere. We use the identity function
for g in each readout module. In multi-block models, we apply Group Normalization (Wu & He,
2018) to C except for the last block’s output C(L).

For the Tetrominoes, dSprites, and CLEVR datasets, we train single-block models with T = 8.
We observe that stacking multiple blocks does not yield improvements on those three datasets. On
CLEVRTex, we train single- and two-block models with attentive connectivity and T = 8, while on
ImageNet, we train a three-block AKOrN model with attentive connectivity and T = 4.

D.1.1 METRICS

We use FG-ARI and MBO to evaluate cluster assignments, both of which are well-used metrics in
object discovery tasks. We summarize

• FG-ARI: The Adjusted Rand Index (ARI) computes how well the clusters align with ob-
ject masks compared to random cluster assignments. The foreground ARI (FG-ARI) only
considers foreground objects and is a well-used metric in object discovery tasks. The max-
imum value of 100 indicates perfect alignment between the obtained clusters and the ob-
ject masks. If the cluster assignment is completely random or all features are assigned to
the same cluster, the value is 0.

• MBO: The Mean Best Overlap (MBO) first assigns each cluster to the highest overlapping
ground truth mask and then computes the average intersection-over-union (IoU) of all pairs.
The value takes 100 at maximum. Following the literature, we exclude the background
mask from the MBO evaluation. Since MBO computes IoU, tightly aligned object masks
give a higher value than FG-ARI (FG-ARI does not penalize the mask extending into the
background region).

D.1.2 UPSAMPLE FEATURES BY UP-TILING

When we compute the cluster assignment, we upsample the output features by up-tiling where we
let the model see a set of pictures that are slightly shifted both on the horizontal or/and vertical axes
and make a higher resolution feature map by interleaving those features. This up-tiling enables us
to get finer cluster assignments and substantially improves the object discovery performance of our
AKOrN. We show a pictorial explanation in Fig. 18 and PyTorch code in Code 1. In Fig. 19, we
compare up-tiled features with the original features and features with bilinear upsampling. Fig. 20
shows some examples of up-tiled features. We apply up-tiling with the scale factor of 4 for producing
numbers on Tabs 1 and 2 as well as for cluster visualization in Figs 4,5 and Figs 29-34. Unless
otherwise stated, no upsampling is performed when computing the cluster assignment.
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Code 1: PyTorch code for up-tiling

def create_shifted_imgs(img, psize, stride):
H, W = img.shape[-2:]
img = F.interpolate(img,

(H+psize-stride, W+psize-stride),
mode=’bilinear’, align_corners=False)

imgs = []
for h in range(0, psize, stride):

for w in range(0, psize, stride):
imgs.append(img[:, :, h:h+H, w:w+W])

return imgs

def uptiling(model, images, psize=16, s=2):
"""
Args:

model: a function that takes [B,C,H,W]-shaped tensor
and outputs [B,C,H/psize,W/psize]-shaped tensor.

images: a tensor of shape [B, C, H, W].
psize: the patch size of the model.
s: scale factor. The resulting features will

be upscaled to [s*H/psize, s*W/psize]
where (H, W) are the original image size.
Must be equal to or less than the patch size.

Returns:
nimgs: a tensor of shape [B, C, s*H/psize, s*W/psize]

"""
B = images.shape[0]
stride = psize // s
# Create shifted images.
shifted_imgs = create_shifted_imgs(images, psize, stride)
# Compute a feature map on each shifted image.
outputs = []
for i in range(len(shifted_imgs)):

with torch.no_grad():
output = model(shifted_imgs[i].cuda())
outputs.append(output.detach().cpu())

# Tile the output feature maps.
oh, ow = outputs[0].shape[-2:]
nimgs = torch.zeros(B, outputs[0].shape[1], oh, s, ow, s)
for h in range(s):

for w in range(s):
nimgs[:, :, :, h, :, w] = outputs[h*s+w]

# Reshape into [B, C, s*(H/psize), s*(W/psize)]
nimgs = nimgs.view(, -1, oh*nh, ow*nw)
return nimgs

D.2 SUDOKU SOLVING

The task is to fill a 9×9 grid, given some initial digits from 1 to 9, so that each row, column, and
3×3 subgrid contains all digits from 1 to 9. While the task may be straightforward if the game’s
rules are known, the model must learn these rules solely from the training set. Example boards are
shown in Tab. 12.

We train AKOrN with attentive connections, the ItrSA model, and a conventional transformer model.
We denote them by AKOrNattn, ItrSA, and Transformer, respectively. AKOrNattn has almost the
same architecture used in the object discovery task except for g in the readout module, which is
composed of the norm computation layer followed by a stack of BatchNormalization, ReLU, and
linear layer.
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Up-tiled
features

Bi-linear
features

PCA1-3 PCA4-6 PCA7-9

Input

(a) The original features (top) and features upsampled by up-tiling (bottom).

PCA1-3 PCA4-6 PCA7-9

Original 
features

Up-tiled 
features

(b) Features upsampled by bilinear upsampling (top) and by up-tiling (bottom).

Figure 19: Comparison of AKOrN’s output features upsampled by different methods. PCA{i − j}
indicates that the corresponding column’s panels represent the features’ i-th to j-th PCA compo-
nents. The scaling factor of up-tiling is set to 8.

The input for each model is 9×9 digits from 0 to 9 (0 for blank, 1-9 for given digits). We first embed
each digit into a 512-dimensional token vector. The 9×9 tokens are then flattened into 81 tokens.
We apply each model to this token sequence and compute the prediction on each square by applying
the softmax layer to each output token of the final block. All models are trained to minimize cross-
entropy loss for 100 epochs.

The number of blocks of both ItrSA and AKOrN is set to one. We tested models with more than
one block but found no improvement on the ID test set and a decline in OOD performance. Similar
to the object discovery experiments, a transformer results in even worse performance than the ItrSA
model (Tab. 18).

The readout module is composed of the norm computation followed by the Batch Normalization
layer, ReLU, and a linear layer.

D.3 ROBUSTNESS AND CALIBRATION ON CIFAR10

We train two types of networks: a convolution-based AKOrN and AKOrN with a combination of
convolution and attention. The former has three proposed blocks, and all of the Kuramoto layer’s
connectivities are convolutional connectivity. The kernel sizes are 9,7, and 5 from shallow to deep,
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PCA1-3 PCA4-6 PCA7-9 Input

(a) CLEVRTex

PCA1-3 PCA4-6 PCA7-9 Input

(b) PascalVOC

Figure 20: Up-tilied feature maps on CLEVRTex and PascalVOC. The scale factors are set to 8 and
16 for CLEVRTex and PascalVOC, respectively.
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Figure 21: Example images in the Common Corruption dataset (CIFAR10-C). The top right image
is the original clean image.

and T is set to 3 for all blocks. Between consecutive blocks, a single convolution with a stride being
2 is applied to each of C and X. Thus, the feature resolution of the final block’s output is 8×8. Each
readout module’s g is Batch Normalization (Ioffe & Szegedy, 2015) followed by ReLU, and a 3×3
convolution. C(3) is average-pooled followed by the softmax layer that makes category predictions.
The latter network is identical to the former one except for the third block, which we replace with
the block with attentive connectivity. For this attentive model, different timesteps T are set across
different blocks, which are [6, 4, 2] from shallow to deep.

For ResNet-18 and AKOrN, we first conduct pre-training on the Tiny-imagenet (Le & Yang, 2015)
dataset with the SimCLR loss for 50 epochs with batchsize of 512. We observe that this pre-training
is effective for AKOrN and improves the CIFAR10 clean accuracy compared to training from scratch
(from 87% to 91%). The ImageNet pretraining slightly improves ResNet’s clean accuracy (from
94.1% to 94.4%). Each model is then trained on CIFAR10 for 400 epochs. We apply augmenta-
tions, including random scaling and cropping, color jittering, and horizontal flipping, along with
AugMix (Hendrycks et al., 2020), as commonly used in robustness benchmarks. Both models are
trained to minimize the cross-entropy loss.

We also train an ItrConv model as a non-Kuramoto counterpart for this robustness experiment. To
construct the ItrConv model, We replace each block of AKOrNconv with the ItrConv block shown in
Fig. 11 and set the same kernel size to each layer as AKOrNconv (i.e. 9, 7, and 5 from shallow to
deep layers). Hyperparameters such as the number of channels, learning rate, and others are shared
with AKOrNconv.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 POSITIONAL ENCODING FOR THE ATTENTIVE CONNECTIVITY

We need a positional encoding (PE) for AKOrN with attentive connectivity. We found GTA-type
PE (Miyato et al., 2024) is effective and used for AKOrN throughout our experiments. Comparison
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to absolute positional encoding (APE) (Vaswani et al., 2017) and RoPE (Su et al., 2021) is shown in
Tab. 13. GTA does not improve the baseline ItrSA models.

CLEVRTex
PE FG-ARI MBO

ItrSA APE 66.87 42.15
GTA 66.07 43.41

AKOrN
APE 71.96 51.35
RoPE 65.70 50.22
GTA 75.79 54.08

(a) CLEVRTex

PE Sudoku(OOD)

ItrSA APE 34.37±5.40
GTA 24.32±7.81

AKOrN
APE 48.13±9.08
RoPE 48.43±5.60
GTA 51.72±3.26

(b) Sudoku (OOD Test)

Table 13: Comparison of positional encoding schemes. The number of blocks is one for all mod-
els. The Sudoku results of AKOrNs are obtained with test-time extensions of the Kuramoto steps
(Teval = 128) but without the energy-based voting.

E.2 UNSUPERVISED OBJECT DISCOVERY

Figure 22: MBO on Tetrominoes, dSprites, and CLEVR.

E.2.1 MBOi VS # CLUSTERS

2 3 4 5 7 10 15
Number of clusters

0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50

M
BO

i

AKOrN
DINO
MoCoV3

(a) PascalVOC

45 7 10 15 20 26
Number of clusters

0.265
0.270
0.275
0.280
0.285
0.290
0.295
0.300

M
BO

i

AKOrN
DINO
MoCoV3

(b) COCO2017

Figure 23: MBOi vs the number of clusters used for evaluation. AKOrN outperforms DINO and
MoCoV3 across a wide range of cluster numbers.
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E.2.2 OBJECT DISCOVERY PERFORMANCE

Model Tetrominoes dSprites CLEVR
FG-ARI MBO FG-ARI MBO FG-ARI MBO

ItrConv 55.56 48.82 20.46 31.25 56.41 33.98
AKOrNconv 75.37 53.88 73.35 56.80 65.08 47.03
ItrSA 86.81 51.74 69.42 64.67 80.15 36.76
AKOrNattn 86.19 55.06 79.98 65.57 90.93 43.55

(+up-tiling (×4))
AKOrNattn 92.72 56.40 88.57 62.81 93.64 43.76

(Distributed representation models)
CAE (Löwe et al., 2022) 78 - 51 - 27 -
CtCAE (Stanić et al., 2023) 84 - 56 - 54 -
SynCx (Gopalakrishnan et al., 2024) 89 - 82 - 59 -
Rotating Features (Löwe et al., 2023) 42 - 88.8 86.3 66.4 60.8

(Slot-based model)
Slot-Attnetion (Locatello et al., 2020) 99.5 - 91.3 - 98.8 -

Table 14: Object discovery results on synthetic datasets.

Input ItrSA AKOrN GTmask

(a) Comparision between ItrSA and AKOrN

Input ItrSA AKOrN GTmask

(b) Failure cases

Figure 24: Cluster visualization on Shapes. (b) Both ItrSA and AKOrN sometimes fail at separating
overlapping objects with complex configurations.

L
1 2 3

ItrSA 47.5 48.3 49.2
AKOrNattn 56.2 63.6 72.6

(a) FG-ARI

L
1 2 3

ItrSA 38.5 39.0 30.1
AKOrNattn 41.6 45.0 48.8

(b) MBO

Table 15: Object discovery performance on Shapes varying the number of layers L.
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Model CLEVRTex OOD CAMO
FG-ARI MBO FG-ARI MBO FG-ARI MBO

ViT 46.37 23.77 43.60 27.01 31.40 15.75
ItrSA (L = 1, T = 8,) 66.07 43.41 65.70 44.50 49.02 29.48
ItrSA (L = 2, T = 8) 75.33 48.44 73.91 45.69 60.38 36.72
AKOrNattn (L = 1, T = 8) 75.79 54.94 73.11 55.05 59.70 43.28
AKOrNattn (L = 2, T = 8) 81.50 54.08 80.15 55.02 68.73 44.98

(+up-tiling (×4))
AKOrNattn (L = 2, T = 8) 87.28 55.40 86.41 56.32 74.85 45.95
Large AKOrNattn (L = 2, T = 8) 89.24 60.02 88.00 60.96 77.18 53.43
∗MONet (Burgess et al., 2019) 19.78 - 37.29 - 31.52 -
SLATE (Singh et al., 2022) 44.19 50.88 - - - -
∗Slot-Attetion (Locatello et al., 2020) 62.40 - 58.45 - 57.54 -
Slot-diffusion (Wu et al., 2023) 69.66 61.94 - - - -
†SLATE+ (Singh et al., 2022) 70.71 54.90 - - - -
†LSD (Jiang et al., 2023) 76.44 72.44 - - - -
Slot-diffusion+BO (Wu et al., 2023) 78.50 68.68 - - - -
∗DTI (Monnier et al., 2021) 79.90 - 73.67 - 72.90 -
∗I-SA (Chang et al., 2022) 78.96 - 83.71 - 57.20 -
BO-SA (Jia et al., 2023) 80.47 - 86.50 - 63.71 -
‡NSI (Dedhia & Jha, 2024) 89.89 46.60 - - - -
ISA-TS (Biza et al., 2023) 92.9 - 84.4 - 86.2 -
†Jung et al. (2024) 93.06 75.36 - - - -
pSauvalle & de La Fortelle (2023) 94.77 - 83.14 - 87.27 -

Table 16: Object discovery on CLEVRTex (Karazija et al., 2021). †Use Openimages (Kuznetsova
et al., 2020)-pretrained encoder. Numbers are from Jung et al. (2024). ‡Use ImageNet-pretrained
DINO. ∗Numbers taken from Jia et al. (2023). pUse Imagenet-pretrained backbone models.
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PascalVOC COCO2017
Model MBOi MBOc MBOi MBOc

(slot-based models)
Slot-attention (Locatello et al., 2020) 22.2 23.7 24.6 24.9
SLATE (Singh et al., 2021) 35.9 41.5 29.1 33.6

(DINO + synchrony-based models)
Rotating Features (Löwe et al., 2023) 40.7 46.0 - -

(DINO + slot-based model)
NSI (Dedhia & Jha, 2024) - - 28.1 32.1
DINOSAUR (Seitzer et al., 2023) 44.0 51.2 31.6 39.7
Slot-diffusion (Wu et al., 2023) 50.4 55.3 31.0 35.0
SPOT (Kakogeorgiou et al., 2024) 48.3 55.6 35.0 44.7
(SSL models)
MAE (He et al., 2022) 33.8 37.7 22.9 28.3
DINO (Caron et al., 2021) 44.3 50.0 28.8 35.8
MoCoV3 (Chen et al., 2021) 47.3 53.0 28.7 36.0
AKOrNattn 50.3 58.2 30.2 38.2

(SSL models + up-tiling (×4))
MAE 34.0 38.3 23.1 28.5
DINO 47.2 53.5 29.4 37.0
MoCoV3 44.6 50.5 29.0 35.9
AKOrNattn 52.0 60.3 31.3 40.3

Table 17: Object discovery on PascalVOC and COCO2017.

E.2.3 TRAINING EPOCHS VS MBO

Fig. 25 shows that MBOi and MBOc scores on Pascal and COCO improve as ImageNet pretraining
progresses. Similar observations are made on CLEVRTex datasets, where larger AKOrNs give
better object discovery performance (see Figs 30-32 and Tab. 16). These results indicate that there
is an alignment between the SSL training with AKOrN and learning object-binding features and
that increasing parameters and computational resources can further enhance the object discovery
performance.

Figure 25: MBOi and MBOc vs. training epochs. (Left) PascalVOC (Right) COCO2017.
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E.3 SUDOKU SOLVING

Model ID OOD

Energy Transformer (Hoover et al., 2023) 1.0±1.0 0.0±0.0
Symmetrized AKOrN (L = 1, T = 16) 67.7±39.9 1.1±1.7
∗Symmetrized AKOrN (L = 1, T = 16) 84.6±14.2 1.4±1.7
Transformer 98.6±0.3 5.2±0.3
ItrSA (L = 1, T = 16) 99.7±0.3 14.1±2.7
AKOrNattn wo Ω (L = 1, T = 16) 99.8±0.1 16.6±2.2
AKOrNattn (L = 1, T = 16) 99.8±0.1 16.6±2.1

(+Test time extensions of internal steps)
ItrSA (Teval = 32) 95.7±8.5 34.4±5.4
AKOrNattn wo Ω (Teval = 128) 100.0±0.0 49.6±3.3
AKOrNattn (Teval = 128) 100.0±0.0 51.7±3.3

(Teval = 128, Energy-based voting (K = 100))
AKOrNattn wo Ω 100.0±0.0 46.8±9.0
AKOrNattn 100.0±0.0 61.1±14.7

SAT-Net (Wang et al., 2019) 98.3 3.2
Diffusion (Du et al., 2024) 66.1 10.3
IREM (Du et al., 2022) 93.5 24.6
RRN (Palm et al., 2018) 99.8 28.6
R-Transformer (Yang et al., 2023) 100.0 30.3
IRED (Du et al., 2024) 99.4 62.1

Table 18: Board accuracy on Sudoku Puzzles. The harder dataset (OOD) has fewer conditional digits
per example than the train set (17-34 in the harder dataset while 31-42 in the train set). We show
the mean and std of the accuracy of models with different random seeds for the weight initialization.
∗Numbers are calculated with excluding one trained model that has stuck during training.

E.3.1 EFFECT OF THE NATURAL FREQUENCY TERM IN ENERGY-BASED VOTING

Interestingly, the model without the Ω term does not give improvement with this post-selection, as
the energy value and correctness are inconsistent (Fig. 26). This implies the asymmetric term Ω
prevents the oscillators from being stuck in bad minima.
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Figure 26: Energy distribution of the K-Net with or without the Ω term. In each panel, given a single
board, we compute energies of the final oscillatory states that start from different random oscillators
and show the histogram of these energies, color-coded by the correctness of the predictions made
on the corresponding final oscillatory states. Note that not for all boards does the model yield those
mixed predictions: on approximately 30% boards, all predictions with random initial oscillators are
wrong.

E.4 SYMMETRIC CONSTRAINT

Fig. 27 shows a comparison of AKOrN to Energy Transformer (Hoover et al., 2023) and a symmet-
ric version of AKOrN. The symmetric version AKOrN is constructed by using the same weight to
compute query and key vectors and a symmetric weight for value vectors. Board accuracies of these
symmetrized models are shown in Tab. 18. We observe a similar tendency in the two symmetric
models: both models underfit the data (See Fig. 27). Energy Transformer is not able to solve even
in-distribution boards. Symmetrized AKOrN also gets stuck depending on the seed for the weight
initialization.
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Figure 27: A training curve comparison with symmetric transformer models.
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E.5 ROBUSTNESS AND CALIBRATION ON CIFAR10

↑ Accuracy ↓ ECE
Model Clean Adv CC CC

Gowal et al. (2020) 85.29 57.14 69.1 13.2
Gowal et al. (2021) 88.74 66.10 70.7 5.6
Bartoldson et al. (2024) 93.68 73.71 75.9 20.5
Kireev et al. (2022) 94.75 0.00 83.9 9.0
Diffenderfer et al. (2021) 96.56 0.00 89.2 4.8

ViT 91.44 0.00 81.0 9.6
ResNet-18 94.41 0.00 81.5 8.9
ItrConv 93.46 0.00 83.6 5.9
AKOrNconv (N = 2) 88.91 ∗58.91 83.0 1.3
AKOrNmix (N = 2) 91.23 ∗51.56 86.4 1.4
AKOrNmix (N = 4) 93.51 ∗0.00 84.0 6.4

Table 19: (An extended version of Tab. 4) Robustness to adversarial attack (Adv) and Common
Corruptions (CC) on CIFAR10 with the most severe corruption level (5). ∗The adversarial attack
is done by AutoAttack with EoT (Athalye et al., 2018). The max norm constraint of the adversrial
perturbtions is set to 8/255. With N = 4, the performance tendency of AKOrN is almost the same
as ResNet except for the accuracy and uncertainty calibration on CIFAR10 with natural corruptions,
which are moderately better with AKOrNmix.

Figure 28: AKOrN’s adversarial examples are interpretable. Each pair of images is an original and
the adversarially perturbed image (∥ϵ∥∞ = 64/255). The text above each image indicates the class
prediction made by the AKOrN model.
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F ADDITIONAL CLUSTER VISUALIZATIONS

Input shallow deep GTmask

(a) Shapes
Input shallow deep + large GTmask

(b) CLEVRTex (1st and 2nd row), CLEVRTex-OOD (3rd and 4th row), and CLEVRTex-CAMO (the last row)

Figure 29: Deeper, wider, and more epochs make the models learn more binding features in AKOrN.
(a): comparing a single-layer model (shallow) and a 3-layer model (deep). (b): comparing a single-
layer model (shallow) and a model with doubled layers, channels, and epochs (deep+large).
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Input ItrSA AKOrN Large AKOrN GTmask

Figure 30: Visualization of clusters on CLEVRTex. The number of blocks L is set to two for all
models.

Input ItrSA AKOrN Large AKOrN GTmask

Figure 31: Visualization of clusters on CLEVRTex-OOD. The number of blocks L is set to two for
all models.
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Input ItrSA AKOrN Large AKOrN GTmask

Figure 32: Visualization of clusters on CLEVRTex-CAMO. The number of blocks L is set to two
for all models.
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Input DINO MoCoV3 AKOrN GTmask

Figure 33: Visualization of clusters on PascalVOC. The number of clusters is set to 4.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Input DINO MoCoV3 AKOrN GTmask

Figure 34: Visualization of clusters on COCO2017. The number of clusters is set to 7.
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