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Abstract001

Instruction fine-tuning enhances the alignment002
of autoregressive language models (ArLMs)003
with human intent but relies on large-scale an-004
notated datasets prone to label and text noise.005
In this paper, we show that existing noise de-006
tection techniques designed for autoencoder007
models (AeLMs) do not directly generalize008
to ArLMs due to differences in learning dy-009
namics. We propose TDRANKER, a novel ap-010
proach leveraging training dynamics to rank011
datapoints from easy-to-learn to hard-to-learn,012
effectively identifying noisy instances. Our013
method demonstrates robustness across mul-014
tiple model architectures covering both au-015
toencoder and autoregressive language models016
(GPT-2, BERT, LaMini-Cerebras-256M) and017
across various dataset noise levels, achieving018
at least 2x faster denoising than previous tech-019
niques. Applied to real-world classification020
and generative tasks, TDRANKER significantly021
improves data quality and model performance.022
These findings suggest that TDRANKER pro-023
vides a scalable solution for refining instruction-024
tuning datasets, enhancing the reliability of fine-025
tuned ArLMs in practical applications.026

1 Introduction027

Autoregressive language models (ArLMs), also028

known as generative models, have recently029

achieved significant progress across various natural030

language tasks, including understanding, mathe-031

matical reasoning, and coding (Achiam et al., 2023;032

Team et al., 2024; Touvron et al., 2023; Roziere033

et al., 2023; Yang et al., 2024). These ArLMs,034

trained with a causal language modeling objective035

to predict the next token in a sequence, excel at036

generating coherent text but often lack alignment037

with human preferences (Ouyang et al., 2022). To038

address this, ‘Instruction fine-tuning’ adapts base039

models to better meet user needs, creating ‘In-040

struction models’ (Rafailov et al., 2024; Ethayarajh041

et al., 2024).042

Last_turn_question Label

How much does it cost to visit? Non-Standalone

What should I do if I smell burning insulation? Non-Standalone

What time will it take to get a reply on an appeal? Standalone

What is the court trial going to be held? Non-Standalone

…

Question: <question>

Output a 0 if the question is a non-standalone that is attached to 
readings of the sentences, otherwise output 1.

Instruction Template

Question Examples

Figure 1: An example of the noisy training dataset, con-
taining both the text noise and the label noise. The
phrase, “What time will it take...”, is incorrect for ex-
pressing duration; “How long will it take...” is appropri-
ate, and denotes text noise. The phrase, “What should I
do...”, can be answered without previous context, and
denotes label noise. Last_turn_question denotes the
current user utterance in multi-turn dialogue with an AI
assistant.

However, instruction fine-tuning is resource- 043

intensive, requiring substantial labeled data—e.g., 044

10M annotated examples for LLaMa 3 instruct 045

model (AI@Meta, 2024). This makes data col- 046

lection, annotation, and training both costly and 047

time-consuming. Moreover, the complexity of the 048

annotation process often introduces various types 049

of noise into the labeled datasets. Such noise can 050

originate from human errors during labeling (label 051

noise) or inherent issues in the datapoints them- 052

selves, such as grammatical mistakes or poorly con- 053

structed sentences that can even lead to a change in 054

the intended meaning of the sentence (text noise). 055

Figure 1 illustrates the various types of noise com- 056

monly found in instruction tuning datasets, includ- 057

ing errors introduced by annotators, inconsistencies 058

in labeling, and issues within the datapoints. 059

While deep learning models are generally con- 060

sidered robust to a certain degree of label noise 061
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(Oyen et al., 2022), studies on autoencoder lan-062

guage models (AeLMs), which include discrimi-063

native models like BERT, have revealed that these064

models face significant challenges when fine-tuned065

on datasets with noisy labels (Arpit et al., 2017;066

Zhang et al., 2021) and are susceptible to overfit-067

ting to label noise present in the dataset (Zhu et al.,068

2022) leading to significant performance loss on069

downstream tasks. This made it essential to ei-070

ther (1) develop strategies for fine-tuning AeLMs071

with such noisy instances (Sukhbaatar et al., 2015;072

Ratner et al., 2016; Jindal et al., 2016, 2019), or073

(2) develop techniques to filter noisy instruction074

instances (Swayamdipta et al., 2020; Yuan et al.,075

2024).076

Unlike AeLMs, generative models (ArLMs) are077

pretrained on substantially larger datasets—often078

involving approximately 100 times more train-079

ing tokens 1—which enables them to serve as ro-080

bust world models. This extensive pretraining al-081

lows ArLMs to learn new skills with fewer but082

higher-quality examples, whether through fine-083

tuning (Zhang et al., 2023) or in-context learning084

(Mavromatis et al., 2023). Given this capability, we085

aim to explore the following key questions in this086

work: (Q1) What is the impact of noisy instruction087

datasets on ArLMs acquiring a new skill? (Q2) Do088

noise mitigation techniques developed for AeLMs089

generalize to ArLMs? (Q3) How can we best iden-090

tify and mitigate noise (both label noise and text091

noise) in instruction datasets for ArLMs?092

Inspired by data cartography (Swayamdipta093

et al., 2020), which analyzes the training dynamics094

of AeLMs to identify noisy labels in fine-tuning095

datasets, we propose TDRANKER, a method that096

extends the cartography approach to autoregressive097

language models (ArLMs). We introduce a novel098

ranking function that allows us to extend proven099

techniques from data cartography on AeLMs to100

ArLMs. TDRANKER captures the training dynam-101

ics of ArLMs (GPT2 (Radford et al.)), ranks the102

instruction data samples based on the training dy-103

namics, and categorizes the data samples into two104

broad groups: hard-to-learn and easy-to-learn. This105

classification helps pinpoint datapoints that may106

contain noise or require additional attention during107

the instruction fine-tuning process. Our ultimate108

goal in this paper is to develop a framework that109

helps quickly identify datapoints in need of human110

re-review from among thousands of noisy labels111

1e.g., LLama vs BERT token comparison

and nonsensical texts, improving the overall quality 112

and reliability of instruction fine-tuning datasets. 113

Our main contributions/observations are as follows: 114

• We propose TDRANKER– a data-driven ap- 115

proach that utilizes training dynamics during 116

instruction fine-tuning to identify and remove 117

both text noise and label noise in human- 118

created datasets for ArLMs. 119

• We introduce a rank-by-correctness function 120

categorizing datapoints from easy-to-learn to 121

hard-to-learn, and demonstrating accumula- 122

tion of significant noisy instances at the bot- 123

tom of the ranking (§3.3). 124

• TDRANKER is effective across different mod- 125

els (GPT-2, BERT, LaMini-Cerebras-256M), 126

demonstrating its robustness and generaliz- 127

ability across both AeLMs and ArLMs 128

(§5.2). 129

• Iteratively applying TDRANKER reduces 130

noise progressively. Ranking datapoints by 131

correctness enables at least 2x faster de- 132

noising compared to other ranking functions 133

(§5.3). 134

• TDRANKER is robust across datasets with dif- 135

ferent noise levels (10%, 30%, 50%, 70%), 136

showing that it consistently reduces noise 137

and improves data quality over multiple itera- 138

tions (§5.4). 139

• Application to real-world datasets: We apply 140

our method to real-world classification and 141

generative tasks, identifying both text noise 142

and label noise (§5.5). 143

The remainder of the paper is structured as fol- 144

lows: (§2) presents the literature review, followed 145

by a detailed description of TDRANKER (§3) and 146

the experimental setup (§4). We conclude with an 147

in-depth analysis and discussion of the results (§5). 148

2 Related Works 149

Identifying and mitigating label noise in datasets 150

is crucial for improving model generalization. Pre- 151

vious research has explored various approaches to 152

detecting and handling noisy labels in both AeLMs 153

and ArLMs. We categorize related work into two 154

key areas: handling label noise in autoencoder- 155

based models (discriminative) and addressing label 156

noise in autoregressive models (generative). 157

Label Noise in Autoencoder-Based Models 158

Our work draws inspiration from data cartogra- 159

phy (Swayamdipta et al., 2020), which maps data- 160

points based on their training dynamics to classify 161
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them into easy-to-learn, ambiguous, and hard-to-162

learn categories. The original data cartography163

framework was primarily designed for discrimi-164

native models, which capture confidence scores165

across epochs to determine the position of data-166

points in a learned representation space. By com-167

puting variance-based features from these scores,168

prior work successfully identified datapoints that169

contributed to model uncertainty.170

Beyond data cartography, other approaches have171

also aimed to identify and rectify noisy labels172

in discriminative models. For example, Reiss et173

al. (Reiss et al., 2020) identified annotation errors174

in the CoNLL 2003 dataset by leveraging an ensem-175

ble of models trained specifically for Named En-176

tity Recognition (NER). However, such ensemble-177

based methods are model-specific and may not178

generalize well across different tasks and archi-179

tectures. Our approach differs by being model-180

agnostic, applicable to both discriminative and gen-181

erative frameworks without requiring specialized182

training or additional ensembles.183

Another prominent line of research involves data184

programming (Ratner et al., 2016), which gener-185

ates noisy labeled data and denoises it using a186

generative framework with a discriminative loss187

function. While effective, this method relies on188

human-curated labeling rules to synthesize noisy189

labels, limiting its adaptability to tasks where ex-190

plicit labeling heuristics are unavailable. In con-191

trast, our method leverages training dynamics to192

autonomously detect label noise without requiring193

human-crafted rules.194

Label Noise in Autoregressive Models195

Extending data cartography to autoregressive196

models presents unique challenges, as confidence197

scores from generative models are known to be198

unreliable without calibration (Ulmer et al., 2024;199

Guo et al., 2017). Unlike discriminative models,200

which produce well-defined probability distribu-201

tions over fixed label sets, generative models gener-202

ate free-form text, making their confidence scores203

harder to interpret.204

Despite these challenges, researchers have ex-205

plored strategies for identifying noise in generative206

datasets. The WANLI dataset (Liu et al., 2022) ap-207

plied data cartography to human-annotated datasets,208

identifying difficult patterns and synthesizing new209

challenging examples for natural language infer-210

ence. However, this work primarily focused on211

dataset augmentation rather than denoising.212

Our approach builds upon these insights by ap-213

plying a ranking function to training dynamics cap- 214

tured from autoregressive or autoencoder models. 215

By ranking datapoints by their learning trajectories, 216

specifically by using their correctness scores (§3.3), 217

we effectively separate high-quality instances from 218

noisy ones. Unlike prior methods that rely on 219

ensemble-based heuristics or explicit rule-based 220

labeling, our method generalizes across both dis- 221

criminative and generative models without requir- 222

ing manual intervention. 223

Overall, our work contributes to the ongoing 224

effort of dataset refinement by providing a unified, 225

model-agnostic method for detecting and filtering 226

noisy labels across diverse learning paradigms. 227

3 Methodology 228

In this section, we describe our method, 229

TDRANKER, in detail. To identify noisy data 230

in a dataset, the process involves two main steps. 231

First, an ArLM like GPT-2 is trained on noisy data. 232

During training, the model’s behavior is tracked 233

for each data point, including its predictions (ad- 234

justed to match the expected labels), whether the 235

predictions are correct, and its confidence in the 236

predictions (see §3.2). This information helps de- 237

termine how easy/hard the model learns each data 238

point. Second, the data points are ranked based on 239

their learning difficulty, from easiest to hardest (see 240

§3.3). Experiments show that data points that are 241

harder to learn often have problems like incorrect 242

labels or poor-quality text. 243

3.1 Task 244

Formally, we define an instruction-tuning dataset 245

D = {(dj , aj) | j = 1, 2, . . . , |D|}, where dj is 246

a datapoint in D and aj is the noisy label (or 247

noisy text if the task is generative) obtained from 248

a human annotator that may or may not match the 249

actual output lj (not known a priori). A task is 250

defined as an instruction for a model M to execute 251

on a dataset D. For example, a task could involve 252

classifying whether a given question is standalone, 253

i.e., answerable without referring to the previous 254

context in a multi-turn conversation. The outputs 255

aj and lj are either labels or texts, based on whether 256

the task is a classification or a generative one. 257

3.2 Capturing training dynamics 258

For a given dataset D relevant for a particular task, 259

a model M is instruction-tuned over N epochs. 260

We denote Mi to be the model after the i’th epoch. 261
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Figure 2: Illustration of TDRANKER detecting noise in a small toy dataset over 5 epochs. The training dynamics
are captured during instruction tuning (Ei denotes the training dynamic after the i’th epoch). After the 5th epoch,
TDRANKER computes the mean of E5, ranks datapoints, and identifies lower-ranking ones as likely noisy due to
their harder-to-learn nature.

We also define the notion of a generated label (or262

generated text for generative task), yij , generated263

by the model Mi for a datapoint dj .264

We define training dynamics for each datapoint265

dj . Intuitively, a training dynamic consists of char-266

acteristics regarding Mi for dj , which includes:267

• The confidence score, sij , represents the268

model confidence in generated output yij for269

datapoint dj by model Mi at the i’th epoch.270

• The correctness score, cij , represents the ac-271

curacy of the generated output yij for the data272

point dj on a specific task performed by the273

model Mi. The calculation of cij is given by:274

cij =

{
1, if yij ≡ aj

0, if yij ̸≡ aj
275

If Mi(dj) ≡ aj , then the annotator-provided label276

or text matches the model Mi’s prediction. We277

denote S the set of all confidence scores and C the278

set of all correctness scores. We denote tij as the279

training dynamic for datapoint dj and model Mi,280

where tij = (sij , cij), tij ∈ T , and T is the set of281

all the training dynamics for D and M .282

3.3 Ranking datapoints by training dynamics283

For each datapoint dj , we either aggregate284

the model confidence score (sij) or the cor-285

rectness scores (cij) collected across all N286

epochs. We denote this aggregation function287

as R(dj) : dj → R. Once aggregated, all288

{R(d1), R(d2), . . . , R(d|D|)} are then arranged in289

ascending order, categorized from easy-to-learn to290

hard-to-learn examples. Top-ranked being easy-to-291

learn and bottom-ranked being hard-to-learn.292

In data cartography (Swayamdipta et al., 2020), 293

M was an AeLM (e.g. BERT), T consisted of only 294

S, and datapoints were ranked according to the 295

confidence scores in S. Specifically the following 296

ranking functions were used: 297

• Ranking datapoints in D by the mean confi- 298

dence scores across the epochs: 299

R(dj)S = µsj =
1

N

N∑
i=1

sij 300

• Ranking datapoints in D by the variability of 301

the confidence scores: 302

R(dj)V = −σsj = −

√√√√ 1

N

N∑
i=1

(sij − µsj )
2 303

If one were to rank the datapoints dj by the con- 304

fidence scores using R(dj)V , the higher-ranking 305

datapoints have smaller variability in their confi- 306

dence scores than the lower-ranking datapoints that 307

have higher variability in their confidence scores2. 308

Unlike data cartography, TDRANKER works on 309

M that can either be an ArLM or an AeLM to 310

detect noise within the instruction tuning dataset. 311

As highlighted by Ulmer et al. (2024), the con- 312

fidence scores S produced by ArLMs are often 313

unreliable. To address this, TDRANKER ranks data 314

points based on C, which quantifies the correctness 315

of the model’s predictions over multiple training 316

epochs. Specifically, we define the aggregation 317

function R(dj)C for correctness by computing the 318

2Appendix A describes how the ranking functions in data
cartography groups the data based on different characteristics.
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average correctness score across all epochs for319

each datapoint dj :320

R(dj)C = µcj =
1

N

N∑
i=1

cij321

Our experiments demonstrate that ranking data322

points based on correctness scores and examining323

those with lower rankings enables effective identi-324

fication of potentially noisy data points dj . These325

instances often contain label and text noise, which326

may necessitate re-evaluation by a human annotator327

or, in certain situations, removal from the dataset328

to maintain data integrity.329

4 Experiments330

This section describes experimental settings.331

4.1 Ranking Functions332

We conducted experiments with various ranking333

functions to identify data points for cleaning by334

selecting those with the lowest ranks: (1) correct-335

ness scores average, R(dj)C , which is our novel336

ranking function, (2) confidence scores3 variabil-337

ity, R(dj)V , and (3) confidence scores average,338

R(dj)S .339

4.2 Selection Methods340

We compare TDRANKER against a baseline ap-341

proach Random where a random percentage of data342

points was selected for cleaning.343

4.3 Datasets344

We conducted experiments on five datasets, com-345

prising three public datasets and two enterprise346

datasets4 (real-world dataset).347

4.3.1 Public Datasets348

We used three public datasets: (1) QNLI (Wang349

et al., 2018), (2) OpenBookQA (Mihaylov et al.,350

2018), and MELD (Poria et al., 2019). These351

datasets cover a variety of tasks (see Appendix C).352

Because these are all classification datasets, we353

introduced a controlled level of noise by flipping354

a percentage of the labels. A percentage of noise355

was introduced into the train labels, where for each356

label, an equal portion of noise was introduced, e.g.357

QNLI has 5% noise for each label, {0, 1}, result-358

ing in 10% label noise. We categorize all of these359

3All reported confidence scores from ArLMs are cali-
brated using the histogram binning method (Guo et al., 2017).

4Sufficient details on the enterprise datasets are provided
in the paper for clarity.

Dataset Domain Type Task # Dp

Gov-Stand Gov C Standalone 600
Gov-Pert Gov C Pertinence 799
Ent-Stand Cloud C Standalone 2200

Gov-Qw Gov G Query Rewrite 300
Ent-Qw Cloud G Query Rewrite 1100

Table 1: Real-world datasets. No groundtruth data
was available aside from the annotator-given labels and
annotator-given texts that we presume to be noisy. Gov
and Cloud were transformed into 6 datasets for fine-
tuning GPT-2 on a variety of tasks, types (C for classifi-
cation, G for generative), and dataset sizes (#Dp).

Task Type Description

Standalone
task

C Given a conversation, classify whether
the last question depends on the previous
part of the conversation such as through
co-reference or ellipsis, i.e. a standalone
question.

Pertinence
task

C Given a conversation, classify whether
the last response is pertinent to the last
question. In our particular scenario, per-
tinence takes on a stricter definition; if
a substantial part of the agent’s response
does not answer the primary question
posed by the human, the response is
considered non-pertinent, even in cases
where the response may still be on topic.

Query
rewrite
task

G Given a conversation, rewrite a stan-
dalone version of the last question in the
conversation such that the standalone ver-
sion can be answered without the context
in the conversation.

Table 2: Tasks on real-world datasets. C for classifica-
tion, G for generative task.

datasets as classification datasets. To understand 360

how our approach differs from the data cartography 361

work on AeLMs and extend those ideas to ArLMs, 362

we conducted experiments for each dataset on two 363

models: an ArLM, GPT-2, and an AeLM, BERT. 364

Both models were fine-tuned for 20 epochs, during 365

which the training dynamics were recorded. 366

4.3.2 Real-World Datasets 367

After confirming the effectiveness of TDRANKER 368

for identifying subsets of noisy data using ArLMs, 369

we tested our method on two real-world datasets, 370

which we call Gov and Cloud. These datasets are 371

multi-turn conversations with an AI agent over two 372

domains (cloud documentation of a major cloud 373

provider and web pages from the government do- 374

main). The datasets were created and annotated 375

by an external annotation service. Labels that de- 376

scribe the type of turn (i.e. pertinent/non-pertinent 377
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question, standalone/non-standalone question, etc.)378

were also given. We asked annotators to write the379

standalone version of each question in the conver-380

sation between a human and an agent such that381

the standalone question can be answered without382

the previous context. For experimentation, the two383

datasets were transformed into several fine-tuning384

datasets as shown in Table 1. Six classification385

tasks and generative tasks, which we call Gov-386

Stand, Gov-Pert, Ent-Stand, Gov-Qw, and Ent-Qw,387

were formed for each of the datasets based on the388

available labels, as shown in Table 2. The datasets389

were then used to fine-tune GPT-2 over 20 epochs.390

During fine-tuning, the training dynamics were cap-391

tured after each epoch.392

5 Results393

In this section, we evaluate different aspects of our394

proposed method: the impact of ranking functions395

on data selection (§5.1), the impact of different396

model choices (§5.2), the effectiveness of iterative397

application for dataset denoising (§5.4), the impact398

of different noise levels (§5.3), and the applicability399

of our method to real-world noisy datasets (§5.5).400

5.1 Impact of Ranking Functions401

For each dataset, we analyzed the training dynam-402

ics obtained from fine-tuning on the noisy dataset403

and ranked the datapoints using three different rank-404

ing functions and two selection methods. We then405

created a cleaner dataset by automatically cleaning406

the bottom 10% datapoints output by the respective407

ranking method. We then fine-tuned the model for408

an additional 20 epochs on the cleaner dataset (see409

Table 3).410

For GPT-2, we observe that prioritizing the411

removal of hard-to-learn datapoints—identified412

by ranking them based on correctness scores413

R(i, dj)C and TDRANKER selection method—led414

to a consistent performance improvement across all415

the datasets as compared to random selection. This416

is because, with GPT-2, correctness scores cluster417

the noisy data towards the bottom of the ranked418

list. Similar consistent gains are observed with419

BERT model across all the classification datasets5.420

TDRANKER with correctness scores shows con-421

sistent gains across most datasets for both mod-422

els.423

5Figure 7 in Appendix E provides ranking clusters for
different ranking functions.

Figure 3: Impact of Noise Levels: We iteratively denoise
QNLI using our method by fine-tuning GPT-2 and then
ranking the datapoints by correctness.

Figure 4: % noise in the MELD dataset over several
steps. Ranking by correctness denoises the dataset over
fewer steps than the other ranking functions.

5.2 Model-Agnostic Denoising 424

To assess whether TDRANKER is agnostic to the 425

choice of the denoising model, we experimented 426

with model interchangeability. Specifically, we 427

denoised the dataset using one model (e.g., GPT- 428

2) ranked by correctness and then fine-tuned the 429

other model (e.g., BERT) on the cleaned data for 430

20 epochs. Denoising was conducted over 20 steps, 431

with each step consisting of five training epochs. 432

As shown in Table 4, TDRANKER effectively 433

cleans noise using correctness scores, regardless 434

of the denoising model employed. 435

5.3 Iterative Denoising Across Models 436

We experimented with iterative dataset denoising 437

by applying our method over multiple steps. In 438

each step, we: (1) fine-tuned GPT-2 or BERT for 439

five epochs on the noisy dataset to capture training 440

dynamics, (2) ranked datapoints using different 441

ranking functions, and (3) cleaned the bottom 10% 442

of datapoints to simulate human review and re- 443

labeling. The process was repeated iteratively with 444
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Dataset Step
Ranking
Function

Selection
Method

GPT2 BERT

% Cln Acc P R % Cln Acc P R

QNLI

1 None None 0 0.72 0.77 0.67 0 0.72 0.75 0.72

2

None Random 8% 0.73 0.77 0.70 15% 0.77 0.77 0.77
R(dj)V TDRANKER 9% 0.72 0.79 0.65 14% 0.77 0.78 0.77
R(dj)S TDRANKER 2% 0.74 0.81 0.66 15% 0.75 0.77 0.75
R(dj)C TDRANKER 34% 0.79 0.84 0.75 29% 0.78 0.79 0.78

OPQA

1 None None 0 0.27 0.27 0.27 0 0.67 0.67 0.67

2

None Random 4.44% 0.47 0.47 0.47 5.65% 0.66 0.66 0.66
R(dj)V TDRANKER 6.67% 0.51 0.51 0.51 5.85% 0.68 0.68 0.68
R(dj)S TDRANKER 8.48% 0.51 0.51 0.51 5.45% 0.67 0.67 0.67
R(dj)C TDRANKER 11.31% 0.50 0.50 0.50 5.25% 0.69 0.69 0.69

MELD

1 None None 0 0.69 0.63 0.72 0 0.76 0.77 0.76

2

None Random 8.65% 0.72 0.67 0.73 16.45% 0.75 0.75 0.75
R(dj)V TDRANKER 4.76% 0.74 0.69 0.77 16.45% 0.75 0.75 0.75
R(dj)S TDRANKER 14.72% 0.74 0.69 0.76 20.35% 0.74 0.75 0.74
R(dj)C TDRANKER 41.55% 0.76 0.72 0.77 48.48% 0.78 0.78 0.78

Table 3: Impact of ranking functions. Step 1 and 2 shows the model’s performance after fine-tuning the model on
the noisy and on the cleaner version of the noisy dataset, respectively. Selection method indicates how the datapoints
are selected to clean. Random means we randomly selected 10% of the dataset to clean, while TDRANKER means
we selected 10% of the bottom-ranked datapoints. % Cln denotes the percent of the bottom-ranked datapoints that
were cleaned. More detailed visualization of the impact of ranking can be found in the Appendix, Figure 6 and 7.

Dataset %
Noise

Denoising
Model

Model
FT

Fine-tuned Model

Acc P R

QNLI 10%

BERT GPT2 0.79 0.81 0.79
GPT2 GPT2 0.79 0.84 0.75

BERT BERT 0.78 0.79 0.78
GPT2 BERT 0.76 0.78 0.76

OPQA 5%

BERT GPT2 0.50 0.50 0.50
GPT2 GPT2 0.49 0.49 0.49

BERT BERT 0.69 0.69 0.69
GPT2 BERT 0.64 0.64 0.64

MELD 10%

BERT GPT2 0.75 0.70 0.75
GPT2 GPT2 0.76 0.72 0.77

BERT BERT 0.78 0.78 0.78
GPT2 BERT 0.75 0.76 0.75

Table 4: Model-Agnostic Denoising: Denoising Model
de-noises the dataset and another model is fine-tuned on
the denoised dataset.

the progressively cleaner dataset.445

We observe that with each step each ranking446

function helps reduce the noise in the datasets.447

However, rank by correctness cleans the noise448

twice as fast as other ranking functions (see Fig-449

ure 4). More plots showcasing similar results for450

both models (GPT-2 and BERT) on the QNLI and451

MELD dataset can be seen in Figure 8 in Appendix452

F. This proves that ranking datapoints by cor-453

rectness results in faster denoising compared454

to other ranking functions, with the effect being 455

particularly pronounced for BERT. 456

5.4 Impact of Noise Levels 457

To evaluate the robustness of our method, we ex- 458

perimented with varying noise levels (30%, 50%, 459

and 70%) in the dataset and analyzed how de- 460

noising progressed over multiple steps. Figure 3 461

illustrates the reduction in noise as our method 462

iteratively fine-tunes a GPT-2 model, ranks dat- 463

apoints by correctness scores, and removes the 464

bottom 10% of low-ranking datapoints in each 465

step. We further replicated this experiment using a 466

smaller model, LaMini-Cerebras-256M (Wu et al., 467

2023), and BERT, observing a similar denoising 468

trend (Figure 9 in Appendix G). These results con- 469

firm that TDRANKER effectively reduces noise 470

across different models with varying noise levels, 471

demonstrating its generalizability and effectiveness 472

in dataset refinement. 473

5.5 Analysis on Real-world Datasets 474

We benchmarked TDRANKER on the 6 real-world 475

datasets for both the classification tasks and the gen- 476

erative tasks as described in Section 4.3.2. For the 477

real-world datasets, ground-truth data was not avail- 478

able. A researcher manually reviewed the bottom- 479

7



(a) R(dj)C on classification tasks. (b) R(dj)V on classification tasks. (c) R(dj)C on generative tasks.

Figure 5: Identifying noise in real-world datasets using TDRANKER on GPT-2 training dynamics.

ranking datapoints, identifying ones requiring hu-480

man review or relabeling. For each datapoint in the481

classification task datasets, we marked whether the482

noise was in the text, label, or both. For each dat-483

apoint in the generative task datasets, we marked484

whether the noise was in the non-standalone or the485

standalone question that the annotators created.486

5.5.1 Results on Classification Tasks487

Ranking by correctness helped identify more noisy488

datapoints than ranking by the variability of the489

confidence scores. Ranking by correctness in the490

Gov-Stand dataset resulted in a total of 52 noisy491

datapoints in the bottom 100 ranking datapoints as492

opposed to only 1 noisy datapoint in the top 100493

ranking datapoints (Figure 5a). Across all three494

real-world datasets, ranking by correctness results495

in a clustering of noisy datapoints towards the bot-496

tom of the rank.497

While label noise dominated both Ent-Stand and498

Gov-Pert datasets, there was more text noise in the499

Gov-Stand dataset; twenty datapoints contained500

only text noise, while 13 datapoints contained both501

text noise and label noise. We discovered that much502

of the noise introduced in the texts was linked to503

particular annotators for which English was not504

their first language.505

5.5.2 Results on Generative Tasks506

We also experimented with generative tasks, specif-507

ically the query rewrite tasks on the real-world508

datasets shown in Table 1. We captured the train-509

ing dynamics from fine-tuning GPT-2 to rewrite510

a query into a standalone question. To calculate511

correctness and quantify how much GPT-2’s gen-512

erated output matches the annotator’s standalone513

question, we used an LLM Judge6, specifically514

LLaMA-3-70B. Datapoints that the model strug-515

gled with in earlier epochs but then finally learned516

are considered easy to learn, and thus, we calculate517

6See more in Appendix D

the correctness score based on the last ten epochs 518

instead of all 20 epochs. 519

In the hard-to-learn datapoints, text noise in the 520

non-standalone question almost always cascades 521

into the standalone version of the question, since 522

(as part of the task) annotators are instructed to 523

write the standalone version based on the non- 524

standalone question. Our method can cluster more 525

datapoints with this type of fatal7 noise towards the 526

bottom ranks for human re-review (see the count 527

of noise in non-standalone questions in the bottom 528

ranks in Figure 5c). In the Gov-Qw dataset, there 529

was 5% more fatal, text noise in the non-standalone 530

questions in the bottom rank than in the top rank. 531

Ultimately, TDRANKER enabled the discovery 532

of fatal noise in our real-world datasets. 533

6 Conclusion 534

In this paper, we propose an approach for identify- 535

ing subsets of data containing a high percentage of 536

noise, including label noise and text noise. Train- 537

ing dynamics are captured during the fine-tuning 538

stage and are used to rank datapoints from easy-to- 539

learn and hard-to-learn, where hard-to-learn data- 540

points often contain a higher percentage of noise. 541

Our experiments show that this approach can be 542

used regardless of whether the model is an AeLM 543

(BERT) and ArLM (GPT-2, LaMini) architecture. 544

Our approach identified subsets of noise in real- 545

world datasets, with the noisier subsets containing 546

more fatal noise that cascades into other attributes 547

of the data. 548

Limitations 549

For the purposes of quickly identifying subsets of 550

noise in our human-created datasets, our approach 551

7For instance, in a conversation about compost and com-
post bins, a non-standalone question follows it, “And what
conditions should maintain?”. The annotator’s question has
grammatical errors making it unclear what “it” refers to, i.e.
the conditions of the compost bin or the compost itself.

8



has been experimented with small language models.552

The results may not generalize to larger language553

models. Moreover, while the annotator-created554

datasets contain noise, the researcher re-reviewing555

the datapoints that are part of the subset of data556

identified as likely to be noisy by our approach is557

also subject to human error. Our experiments have558

only been conducted on text-based datasets and559

conversational datasets and may not generalize to560

datasets of other modalities.561

Ethical Concerns562

Some of the datasets used in our experiments are563

open-sourced and their usage is permitted as long564

as their original work is cited. The data created565

from the real-world datasets were from annotators566

from a dedicated external annotation service that567

disburses payment to annotators. Before data cre-568

ation, annotators consent to its collection and usage.569

Because our work also demonstrated the feasibility570

of identifying noise in the annotator’s created data,571

we do not report annotator characteristics, as doing572

so adjacent to discussions of identifying subsets of573

errors in the created data may jeopardize the anno-574

tator’s jobs. Company policy dictates how data is575

handled and stored.576
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between data points that are consistently correct 753

across epochs (higher correctness scores) and those 754

that are less likely to be correct (lower correctness 755

scores). 756

In other words, ranking by R(dj)C or R(dj)S 757

indicates that higher-ranking data points are easier 758

for the model to learn, whereas lower-ranking data 759
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ambiguous data points from non-ambiguous ones. 763
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more likely to have lower correctness scores com-765

pared to easier-to-learn data points.766

While in (Swayamdipta et al., 2020), identify-767

ing hard-to-learn datapoints meant identifying out-768

of-distribution datapoints, in our experiments, we769

show that hard-to-learn datapoints indicate a higher770

likelihood of datapoints that were noisy. In other771

words, noisy datapoints identified using our method772

grouped together datapoints that the model strug-773

gled to learn (hard-to-learn datapoints) and that the774

model did not learn well (ambiguous datapoints).775

B Training & Hyperparameters776

Each experiment is performed on a single NVIDIA777

Tesla V100 GPU 32 GB. Our implementation uses778

the Huggingface Transformers library (Wolf et al.,779

2019). For training BERT, the same scheduler780

and optimizer in the experiments for data cartogra-781

phy (Swayamdipta et al., 2020) were also used in782

our experiments for BERT. For training the ArLMs,783

a learning rate of 2e-4 was used alongside AdamW784

optimizer (Loshchilov and Hutter, 2017).785

C Pulic Dataset786

D LLM Judge Prompts787

As part of calculating the correctness score of a788

given datapoint for a generative task such as query789

rewrite, we use an LLM Judge to identify how790

similar a model’s generated output matches the an-791

notator’s golden standalone question. We prompted792

LLaMA-3-70B model as shown in Listing 18.793

E Impact of Ranking Functions794

795

A close-up on the rankings of the QNLI dataset796

from the training dynamics obtained from GPT2797

shows that ranking by correctness scores clusters798

the noisy data towards the bottom (see Figure 6b),799

unlike ranking by variability of confidence scores800

(see Figure 6a). Given the noisy datapoints iden-801

tified in the bottom rank, we applied a step of de-802

noising on the dataset, fine-tuning the model on803

a cleaner dataset, and then ranked the datapoints804

based on the correctness scores. We visualize the805

rankings after a round of denoising in Figure 6c,806

where once again, the bottom ranks cluster more807

noisy datapoints compared to the top ranks.808

8Prompts and LLM Judges were from our company’s
Ecosystem Engineering team

Figure 7 provides ranking clusters for different 809

ranking functions. Similar consistent gains are ob- 810

served with BERT model across all the classifica- 811

tion datasets. This shows that TDRANKER with 812

correctness scores shows consistent gains across 813

all datasets for both the models. 814

F Iterative Denoising 815

We experimented with denoising datasets by iter- 816

atively applying our method for several steps.We 817

fine-tuned GPT2 and BERT for several steps, where 818

in each step we (1) fine-tune the model over 5 819

epochs with the noisy dataset to obtain the training 820

dynamics, (2) rank the datapoints based on differ- 821

ent ranking functions and then denoise the bottom 822

10% of the datapoints to simulate human review/re- 823

labeling of the bottom-ranking datapoints. We then 824

use the cleaner dataset and repeat the step several 825

times. In Figure 8, ranking the datapoints by cor- 826

rectness denoises the dataset over fewer steps com- 827

pared to the other ranking functions. 828

G Impact of Noise Levels 829

We experimented with different levels of noise 830

(30%, 50%, 70%) in the QNLI dataset to see how 831

our method denoises the dataset as it progresses 832

through the steps. We denoised the dataset us- 833

ing our method by fine-tuning 3 different models: 834

(1) GPT-2, (2) a similarly smaller model, LaMini- 835

Cerebras-256M (Wu et al., 2023), and (3) BERT. 836

Figure 9 shows the percentage of noise as we it- 837

eratively denoise the dataset using our method by 838

fine-tuning a LaMini and BERT model over sev- 839

eral steps (the GPT-2 results are shown in Figure 840

3). After each step, we rank the datapoints by cor- 841

rectness scores to denoise the bottom 10% ranking 842

datapoints. TDRANKER effectively reduces noise 843

across different models with varying noise levels. 844
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Dataset Task Description Train Test N%

QNLI Answerability Given a group of sentences and a question, “output 0 if the group
of sentences contains the information required to answer the
question; otherwise, output 1”.

1100 200 10%

OpenBookQA Multiple-choice
question-
answering

Given a sentence stem and multiple-choice options, “select the
correct answer for the multiple-choice question: A, B, C, or D.”

4957 500 5%

MELD Emotion recogni-
tion

Given a conversation and a subsequent utterance, “determine the
emotional tone of the utterance: anger or surprise. Output 0 for
anger and 1 for surprise.”

2314 626 10%

Table 5: Tasks on public datasets and statistics, with % noise (N%)
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Listing 1: Prompt for correctness score

Follow these below structured steps to accurately assess query transformations and
ensure alignment with provided criteria.

1. **Role and Task **: Assume the role of an impartial assistant and judge. Your task
is to evaluate query transformations using provided information. You will

receive a Conversation History , Follow Up Query , Golden Rewritten Query , and a
Rewritten Query for evaluation.

2. ** Initial Setup **: Begin by reviewing the Conversation History to understand the
context. Then , introduce the Follow Up Query that requires transformation.

3. ** Golden Rewritten Query **: Examine the Golden Rewritten Query , which serves as
the correct reference for adding context to the Follow Up Query based on the
entities from the Conversation History , if necessary. Ensure that the Golden
Rewritten Query is fully correct and comprehensive.

4. ** Evaluation Criteria **: Evaluate the Rewritten Query based on the following
criteria:
- Output {{" Grade": "1"}} if the Rewritten Query matches the Golden Rewritten

Query in terms of entities and intents and with the Conversation History.
- Output {{" Grade": "0"}} if the Rewritten Query contains additional information

not present in the Golden Rewritten Query.
- Output {{" Grade": "0"}} if the Rewritten Query is missing information that is

present in the Golden Rewritten Query.
5. ** Output Format **: Format your evaluation output strictly as {{" Grade": "

evaluated grade "}} to ensure clarity and consistency in assessment.

Input:
Conversation History: What is the SSI for Best Buy?
The Supplier Stability Index (SSI) for Best Buy is 10. This indicates that Best Buy

has a high likelihood of experiencing significant financial or operational
instability over the next 3 months. This could manifest as the company ceasing
operations , seeking legal relief from creditors , going into receivership or
reorganization , making arrangements for the benefit of creditors , or becoming
inactive due to merger or acquisition related activity.

Follow Up Query: Do they have any government indicators?
Golden Rewritten Query: Does Best Buy have any government indicators?
Rewritten Query: Does Best Buy have any government indicators?

Output:
{{" Grade": "1"}}

Input:
Conversation History: What is the website for Adobe?
The website for Adobe is www.adobe.com.
Follow Up Query: What is the SSI for Pfizer?
Golden Rewritten Query: What is the SSI for Pfizer?
Rewritten Query: What is the website for Pfizer?

Output:
{{" Grade": "0"}}

Input:
Conversation History: {prompt_parameter_1}
Follow Up Query: {prompt_parameter_2}
Golden Rewritten Query: {prompt_parameter_3}
Rewritten Query: {prompt_parameter_4}

Output:
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(a) Ranking datapoints by variability of confidence scores. The rank of each datapoint is obtained after (1) one round of
fine-tuning the model on the noisy QNLI dataset, and then (2) ranking the datapoints by their variability of confidence scores.
Ranking by variability of confidence scores does not cluster the noisy datapoints towards the bottom of the plot. However,
ranking by correctness scores clusters the noisy datapoints towards the bottom of the plot (see Figure 6b).

(b) Ranking datapoints by correctness scores. The rank of each datapoint is obtained after (1) one round of fine-tuning the
model on the noisy QNLI dataset, and then (2) ranking the datapoints by their correctness scores. Higher rank indicates that they
are considered easier to learn than lower-ranking datapoints (hard-to-learn). Note the noisy datapoints cluster towards the bottom
of the plot.

(c) Ranking datapoints by correctness scores after cleaning the bottom 10% of the dataset identified in Figure 6b. The rank
of each datapoint is obtained after (1) one round of fine-tuning the model on the noisy QNLI dataset, (2) ranking the datapoints
by their correctness scores, (3) cleaning the bottom 10% of the ranked dataset, (4) a second round of fine-tuning the model on the
partially cleaned dataset, and (5) ranking the datapoints by correctness scores. In short, we applied an additional round of our
method: plot the rank of the dataset after fine-tuning the model on the cleaner dataset.

Figure 6: Plots of the QNLI dataset. Each point in the plot is a datapoint, from the the QNLI dataset (size 1000)
with 100 synthetically-created noisy labels. Each point on the plot is marked as noisy or not.
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(a) Rank datapoints by correctness from
training dynamics obtained by fine-
tuning BERT.

(b) Rank datapoints by variability of con-
fidence scores from training dynamics ob-
tained by fine-tuning BERT.

(c) Rank datapoints by confidence scores
from training dynamics obtained by fine-
tuning BERT.

(d) Rank datapoints by correctness from
training dynamics obtained by fine-
tuning GPT2.

(e) Rank datapoints by variability of con-
fidence from training dynamics obtained
by fine-tuning GPT2.

(f) Rank datapoints by confidence from
training dynamics obtained by fine-
tuning GPT2.

Figure 7: Comparing different ranking functions on the training dynamics obtained by fine-tuning a model on the
public datasets. Top rank refers to the top-ranking 10% of the dataset and bottom rank refers to the bottom-ranking
10% of the dataset. We report the percentage of noise within the rank. Note that ranking by correctness, R(dj)C ,
clusters the noisy datapoints towards the bottom ranking datapoints as opposed to ranking by variability in confidence
scores, R(dj)V .
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(a) % noise in the QNLI dataset from fine-tuning BERT. (b) % noise in the MELD dataset from fine-tuning BERT.

(c) % noise in the QNLI dataset from fine-tuning GPT2. (d) % noise in the MELD dataset from fine-tuning GPT2.

Figure 8: Percent of noise in the QNLI and MELD dataset over several steps. Both datasets had a 10% of noise
introduced into the dataset. Ranking the datapoints by correctness denoises the dataset over fewer steps than the
other ranking functions.
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Figure 9: Iteratively denoising the QNLI dataset using
our method (capturing training dynamics by fine-tuning
BERT and LaMini and then ranking the datapoints by
correctness). Different levels of noise are experimented
with.
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